1
|
Egan MS, O'Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.17.549348. [PMID: 37503120 PMCID: PMC10370064 DOI: 10.1101/2023.07.17.549348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
|
2
|
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess E, Shiau JC, Park ES, Yuan Z, Kim BH, Kyle DE, Harty JT, MacMicking JD, Kurup SP. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619707. [PMID: 39484443 PMCID: PMC11526971 DOI: 10.1101/2024.10.22.619707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Plasmodium parasites undergo development and replication within the hepatocytes before infecting the erythrocytes and initiating clinical malaria. Although type-I interferons (IFNs) are known to hinder Plasmodium infection within the liver, the underlying mechanisms remain unclear. Here, we describe two IFN-I-driven hepatocyte antimicrobial programs controlling liver-stage malaria. First, oxidative defense by NADPH oxidases 2 and 4 triggers a pathway of lysosomal fusion with the parasitophorous vacuole (PV) to help clear Plasmodium . Second, guanylate-binding protein (GBP) 1 disruption of the PV activates caspase-1 inflammasome, inducing pyroptosis to remove the infected host cells. Remarkably, both human and mouse hepatocytes enlist these cell-autonomous immune programs to eliminate Plasmodium ; their pharmacologic or genetic inhibition led to profound malarial susceptibility, and are essential in vivo . In addition to identifying the IFN-I-mediated cell-autonomous immune circuits controlling Plasmodium infection in the hepatocytes, this study extends our understanding of how non-immune cells are integral to protective immunity against malaria.
Collapse
|
3
|
Kuhm T, Taisne C, de Agrela Pinto C, Gross L, Giannopoulou EA, Huber ST, Pardon E, Steyaert J, Tans SJ, Jakobi AJ. Structural basis of antimicrobial membrane coat assembly by human GBP1. Nat Struct Mol Biol 2024:10.1038/s41594-024-01400-9. [PMID: 39394410 DOI: 10.1038/s41594-024-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Guanylate-binding proteins (GBPs) are interferon-inducible guanosine triphosphate hydrolases (GTPases) mediating host defense against intracellular pathogens. Their antimicrobial activity hinges on their ability to self-associate and coat pathogen-associated compartments or cytosolic bacteria. Coat formation depends on GTPase activity but how nucleotide binding and hydrolysis prime coat formation remains unclear. Here, we report the cryo-electron microscopy structure of the full-length human GBP1 dimer in its guanine nucleotide-bound state and describe the molecular ultrastructure of the GBP1 coat on liposomes and bacterial lipopolysaccharide membranes. Conformational changes of the middle and GTPase effector domains expose the isoprenylated C terminus for membrane association. The α-helical middle domains form a parallel, crossover arrangement essential for coat formation and position the extended effector domain for intercalation into the lipopolysaccharide layer of gram-negative membranes. Nucleotide binding and hydrolysis create oligomeric scaffolds with contractile abilities that promote membrane extrusion and fragmentation. Our data offer a structural and mechanistic framework for understanding GBP1 effector functions in intracellular immunity.
Collapse
Affiliation(s)
- Tanja Kuhm
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Clémence Taisne
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Evdokia A Giannopoulou
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Stefan T Huber
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander J Tans
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- AMOLF, Amsterdam, The Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
4
|
Verma A, Azhar G, Patyal P, Zhang W, Zhang X, Wei JY. Proteomic analysis of P. gingivalis-Lipopolysaccharide induced neuroinflammation in SH-SY5Y and HMC3 cells. GeroScience 2024; 46:4315-4332. [PMID: 38507186 PMCID: PMC11336124 DOI: 10.1007/s11357-024-01117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Chronic periodontitis and its keystone pathogen, Porphyromonas gingivalis, have increasingly been linked with Alzheimer's disease (AD). However, P.gingivalis-lipopolysaccharide (LPS) mediated release of neuroinflammatory proteins contributes to AD remains underexplored. In this study, we utilized data-independent acquisition mass spectrometry to characterize P.gingivalis-LPS induced profile of differentially expressed proteins associated with the neuroinflammatory response in human neuroblastoma (SH-SY5Y) and human microglial (HMC3) cells. We reported a set of 124 proteins in SH-SY5Y cells and 96 proteins in HMC3 cells whose levels were significantly upregulated or downregulated by exposure to P. gingivalis-LPS. Our findings demonstrate that P. gingivalis-LPS contributed to the elevated expressions of dementia biomarkers and pro-inflammatory cytokines that include APP, Aβ1-42, Aβ1-40, T-Tau, p-Tau, VEGF, TGF-β, IL-1β, IL-6 and TNF-α through 2 distinct pathways of extracellular sensing by cell surface receptors and intracellular cytosolic receptors. Interestingly, intracellular signaling proteins activated with P. gingivalis-LPS transfection using Lipofectamine™ 2000 had significantly higher fold change protein expression compared to the extracellular signaling with P. gingivalis-LPS treatment. Additionally, we also explored P. gingivalis-LPS mediated activation of caspase-4 dependent non canonical inflammasome pathway in both SH-SY5Y and HMC3 cells. In summary, P. gingivalis-LPS induced neuroinflammatory protein expression in SH-SY5Y and HMC3 cells, provided insights into the specific inflammatory pathways underlying the potential link between P. gingivalis-LPS infection and the pathogenesis of Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Ambika Verma
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Gohar Azhar
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Pankaj Patyal
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Wei Zhang
- Department of Mathematics and Statistics, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Xiaomin Zhang
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA
| | - Jeanne Y Wei
- Department of Geriatrics, Donald W. Reynolds Institute On Aging, University of Arkansas for Medical Sciences, 4301 West Markham, Little Rock, AR, 72205, USA.
| |
Collapse
|
5
|
Mi Z, Wang Z, Wang Y, Xue X, Liao X, Wang C, Sun L, Lin Y, Wang J, Guo D, Liu T, Liu J, Modlin RL, Liu H, Zhang F. Cellular and molecular determinants of bacterial burden in leprosy granulomas revealed by single-cell multimodal omics. EBioMedicine 2024; 108:105342. [PMID: 39321499 PMCID: PMC11462173 DOI: 10.1016/j.ebiom.2024.105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND Which cell populations that determine the fate of bacteria in infectious granulomas remain unclear. Leprosy, a granulomatous disease with a strong genetic predisposition, caused by Mycobacterium leprae infection, exhibits distinct sub-types with varying bacterial load and is considered an outstanding disease model for studying host-pathogen interactions. METHODS We performed single-cell RNA and immune repertoire sequencing on 11 healthy controls and 20 patients with leprosy, and integrated single-cell data with genome-wide genetic data on leprosy. Multiplex immunohistochemistry, and in vitro and in vivo infection experiments were conducted to confirm the multimodal omics findings. FINDINGS Lepromatous leprosy (L-LEP) granulomas with high bacterial burden were characterised by exhausted CD8+ T cells, and high RGS1 expression in CD8+ T cells was associated with L-LEP. By contrast, tuberculoid leprosy (T-LEP) granulomas with low bacterial burden displayed enrichment in resident memory IFNG+ CD8+ T cells (CD8+ Trm) with high GNLY expression. This enrichment was potentially attributable to the communication between IL1B macrophages and CD8+ Trm via CXCL10-CXCR3 signalling. Additionally, IL1B macrophages in L-LEP exhibited anti-inflammatory phenotype, with high APOE expression contributing to high bacterial burden. Conversely, IL1B macrophages in T-LEP were distinguished by interferon-γ induced GBP family genes. INTERPRETATION The state of IL1B macrophages and functional CD8+ T cells, as well as the relationship between them, is crucial for controlling bacterial persistence within granulomas. These insights may indicate potential targets for host-directed immunotherapy in granulomatous diseases caused by mycobacteria and other intracellular bacteria. FUNDING The Key research and development program of Shandong Province (2021LCZX07), Natural Science Foundation of Shandong Province (ZR2023MH046), Youth Science Foundation Cultivation Funding Plan of Shandong First Medical University (Shandong Academy of Medical Sciences) (202201-123), National Natural Science Foundation of China (82471800, 82230107, 82273545, 82304039), the China Postdoctoral Science Foundation (2023M742162), Shandong Province Taishan Scholar Project (tspd20230608), Joint Innovation Team for Clinical & Basic Research (202410), Central guidance for local scientific and technological development projects of Shandong Province (YDZX2023058).
Collapse
Affiliation(s)
- Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yi Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Xiaojie Liao
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Yingjie Lin
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianwen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Dianhao Guo
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China
| | - Jianjun Liu
- Laboratory of Human Genomics, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Robert L Modlin
- Division of Dermatology, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA.
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Shandong, China.
| |
Collapse
|
6
|
Sweet MJ, Ramnath D, Singhal A, Kapetanovic R. Inducible antibacterial responses in macrophages. Nat Rev Immunol 2024:10.1038/s41577-024-01080-y. [PMID: 39294278 DOI: 10.1038/s41577-024-01080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/20/2024]
Abstract
Macrophages destroy bacteria and other microorganisms through phagocytosis-coupled antimicrobial responses, such as the generation of reactive oxygen species and the delivery of hydrolytic enzymes from lysosomes to the phagosome. However, many intracellular bacteria subvert these responses, escaping to other cellular compartments to survive and/or replicate. Such bacterial subversion strategies are countered by a range of additional direct antibacterial responses that are switched on by pattern-recognition receptors and/or host-derived cytokines and other factors, often through inducible gene expression and/or metabolic reprogramming. Our understanding of these inducible antibacterial defence strategies in macrophages is rapidly evolving. In this Review, we provide an overview of the broad repertoire of antibacterial responses that can be engaged in macrophages, including LC3-associated phagocytosis, metabolic reprogramming and antimicrobial metabolites, lipid droplets, guanylate-binding proteins, antimicrobial peptides, metal ion toxicity, nutrient depletion, autophagy and nitric oxide production. We also highlight key inducers, signalling pathways and transcription factors involved in driving these different antibacterial responses. Finally, we discuss how a detailed understanding of the molecular mechanisms of antibacterial responses in macrophages might be exploited for developing host-directed therapies to combat antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Matthew J Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| | - Divya Ramnath
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Amit Singhal
- Infectious Diseases Labs (ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ronan Kapetanovic
- INRAE, Université de Tours, Infectiologie et Santé Publique (ISP), Nouzilly, France
| |
Collapse
|
7
|
Zhang S, Jiang Y, Yu Y, Ouyang X, Zhou D, Song Y, Jiao J. Autophagy: the misty lands of Chlamydia trachomatis infection. Front Cell Infect Microbiol 2024; 14:1442995. [PMID: 39310786 PMCID: PMC11412940 DOI: 10.3389/fcimb.2024.1442995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chlamydia are Gram-negative, obligate intracellular bacterial pathogens that infect eukaryotic cells and reside within a host-derived vacuole known as the inclusion. To facilitate intracellular replication, these bacteria must engage in host-pathogen interactions to obtain nutrients and membranes required for the growth of the inclusion, thereby sustaining prolonged bacterial colonization. Autophagy is a highly conserved process that delivers cytoplasmic substrates to the lysosome for degradation. Pathogens have developed strategies to manipulate and/or exploit autophagy to promote their replication and persistence. This review delineates recent advances in elucidating the interplay between Chlamydia trachomatis infection and autophagy in recent years, emphasizing the intricate strategies employed by both the Chlamydia pathogens and host cells. Gaining a deeper understanding of these interactions could unveil novel strategies for the prevention and treatment of Chlamydia infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical
Sciences, Beijing, China
| |
Collapse
|
8
|
Rahman MA, Sarker A, Ayaz M, Shatabdy AR, Haque N, Jalouli M, Rahman MDH, Mou TJ, Dey SK, Hoque Apu E, Zafar MS, Parvez MAK. An Update on the Study of the Molecular Mechanisms Involved in Autophagy during Bacterial Pathogenesis. Biomedicines 2024; 12:1757. [PMID: 39200221 PMCID: PMC11351677 DOI: 10.3390/biomedicines12081757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
Autophagy is a unique catabolic process that degrades irrelevant or damaged components in eukaryotic cells to maintain homeostasis and eliminate infections from pathogenesis. Pathogenic bacteria have developed many autophagy manipulation techniques that affect host immune responses and intracellular bacterial pathogens have evolved to avoid xenophagy. However, reducing its effectiveness as an innate immune response has not yet been elucidated. Bacterial pathogens cause autophagy in infected cells as a cell-autonomous defense mechanism to eliminate the pathogen. However, harmful bacteria have learned to control autophagy and defeat host defenses. Intracellular bacteria can stimulate and control autophagy, while others inhibit it to prevent xenophagy and lysosomal breakdown. This review evaluates the putative functions for xenophagy in regulating bacterial infection, emphasizing that successful pathogens have evolved strategies to disrupt or exploit this defense, reducing its efficiency in innate immunity. Instead, animal models show that autophagy-associated proteins influence bacterial pathogenicity outside of xenophagy. We also examine the consequences of the complex interaction between autophagy and bacterial pathogens in light of current efforts to modify autophagy and develop host-directed therapeutics to fight bacterial infections. Therefore, effective pathogens have evolved to subvert or exploit xenophagy, although autophagy-associated proteins can influence bacterial pathogenicity outside of xenophagy. Finally, this review implies how the complex interaction between autophagy and bacterial pathogens affects host-directed therapy for bacterial pathogenesis.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh
| | - Amily Sarker
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Mohammed Ayaz
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ananya Rahman Shatabdy
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Nabila Haque
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - MD. Hasanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Shuvra Kanti Dey
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| | - Ehsanul Hoque Apu
- Department of Biomedical Science, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah 41311, Saudi Arabia;
- School of Dentistry, University of Jordan, Amman 11942, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Md. Anowar Khasru Parvez
- Department of Microbiology, Jahangirnagar University, Savar 1342, Bangladesh; (A.S.); (M.A.); (A.R.S.); (N.H.); (T.J.M.); (S.K.D.)
| |
Collapse
|
9
|
Mishra A, Khan A, Singh VK, Glyde E, Saikolappan S, Garnica O, Das K, Veerapandian R, Dhandayuthapani S, Jagannath C. The ΔfbpAΔsapM candidate vaccine derived from Mycobacterium tuberculosis H37Rv is markedly immunogenic in macrophages and induces robust immunity to tuberculosis in mice. Front Immunol 2024; 15:1321657. [PMID: 38975346 PMCID: PMC11224292 DOI: 10.3389/fimmu.2024.1321657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, with approximately 1.5 million deaths per year. The Bacillus Calmette-Guérin (BCG) vaccine against TB is used in infants but shows variable protection. Here, we introduce a novel approach using a double gene knockout mutant (DKO) from wild-type Mycobacterium tuberculosis (Mtb) targeting fbpA and sapM genes. DKO exhibited enhanced anti-TB gene expression in mouse antigen-presenting cells, activating autophagy and inflammasomes. This heightened immune response improved ex vivo antigen presentation to T cells. Subcutaneous vaccination with DKO led to increased protection against TB in wild-type C57Bl/6 mice, surpassing the protection observed in caspase 1/11-deficient C57Bl/6 mice and highlighting the critical role of inflammasomes in TB protection. The DKO vaccine also generated stronger and longer-lasting protection than the BCG vaccine in C57Bl/6 mice, expanding both CD62L-CCR7-CD44+/-CD127+ effector T cells and CD62L+CCR7+/-CD44+CD127+ central memory T cells. These immune responses correlated with a substantial ≥ 1.7-log10 reduction in Mtb lung burden. The DKO vaccine represents a promising new approach for TB immunization that mediates protection through autophagy and inflammasome pathways.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Vipul Kumar Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Emily Glyde
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Sankaralingam Saikolappan
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Omar Garnica
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Kishore Das
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Raja Veerapandian
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Subramanian Dhandayuthapani
- Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Lafuente-Ibáñez-de-Mendoza I, Marichalar-Mendia X, Setién-Olarra A, García-de-la-Fuente AM, Martínez-Conde-Llamosas R, Aguirre-Urizar JM. Genetic polymorphisms of inflammatory and bone metabolism related proteins in a population with dental implants of the Basque Country. A case-control study. BMC Oral Health 2024; 24:659. [PMID: 38840172 PMCID: PMC11155173 DOI: 10.1186/s12903-024-04319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Peri-implantitis (PI) is a frequent inflammatory disorder characterised by progressive loss of the supporting bone. Not all patients with recognised risk factors develop PI. The aim of this study is to evaluate the presence of single nucleotide polymorphisms (SNP) of inflammatory and bone metabolism related proteins in a population treated with dental implants from the Basque Country (Spain). METHODS We included 80 patients with diagnosis of PI and 81 patients without PI, 91 women and 70 men, with a mean age of 60.90 years. SNPs of BMP-4, BRINP3, CD14, FGF-3, FGF-10, GBP-1, IL-1α, IL-1β, IL-10, LTF, OPG and RANKL proteins were selected. We performed a univariate and bivariate analysis using IBM SPSS® v.28 statistical software. RESULTS Presence of SNPs GBP1 rs7911 (p = 0.041) and BRINP3 rs1935881 (p = 0.012) was significantly more common in patients with PI. Patients with PI who smoked (> 10 cig/day) showed a higher presence of OPG rs2073617 SNP (p = 0.034). Also, BMP-4 rs17563 (p = 0.018) and FGF-3 rs1893047 (p = 0.014) SNPs were more frequent in patients with PI and Type II diabetes mellitus. CONCLUSIONS Our findings suggest that PI could be favoured by an alteration in the osseointegration of dental implants, based on an abnormal immunological response to peri-implant infection in patients from the Basque Country (Spain).
Collapse
Affiliation(s)
- Irene Lafuente-Ibáñez-de-Mendoza
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Xabier Marichalar-Mendia
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain.
- Department of Nursery I, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain.
- Biobizkaia Health Research Institute, Barakaldo, Spain.
| | - Amaia Setién-Olarra
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Nursery I, Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Spain
| | - Ana María García-de-la-Fuente
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | | | - José Manuel Aguirre-Urizar
- Research Group: GIU21/042, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Stomatology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| |
Collapse
|
11
|
Das S, Kaminski TW, Schlegel BT, Bain W, Hu S, Patel A, Kale SL, Chen K, Lee JS, Mallampalli RK, Kagan VE, Rajasundaram D, McVerry BJ, Sundd P, Kitsios GD, Ray A, Ray P. Neutrophils and galectin-3 defend mice from lethal bacterial infection and humans from acute respiratory failure. Nat Commun 2024; 15:4724. [PMID: 38830855 PMCID: PMC11148175 DOI: 10.1038/s41467-024-48796-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.
Collapse
Affiliation(s)
- Sudipta Das
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tomasz W Kaminski
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Brent T Schlegel
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - William Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veteran's Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Sanmei Hu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Akruti Patel
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sagar L Kale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Janet S Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rama K Mallampalli
- Department of Medicine, The Ohio State University (OSU), Columbus, OH, 43210, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Bryan J McVerry
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prithu Sundd
- VERSITI Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, 53233, USA
| | - Georgios D Kitsios
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Prabir Ray
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine and Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Li Z, Wang S, Han J, Yang G, Xi L, Zhang C, Cui Y, Yin S, Zhang Y, Zhang H. Insights into the effect of guanylate-binding protein 1 on the survival of Brucella intracellularly. Vet Microbiol 2024; 293:110089. [PMID: 38678845 DOI: 10.1016/j.vetmic.2024.110089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Brucellosis is a zoonotic disease that affects wild and domestic animals. It is caused by members of the bacterial genus Brucella. Guanylate-binding protein 1 (GBP1) is associated with microbial infections. However, the role of GBP1 during Brucella infection remains unclear. This investigation aimed to identify the association of GBP1 with brucellosis. Results showed that Brucella infection induced GBP1 upregulation in RAW 264.7 murine macrophages. Small interfering GBP1 targeting RNAs were utilized to explore how GBP1 regulates the survival of Brucella intracellularly. Results revealed that GBP1 knockdown promoted Brucella's survival ability, activated Nod-like receptor (NLR) containing a pyrin domain 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammatory corpuscles, and induced pro-inflammatory cytokines IFN-γ and IL-1β. Furthermore, Brucella stimulated the expression of GBP1 in bone marrow-derived macrophages (BMDMs) and mice. During the inhibition of GBP1 in BMDMs, the intracellular growth of Brucella increased. In comparison, GBP1 downregulation enhanced the accumulation of Brucella-induced reactive oxygen species (ROS) in macrophages. Overall, the data indicate a significant role of GBP1 in regulating brucellosis and suggest the function underlying its suppressive effect on the survival and growth of Brucella intracellularly.
Collapse
Affiliation(s)
- Zhiqiang Li
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China; School of Medical Technology, Shangqiu Medical College, Shangqiu, Henan Provence 476005, China
| | - Shuli Wang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Jincheng Han
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Guangli Yang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Li Xi
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Chunmei Zhang
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Yanyan Cui
- College of Biology and Food, Shangqiu Normal University, Shangqiu, Henan Provence 476000, China
| | - Shuanghong Yin
- College of Biology, Agriculture and Forestry, Tongren University, Tongren, Guizhou Province 554300, China
| | - Yu Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province 832003, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province 832003, China.
| |
Collapse
|
13
|
VanPortfliet JJ, Lei Y, Martinez CG, Wong J, Pflug K, Sitcheran R, Kneeland SC, Murray SA, McGuire PJ, Cannon CL, West AP. Caspase-11 drives macrophage hyperinflammation in models of Polg-related mitochondrial disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.11.593693. [PMID: 38798587 PMCID: PMC11118447 DOI: 10.1101/2024.05.11.593693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mitochondrial diseases (MtD) represent a significant public health challenge due to their heterogenous clinical presentation, often severe and progressive symptoms, and the lack of effective therapies. Environmental exposures, such bacterial and viral infection, can further compromise mitochondrial function and exacerbate the progression of MtD. Infections in MtD patients more frequently progress to sepsis, pneumonia, and other detrimental inflammatory endpoints. However, the underlying immune alterations that enhance immunopathology in MtD remain unclear, constituting a key gap in knowledge that complicates treatment and increases mortality in this population. Here we employ in vitro and in vivo approaches to clarify the molecular and cellular basis for innate immune hyperactivity in models of polymerase gamma (Polg)-related MtD. We reveal that type I interferon (IFN-I)-mediated upregulation of caspase-11 and guanylate-binding proteins (GBPs) increase macrophage sensing of the opportunistic microbe Pseudomonas aeruginosa (PA) in Polg mutant mice. Furthermore, we show that excessive macrophage cytokine secretion and pyroptotic cell death contribute to lung inflammation and morbidity after infection with PA. Our work sheds new light on innate immune dysregulation in MtD and reveals potential targets for limiting infection- and inflammation-related complications in Polg-related MtD.
Collapse
Affiliation(s)
- Jordyn J. VanPortfliet
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Yuanjiu Lei
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Camila Guerra Martinez
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Jessica Wong
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | - Kathryn Pflug
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | | | | | - Peter. J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Carolyn L. Cannon
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| | - A. Phillip West
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, Texas 77807, USA
| |
Collapse
|
14
|
Kumar R, Kushawaha PK. Interferon inducible guanylate-binding protein 1 modulates the lipopolysaccharide-induced cytokines/chemokines and mitogen-activated protein kinases in macrophages. Microbiol Immunol 2024; 68:185-195. [PMID: 38462687 DOI: 10.1111/1348-0421.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/14/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024]
Abstract
Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12β, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.
Collapse
Affiliation(s)
- Ravindra Kumar
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Pramod Kumar Kushawaha
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
15
|
Li J, Liu K, He W, Zhang W, Li Y. Inhibition of GBP5 activates autophagy to alleviate inflammatory response in LPS-induced lung injury in mice. Exp Lung Res 2024; 50:106-117. [PMID: 38642025 DOI: 10.1080/01902148.2024.2339269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/29/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.
Collapse
Affiliation(s)
- Jialin Li
- Department of Emergency, The Central Hospital of Shaoyang, Shaoyang City, Hunan Province, P.R. China
| | - Kexuan Liu
- Department of Emergency, The Central Hospital of Shaoyang, Shaoyang City, Hunan Province, P.R. China
| | - Wenjuan He
- Physiatry Department, The First People's Hospital of Chenzhou, Chenzhou City, Hunan Province, P.R. China
| | - Wencai Zhang
- Department of Critical Care Rehabilitation, The First People's Hospital of Chenzhou, Chenzhou City, Hunan Province, P.R. China
| | - Yongchao Li
- Department of Critical Care Rehabilitation, The First People's Hospital of Chenzhou, Chenzhou City, Hunan Province, P.R. China
| |
Collapse
|
16
|
Casanova JL, MacMicking JD, Nathan CF. Interferon- γ and infectious diseases: Lessons and prospects. Science 2024; 384:eadl2016. [PMID: 38635718 DOI: 10.1126/science.adl2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
Infectious diseases continue to claim many lives. Prevention of morbidity and mortality from these diseases would benefit not just from new medicines and vaccines but also from a better understanding of what constitutes protective immunity. Among the major immune signals that mobilize host defense against infection is interferon-γ (IFN-γ), a protein secreted by lymphocytes. Forty years ago, IFN-γ was identified as a macrophage-activating factor, and, in recent years, there has been a resurgent interest in IFN-γ biology and its role in human defense. Here we assess the current understanding of IFN-γ, revisit its designation as an "interferon," and weigh its prospects as a therapeutic against globally pervasive microbial pathogens.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, 75015 Paris, France
- Imagine Institute, Paris Cité University, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, 75015 Paris, France
| | - John D MacMicking
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06477, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Carl F Nathan
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
17
|
Zhu S, Bradfield CJ, Maminska A, Park ES, Kim BH, Kumar P, Huang S, Kim M, Zhang Y, Bewersdorf J, MacMicking JD. Native architecture of a human GBP1 defense complex for cell-autonomous immunity to infection. Science 2024; 383:eabm9903. [PMID: 38422126 DOI: 10.1126/science.abm9903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, large supramolecular complexes often activate immune proteins for protection. In this work, we resolved the native structure of a massive host-defense complex that polymerizes 30,000 guanylate-binding proteins (GBPs) over the surface of gram-negative bacteria inside human cells. Construction of this giant nanomachine took several minutes and remained stable for hours, required guanosine triphosphate hydrolysis, and recruited four GBPs plus caspase-4 and Gasdermin D as a cytokine and cell death immune signaling platform. Cryo-electron tomography suggests that GBP1 can adopt an extended conformation for bacterial membrane insertion to establish this platform, triggering lipopolysaccharide release that activated coassembled caspase-4. Our "open conformer" model provides a dynamic view into how the human GBP1 defense complex mobilizes innate immunity to infection.
Collapse
Affiliation(s)
- Shiwei Zhu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Clinton J Bradfield
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Agnieszka Maminska
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Eui-Soon Park
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pradeep Kumar
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shuai Huang
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Minjeong Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yongdeng Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joerg Bewersdorf
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Nanobiology Institute, West Haven, CT 06477, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Systems Biology Institute, West Haven, CT 06477, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
18
|
Marinho FV, Brito C, de Araujo ACVSC, Oliveira SC. Guanylate-binding protein-5 is involved in inflammasome activation by bacterial DNA but only the cooperation of multiple GBPs accounts for control of Brucella abortus infection. Front Immunol 2024; 15:1341464. [PMID: 38404575 PMCID: PMC10885698 DOI: 10.3389/fimmu.2024.1341464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Guanylate-binding proteins (GBPs) are produced in response to pro-inflammatory signals, mainly interferons. The most studied cluster of GBPs in mice is on chromosome 3. It comprises the genes for GBP1-to-3, GBP5 and GBP7. In humans, all GBPs are present in a single cluster on chromosome 1. Brucella abortus is a Gram-negative bacterium known to cause brucellosis, a debilitating disease that affects both humans and animals. Our group demonstrated previously that GBPs present on murine chromosome 3 (GBPchr3) is important to disrupt Brucella-containing vacuole and GBP5 itself is important to Brucella intracellular LPS recognition. In this work, we investigated further the role of GBPs during B. abortus infection. Methods and results We observed that all GBPs from murine chromosome 3 are significantly upregulated in response to B. abortus infection in mouse bone marrow-derived macrophages. Of note, GBP5 presents the highest expression level in all time points evaluated. However, only GBPchr3-/- cells presented increased bacterial burden compared to wild-type macrophages. Brucella DNA is an important Pathogen-Associated Molecular Pattern that could be available for inflammasome activation after BCV disruption mediated by GBPs. In this regard, we observed reduced IL-1β production in the absence of GBP2 or GBP5, as well as in GBPchr3-/- murine macrophages. Similar result was showed by THP-1 macrophages with downregulation of GBP2 and GBP5 mediated by siRNA. Furthermore, significant reduction on caspase-1 p20 levels, LDH release and Gasdermin-D conversion into its mature form (p30 N-terminal subunit) was observed only in GBPchr3-/- macrophages. In an in vivo perspective, we found that GBPchr3-/- mice had increased B. abortus burden and higher number of granulomas per area of liver tissue, indicating increased disease severity. Discussion/conclusion Altogether, these results demonstrate that although GBP5 presents a high expression pattern and is involved in inflammasome activation by bacterial DNA in macrophages, the cooperation of multiple GBPs from murine chromosome 3 is necessary for full control of Brucella abortus infection.
Collapse
Affiliation(s)
- Fabio V. Marinho
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Brito
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Carolina V. S. C. de Araujo
- Instituto de Ciências Biológicas, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências Biomédicas, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio C. Oliveira
- Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ciências Biomédicas, Departamento de Imunologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Reitano JR, Coers J. Restriction and evasion: a review of IFNγ-mediated cell-autonomous defense pathways during genital Chlamydia infection. Pathog Dis 2024; 82:ftae019. [PMID: 39210512 PMCID: PMC11407441 DOI: 10.1093/femspd/ftae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection (STI) in the USA. As an STI, C. trachomatis infections can cause inflammatory damage to the female reproductive tract and downstream sequelae including infertility. No vaccine currently exists to C. trachomatis, which evades sterilizing immune responses in its human host. A better understanding of this evasion will greatly benefit the production of anti-Chlamydia therapeutics and vaccination strategies. This minireview will discuss a single branch of the immune system, which activates in response to genital Chlamydia infection: so-called "cell-autonomous immunity" activated by the cytokine interferon-gamma. We will also discuss the mechanisms by which human and mouse-adapted Chlamydia species evade cell-autonomous immune responses in their native hosts. This minireview will examine five pathways of host defense and their evasion: (i) depletion of tryptophan and other nutrients, (ii) immunity-related GTPase-mediated defense, (iii) production of nitric oxide, (iv) IFNγ-induced cell death, and (v) RNF213-mediated destruction of inclusions.
Collapse
Affiliation(s)
- Jeffrey R Reitano
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
| | - Jörn Coers
- Department of Integrative Immunobiology, Duke University Medical School, 207 Research Dr. Box 3010, Durham, NC 27710, United States
- Department of Molecular Genetics and Microbiology, Duke University Medical School, 213 Research Dr. Box 3054, Durham, NC 27710, United States
| |
Collapse
|
20
|
Huang M, Zhan C, Yang B, Lu Y, Yang X, Hou J. Guanylate-binding protein 5-mediated cell-autonomous immunity suppresses inflammation in dental pulpitis: An in vitro study. Int Endod J 2024; 57:208-218. [PMID: 38050666 DOI: 10.1111/iej.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
AIM Guanylate-binding protein 5 (GBP5) is an interferon (IFN)-inducible GTPase that plays a crucial role in the cell-autonomous immune response against microbial infections. In this study, we investigated the immunoregulatory role of GBP5 in the pathogenesis of dental pulpitis. METHODOLOGY Gene-set enrichment analysis (GSEA) was utilized to evaluate the IFN-γ signalling pathway, and the differential expression of GBP mRNA in normal versus inflamed dental pulp tissues was screened, based on Gene Expression Omnibus (GEO) datasets associated with pulpitis. Both normal pulp tissues and inflamed pulp tissues were used for experiments. The expression of IFNs and GBPs was determined by qRT-PCR. Immunoblotting and double immunofluorescence were performed to examine the cellular localization of GBP5 in dental pulp tissues. For the functional studies, IFN-γ priming or lentivirus vector-delivered shRNA was used to, respectively, overexpress or knock down endogenous GBP5 expression in human dental pulp stem cells (HDPSCs). Subsequently, LPS was used to stimulate HDPSCs (overexpressing or with knocked-down GBP5) to establish an in vitro model of inflammation. qRT-PCR and ELISA were employed to examine the expression of proinflammatory cytokines (IL-6, IL-8 and IL-1β) and cyclooxygenase 2 (COX2). Every experiment has three times of biological replicates and three technical replicates, respectively. Statistical analysis was performed using the Student's t-test and one-way ANOVA, and a p-value of <.05 was considered statistically significant. RESULTS GSEA analysis based on the GEO dataset revealed a significant activation of the IFN-γ signalling pathway in the human pulpitis group. Among the human GBPs evaluated, GBP5 was selectively upregulated in inflamed dental pulp tissues and predominantly expressed in dental pulp cells. In vitro experiments demonstrated that IFN-γ robustly induced the expression of GBP5 in HDPSCs. Knockdown of GBP5 expression in HDPSCs significantly amplified the LPS-induced upregulation of inflammatory mediators (IL-6, IL-8, IL-1β and COX2) both with and without IFN-γ priming. CONCLUSION Our findings demonstrated that GBP5 partook in the pathogenesis of dental pulpitis. The involvement of GBP5 in pulpitis appeared to coordinate the regulation of inflammatory cytokines. Knockdown of GBP5 contributed to the exacerbation of LPS-mediated inflammation.
Collapse
Affiliation(s)
- Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanli Lu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Cinar MU, Oliveira RD, Hadfield TS, Lichtenwalner A, Brzozowski RJ, Settlemire CT, Schoenian SG, Parker C, Neibergs HL, Cockett NE, White SN. Genome-wide association with footrot in hair and wool sheep. Front Genet 2024; 14:1297444. [PMID: 38288162 PMCID: PMC10822918 DOI: 10.3389/fgene.2023.1297444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/31/2023] [Indexed: 01/31/2024] Open
Abstract
Ovine footrot is an infectious disease with important contributions from Dichelobacter nodosus and Fusobacterium necrophorum. Footrot is characterized by separation of the hoof from underlying tissue, and this causes severe lameness that negatively impacts animal wellbeing, growth, and profitability. Large economic losses result from lost production as well as treatment costs, and improved genetic tools to address footrot are a valuable long-term goal. Prior genetic studies had examined European wool sheep, but hair sheep breeds such as Katahdin and Blackbelly have been reported to have increased resistance to footrot, as well as to intestinal parasites. Thus, footrot condition scores were collected from 251 U.S. sheep including Katahdin, Blackbelly, and European-influenced crossbred sheep with direct and imputed genotypes at OvineHD array (>500,000 single nucleotide polymorphism) density. Genome-wide association was performed with a mixed model accounting for farm and principal components derived from animal genotypes, as well as a random term for the genomic relationship matrix. We identified three genome-wide significant associations, including SNPs in or near GBP6 and TCHH. We also identified 33 additional associated SNPs with genome-wide suggestive evidence, including a cluster of 6 SNPs in a peak near the genome-wide significance threshold located near the glutamine transporter gene SLC38A1. These findings suggest genetic susceptibility to footrot may be influenced by genes involved in divergent biological processes such as immune responses, nutrient availability, and hoof growth and integrity. This is the first genome-wide study to investigate susceptibility to footrot by including hair sheep and also the first study of any kind to identify multiple genome-wide significant associations with ovine footrot. These results provide a foundation for developing genetic tests for marker-assisted selection to improve resistance to ovine footrot once additional steps like fine mapping and validation are complete.
Collapse
Affiliation(s)
- Mehmet Ulas Cinar
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Department of Animal Science, Faculty of Agriculture, Erciyes University, Kayseri, Turkiye
| | - Ryan D. Oliveira
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Tracy S. Hadfield
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Anne Lichtenwalner
- School of Food and Agriculture, University of Maine, Orono, ME, United States
- Cooperative Extension, University of Maine, Orono, ME, United States
| | | | | | - Susan G. Schoenian
- Western Maryland Research and Education Center, University of Maryland, College Park, MD, United States
| | - Charles Parker
- Department of Animal Sciences, Professor Emeritus, The Ohio State University, Columbus, OH, United States
| | - Holly L. Neibergs
- Department of Animal Science, Washington State University, Pullman, WA, United States
| | - Noelle E. Cockett
- Department of Animal, Agricultural Experiment Station, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Stephen N. White
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
22
|
Wang W, Cheng Z, Wang X, An Q, Huang K, Dai Y, Meng Q, Zhang Y. Lactoferrin deficiency during lactation increases the risk of depressive-like behavior in adult mice. BMC Biol 2023; 21:242. [PMID: 37907907 PMCID: PMC10617225 DOI: 10.1186/s12915-023-01748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Lactoferrin is an active protein in breast milk that plays an important role in the growth and development of infants and is implicated as a neuroprotective agent. The incidence of depression is currently increasing, and it is unclear whether the lack of lactoferrin during lactation affects the incidence of depressive-like behavior in adulthood. RESULTS Lack of lactoferrin feeding during lactation affected the barrier and innate immune functions of the intestine, disrupted the intestinal microflora, and led to neuroimmune dysfunction and neurodevelopmental delay in the hippocampus. When exposed to external stimulation, adult lactoferrin feeding-deficient mice presented with worse depression-like symptoms; the mechanisms involved were activation of the LPS-TLR4 signalling pathway in the intestine and hippocampus, reduced BDNF-CREB signaling pathway in hippocampus, increased abundance of depression-related bacteria, and decreased abundance of beneficial bacteria. CONCLUSIONS Overall, our findings reveal that lactoferrin feeding deficient during lactation can increase the risk of depressive-like behavior in adults. The mechanism is related to the regulatory effect of lactoferrin on the development of the "microbial-intestinal-brain" axis.
Collapse
Affiliation(s)
- Wenli Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhimei Cheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiong Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qin An
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunping Dai
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingyong Meng
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yali Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Bass AR, Egan MS, Alexander-Floyd J, Lopes Fischer N, Doerner J, Shin S. Human GBP1 facilitates the rupture of the Legionella-containing vacuole and inflammasome activation. mBio 2023; 14:e0170723. [PMID: 37737612 PMCID: PMC10653807 DOI: 10.1128/mbio.01707-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 09/23/2023] Open
Abstract
IMPORTANCE Inflammasomes are essential for host defense against intracellular bacterial pathogens like Legionella, as they activate caspases, which promote cytokine release and cell death to control infection. In mice, interferon (IFN) signaling promotes inflammasome responses against bacteria by inducing a family of IFN-inducible GTPases known as guanylate-binding proteins (GBPs). Within murine macrophages, IFN promotes the rupture of the Legionella-containing vacuole (LCV), while GBPs are dispensable for this process. Instead, GBPs facilitate the lysis of cytosol-exposed Legionella. In contrast, the functions of IFN and GBPs in human inflammasome responses to Legionella are poorly understood. We show that IFN-γ enhances inflammasome responses to Legionella in human macrophages. Human GBP1 is required for these IFN-γ-driven inflammasome responses. Furthermore, GBP1 co-localizes with Legionella and/or LCVs in a type IV secretion system (T4SS)-dependent manner and promotes damage to the LCV, which leads to increased exposure of the bacteria to the host cell cytosol. Thus, our findings reveal species- and pathogen-specific differences in how GBPs function to promote inflammasome responses.
Collapse
Affiliation(s)
- Antonia R. Bass
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jasmine Alexander-Floyd
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Natasha Lopes Fischer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Doerner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
24
|
Fisch D, Pfleiderer MM, Anastasakou E, Mackie GM, Wendt F, Liu X, Clough B, Lara-Reyna S, Encheva V, Snijders AP, Bando H, Yamamoto M, Beggs AD, Mercer J, Shenoy AR, Wollscheid B, Maslowski KM, Galej WP, Frickel EM. PIM1 controls GBP1 activity to limit self-damage and to guard against pathogen infection. Science 2023; 382:eadg2253. [PMID: 37797010 PMCID: PMC7615196 DOI: 10.1126/science.adg2253] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/23/2023] [Indexed: 10/07/2023]
Abstract
Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.
Collapse
Affiliation(s)
- Daniel Fisch
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Moritz M Pfleiderer
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eleni Anastasakou
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Gillian M Mackie
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
| | - Fabian Wendt
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Xiangyang Liu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Barbara Clough
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Vesela Encheva
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry and Proteomics Platform, The Francis Crick Institute, London, UK
- Bruker Nederland BV
| | - Hironori Bando
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Immunoparasitology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, UK
| | - Jason Mercer
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| | - Avinash R Shenoy
- MRC Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Bernd Wollscheid
- Department of Health Sciences and Technology (D-HEST), ETH Zurich, Institute of Translational Medicine (ITM), Zurich, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Kendle M Maslowski
- Institute of Immunology and Immunotherapy, University of Birmingham, Edgbaston, UK
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wojtek P Galej
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Eva-Maria Frickel
- Host-Toxoplasma Interaction Laboratory, The Francis Crick Institute, London, UK
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, UK
| |
Collapse
|
25
|
Kirkby M, Enosi Tuipulotu D, Feng S, Lo Pilato J, Man SM. Guanylate-binding proteins: mechanisms of pattern recognition and antimicrobial functions. Trends Biochem Sci 2023; 48:883-893. [PMID: 37567806 DOI: 10.1016/j.tibs.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Guanylate-binding proteins (GBPs) are a family of intracellular proteins which have diverse biological functions, including pathogen sensing and host defense against infectious disease. These proteins are expressed in response to interferon (IFN) stimulation and can localize and target intracellular microbes (e.g., bacteria and viruses) by protein trafficking and membrane binding. These properties contribute to the ability of GBPs to induce inflammasome activation, inflammation, and cell death, and to directly disrupt pathogen membranes. Recent biochemical studies have revealed that human GBP1, GBP2, and GBP3 can directly bind to the lipopolysaccharide (LPS) of Gram-negative bacteria. In this review we discuss emerging data highlighting the functional versatility of GBPs, with a focus on their molecular mechanisms of pattern recognition and antimicrobial activity.
Collapse
Affiliation(s)
- Max Kirkby
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Shouya Feng
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Jordan Lo Pilato
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
26
|
Wu Z, Liang J, Zhu S, Liu N, Zhao M, Xiao F, Li G, Yu C, Jin C, Ma J, Sun T, Zhu P. Single-cell analysis of graft-infiltrating host cells identifies caspase-1 as a potential therapeutic target for heart transplant rejection. Front Immunol 2023; 14:1251028. [PMID: 37781362 PMCID: PMC10535112 DOI: 10.3389/fimmu.2023.1251028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Aims Understanding the cellular mechanisms underlying early allograft rejection is crucial for the development of effective immunosuppressant strategies. This study aims to investigate the cellular composition of graft-infiltrating cells during the early rejection stage at a single-cell level and identify potential therapeutic targets. Methods A heterotopic heart transplant model was established using enhanced green fluorescent protein (eGFP)-expressing mice as recipients of allogeneic or syngeneic grafts. At 3 days post-transplant, eGFP-positive cells infiltrating the grafts were sorted and subjected to single-cell RNA-seq analysis. Potential molecular targets were evaluated by assessing graft survival and functions following administration of various pharmacological inhibitors. Results A total of 27,053 cells recovered from syngrafts and allografts were classified into 20 clusters based on expression profiles and annotated with a reference dataset. Innate immune cells, including monocytes, macrophages, neutrophils, and dendritic cells, constituted the major infiltrating cell types (>90%) in the grafts. Lymphocytes, fibroblasts, and endothelial cells represented a smaller population. Allografts exhibited significantly increased proportions of monocyte-derived cells involved in antigen processing and presentation, as well as activated lymphocytes, as compared to syngrafts. Differential expression analysis revealed upregulation of interferon activation-related genes in the innate immune cells infiltrating allografts. Pro-inflammatory polarization gene signatures were also enriched in these infiltrating cells of allografts. Gene profiling and intercellular communication analysis identified natural killer cells as the primary source of interferon-γ signaling, activating inflammatory monocytes that displayed strong signals of major histocompatibility complexes and co-stimulatory molecules. The inflammatory response was also associated with promoted T cell proliferation and activation in allografts during the early transplant stages. Notably, caspase-1 exhibited specific upregulation in inflammatory monocytes in response to interferon signaling. The regulon analysis also revealed a significant enrichment of interferon-related motifs within the transcriptional regulatory network of downstream inflammatory genes including caspase-1. Remarkably, pharmacological inhibition of caspase-1 was shown to reduce immune infiltration, prevent acute graft rejection, and improve cardiac contractile function. Conclusion The single-cell transcriptional profile highlighted the crucial role of caspase-1 in interferon-mediated inflammatory monocytes infiltrating heart transplants, suggesting its potential as a therapeutic target for attenuating rejection.
Collapse
Affiliation(s)
- Zhichao Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jialiang Liang
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Nanbo Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Mingyi Zhao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Fei Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Guanhua Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Changjiang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Chengyu Jin
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Jinshan Ma
- Department of Thoracic Surgery, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tucheng Sun
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, Guangdong, China
| |
Collapse
|
27
|
McCord B, Day RM. Influence of Inflammatory Cytokines IL-1 β and IFN γ on Sarcoplasmic Aggregation of p62 and TDP-43 in Myotubes. Mediators Inflamm 2023; 2023:9018470. [PMID: 37731843 PMCID: PMC10509004 DOI: 10.1155/2023/9018470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 09/22/2023] Open
Abstract
Skeletal muscle of patients with sporadic inclusion body myositis (sIBM) presents with inflammation, including upregulation of inflammatory cytokines such as interferon γ (IFNγ). Non-inflammatory features are also observed, like the sarcoplasmic accumulation of proteins including TDP-43 and p62. This study aimed to investigate the effect of IFNγ and interleukin 1-β (IL-1β) on TDP-43 and p62 aggregation in vitro. Primary human myotubes were treated with IL-1β (20 ng/mL) and IFNγ (750 ng/mL) separately or combined for 48 hr. Sarcoplasmic TDP-43 aggregates and p62 puncta were assessed using image analysis for size, frequency, and colocalization with each other. Total protein expression of TDP-43, p62 and LC3 was assessed using western blotting. The subcellular localization of TDP-43 was also analyzed using image analysis. Combined IL-1β and IFNγ treatment increased puncta size of p62 compared to control (0.49 ± 0.13 µm2 versus 0.28 ± 0.06 µm2), without affecting puncta frequency or p62 expression but with an increased LC3II/LC3I ratio, suggesting autophagic alterations. IL-1β or IFNγ did not alter p62 puncta size or frequency, suggesting a combined insult of multiple inflammatory mediators is necessary to cause p62 alterations. IL-1β increased p62 protein expression in an autophagy-independent manner. None of the cytokine treatments affected TDP-43 protein expression, size, or frequency of TDP-43 aggregates or localization, suggesting IL-1β and IFNγ may influence TDP-43 processing in human skeletal muscle cells. TDP-43 was localized to the sarcoplasm under control conditions, suggesting this may not be a pathological feature. Overall, sIBM-like TDP-43/p62 features were not triggered by IL-1β and/or IFNγ.
Collapse
Affiliation(s)
- Bryony McCord
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK
| | - Richard M. Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London WC1E 6JF, UK
| |
Collapse
|
28
|
Aquino Y, Bisiaux A, Li Z, O'Neill M, Mendoza-Revilla J, Merkling SH, Kerner G, Hasan M, Libri V, Bondet V, Smith N, de Cevins C, Ménager M, Luca F, Pique-Regi R, Barba-Spaeth G, Pietropaoli S, Schwartz O, Leroux-Roels G, Lee CK, Leung K, Wu JT, Peiris M, Bruzzone R, Abel L, Casanova JL, Valkenburg SA, Duffy D, Patin E, Rotival M, Quintana-Murci L. Dissecting human population variation in single-cell responses to SARS-CoV-2. Nature 2023; 621:120-128. [PMID: 37558883 PMCID: PMC10482701 DOI: 10.1038/s41586-023-06422-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.
Collapse
Affiliation(s)
- Yann Aquino
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
- Collège Doctoral, Sorbonne Université, Paris, France
| | - Aurélie Bisiaux
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Zhi Li
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Mary O'Neill
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Javier Mendoza-Revilla
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Sarah Hélène Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Gaspard Kerner
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Valentina Libri
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Nikaïa Smith
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Camille de Cevins
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
| | - Mickaël Ménager
- Université Paris Cité, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR1163, Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR1163, Paris, France
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Giovanna Barba-Spaeth
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Stefano Pietropaoli
- Structural Virology Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3569, Paris, France
| | | | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong SAR, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong SAR, China
| | - Malik Peiris
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Laurent Abel
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, INSERM UMR1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Centre for Immunology and Infection, Hong Kong Science Park, Hong Kong SAR, China
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Maxime Rotival
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France.
- Chair Human Genomics and Evolution, Collège de France, Paris, France.
| |
Collapse
|
29
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
30
|
Roy S, Wang B, Tian Y, Yin Q. Crystal structures reveal nucleotide-induced conformational changes in G motifs and distal regions in guanylate-binding protein 2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546747. [PMID: 37425906 PMCID: PMC10327160 DOI: 10.1101/2023.06.28.546747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Guanylate-binding proteins (GBPs) are interferon-inducible GTPases that confer protective immunity against a variety of intracellular pathogens including bacteria, viruses, and protozoan parasites. GBP2 is one of the two highly inducible GBPs, yet the precise mechanisms underlying the activation and regulation of GBP2, in particular the nucleotide-induced conformational changes in GBP2, remain poorly understood. In this study, we elucidate the structural dynamics of GBP2 upon nucleotide binding through crystallographic analysis. GBP2 dimerizes upon GTP hydrolysis and returns to monomer state once GTP is hydrolyzed to GDP. By determining the crystal structures of GBP2 G domain (GBP2GD) in complex with GDP and nucleotide-free full-length GBP2, we unveil distinct conformational states adopted by the nucleotide-binding pocket and distal regions of the protein. Our findings demonstrate that the binding of GDP induces a distinct closed conformation both in the G motifs and the distal regions in the G domain. The conformational changes in the G domain are further transmitted to the C-terminal helical domain, leading to large-scale conformational rearrangements. Through comparative analysis, we identify subtle but critical differences in the nucleotide-bound states of GBP2, providing insights into the molecular basis of its dimer-monomer transition and enzymatic activity. Overall, our study expands the understanding of the nucleotide-induced conformational changes in GBP2, shedding light on the structural dynamics governing its functional versatility. These findings pave the way for future investigations aimed at elucidating the precise molecular mechanisms underlying GBP2's role in the immune response and may facilitate the development of targeted therapeutic strategies against intracellular pathogens.
Collapse
Affiliation(s)
- Sayantan Roy
- Department of Biological Science, Florida State University
| | - Bing Wang
- Department of Biological Science, Florida State University
| | - Yuan Tian
- Department of Biological Science, Florida State University
| | - Qian Yin
- Department of Biological Science, Florida State University
- Institute of Molecular Biophysics, Florida State University
| |
Collapse
|
31
|
Pepino L, Malapert P, Saurin AJ, Moqrich A, Reynders A. Formalin-evoked pain triggers sex-specific behavior and spinal immune response. Sci Rep 2023; 13:9515. [PMID: 37308519 DOI: 10.1038/s41598-023-36245-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/31/2023] [Indexed: 06/14/2023] Open
Abstract
Mounting evidence shows sex-related differences in the experience of pain with women suffering more from chronic pain than men. Yet, our understanding of the biological basis underlying those differences remains incomplete. Using an adapted model of formalin-induced chemical/inflammatory pain, we report here that in contrast to male mice, females distinctly display two types of nocifensive responses to formalin, distinguishable by the duration of the interphase. Females in proestrus and in metestrus exhibited respectively a short-lasting and a long-lasting interphase, underscoring the influence of the estrus cycle on the duration of the interphase, rather than the transcriptional content of the dorsal horn of the spinal cord (DHSC). Additionally, deep RNA-sequencing of DHSC showed that formalin-evoked pain was accompanied by a male-preponderant enrichment in genes associated with the immune modulation of pain, revealing an unanticipated contribution of neutrophils. Taking advantage of the male-enriched transcript encoding the neutrophil associated protein Lipocalin 2 (Lcn2) and using flow cytometry, we confirmed that formalin triggered the recruitment of LCN2-expressing neutrophils in the pia mater of spinal meninges, preferentially in males. Our data consolidate the contribution of female estrus cycle to pain perception and provide evidence supporting a sex-specific immune regulation of formalin-evoked pain.
Collapse
Affiliation(s)
- Lucie Pepino
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Pascale Malapert
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France
| | - Aziz Moqrich
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| | - Ana Reynders
- CNRS, Institut de Biologie du Développement de Marseille, UMR 7288, Case 907, Aix-Marseille Université, 13288, Marseille Cedex 09, France.
| |
Collapse
|
32
|
Buijze H, Brinkmann V, Hurwitz R, Dorhoi A, Kaufmann SHE, Pei G. Human GBP1 Is Involved in the Repair of Damaged Phagosomes/Endolysosomes. Int J Mol Sci 2023; 24:ijms24119701. [PMID: 37298652 DOI: 10.3390/ijms24119701] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Mouse guanylate-binding proteins (mGBPs) are recruited to various invasive pathogens, thereby conferring cell-autonomous immunity against these pathogens. However, whether and how human GBPs (hGBPs) target M. tuberculosis (Mtb) and L. monocytogenes (Lm) remains unclear. Here, we describe hGBPs association with intracellular Mtb and Lm, which was dependent on the ability of bacteria to induce disruption of phagosomal membranes. hGBP1 formed puncta structures which were recruited to ruptured endolysosomes. Furthermore, both GTP-binding and isoprenylation of hGBP1 were required for its puncta formation. hGBP1 was required for the recovery of endolysosomal integrity. In vitro lipid-binding assays demonstrated direct binding of hGBP1 to PI4P. Upon endolysosomal damage, hGBP1 was targeted to PI4P and PI(3,4)P2-positive endolysosomes in cells. Finally, live-cell imaging demonstrated that hGBP1 was recruited to damaged endolysosomes, and consequently mediated endolysosomal repair. In summary, we uncover a novel interferon-inducible mechanism in which hGBP1 contributes to the repair of damaged phagosomes/endolysosomes.
Collapse
Affiliation(s)
- Hellen Buijze
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Robert Hurwitz
- Protein Purification Facility, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
- Emeritus Group of Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Gang Pei
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany
| |
Collapse
|
33
|
Nawaz M, Gouife M, Zhu S, Yue X, Huang K, Ma R, Jiang J, Jin S, Zhu J, Xie J. Transcriptome profiling and differential expression analysis of altered immune-related genes in goldfish (Carassius auratus) infected with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2023; 137:108789. [PMID: 37149235 DOI: 10.1016/j.fsi.2023.108789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Goldfish (Carassius auratus) have been employed as a model organism to investigate the innate immune system and host-pathogen interactions. A Gram-negative bacterium called Aeromonas hydrophila has been found to cause mass mortality due to infection in a wide variety of fish species in the aquatic system. In this study, damages in Bowman's capsule, inflammatory tubular (proximal and distilled convoluted) structure, and glomerular necrosis were observed in A. hydrophila-infected head kidney of goldfish. To increase the better understanding of immune mechanisms of host defense against A. hydrophila, we performed a transcriptome analysis in head kidney of goldfish at 3 and 7 days of post-infection (dpi). Comparing to the control group, 4638 and 2580 differentially expressed genes (DEGs) were observed at 3 and 7 dpi, respectively. The DEGs were subsequently enriched in multiple immune-related pathways including Protein processing in endoplasmic reticulum, Insulin signaling pathway, and NOD-like receptor signaling pathway. The expression profile of immune-related genes such as TRAIL, CCL19, VDJ recombination-activating protein 1-like, Rag-1, and STING was validated by qRT-PCR. Furthermore, the levels of immune-related enzyme (LZM, AKP, SOD, and CAT) activities were examined at 3 and 7 dpi. The knowledge gained from the current study will be helpful for better understanding of early immune response in goldfish after A. hydrophila challenge, which will aid in future research on prevention strategies in teleost.
Collapse
Affiliation(s)
- Mateen Nawaz
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Moussa Gouife
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Songwei Zhu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Xinyuan Yue
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Kejing Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Rongrong Ma
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jianhu Jiang
- Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang Province, 313001, China
| | - Shan Jin
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Junquan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China
| | - Jiasong Xie
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang Province, 315211, China; Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, Zhejiang Province, 315211, China.
| |
Collapse
|
34
|
Qin Y, Wang Q, Shi J. Immune checkpoint modulating T cells and NK cells response to Mycobacterium tuberculosis infection. Microbiol Res 2023; 273:127393. [PMID: 37182283 DOI: 10.1016/j.micres.2023.127393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 04/07/2023] [Accepted: 04/22/2023] [Indexed: 05/16/2023]
Abstract
Many subversive mechanisms promote the occurrence and development of chronic infectious diseases and cancer, among which the down-regulated expression of immune-activating receptors and the enhanced expression of immune-inhibitory receptors accelerate the occurrence and progression of the disease. Recently, the use of immune checkpoint inhibitors has shown remarkable efficacy in the treatment of tumors in multiple organs. However, the expression of immune checkpoint molecules on natural killer (NK) cells by Mycobacterium tuberculosis (Mtb) infection and its impact on NK cell effector functions have been poorly studied. In this review, we focus on what is currently known about the expression of various immune checkpoints in NK cells following Mtb infection and how it alters NK cell-mediated host cytotoxicity and cytokine secretion. Unraveling the function of NK cells after the infection of host cells by Mtb is crucial for a comprehensive understanding of the innate immune mechanism of NK cells involved in tuberculosis and the evaluation of the efficacy of immunotherapies using immune checkpoint inhibitors to treat tuberculosis. In view of some similarities in the immune characteristics of T cells and NK cells, we reviewed the molecular mechanism of the interaction between T cells and Mtb, which can help us to further understand and explore the specific interaction mechanism between NK cells and Mtb.
Collapse
Affiliation(s)
- Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong 226001, China.
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jiahai Shi
- Department of Thoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases in Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong 226001, China
| |
Collapse
|
35
|
Tessema MB, Tuipulotu DE, Oates CV, Brooks AG, Man SM, Londrigan SL, Reading PC. Mouse guanylate-binding protein 1 does not mediate antiviral activity against influenza virus in vitro or in vivo. Immunol Cell Biol 2023; 101:383-396. [PMID: 36744765 PMCID: PMC10952839 DOI: 10.1111/imcb.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/29/2023] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Many interferon (IFN)-stimulated genes are upregulated within host cells following infection with influenza and other viruses. While the antiviral activity of some IFN-stimulated genes, such as the IFN-inducible GTPase myxoma resistance (Mx)1 protein 1, has been well defined, less is known regarding the antiviral activities of related IFN-inducible GTPases of the guanylate-binding protein (GBP) family, particularly mouse GBPs, where mouse models can be used to assess their antiviral properties in vivo. Herein, we demonstrate that mouse GBP1 (mGBP1) was upregulated in a mouse airway epithelial cell line (LA-4 cells) following pretreatment with mouse IFNα or infection by influenza A virus (IAV). Whereas doxycycline-inducible expression of mouse Mx1 (mMx1) in LA-4 cells resulted in reduced susceptibility to IAV infection and reduced viral growth, inducible mGBP1 did not. Moreover, primary cells isolated from mGBP1-deficient mice (mGBP1-/- ) showed no difference in susceptibility to IAV and mGBP1-/- macrophages showed no defect in IAV-induced NLRP3 (NLR family pyrin domain containing 3) inflammasome activation. After intranasal IAV infection, mGBP1-/- mice also showed no differences in virus replication or induction of inflammatory responses in the airways during infection. Thus, using complementary approaches such as mGBP1 overexpression, cells from mGBP1-/- mice and intranasal infection of mGBP1-/- we demonstrate that mGBP1 does not play a major role in modulating IAV infection in vitro or in vivo.
Collapse
Affiliation(s)
- Melkamu B Tessema
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Clare V Oates
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Andrew G Brooks
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| | - Sarah L Londrigan
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
| | - Patrick C Reading
- Department of Microbiology and ImmunologyThe Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneVICAustralia
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference LaboratoryThe Peter Doherty Institute for Infection and ImmunityMelbourneVICAustralia
| |
Collapse
|
36
|
Reimann TM, Müdsam C, Schachtler C, Ince S, Sticht H, Herrmann C, Stürzl M, Kost B. The large GTPase AtGBPL3 links nuclear envelope formation and morphogenesis to transcriptional repression. NATURE PLANTS 2023; 9:766-784. [PMID: 37095224 DOI: 10.1038/s41477-023-01400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Guanylate binding proteins (GBPs) are prominent regulators of immunity not known to be required for nuclear envelope formation and morphogenesis. Here we identify the Arabidopsis GBP orthologue AtGBPL3 as a lamina component with essential functions in mitotic nuclear envelope reformation, nuclear morphogenesis and transcriptional repression during interphase. AtGBPL3 is preferentially expressed in mitotically active root tips, accumulates at the nuclear envelope and interacts with centromeric chromatin as well as with lamina components transcriptionally repressing pericentromeric chromatin. Reduced expression of AtGBPL3 or associated lamina components similarly altered nuclear morphology and caused overlapping transcriptional deregulation. Investigating the dynamics of AtGBPL3-GFP and other nuclear markers during mitosis (1) revealed that AtGBPL3 accumulation on the surface of daughter nuclei precedes nuclear envelope reformation and (2) uncovered defects in this process in roots of AtGBPL3 mutants, which cause programmed cell death and impair growth. AtGBPL3 functions established by these observations are unique among dynamin-family large GTPases.
Collapse
Affiliation(s)
- Theresa Maria Reimann
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Müdsam
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christina Schachtler
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Semra Ince
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Heinrich Sticht
- Bioinformatics, Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Herrmann
- Physical and Biophysical Chemistry, Department of Physical Chemistry 1, Ruhr-Universität Bochum (RUB), Bochum, Germany
| | - Michael Stürzl
- Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Benedikt Kost
- Cell Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
37
|
Tran VL, Liu P, Katsumura KR, Kim E, Schoff BM, Johnson KD, Bresnick EH. Restricting genomic actions of innate immune mediators on fetal hematopoietic progenitor cells. iScience 2023; 26:106297. [PMID: 36950124 PMCID: PMC10025987 DOI: 10.1016/j.isci.2023.106297] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/03/2023] [Accepted: 02/24/2023] [Indexed: 03/15/2023] Open
Abstract
Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.
Collapse
Affiliation(s)
- Vu L. Tran
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Erin Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bjorn M. Schoff
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
38
|
Liu P, Ye L, Ren Y, Zhao G, Zhang Y, Lu S, Li Q, Wu C, Bai L, Zhang Z, Zhao Z, Shi Z, Yin S, Liao M, Lan Z, Feng J, Chen L. Chemotherapy-induced phlebitis via the GBP5/NLRP3 inflammasome axis and the therapeutic effect of aescin. Br J Pharmacol 2023; 180:1132-1147. [PMID: 36479683 DOI: 10.1111/bph.16002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 10/03/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Intravenous infusion of chemotherapy drugs can cause severe chemotherapy-induced phlebitis (CIP) in patients. However, the underlying mechanism of CIP development remains unclear. EXPERIMENTAL APPROACH RNA-sequencing analysis was used to identify potential disease targets in CIP. Guanylate binding protein-5 (GBP5) genetic deletion approaches also were used to investigate the role of GBP5 in NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in lipopolysaccharide (LPS) primed murine bone-marrow-derived macrophages (BMDMs) induced by vinorelbine (VIN) in vitro and in mouse models of VIN-induced CIP in vivo. The anti-CIP effect of aescin was evaluated, both in vivo and in vivo. KEY RESULTS Here, we show that the expression of GBP5 was upregulated in human peripheral blood mononuclear cells from CIP patients. Genetic ablation of GBP5 in murine macrophages significantly alleviated VIN-induced CIP in the experimental mouse model. Mechanistically, GBP5 contributed to the inflammatory responses through activating NLRP3 inflammasome and driving the production of the inflammatory cytokine IL-1β. Moreover, aescin, a mixture of triterpene saponins extracted from horse chestnut seed, can alleviate CIP by inhibiting the GBP5/NLRP3 axis. CONCLUSION AND IMPLICATIONS These findings suggest that GBP5 is an important regulator of NLRP3 inflammasome in CIP mouse model. Our work further reveals that aescin may serve as a promising candidate in the clinical treatment of CIP.
Collapse
Affiliation(s)
- Peng Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lichun Ye
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yongshen Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Guodun Zhao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Zhang
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaojuan Lu
- School of Medicine, Tongji University, Shanghai, China
| | - Qiang Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Lijie Bai
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongyun Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Barnes-Jewish Hospital, St. Louis, Missouri, USA
| | - Zhaohua Shi
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Shijin Yin
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Maochuan Liao
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Zhou Lan
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Jing Feng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lvyi Chen
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| |
Collapse
|
39
|
Schelle L, Côrte-Real JV, Esteves PJ, Abrantes J, Baldauf HM. Functional cross-species conservation of guanylate-binding proteins in innate immunity. Med Microbiol Immunol 2023; 212:141-152. [PMID: 35416510 PMCID: PMC9005921 DOI: 10.1007/s00430-022-00736-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
Abstract
Guanylate binding proteins (GBPs) represent an evolutionary ancient protein family widely distributed among eukaryotes. They are interferon (IFN)-inducible guanosine triphosphatases that belong to the dynamin superfamily. GBPs are known to have a major role in the cell-autonomous innate immune response against bacterial, parasitic and viral infections and are also involved in inflammasome activation. Evolutionary studies depicted that GBPs present a pattern of gain and loss of genes in each family with several genes pseudogenized and some genes more divergent, indicative for the birth-and-death evolution process. Most species harbor large GBP gene clusters encoding multiple paralogs. Previous functional studies mainly focused on mouse and human GBPs, but more data are becoming available, broadening the understanding of this multifunctional protein family. In this review, we will provide new insights and give a broad overview about GBP evolution, conservation and their roles in all studied species, including plants, invertebrates and vertebrates, revealing how far the described features of GBPs can be transferred to other species.
Collapse
Affiliation(s)
- Luca Schelle
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - João Vasco Côrte-Real
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Pedro José Esteves
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
- CITS-Center of Investigation in Health Technologies, CESPU, 4585-116, Gandra, Portugal
| | - Joana Abrantes
- CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Portugal
| | - Hanna-Mari Baldauf
- Faculty of Medicine, Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Feodor-Lynen-Str. 23, 81377, Munich, Germany.
| |
Collapse
|
40
|
Chen S, Chen Y, Jiao Z, Wang C, Zhao D, Liu Y, Zhang W, Zhao S, Yang B, Zhao Q, Fu S, He X, Chen Q, Man C, Liu G, Wei X, Du L, Wang F. Clearance of bacteria from lymph nodes in sheep immunized with Brucella suis S2 vaccine is associated with M1 macrophage activation. Vet Res 2023; 54:20. [PMID: 36918910 PMCID: PMC10013293 DOI: 10.1186/s13567-023-01147-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/15/2022] [Indexed: 03/16/2023] Open
Abstract
Ovine brucellosis is a global zoonotic disease of sheep caused by Brucella melitensis, which inflicts a significant burden on human and animal health. Brucella suis strain S2 (B. suis S2) is a smooth live attenuated vaccine for the prevention of ovine brucellosis in China. However, no previous studies have assessed the immunogenicity of B. suis S2 vaccine after oral immunization in sheep. Here, we attempted to evaluate the ovine immune response over the course of B. suis S2 immunization and to identify in vivo predictors for vaccine development. Body temperature, serum Brucella antibodies, serum cytokines (IL-12p70 and interferon [IFN]-γ), and bacterial load in the mandibular lymph nodes (LN), superficial cervical LN, superficial inguinal LN, and spleen were investigated to determine the safety and efficacy of the vaccine. The abnormal body temperature of sheep occurred within 8 days post-infection (dpi). Brucella suis S2 persisted for a short time (< 21 dpi) in the mandibular LN. The highest level of IL-12p70 was observed at 9 dpi, whereas serum IFN-γ levels peaked at 12 dpi. Transcriptome analysis and quantitative reverse transcription PCR were performed to determine gene expression profiles in the mandibular LN of sheep. Antigen processing and presentation pathway was the dominant pathway related to the dataset. Our studies suggest that the immune response in ovine LN resembled type 1 immunity with the secretion of IL-12p70 and IFN-γ after B.suis S2 immunization and the vaccine may eliminate Brucella via stimulation of M1 macrophages through the course of Th cells.
Collapse
Affiliation(s)
- Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Yuanyuan Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Zizhuo Jiao
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Chengqiang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Dantong Zhao
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Yongbin Liu
- Inner Mongolia University, College Road No. 235, Hohhot, Inner Mongolia, China
| | - Wenguang Zhang
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Shihua Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Bin Yang
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qinan Zhao
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Shaoyin Fu
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Xiaolong He
- Inner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, China
| | - Qiaoling Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Churiga Man
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| | - Guoying Liu
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Xuefeng Wei
- Jinyu Baoling Bio-Pharmaceutical Co., Ltd., Hohhot, Inner Mongolia, China
| | - Li Du
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Animal Science and Technology, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
41
|
You X, Li G, Lei Y, Xu Z, Zhang P, Yang Y. Role of genetic factors in different swine breeds exhibiting varying levels of resistance/susceptibility to PRRSV. Virus Res 2023; 326:199057. [PMID: 36731630 DOI: 10.1016/j.virusres.2023.199057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), caused by the PRRS virus (PRRSV), is an economically significant contagious disease. Traditional approaches based on vaccines or medicines were challenging to control PRRSV due to the diversity of viruses. Different breeds of pigs infected with PRRSV have been reported to have different immune responses. However, due to the complexity of interaction mechanism between host and PRRSV, the genetic mechanism leading to PRRSV susceptibility/resistance in various pig breeds is still unclear. Herein, the role of host genetic components in PRRSV susceptibility is systematically described, and the molecular mechanisms by which host genetic factors such as SNPs, cytokines, receptor molecules, intestinal flora, and non-coding RNAs regulate PRRSV susceptibility/resistance. Therefore, improving the resistance to disease of individual animals through disease-resistance breeding technology is of profound significance for uplifting the sustainable and healthy development of the pig industry.
Collapse
Affiliation(s)
- Xiangbin You
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Gan Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Ying Lei
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Zhiqian Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Ping Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China
| | - Youbing Yang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China; Luoyang Key Laboratory of Animal Genetics and Breeding, Luoyang 471023, China.
| |
Collapse
|
42
|
Boo KJ, Gonzales EL, Remonde CG, Seong JY, Jeon SJ, Park YM, Ham BJ, Shin CY. Hycanthone Inhibits Inflammasome Activation and Neuroinflammation-Induced Depression-Like Behaviors in Mice. Biomol Ther (Seoul) 2023; 31:161-167. [PMID: 36203404 PMCID: PMC9970841 DOI: 10.4062/biomolther.2022.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Despite the various medications used in clinics, the efforts to develop more effective treatments for depression continue to increase in the past decades mainly because of the treatment-resistant population, and the testing of several hypotheses- and target-based treatments. Undesirable side effects and unresponsiveness to current medications fuel the drive to solve this top global health problem. In this study, we focused on neuroinflammatory response-mediated depression which represents a cluster of depression etiology both in animal models and humans. Several meta-analyses reported that proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were increased in major depressive disorder patients. Inflammatory mediators implicated in depression include type-I interferon and inflammasome pathways. To elucidate the molecular mechanisms of neuroinflammatory cascades underlying the pathophysiology of depression, we introduced hycanthone, an antischistosomal drug, to check whether it can counteract depressive-like behaviors in vivo and normalize the inflammation-induced changes in vitro. Lipopolysaccharide (LPS) treatment increased proinflammatory cytokine expression in the murine microglial cells as well as the stimulation of type I interferon-related pathways that are directly or indirectly regulated by Janus kinase-signal transducer and activator of transcription (JAK-STAT) activation. Hycanthone treatment attenuated those changes possibly by inhibiting the JAK-STAT pathway and inflammasome activation. Hycanthone also ameliorated depressive-like behaviors by LPS. Taken together, we suggest that the inhibitory action of hycanthone against the interferon pathway leading to attenuation of depressive-like behaviors can be a novel therapeutic mechanism for treating depression.
Collapse
Affiliation(s)
- Kyung-Jun Boo
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae Young Seong
- Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Department of Integrative Biotechnology, College of Science and Technology, Sahmyook University, Seoul 01795, Republic of Korea
| | - Yeong-Min Park
- Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea,Graduate School of Medicine, Konkuk University, Seoul 05029, Republic of Korea,Corresponding Author E-mail: , Tel: +82-2-454-5630, Fax: +82-2-2030-7899
| |
Collapse
|
43
|
Ganesan S, Alvarez NN, Steiner S, Fowler KM, Corona AK, Roy CR. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. mBio 2023; 14:e0354522. [PMID: 36728431 PMCID: PMC9972978 DOI: 10.1128/mbio.03545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
There is a limited understanding of host defense mechanisms targeting intracellular pathogens that proliferate in a lysosome. Coxiella burnetii is a model bacterial pathogen capable of replicating in the hydrolytic and acidic environment of the lysosome. It has been shown that gamma interferon (IFNγ)-stimulated host cells restrict C. burnetii replication by a mechanism that involves host IDO1 depletion of tryptophan. Host cells deficient in IDO1 activity, however, retain the ability to restrict C. burnetii replication when stimulated with IFNγ, which suggests additional mechanisms of host defense. This study identified syntaxin 11 (STX11) as a host protein that contributes to IFNγ-mediated suppression of C. burnetii replication. STX11 is a SNARE protein; SNARE proteins are proteins that mediate fusion of host vesicles with specific subcellular organelles. Depletion of STX11 using either small interfering RNA (siRNA)- or CRISPR-based approaches enhanced C. burnetii replication intracellularly. Stable expression of STX11 reduced C. burnetii replication in epithelial cells and macrophages, which indicates that this STX11-dependent cell-autonomous response is operational in multiple cell types and can function independently of other IFNγ-induced factors. Fluorescently tagged STX11 localized to the Coxiella-containing vacuole (CCV), and STX11 restriction was found to involve an interaction with STX8. Thus, STX11 regulates a vesicle fusion pathway that limits replication of this intracellular pathogen in a lysosome-derived organelle. IMPORTANCE Cell intrinsic defense mechanisms are used by eukaryotic cells to restrict the replication and dissemination of pathogens. This study identified a human protein called syntaxin 11 (STX11) as a host restriction factor that inhibits the intracellular replication of Coxiella burnetii. Syntaxins regulate the delivery of cargo inside vesicles by promoting specific membrane fusion events between donor and acceptor vesicles. Data presented here demonstrate that STX11 regulates an immunological defense pathway that controls replication of pathogens in lysosome-derived organelles, which provides new insight into the function of this SNARE protein.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalie N. Alvarez
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen M. Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abigail K. Corona
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
44
|
Rosain J, Neehus AL, Manry J, Yang R, Le Pen J, Daher W, Liu Z, Chan YH, Tahuil N, Türel Ö, Bourgey M, Ogishi M, Doisne JM, Izquierdo HM, Shirasaki T, Le Voyer T, Guérin A, Bastard P, Moncada-Vélez M, Han JE, Khan T, Rapaport F, Hong SH, Cheung A, Haake K, Mindt BC, Pérez L, Philippot Q, Lee D, Zhang P, Rinchai D, Al Ali F, Ahmad Ata MM, Rahman M, Peel JN, Heissel S, Molina H, Kendir-Demirkol Y, Bailey R, Zhao S, Bohlen J, Mancini M, Seeleuthner Y, Roelens M, Lorenzo L, Soudée C, Paz MEJ, González ML, Jeljeli M, Soulier J, Romana S, L'Honneur AS, Materna M, Martínez-Barricarte R, Pochon M, Oleaga-Quintas C, Michev A, Migaud M, Lévy R, Alyanakian MA, Rozenberg F, Croft CA, Vogt G, Emile JF, Kremer L, Ma CS, Fritz JH, Lemon SM, Spaan AN, Manel N, Abel L, MacDonald MR, Boisson-Dupuis S, Marr N, Tangye SG, Di Santo JP, Zhang Q, Zhang SY, Rice CM, Béziat V, Lachmann N, Langlais D, Casanova JL, Gros P, Bustamante J. Human IRF1 governs macrophagic IFN-γ immunity to mycobacteria. Cell 2023; 186:621-645.e33. [PMID: 36736301 PMCID: PMC9907019 DOI: 10.1016/j.cell.2022.12.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023]
Abstract
Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/β-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/β immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/β. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/β-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/β-dependent antiviral immunity.
Collapse
Affiliation(s)
- Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France.
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Jérémy Manry
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Wassim Daher
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Zhiyong Liu
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Yi-Hao Chan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Natalia Tahuil
- Department of Immunology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Özden Türel
- Department of Pediatric Infectious Disease, Bezmialem Vakif University Faculty of Medicine, 34093 İstanbul, Turkey
| | - Mathieu Bourgey
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Canadian Centre for Computation Genomics, Montreal, QC H3A 0G1, Canada
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Marc Doisne
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Helena M Izquierdo
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Takayoshi Shirasaki
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Antoine Guérin
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Marcela Moncada-Vélez
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Taushif Khan
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Seon-Hui Hong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew Cheung
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Kathrin Haake
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Barbara C Mindt
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Laura Pérez
- Department of Immunology and Rheumatology, "J. P. Garrahan" National Hospital of Pediatrics, C1245 CABA Buenos Aires, Argentina
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Danyel Lee
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Peng Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Fatima Al Ali
- Department of Immunology, Sidra Medicine, Doha, Qatar
| | | | | | - Jessica N Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Yasemin Kendir-Demirkol
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Umraniye Education and Research Hospital, Department of Pediatric Genetics, 34764 İstanbul, Turkey
| | - Rasheed Bailey
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shuxiang Zhao
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan Bohlen
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mathieu Mancini
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada
| | - Yoann Seeleuthner
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Marie Roelens
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Lazaro Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Camille Soudée
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - María Elvira Josefina Paz
- Department of Pediatric Pathology, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - María Laura González
- Central Laboratory, Del Niño Jesus Hospital, San Miguel de Tucuman, T4000 Tucuman, Argentina
| | - Mohamed Jeljeli
- Cochin University Hospital, Biological Immunology Unit, AP-HP, 75014 Paris, France
| | - Jean Soulier
- Inserm/CNRS U944/7212, Paris Cité University, 75006 Paris, France; Hematology Laboratory, Saint-Louis Hospital, AP-HP, 75010 Paris, France; National Reference Center for Bone Marrow Failures, Saint-Louis and Robert Debré Hospitals, 75010 Paris, France
| | - Serge Romana
- Rare Disease Genomic Medicine Department, Paris Cité University, Necker Hospital for Sick Children, 75015 Paris, France
| | | | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Rubén Martínez-Barricarte
- Division of Genetic Medicine, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mathieu Pochon
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Alexandre Michev
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | | | - Flore Rozenberg
- Department of Virology, Paris Cité University, Cochin Hospital, 75014 Paris, France
| | - Carys A Croft
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France; Paris Cité University, 75006 Paris, France
| | - Guillaume Vogt
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes, Lille University, Lille Pasteur Institute, Lille University Hospital, 59000 Lille, France; Neglected Human Genetics Laboratory, Paris Cité University, 75006 Paris, France
| | - Jean-François Emile
- Pathology Department, Ambroise-Paré Hospital, AP-HP, 92100 Boulogne-Billancourt, France
| | - Laurent Kremer
- Infectious Disease Research Institute of Montpellier (IRIM), Montpellier University, 34090 Montpellier, France; Inserm, IRIM, CNRS, UMR9004, 34090 Montpellier, France
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - Jörg H Fritz
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; McGill University Research Centre on Complex Traits, McGill University, Montreal, QC H3A 0G1, Canada; FOCiS Centre of Excellence in Translational Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Physiology, McGill University, Montreal, QC H3A 0G1, Canada
| | - Stanley M Lemon
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - András N Spaan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584CX Utrecht, the Netherlands
| | - Nicolas Manel
- Institut Curie, PSL Research University, Inserm U932, 75005 Paris, France
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Marr
- Department of Immunology, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2052, Australia
| | - James P Di Santo
- Innate Immunity Unit, Institut Pasteur, 75015 Paris, France; Inserm U1223, 75015 Paris, France
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Nico Lachmann
- Institute of Experimental Hematology, REBIRTH Center for Regenerative and Translational Medicine, Hannover Medical School, 30625 Hannover, Germany; Department of Pediatric Pulmonology, Allergology and Neonatology and Biomedical Research in Endstage and Obstructive Lung Disease, German Center for Lung Research, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - David Langlais
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 0G1, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY 10065, USA.
| | - Philippe Gros
- Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC H3A 0G1, Canada; Department of Biochemistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Inserm U1163, 75015 Paris, France; Paris Cité University, Imagine Institute, 75015 Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France.
| |
Collapse
|
45
|
Olive AJ, Smith CM, Baer CE, Coers J, Sassetti CM. Mycobacterium tuberculosis Evasion of Guanylate Binding Protein-Mediated Host Defense in Mice Requires the ESX1 Secretion System. Int J Mol Sci 2023; 24:2861. [PMID: 36769182 PMCID: PMC9917499 DOI: 10.3390/ijms24032861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen Mycobacterium tuberculosis (Mtb) evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ. While the production of IFNγ by T cells is essential to protect against Mtb, it is not capable of fully eradicating Mtb infection. This suggests that Mtb evades a subset of IFNγ-mediated antimicrobial responses, yet what mechanisms Mtb resists remains unclear. The IFNγ-inducible Guanylate binding proteins (GBPs) are key host defense proteins able to control infections with intracellular pathogens. GBPs were previously shown to directly restrict Mycobacterium bovis BCG yet their role during Mtb infection has remained unknown. Here, we examine the importance of a cluster of five GBPs on mouse chromosome 3 in controlling Mycobacterial infection. While M. bovis BCG is directly restricted by GBPs, we find that the GBPs on chromosome 3 do not contribute to the control of Mtb replication or the associated host response to infection. The differential effects of GBPs during Mtb versus M. bovis BCG infection is at least partially explained by the absence of the ESX1 secretion system from M. bovis BCG, since Mtb mutants lacking the ESX1 secretion system become similarly susceptible to GBP-mediated immune defense. Therefore, this specific genetic interaction between the murine host and Mycobacteria reveals a novel function for the ESX1 virulence system in the evasion of GBP-mediated immunity.
Collapse
Affiliation(s)
- Andrew J. Olive
- Department of Microbiology & Molecular Genetics, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Clare M. Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Christina E. Baer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 22710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 22710, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01650, USA
| |
Collapse
|
46
|
Loschwitz J, Steffens N, Wang X, Schäffler M, Pfeffer K, Degrandi D, Strodel B. Domain motions, dimerization, and membrane interactions of the murine guanylate binding protein 2. Sci Rep 2023; 13:679. [PMID: 36639389 PMCID: PMC9839784 DOI: 10.1038/s41598-023-27520-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Guanylate-binding proteins (GBPs) are a group of GTPases that are induced by interferon-[Formula: see text] and are crucial components of cell-autonomous immunity against intracellular pathogens. Here, we examine murine GBP2 (mGBP2), which we have previously shown to be an essential effector protein for the control of Toxoplasma gondii replication, with its recruitment through the membrane of the parasitophorous vacuole and its involvement in the destruction of this membrane likely playing a role. The overall aim of our work is to provide a molecular-level understanding of the mutual influences of mGBP2 and the parasitophorous vacuole membrane. To this end, we performed lipid-binding assays which revealed that mGBP2 has a particular affinity for cardiolipin. This observation was confirmed by fluorescence microscopy using giant unilamellar vesicles of different lipid compositions. To obtain an understanding of the protein dynamics and how this is affected by GTP binding, mGBP2 dimerization, and membrane binding, assuming that each of these steps are relevant for the function of the protein, we carried out standard as well as replica exchange molecular dynamics simulations with an accumulated simulation time of more than 30 μs. The main findings from these simulations are that mGBP2 features a large-scale hinge motion in its M/E domain, which is present in each of the studied protein states. When bound to a cardiolipin-containing membrane, this hinge motion is particularly pronounced, leading to an up and down motion of the M/E domain on the membrane, which did not occur on a membrane without cardiolipin. Our prognosis is that this up and down motion has the potential to destroy the membrane following the formation of supramolecular mGBP2 complexes on the membrane surface.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- grid.411327.20000 0001 2176 9917Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Nora Steffens
- grid.411327.20000 0001 2176 9917Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xue Wang
- grid.411327.20000 0001 2176 9917Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Moritz Schäffler
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Klaus Pfeffer
- grid.411327.20000 0001 2176 9917Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany. .,Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52425, Jülich, Germany.
| |
Collapse
|
47
|
Mariappan V, Adikari S, Shanmugam L, Easow JM, Balakrishna Pillai A. Differential expression of interferon inducible protein: Guanylate binding protein (GBP1 & GBP2) in severe dengue. Free Radic Biol Med 2023; 194:131-146. [PMID: 36460216 DOI: 10.1016/j.freeradbiomed.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/17/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Dengue virus is reported to activate endothelial cells (EC), but the precise cause for severe dengue (SD) is not known. Guanylate binding proteins (GBPs) are IFN-inducible proteins secreted by ECs and are involved in the anti-oxidant and anti-viral response. The involvement of GBPs in the pathogenesis of dengue remains under explored. In the present study, we quantified the mRNA and protein levels of GBP1 and 2 during acute, defervescence and convalescent phase in SD-10, dengue without warning sign-15 and dengue with warning sign-25 compared to other febrile illnesses-10 and healthy controls-8 using RT-PCR and ELISA respectively. Lipid peroxidation in plasma samples were measured using the Kei Satoh method. Protein and DNA oxidation were determined by ELISA. The efficacy of the proteins in predicting disease severity was done by Support Vector Machine (SVM) model. A significant (P ≤ 0.01) decrease in the levels of mRNA and protein of both GBP1 and GBP2 was observed during defervescence in both SD and DWW cases. The levels were significantly (P ≤ 0.05) tapered off in SD cases from acute till critical phases compared to other study groups. DNA, protein and lipid oxidation markers showed an increasing trend in SD (P ≤ 0.01). Both GBP1 & 2 were found to be negatively associated plasma leakage and oxidative stress markers. EC's activated with SD serum showed a reduced expression of GBP 1 and 2. Nevertheless, the SVM model revealed that plasma levels of proteins along with clinical symptoms could predict the disease outcomes with higher precision. This is the first study reporting a downregulated expression of GBP1 & 2 and their association with oxidative stress and plasma leakage in dengue cases. This suggests the importance of GBPs in regulating disease manifestation. However, further investigations are required to ascertain its role as a biomarker or therapeutic target in dengue infection.
Collapse
Affiliation(s)
- Vignesh Mariappan
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI) (Formerly Central Inter-Disciplinary Research Facility-CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Shalinda Adikari
- Department of Information System and Analytics, National University of Singapore (NUS), Singapore, 117 417, Republic of Singapore
| | - Lokesh Shanmugam
- ICMR-National Institute of Epidemiology (ICMR-NIE), Ayapakkam, Chennai, 600 070, India; Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Joshy M Easow
- Mahatma Gandhi Medical College and Research Institute (MGMCRI), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI) (Formerly Central Inter-Disciplinary Research Facility-CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry, 607 402, India.
| |
Collapse
|
48
|
Giannos P, Prokopidis K, Isanejad M, Wright HL. Markers of immune dysregulation in response to the ageing gut: insights from aged murine gut microbiota transplants. BMC Gastroenterol 2022; 22:533. [PMID: 36544093 PMCID: PMC9773626 DOI: 10.1186/s12876-022-02613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Perturbations in the composition and diversity of the gut microbiota are accompanied by a decline in immune homeostasis during ageing, characterized by chronic low-grade inflammation and enhanced innate immunity. Genetic insights into the interaction between age-related alterations in the gut microbiota and immune function remain largely unexplored. METHODS We investigated publicly available transcriptomic gut profiles of young germ-free mouse hosts transplanted with old donor gut microbiota to identify immune-associated differentially expressed genes (DEGs). Literature screening of the Gene Expression Omnibus and PubMed identified one murine (Mus musculus) gene expression dataset (GSE130026) that included small intestine tissues from young (5-6 weeks old) germ-free mice hosts that were compared following 8 weeks after transplantation with either old (~ 24-month old; n = 5) or young (5-6 weeks old; n = 4) mouse donor gut microbiota. RESULTS A total of 112 differentially expressed genes (DEGs) were identified and used to construct a gut network of encoded proteins, in which DEGs were functionally annotated as being involved in an immune process based on gene ontology. The association between the expression of immune-process DEGs and abundance of immune infiltrates from gene signatures in normal colorectal tissues was estimated from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) project. The analysis revealed a 25-gene signature of immune-associated DEGs and their expression profile was positively correlated with naïve T-cell, effector memory T-cell, central memory T-cell, resident memory T-cell, exhausted T-cell, resting Treg T-cell, effector Treg T-cell and Th1-like colorectal gene signatures. Conclusions These genes may have a potential role as candidate markers of immune dysregulation during gut microbiota ageing. Moreover, these DEGs may provide insights into the altered immune response to microbiota in the ageing gut, including reduced antigen presentation and alterations in cytokine and chemokine production.
Collapse
Affiliation(s)
- Panagiotis Giannos
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Konstantinos Prokopidis
- Society of Meta-Research and Biomedical Innovation, London, UK.,Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Masoud Isanejad
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Helen L Wright
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
49
|
Kohl L, Siddique MNAA, Bodendorfer B, Berger R, Preikschat A, Daniel C, Ölke M, Liebler‐Tenorio E, Schulze‐Luehrmann J, Mauermeir M, Yang K, Hayek I, Szperlinski M, Andrack J, Schleicher U, Bozec A, Krönke G, Murray PJ, Wirtz S, Yamamoto M, Schatz V, Jantsch J, Oefner P, Degrandi D, Pfeffer K, Mertens‐Scholz K, Rauber S, Bogdan C, Dettmer K, Lührmann A, Lang R. Macrophages inhibit Coxiella burnetii by the ACOD1-itaconate pathway for containment of Q fever. EMBO Mol Med 2022; 15:e15931. [PMID: 36479617 PMCID: PMC9906395 DOI: 10.15252/emmm.202215931] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Infection with the intracellular bacterium Coxiella (C.) burnetii can cause chronic Q fever with severe complications and limited treatment options. Here, we identify the enzyme cis-aconitate decarboxylase 1 (ACOD1 or IRG1) and its product itaconate as protective host immune pathway in Q fever. Infection of mice with C. burnetii induced expression of several anti-microbial candidate genes, including Acod1. In macrophages, Acod1 was essential for restricting C. burnetii replication, while other antimicrobial pathways were dispensable. Intratracheal or intraperitoneal infection of Acod1-/- mice caused increased C. burnetii burden, weight loss and stronger inflammatory gene expression. Exogenously added itaconate restored pathogen control in Acod1-/- mouse macrophages and blocked replication in human macrophages. In axenic cultures, itaconate directly inhibited growth of C. burnetii. Finally, treatment of infected Acod1-/- mice with itaconate efficiently reduced the tissue pathogen load. Thus, ACOD1-derived itaconate is a key factor in the macrophage-mediated defense against C. burnetii and may be exploited for novel therapeutic approaches in chronic Q fever.
Collapse
Affiliation(s)
- Lisa Kohl
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Md Nur A Alam Siddique
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Barbara Bodendorfer
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Raffaela Berger
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Annica Preikschat
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Christoph Daniel
- Department of NephropathologyUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | - Martha Ölke
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Elisabeth Liebler‐Tenorio
- Institute of Molecular Pathogenesis, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Jan Schulze‐Luehrmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Michael Mauermeir
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Kai‐Ting Yang
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Inaya Hayek
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Manuela Szperlinski
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Jennifer Andrack
- Institute of Bacterial Infections and Zoonoses, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Ulrike Schleicher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Aline Bozec
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Gerhard Krönke
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | | | - Stefan Wirtz
- Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany,Department of Medicine 1Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany
| | | | - Valentin Schatz
- Institute of Clinical MicrobiologyUniversity Hospital RegensburgRegensburgGermany
| | - Jonathan Jantsch
- Institute of Clinical MicrobiologyUniversity Hospital RegensburgRegensburgGermany,Present address:
Institute for Medical Microbiology, Immunology and HygieneUniversity Hospital Cologne and Faculty of Medicine, University of CologneCologneGermany
| | - Peter Oefner
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Daniel Degrandi
- Institute of Medical MicrobiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Klaus Pfeffer
- Institute of Medical MicrobiologyHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Katja Mertens‐Scholz
- Institute of Bacterial Infections and Zoonoses, Friedrich‐Loeffler‐Institut, Federal Research Institute for Animal HealthJenaGermany
| | - Simon Rauber
- Department of Medicine 3Universitätsklinikum Erlangen, Friedrich‐Alexander‐Universität Erlangen‐NürnbergErlangenGermany,Deutsches Zentrum für Immuntherapie (DZI)Friedrich‐Alexander‐Universität Erlangen‐Nürnberg and Universitätsklinikum ErlangenErlangenGermany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Katja Dettmer
- Institute of Functional GenomicsUniversity of RegensburgRegensburgGermany
| | - Anja Lührmann
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| | - Roland Lang
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen, Friedrich‐Alexander‐Universität (FAU) Erlangen‐NürnbergErlangenGermany,Medical Immunology Campus ErlangenFAU Erlangen‐NürnbergErlangenGermany
| |
Collapse
|
50
|
Huang Y, Chen X, Jiang Z, Luo Q, Wan L, Hou X, Yu K, Zhuang J. Transcriptome Sequencing Reveals Tgf-β-Mediated Noncoding RNA Regulatory Mechanisms Involved in DNA Damage in the 661W Photoreceptor Cell Line. Genes (Basel) 2022; 13:2140. [PMID: 36421815 PMCID: PMC9691224 DOI: 10.3390/genes13112140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/24/2022] [Accepted: 11/14/2022] [Indexed: 10/08/2023] Open
Abstract
Transforming growth factor β (Tgf-β), a pleiotropic cytokine, can enhance DNA repair in various cells, including cancer cells and neurons. The noncoding regulatory system plays an important role in Tgf-β-mediated biological activities, whereas few studies have explored its role in DNA damage and repair. In this study, we suggested that Tgf-β improved while its inhibitor LSKL impaired DNA repair and cell viability in UV-irradiated 661W cells. Moreover, RNA-seq was carried out, and a total of 106 differentially expressed (DE)-mRNAs and 7 DE-lncRNAs were identified between UV/LSKL and UV/ctrl 661W cells. Gene ontology and Reactome analysis confirmed that the DE-mRNAs were enriched in multiple DNA damaged- and repair-related biological functions and pathways. We then constructed a ceRNA network that included 3 lncRNAs, 19 miRNAs, and 29 mRNAs with a bioinformatics prediction. Through RT-qPCR and further functional verification, 2 Tgf-β-mediated ceRNA axes (Gm20559-miR-361-5p-Oas2/Gbp7) were further identified. Gm20559 knockout or miR-361-5p mimics markedly impaired DNA repair and cell viability in UV-irradiated 661W cells, which confirms the bioinformatics results. In summary, this study revealed that Tgf-β could reduce DNA damage in 661W cells, provided a Tgf-β-associated ceRNA network for DNA damage and repair, and suggested that the molecular signatures may be useful candidates as targets of treatment for photoreceptor pathology.
Collapse
Affiliation(s)
- Yuke Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xi Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Zhigao Jiang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510060, China
| | - Qian Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Linxi Wan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiangtao Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|