1
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Ali MY, Lu H, Fagnant PM, Macfarlane JE, Trybus KM. BicD and MAP7 collaborate to activate homodimeric Drosophila kinesin-1 by complementary mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632512. [PMID: 39868150 PMCID: PMC11761035 DOI: 10.1101/2025.01.11.632512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The folded auto-inhibited state of kinesin-1 is stabilized by multiple weak interactions and binds weakly to microtubules. Here we investigate the extent to which homodimeric Drosophila kinesin-1 lacking light chains is activated by the dynein activating adaptor Drosophila BicD. We show that one or two kinesins can bind to the central region of BicD (CC2), a region distinct from that which binds dynein-dynactin (CC1) and cargo-adaptor proteins (CC3). Kinesin light chain significantly reduces the amount of kinesin bound to BicD and thus regulates this interaction. Binding of kinesin to BicD increases the number of motors bound to the microtubule, the fraction moving processively and the run length, suggesting that BicD relieves kinesin auto-inhibition. In contrast, microtubule-associated protein 7 (MAP7) has minimal impact on the percentage of motors moving processively but enhances both kinesin-1 recruitment to microtubules and run length. BicD relieves auto-inhibition of kinesin, while MAP7 enables activated motors to engage productively with microtubules. When BicD and MAP7 are combined, the most robust activation of kinesin-1 occurs, highlighting the crosstalk between adaptors and microtubule associated proteins in regulating transport. These observations imply that when both dynein and kinesin-1 are simultaneously bound to BicD, the direction the complex moves on MTs will be influenced by MAP7 and the number of bound kinesins.
Collapse
|
3
|
Cozzi M, Magri S, Tedesco B, Patelli G, Ferrari V, Casarotto E, Chierichetti M, Pramaggiore P, Cornaggia L, Piccolella M, Galbiati M, Rusmini P, Crippa V, Mandrioli J, Pareyson D, Pisciotta C, D'Arrigo S, Ratti A, Nanetti L, Mariotti C, Sarto E, Pensato V, Gellera C, Di Bella D, Cristofani RM, Taroni F, Poletti A. Altered molecular and cellular mechanisms in KIF5A-associated neurodegenerative or neurodevelopmental disorders. Cell Death Dis 2024; 15:692. [PMID: 39333504 PMCID: PMC11437142 DOI: 10.1038/s41419-024-07096-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Mutations targeting distinct domains of the neuron-specific kinesin KIF5A associate with different neurodegenerative/neurodevelopmental disorders, but the molecular bases of this clinical heterogeneity are unknown. We characterised five key mutants covering the whole spectrum of KIF5A-related phenotypes: spastic paraplegia (SPG, R17Q and R280C), Charcot-Marie-Tooth disease (CMT, R864*), amyotrophic lateral sclerosis (ALS, N999Vfs*40), and neonatal intractable myoclonus (NEIMY, C975Vfs*73) KIF5A mutants. CMT-R864*-KIF5A and ALS-N999Vfs*40-KIF5A showed impaired autoinhibition and peripheral localisation accompanied by altered mitochondrial distribution, suggesting transport competence disruption. ALS-N999Vfs*40-KIF5A formed SQSTM1/p62-positive inclusions sequestering WT-KIF5A, indicating a gain of toxic function. SPG-R17Q-KIF5A and ALS-N999Vfs*40-KIF5A evidenced a shorter half-life compared to WT-KIF5A, and proteasomal blockage determined their accumulation into detergent-insoluble inclusions. Interestingly, SPG-R280C-KIF5A and ALS-N999Vfs*40-KIF5A both competed for degradation with proteasomal substrates. Finally, NEIMY-C975Vfs*73-KIF5A displayed a similar, but more severe aberrant behaviour compared to ALS-N999Vfs*40-KIF5A; these two mutants share an abnormal tail but cause disorders on the opposite end of KIF5A-linked phenotypic spectrum. Thus, our observations support the pathogenicity of novel KIF5A mutants, highlight abnormalities of recurrent variants, and demonstrate that both unique and shared mechanisms underpin KIF5A-related diseases.
Collapse
Affiliation(s)
- Marta Cozzi
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Barbara Tedesco
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Guglielmo Patelli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Veronica Ferrari
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Elena Casarotto
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Marta Chierichetti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Pramaggiore
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Laura Cornaggia
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Margherita Piccolella
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Mariarita Galbiati
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Paola Rusmini
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Valeria Crippa
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Centre for Neuroscience and Neurotechnology (CfNN), 41125, Modena, Italy
- Department of Neurosciences, Azienda Ospedaliero-Universitaria di Modena, 41126, Modena, Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Chiara Pisciotta
- Unit of Rare Neurological Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, 20054, Segrate, Italy
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Viviana Pensato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Riccardo M Cristofani
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Angelo Poletti
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti" (DiSFeB), Università degli Studi di Milano, 20133, Milan, Italy.
| |
Collapse
|
4
|
Sumiyoshi R, Yamagishi M, Furuta A, Nishizaka T, Furuta K, Cross RA, Yajima J. Tether-scanning the kinesin motor domain reveals a core mechanical action. Proc Natl Acad Sci U S A 2024; 121:e2403739121. [PMID: 39012822 PMCID: PMC11287258 DOI: 10.1073/pnas.2403739121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Natural kinesin motors are tethered to their cargoes via short C-terminal or N-terminal linkers, whose docking against the core motor domain generates directional force. It remains unclear whether linker docking is the only process contributing directional force or whether linker docking is coupled to and amplifies an underlying, more fundamental force-generating mechanical cycle of the kinesin motor domain. Here, we show that kinesin motor domains tethered via double-stranded DNAs (dsDNAs) attached to surface loops drive robust microtubule (MT) gliding. Tethering using dsDNA attached to surface loops disconnects the C-terminal neck-linker and the N-terminal cover strand so that their dock-undock cycle cannot exert force. The most effective attachment positions for the dsDNA tether are loop 2 or loop 10, which lie closest to the MT plus and minus ends, respectively. In three cases, we observed minus-end-directed motility. Our findings demonstrate an underlying, potentially ancient, force-generating core mechanical action of the kinesin motor domain, which drives, and is amplified by, linker docking.
Collapse
Affiliation(s)
- Rieko Sumiyoshi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
| | - Akane Furuta
- Kobe Frontier Research Center, National Institute of Information and Communications Technology, Kobe, Hyogo651-2492, Japan
| | - Takayuki Nishizaka
- Department of Physics, Gakushuin University, Toshima-ku, Tokyo171-8588, Japan
| | - Ken’ya Furuta
- Kobe Frontier Research Center, National Institute of Information and Communications Technology, Kobe, Hyogo651-2492, Japan
| | - Robert A. Cross
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill, CoventryCV4 7AL, United Kingdom
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Meguro-ku, Tokyo153-8902, Japan
| |
Collapse
|
5
|
Cross JA, Dawson WM, Shukla SR, Weijman JF, Mantell J, Dodding MP, Woolfson DN. A de novo designed coiled coil-based switch regulates the microtubule motor kinesin-1. Nat Chem Biol 2024; 20:916-923. [PMID: 38849529 PMCID: PMC11213707 DOI: 10.1038/s41589-024-01640-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Many enzymes are allosterically regulated via conformational change; however, our ability to manipulate these structural changes and control function is limited. Here we install a conformational switch for allosteric activation into the kinesin-1 microtubule motor in vitro and in cells. Kinesin-1 is a heterotetramer that accesses open active and closed autoinhibited states. The equilibrium between these states centers on a flexible elbow within a complex coiled-coil architecture. We target the elbow to engineer a closed state that can be opened with a de novo designed peptide. The alternative states are modeled computationally and confirmed by biophysical measurements and electron microscopy. In cells, peptide-driven activation increases kinesin transport, demonstrating a primary role for conformational switching in regulating motor activity. The designs are enabled by our understanding of ubiquitous coiled-coil structures, opening possibilities for controlling other protein activities.
Collapse
Affiliation(s)
- Jessica A Cross
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
| | | | - Shivam R Shukla
- School of Biochemistry, University of Bristol, Bristol, UK
- School of Chemistry, University of Bristol, Bristol, UK
| | | | - Judith Mantell
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| | - Derek N Woolfson
- School of Biochemistry, University of Bristol, Bristol, UK.
- School of Chemistry, University of Bristol, Bristol, UK.
- Bristol BioDesign Institute, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Heber S, McClintock MA, Simon B, Mehtab E, Lapouge K, Hennig J, Bullock SL, Ephrussi A. Tropomyosin 1-I/C coordinates kinesin-1 and dynein motors during oskar mRNA transport. Nat Struct Mol Biol 2024; 31:476-488. [PMID: 38297086 PMCID: PMC10948360 DOI: 10.1038/s41594-024-01212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Dynein and kinesin motors mediate long-range intracellular transport, translocating towards microtubule minus and plus ends, respectively. Cargoes often undergo bidirectional transport by binding to both motors simultaneously. However, it is not known how motor activities are coordinated in such circumstances. In the Drosophila female germline, sequential activities of the dynein-dynactin-BicD-Egalitarian (DDBE) complex and of kinesin-1 deliver oskar messenger RNA from nurse cells to the oocyte, and within the oocyte to the posterior pole. We show through in vitro reconstitution that Tm1-I/C, a tropomyosin-1 isoform, links kinesin-1 in a strongly inhibited state to DDBE-associated oskar mRNA. Nuclear magnetic resonance spectroscopy, small-angle X-ray scattering and structural modeling indicate that Tm1-I/C suppresses kinesin-1 activity by stabilizing its autoinhibited conformation, thus preventing competition with dynein until kinesin-1 is activated in the oocyte. Our work reveals a new strategy for ensuring sequential activity of microtubule motors.
Collapse
Affiliation(s)
- Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mark A McClintock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, USA
| | - Eve Mehtab
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Simon L Bullock
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
7
|
Carrington G, Fatima U, Caramujo I, Lewis T, Casas-Mao D, Peckham M. A multiscale approach reveals the molecular architecture of the autoinhibited kinesin KIF5A. J Biol Chem 2024; 300:105713. [PMID: 38309508 PMCID: PMC10907169 DOI: 10.1016/j.jbc.2024.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024] Open
Abstract
Kinesin-1 is a microtubule motor that transports cellular cargo along microtubules. KIF5A is one of three kinesin-1 isoforms in humans, all of which are autoinhibited by an interaction between the motor and an IAK motif in the proximal region of the C-terminal tail. The C-terminal tail of KIF5A is ∼80 residues longer than the other two kinesin-1 isoforms (KIF5B and KIF5C) and it is unclear if it contributes to autoinhibition. Mutations in KIF5A cause neuronal diseases and could affect autoinhibition, as reported for a mutation that skips exon 27, altering its C-terminal sequence. Here, we combined negative-stain electron microscopy, crosslinking mass spectrometry (XL-MS) and AlphaFold2 structure prediction to determine the molecular architecture of the full-length autoinhibited KIF5A homodimer, in the absence of light chains. We show that KIF5A forms a compact, bent conformation, through a bend between coiled-coils 2 and 3, around P687. XL-MS of WT KIF5A revealed extensive interactions between residues in the motor, between coiled-coil 1 and the motor, between coiled-coils 1 and 2, with coiled-coils 3 and 4, and the proximal region of the C-terminal tail and the motor in the autoinhibited state, but not between the distal C-terminal region and the rest of the molecule. While negative-stain electron microscopy of exon-27 KIF5A splice mutant showed the presence of autoinhibited molecules, XL-MS analysis suggested that its autoinhibited state is more labile. Our model offers a conceptual framework for understanding how mutations within the motor and stalk domain may affect motor activity.
Collapse
Affiliation(s)
- Glenn Carrington
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Uzrama Fatima
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Ines Caramujo
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Tarek Lewis
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - David Casas-Mao
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Michelle Peckham
- Faculty of Biological Sciences, Astbury Centre for Structural Biology and the School of Molecular and Cellular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Chiba K, Niwa S. Autoinhibition and activation of kinesin-1 and their involvement in amyotrophic lateral sclerosis. Curr Opin Cell Biol 2024; 86:102301. [PMID: 38096601 DOI: 10.1016/j.ceb.2023.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/11/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Kinesin-1, composed of kinesin heavy chain and kinesin light chain, is a founding member of kinesin superfamily and transports various neuronal cargos. Kinesin-1 is one of the most abundant ATPases in the cell and thus need to be tightly regulated to avoid wastage of energy. It has been well established that kinesin-1 is regulated by the autoinhibition mechanism. This review focuses on the recent researches that have contributed to the understanding of mechanisms for the autoinhibition of kinesin-1 and its unlocking. Recent electron microscopic studies have shown an unanticipated structure of autoinhibited kinesin-1. Biochemical reconstitution have revealed detailed molecular mechanisms how the autoinhibition is unlocked. Importantly, misregulation of kinesin-1 is emerging as one of the major causes of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan; Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
9
|
Danziger M, Noble H, Roque DM, Xu F, Rao GG, Santin AD. Microtubule-Targeting Agents: Disruption of the Cellular Cytoskeleton as a Backbone of Ovarian Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1452:1-19. [PMID: 38805122 DOI: 10.1007/978-3-031-58311-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Microtubules are dynamic polymers composed of α- and β-tubulin heterodimers. Microtubules are universally conserved among eukaryotes and participate in nearly every cellular process, including intracellular trafficking, replication, polarity, cytoskeletal shape, and motility. Due to their fundamental role in mitosis, they represent a classic target of anti-cancer therapy. Microtubule-stabilizing agents currently constitute a component of the most effective regimens for ovarian cancer therapy in both primary and recurrent settings. Unfortunately, the development of resistance continues to present a therapeutic challenge. An understanding of the underlying mechanisms of resistance to microtubule-active agents may facilitate the development of novel and improved approaches to this disease.
Collapse
Affiliation(s)
- Michael Danziger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Noble
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dana M Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Fuhua Xu
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gautam G Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
10
|
Seo D, Kammerer RA, Alexandrescu AT. Solution NMR assignments and structure for the dimeric kinesin neck domain. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:301-307. [PMID: 37861970 DOI: 10.1007/s12104-023-10159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Kinesin is a motor protein, comprised of two heavy and two light chains that transports cargo along the cytoskeletal microtubule filament network. The heavy chain has a neck domain connecting the ATPase motor head responsible for walking along microtubules, with the stalk and subsequent tail domains that bind cargo. The neck domain consists of a coiled coli homodimer with about five heptad repeats, preceded by a linker region that joins to the ATPase head. Here we report 1H, 15N, and 13C NMR assignments and a solution structure for the kinesin neck domain from rat isoform Kif5c. The calculation of the NMR structure of the homodimer was facilitated by unambiguously assigning sidechain NOEs between heptad a and d positions to interchain contacts, since these positions are too far apart to give sidechain contacts in the monomers. The dimeric coiled coil NMR structure is similar to the previously described X-ray structure, whereas the linker region is disordered in solution but contains a short segment with β-strand propensity- the β-linker. Only the coiled coil is protected from solvent exchange, with ∆G values for hydrogen exchange on the order of 4-6 kcal/mol. The high stability of the hydrogen-bonded α-helical structure makes it unlikely that unzippering of the coiled coil is involved in kinesin walking. Rather, the linker region serves as a flexible hinge between the kinesin head and neck.
Collapse
Affiliation(s)
- Diana Seo
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT, 06269-3125, USA
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland
| | - Andrei T Alexandrescu
- Department of Molecular and Cell Biology, University of Connecticut, 91 N. Eagleville Road, Storrs, CT, 06269-3125, USA.
| |
Collapse
|
11
|
Tan Z, Yue Y, Leprevost F, Haynes S, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. eLife 2023; 12:RP86776. [PMID: 37910016 PMCID: PMC10619981 DOI: 10.7554/elife.86776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of MichiganAnn ArborUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Yang Yue
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Felipe Leprevost
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Sarah Haynes
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Venkatesha Basrur
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of MichiganAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Michael A Cianfrocco
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
12
|
Chen M, Xu L, Wu Y, Soba P, Hu C. The organization and function of the Golgi apparatus in dendrite development and neurological disorders. Genes Dis 2023; 10:2425-2442. [PMID: 37554209 PMCID: PMC10404969 DOI: 10.1016/j.gendis.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/13/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dendrites are specialized neuronal compartments that sense, integrate and transfer information in the neural network. Their development is tightly controlled and abnormal dendrite morphogenesis is strongly linked to neurological disorders. While dendritic morphology ranges from relatively simple to extremely complex for a specified neuron, either requires a functional secretory pathway to continually replenish proteins and lipids to meet dendritic growth demands. The Golgi apparatus occupies the center of the secretory pathway and is regulating posttranslational modifications, sorting, transport, and signal transduction, as well as acting as a non-centrosomal microtubule organization center. The neuronal Golgi apparatus shares common features with Golgi in other eukaryotic cell types but also forms distinct structures known as Golgi outposts that specifically localize in dendrites. However, the organization and function of Golgi in dendrite development and its impact on neurological disorders is just emerging and so far lacks a systematic summary. We describe the organization of the Golgi apparatus in neurons, review the current understanding of Golgi function in dendritic morphogenesis, and discuss the current challenges and future directions.
Collapse
Affiliation(s)
- Meilan Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Lu Xu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| | - Yi Wu
- Department of Ophthalmology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510320, China
| | - Peter Soba
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Bonn 53115, Germany
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education Institute for Brain, Science and Rehabilitation, South China Normal University, Guangzhou, Guangdong 510631, China
| |
Collapse
|
13
|
Glomb O, Swaim G, Munoz LLancao P, Lovejoy C, Sutradhar S, Park J, Wu Y, Cason SE, Holzbaur ELF, Hammarlund M, Howard J, Ferguson SM, Gramlich MW, Yogev S. A kinesin-1 adaptor complex controls bimodal slow axonal transport of spectrin in Caenorhabditis elegans. Dev Cell 2023; 58:1847-1863.e12. [PMID: 37751746 PMCID: PMC10574138 DOI: 10.1016/j.devcel.2023.08.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
An actin-spectrin lattice, the membrane periodic skeleton (MPS), protects axons from breakage. MPS integrity relies on spectrin delivery via slow axonal transport, a process that remains poorly understood. We designed a probe to visualize endogenous spectrin dynamics at single-axon resolution in vivo. Surprisingly, spectrin transport is bimodal, comprising fast runs and movements that are 100-fold slower than previously reported. Modeling and genetic analysis suggest that the two rates are independent, yet both require kinesin-1 and the coiled-coil proteins UNC-76/FEZ1 and UNC-69/SCOC, which we identify as spectrin-kinesin adaptors. Knockdown of either protein led to disrupted spectrin motility and reduced distal MPS, and UNC-76 overexpression instructed excessive transport of spectrin. Artificially linking spectrin to kinesin-1 drove robust motility but inefficient MPS assembly, whereas impairing MPS assembly led to excessive spectrin transport, suggesting a balance between transport and assembly. These results provide insight into slow axonal transport and MPS integrity.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Grace Swaim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Pablo Munoz LLancao
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christopher Lovejoy
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Youjun Wu
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sydney E Cason
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06510, USA
| | - Shawn M Ferguson
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Tan Z, Yue Y, da Veiga Leprevost F, Haynes SE, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525761. [PMID: 36747757 PMCID: PMC9901034 DOI: 10.1101/2023.01.26.525761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of Michigan
- Life Sciences Institute, University of Michigan
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan
| | | | | | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | | | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan
- Department of Biological Chemistry, University of Michigan
| |
Collapse
|
15
|
Eibes S, Rajendraprasad G, Guasch-Boldu C, Kubat M, Steblyanko Y, Barisic M. CENP-E activation by Aurora A and B controls kinetochore fibrous corona disassembly. Nat Commun 2023; 14:5317. [PMID: 37658044 PMCID: PMC10474297 DOI: 10.1038/s41467-023-41091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
Accurate chromosome segregation in mitosis depends on multiprotein structures called kinetochores that are built on the centromeric region of sister chromatids and serve to capture mitotic spindle microtubules. In early mitosis, unattached kinetochores expand a crescent-shaped structure called fibrous corona whose function is to facilitate initial kinetochore-microtubule attachments and chromosome transport by microtubules. Subsequently, the fibrous corona must be timely disassembled to prevent segregation errors. Although recent studies provided new insights on the molecular content and mechanism of fibrous corona assembly, it remains unknown what triggers the disassembly of the outermost and dynamic layer of the kinetochore. Here, we show that Aurora A and B kinases phosphorylate CENP-E to release it from an autoinhibited state. At kinetochores, Aurora B phosphorylates CENP-E to prevent its premature removal together with other corona proteins by dynein. At the spindle poles, Aurora A phosphorylates CENP-E to promote chromosome congression and prevent accumulation of corona proteins at the centrosomes, allowing for their intracellular redistribution. Thus, we propose the Aurora A/B-CENP-E axis as a critical element of the long-sought-for mechanism of fibrous corona disassembly that is essential for accurate chromosome segregation.
Collapse
Affiliation(s)
- Susana Eibes
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | | | | | - Mirela Kubat
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | - Yulia Steblyanko
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark
| | - Marin Barisic
- Cell Division and Cytoskeleton, Danish Cancer Institute, Copenhagen, Denmark.
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Ma TC, Gicking AM, Feng Q, Hancock WO. Simulations suggest robust microtubule attachment of kinesin and dynein in antagonistic pairs. Biophys J 2023; 122:3299-3313. [PMID: 37464742 PMCID: PMC10465704 DOI: 10.1016/j.bpj.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 05/04/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023] Open
Abstract
Intracellular transport is propelled by kinesin and cytoplasmic dynein motors that carry membrane-bound vesicles and organelles bidirectionally along microtubule tracks. Much is known about these motors at the molecular scale, but many questions remain regarding how kinesin and dynein cooperate and compete during bidirectional cargo transport at the cellular level. The goal of the present study was to use a stochastic stepping model constructed by using published load-dependent properties of kinesin-1 and dynein-dynactin-BicD2 (DDB) to identify specific motor properties that determine the speed, directionality, and transport dynamics of a cargo carried by one kinesin and one dynein motor. Model performance was evaluated by comparing simulations to recently published experiments of kinesin-DDB pairs connected by complementary oligonucleotide linkers. Plotting the instantaneous velocity distributions from kinesin-DDB experiments revealed a single peak centered around zero velocity. In contrast, velocity distributions from simulations displayed a central peak around 100 nm/s, along with two side peaks corresponding to the unloaded kinesin and DDB velocities. We hypothesized that frequent motor detachment events and relatively slow motor reattachment rates resulted in periods in which only one motor is attached. To investigate this hypothesis, we varied specific model parameters and compared the resulting instantaneous velocity distributions, and we confirmed this systematic investigation using a machine-learning approach that minimized the residual sum of squares between the experimental and simulation velocity distributions. The experimental data were best recapitulated by a model in which the kinesin and dynein stall forces are matched, the motor detachment rates are independent of load, and the kinesin-1 reattachment rate is 50 s-1. These results provide new insights into motor dynamics during bidirectional transport and put forth hypotheses that can be tested by future experiments.
Collapse
Affiliation(s)
- Tzu-Chen Ma
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Allison M Gicking
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Qingzhou Feng
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania; Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
17
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Rangan KJ, Reck-Peterson SL. RNA recoding in cephalopods tailors microtubule motor protein function. Cell 2023; 186:2531-2543.e11. [PMID: 37295401 PMCID: PMC10467349 DOI: 10.1016/j.cell.2023.04.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/05/2023] [Accepted: 04/24/2023] [Indexed: 06/12/2023]
Abstract
RNA editing is a widespread epigenetic process that can alter the amino acid sequence of proteins, termed "recoding." In cephalopods, most transcripts are recoded, and recoding is hypothesized to be an adaptive strategy to generate phenotypic plasticity. However, how animals use RNA recoding dynamically is largely unexplored. We investigated the function of cephalopod RNA recoding in the microtubule motor proteins kinesin and dynein. We found that squid rapidly employ RNA recoding in response to changes in ocean temperature, and kinesin variants generated in cold seawater displayed enhanced motile properties in single-molecule experiments conducted in the cold. We also identified tissue-specific recoded squid kinesin variants that displayed distinct motile properties. Finally, we showed that cephalopod recoding sites can guide the discovery of functional substitutions in non-cephalopod kinesin and dynein. Thus, RNA recoding is a dynamic mechanism that generates phenotypic plasticity in cephalopods and can inform the characterization of conserved non-cephalopod proteins.
Collapse
Affiliation(s)
- Kavita J Rangan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Samara L Reck-Peterson
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
20
|
Xu A, Basant A, Schleich S, Newsome TP, Way M. Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection. J Cell Sci 2023; 136:jcs260175. [PMID: 36093836 PMCID: PMC9659004 DOI: 10.1242/jcs.260175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Intracellular mature viruses (IMVs) are the first and most abundant infectious form of vaccinia virus to assemble during its replication cycle. IMVs can undergo microtubule-based motility, but their directionality and the motor involved in their transport remain unknown. Here, we demonstrate that IMVs, like intracellular enveloped viruses (IEVs), the second form of vaccinia that are wrapped in Golgi-derived membranes, recruit kinesin-1 and undergo anterograde transport. In vitro reconstitution of virion transport in infected cell extracts revealed that IMVs and IEVs move toward microtubule plus ends with respective velocities of 0.66 and 0.56 µm/s. Quantitative imaging established that IMVs and IEVs recruit an average of 139 and 320 kinesin-1 motor complexes, respectively. In the absence of kinesin-1, there was a near-complete loss of in vitro motility and reduction in the intracellular spread of both types of virions. Our observations demonstrate that kinesin-1 transports two morphologically distinct forms of vaccinia. Reconstitution of vaccinia-based microtubule motility in vitro provides a new model to elucidate how motor number and regulation impacts transport of a bona fide kinesin-1 cargo.
Collapse
Affiliation(s)
- Amadeus Xu
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Angika Basant
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Sibylle Schleich
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Timothy P. Newsome
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
| | - Michael Way
- Cellular signalling and cytoskeletal function laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3PX, UK
- Department of Infectious Disease, Imperial College, London W2 1PG, UK
| |
Collapse
|
21
|
Chiba K, Kita T, Anazawa Y, Niwa S. Insight into the regulation of axonal transport from the study of KIF1A-associated neurological disorder. J Cell Sci 2023; 136:286709. [PMID: 36655764 DOI: 10.1242/jcs.260742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Neuronal function depends on axonal transport by kinesin superfamily proteins (KIFs). KIF1A is the molecular motor that transports synaptic vesicle precursors, synaptic vesicles, dense core vesicles and active zone precursors. KIF1A is regulated by an autoinhibitory mechanism; many studies, as well as the crystal structure of KIF1A paralogs, support a model whereby autoinhibited KIF1A is monomeric in solution, whereas activated KIF1A is dimeric on microtubules. KIF1A-associated neurological disorder (KAND) is a broad-spectrum neuropathy that is caused by mutations in KIF1A. More than 100 point mutations have been identified in KAND. In vitro assays show that most mutations are loss-of-function mutations that disrupt the motor activity of KIF1A, whereas some mutations disrupt its autoinhibition and abnormally hyperactivate KIF1A. Studies on disease model worms suggests that both loss-of-function and gain-of-function mutations cause KAND by affecting the axonal transport and localization of synaptic vesicles. In this Review, we discuss how the analysis of these mutations by molecular genetics, single-molecule assays and force measurements have helped to reveal the physiological significance of KIF1A function and regulation, and what physical parameters of KIF1A are fundamental to axonal transport.
Collapse
Affiliation(s)
- Kyoko Chiba
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan
| | - Tomoki Kita
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yuzu Anazawa
- Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, Miyagi 980-0845, Japan.,Department of Applied Physics, Graduate School of Engineering, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
22
|
Genome-Wide Identification and Expression Analysis of Kinesin Family in Barley ( Hordeum vulgare). Genes (Basel) 2022; 13:genes13122376. [PMID: 36553643 PMCID: PMC9778244 DOI: 10.3390/genes13122376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Kinesin, as a member of the molecular motor protein superfamily, plays an essential function in various plants' developmental processes. Especially at the early stages of plant growth, including influences on plants' growth rate, yield, and quality. In this study, we did a genome-wide identification and expression profile analysis of the kinesin family in barley. Forty-two HvKINs were identified and screened from the barley genome, and a generated phylogenetic tree was used to compare the evolutionary relationships between Rice and Arabidopsis. The protein structure prediction, physicochemical properties, and bioinformatics of the HvKINs were also dissected. Our results reveal the important regulatory roles of HvKIN genes in barley growth. We found many cis- elements related to GA3 and ABA in homeopathic elements of the HvKIN gene and verified them by QRT-PCR, indicating their potential role in the barley kinesin family. The current study revealed the biological functions of barley kinesin genes in barley and will aid in further investigating the kinesin in other plant species.
Collapse
|
23
|
Bollhagen A, Bechtel W. Discovering autoinhibition as a design principle for the control of biological mechanisms. STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE 2022; 95:145-157. [PMID: 36029564 DOI: 10.1016/j.shpsa.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Autoinhibition is a design principle realized in many molecular mechanisms in biology. After explicating the notion of a design principle and showing that autoinhibition is such a principle, we focus on how researchers discovered instances of autoinhibition, using research establishing the autoinhibition of the molecular motors kinesin and dynein as our case study. Research on kinesin and dynein began in the fashion described in accounts of mechanistic explanation but, once the mechanisms had been discovered, researchers discovered that they exhibited a second phenomenon, autoinhibition. The discovery of autoinhibition not only reverses the pattern in terms of which philosophers have understood mechanism discovery but runs counter to the one phenomenon-one mechanism principle assumed to relate mechanisms and the phenomena they explain. The ubiquity of autoinhibition as a design principle, therefore, necessitates a philosophical understanding of mechanisms that recognizes how they can participate in more than one phenomenon. Since mechanisms with this design are released from autoinhibition only when they are acted on by control mechanisms, we advance a revised account of mechanisms that accommodates attribution of multiple phenomena to the same mechanism and distinguishes them from other processes that control them.
Collapse
Affiliation(s)
- Andrew Bollhagen
- UC San Diego Philosophy Department, Ridge Walk Academic Complex - Arts & Humanities Bldg. Room 0435, La Jolla, CA 92093-0119, USA.
| | - William Bechtel
- UC San Diego Philosophy Department, Ridge Walk Academic Complex - Arts & Humanities Bldg. Room 0455, La Jolla, CA 92093-0119, USA.
| |
Collapse
|
24
|
Weijman JF, Yadav SKN, Surridge KJ, Cross JA, Borucu U, Mantell J, Woolfson DN, Schaffitzel C, Dodding MP. Molecular architecture of the autoinhibited kinesin-1 lambda particle. SCIENCE ADVANCES 2022; 8:eabp9660. [PMID: 36112680 PMCID: PMC9481135 DOI: 10.1126/sciadv.abp9660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Despite continuing progress in kinesin enzyme mechanochemistry and emerging understanding of the cargo recognition machinery, it is not known how these functions are coupled and controlled by the α-helical coiled coils encoded by a large component of kinesin protein sequences. Here, we combine computational structure prediction with single-particle negative-stain electron microscopy to reveal the coiled-coil architecture of heterotetrameric kinesin-1 in its compact state. An unusual flexion in the scaffold enables folding of the complex, bringing the kinesin heavy chain-light chain interface into close apposition with a tetrameric assembly formed from the region of the molecule previously assumed to be the folding hinge. This framework for autoinhibition is required to uncover how engagement of cargo and other regulatory factors drives kinesin-1 activation.
Collapse
Affiliation(s)
- Johannes F. Weijman
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Katherine J. Surridge
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jessica A. Cross
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
| | - Ufuk Borucu
- GW4 Facility for High-Resolution Electron Cryo-Microscopy, University of Bristol, Bristol, UK
| | - Judith Mantell
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Derek N. Woolfson
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Mark P. Dodding
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
- Bristol BioDesign Institute, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
25
|
The physiological cargo adaptor of kinesin-2 functions as an evolutionary conserved lockpick. Proc Natl Acad Sci U S A 2022; 119:e2109378119. [PMID: 35947619 PMCID: PMC9388150 DOI: 10.1073/pnas.2109378119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific recognition of cellular cargo and efficient transport to its correct intracellular destination is an infrastructural challenge faced by most eukaryotic cells. This remarkable deed is accomplished by processive motor proteins that are subject to robust regulatory mechanisms. The first level of regulation entails the ability of the motor to suppress its own activity. This autoinhibition is eventually relieved by specific cargo binding. To better understand the role of the cargo during motor activation, we dissected the activation mechanism of the ciliary homodimeric kinesin-2 from Caenorhabditis elegans by its physiological cargo. In functional reconstitution assays, we identified two cargo adaptor proteins that together are necessary and sufficient to allosterically activate the autoinhibited motor. Surprisingly, the orthologous adaptor proteins from the unicellular green algae Chlamydomonas reinhardtii also fully activated the kinesin-2 from worm, even though C. reinhardtii itself lacks a homodimeric kinesin-2 motor. The latter suggested that a motor activation mechanism similar to the C. elegans model existed already well before metazoans evolved, and prompted us to scrutinize predicted homodimeric kinesin-2 orthologs in other evolutionarily distant eukaryotes. We show that the ciliate Tetrahymena thermophila not only possesses a homodimeric kinesin-2 but that it also shares the same allosteric activation mechanism that we delineated in the C. elegans model. Our results point to a much more fundamental role of homodimeric kinesin-2 in intraflagellar transport (IFT) than previously thought and warrant further scrutiny of distantly related organisms toward a comprehensive picture of the IFT process and its evolution.
Collapse
|
26
|
Soppina P, Patel N, Shewale DJ, Rai A, Sivaramakrishnan S, Naik PK, Soppina V. Kinesin-3 motors are fine-tuned at the molecular level to endow distinct mechanical outputs. BMC Biol 2022; 20:177. [PMID: 35948971 PMCID: PMC9364601 DOI: 10.1186/s12915-022-01370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Kinesin-3 family motors drive diverse cellular processes and have significant clinical importance. The ATPase cycle is integral to the processive motility of kinesin motors to drive long-distance intracellular transport. Our previous work has demonstrated that kinesin-3 motors are fast and superprocessive with high microtubule affinity. However, chemomechanics of these motors remain poorly understood. RESULTS We purified kinesin-3 motors using the Sf9-baculovirus expression system and demonstrated that their motility properties are on par with the motors expressed in mammalian cells. Using biochemical analysis, we show for the first time that kinesin-3 motors exhibited high ATP turnover rates, which is 1.3- to threefold higher compared to the well-studied kinesin-1 motor. Remarkably, these ATPase rates correlate to their stepping rate, suggesting a tight coupling between chemical and mechanical cycles. Intriguingly, kinesin-3 velocities (KIF1A > KIF13A > KIF13B > KIF16B) show an inverse correlation with their microtubule-binding affinities (KIF1A < KIF13A < KIF13B < KIF16B). We demonstrate that this differential microtubule-binding affinity is largely contributed by the positively charged residues in loop8 of the kinesin-3 motor domain. Furthermore, microtubule gliding and cellular expression studies displayed significant microtubule bending that is influenced by the positively charged insert in the motor domain, K-loop, a hallmark of kinesin-3 family. CONCLUSIONS Together, we propose that a fine balance between the rate of ATP hydrolysis and microtubule affinity endows kinesin-3 motors with distinct mechanical outputs. The K-loop, a positively charged insert in the loop12 of the kinesin-3 motor domain promotes microtubule bending, an interesting phenomenon often observed in cells, which requires further investigation to understand its cellular and physiological significance.
Collapse
Affiliation(s)
- Pushpanjali Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Nishaben Patel
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.,Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Dipeshwari J Shewale
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Ashim Rai
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minnesota, MN, 55455, USA
| | - Pradeep K Naik
- Department of Biotechnology and Bioinformatics, Sambalpur University, Sambalpur, Orissa, 768019, India
| | - Virupakshi Soppina
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
27
|
Pant DC, Parameswaran J, Rao L, Loss I, Chilukuri G, Parlato R, Shi L, Glass JD, Bassell GJ, Koch P, Yilmaz R, Weishaupt JH, Gennerich A, Jiang J. ALS-linked KIF5A ΔExon27 mutant causes neuronal toxicity through gain-of-function. EMBO Rep 2022; 23:e54234. [PMID: 35735139 DOI: 10.15252/embr.202154234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Mutations in the human kinesin family member 5A (KIF5A) gene were recently identified as a genetic cause of amyotrophic lateral sclerosis (ALS). Several KIF5A ALS variants cause exon 27 skipping and are predicted to produce motor proteins with an altered C-terminal tail (referred to as ΔExon27). However, the underlying pathogenic mechanism is still unknown. Here, we confirm the expression of KIF5A mutant proteins in patient iPSC-derived motor neurons. We perform a comprehensive analysis of ΔExon27 at the single-molecule, cellular, and organism levels. Our results show that ΔExon27 is prone to form cytoplasmic aggregates and is neurotoxic. The mutation relieves motor autoinhibition and increases motor self-association, leading to drastically enhanced processivity on microtubules. Finally, ectopic expression of ΔExon27 in Drosophila melanogaster causes wing defects, motor impairment, paralysis, and premature death. Our results suggest gain-of-function as an underlying disease mechanism in KIF5A-associated ALS.
Collapse
Affiliation(s)
- Devesh C Pant
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | | | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Isabel Loss
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Rosanna Parlato
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Liang Shi
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | | | - Gary J Bassell
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| | - Philipp Koch
- Hector Institute of Translational Brain Research, Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, Mannheim, Germany
| | - Rüstem Yilmaz
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Jochen H Weishaupt
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jie Jiang
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
28
|
Cytoskeletal regulation of a transcription factor by DNA mimicry via coiled-coil interactions. Nat Cell Biol 2022; 24:1088-1098. [PMID: 35725768 PMCID: PMC10016618 DOI: 10.1038/s41556-022-00935-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/06/2022] [Indexed: 02/07/2023]
Abstract
A long-established strategy for transcription regulation is the tethering of transcription factors to cellular membranes. By contrast, the principal effectors of Hedgehog signalling, the GLI transcription factors, are regulated by microtubules in the primary cilium and the cytoplasm. How GLI is tethered to microtubules remains unclear. Here, we uncover DNA mimicry by the ciliary kinesin KIF7 as a mechanism for the recruitment of GLI to microtubules, wherein the coiled-coil dimerization domain of KIF7, characterized by its striking shape, size and charge similarity to DNA, forms a complex with the DNA-binding zinc fingers in GLI, thus revealing a mode of tethering a DNA-binding protein to the cytoskeleton. GLI increases KIF7 microtubule affinity and consequently modulates the localization of both proteins to microtubules and the cilium tip. Thus, the kinesin-microtubule system is not a passive GLI tether but a regulatable platform tuned by the kinesin-transcription factor interaction. We retooled this coiled-coil-based GLI-KIF7 interaction to inhibit the nuclear and cilium localization of GLI. This strategy can potentially be exploited to downregulate erroneously activated GLI in human cancers.
Collapse
|
29
|
Kumari D, Ray K. Phosphoregulation of Kinesins Involved in Long-Range Intracellular Transport. Front Cell Dev Biol 2022; 10:873164. [PMID: 35721476 PMCID: PMC9203973 DOI: 10.3389/fcell.2022.873164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/29/2022] [Indexed: 12/28/2022] Open
Abstract
Kinesins, the microtubule-dependent mechanochemical enzymes, power a variety of intracellular movements. Regulation of Kinesin activity and Kinesin-Cargo interactions determine the direction, timing and flux of various intracellular transports. This review examines how phosphorylation of Kinesin subunits and adaptors influence the traffic driven by Kinesin-1, -2, and -3 family motors. Each family of Kinesins are phosphorylated by a partially overlapping set of serine/threonine kinases, and each event produces a unique outcome. For example, phosphorylation of the motor domain inhibits motility, and that of the stalk and tail domains induces cargo loading and unloading effects according to the residue and context. Also, the association of accessory subunits with cargo and adaptor proteins with the motor, respectively, is disrupted by phosphorylation. In some instances, phosphorylation by the same kinase on different Kinesins elicited opposite outcomes. We discuss how this diverse range of effects could manage the logistics of Kinesin-dependent, long-range intracellular transport.
Collapse
|
30
|
Chiba K, Ori-McKenney KM, Niwa S, McKenney RJ. Synergistic autoinhibition and activation mechanisms control kinesin-1 motor activity. Cell Rep 2022; 39:110900. [PMID: 35649356 PMCID: PMC9365671 DOI: 10.1016/j.celrep.2022.110900] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/22/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022] Open
Abstract
Kinesin-1 activity is regulated by autoinhibition. Intramolecular interactions within the kinesin heavy chain (KHC) are proposed to be one facet of motor regulation. The KHC also binds to the kinesin light chain (KLC), which has been implicated in both autoinhibition and activation of the motor. We show that the KLC inhibits the kinesin-microtubule interaction independently from the proposed intramolecular interaction within KHC. Cargo-adaptor proteins that bind the KLC stimulated processive movement, but the landing rate of activated kinesin complexes remained low. Mitogen-activated protein 7 (MAP7) enhanced motility by increasing the landing rate and run length of the activated kinesin motors. Our results support a model whereby the motor activity of the kinesin is regulated by synergistic inhibition mechanisms and that cargo-adaptor binding to the KLC releases both mechanisms. However, a non-motor MAP is required for robust microtubule association of the activated motor. Thus, human kinesin is regulated by synergistic autoinhibition and activation mechanisms.
Collapse
Affiliation(s)
- Kyoko Chiba
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Kassandra M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Miyagi, 6-3 Aramaki Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, 145 Briggs Hall, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Selective motor activation in organelle transport along axons. Nat Rev Mol Cell Biol 2022; 23:699-714. [DOI: 10.1038/s41580-022-00491-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2022] [Indexed: 12/17/2022]
|
32
|
Tati S, Alisaraie L. Recruitment of dynein and kinesin to viral particles. FASEB J 2022; 36:e22311. [DOI: 10.1096/fj.202101900rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Sayi’Mone Tati
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| | - Laleh Alisaraie
- School of Pharmacy Memorial University of Newfoundland St. John’s Newfoundland Canada
| |
Collapse
|
33
|
Baron DM, Fenton AR, Saez-Atienzar S, Giampetruzzi A, Sreeram A, Shankaracharya, Keagle PJ, Doocy VR, Smith NJ, Danielson EW, Andresano M, McCormack MC, Garcia J, Bercier V, Van Den Bosch L, Brent JR, Fallini C, Traynor BJ, Holzbaur ELF, Landers JE. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep 2022; 39:110598. [PMID: 35385738 PMCID: PMC9134378 DOI: 10.1016/j.celrep.2022.110598] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam R Fenton
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Anthony Giampetruzzi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aparna Sreeram
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victoria R Doocy
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan J Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eric W Danielson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Megan Andresano
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mary C McCormack
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaqueline Garcia
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Valérie Bercier
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jonathan R Brent
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Therapeutic Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
34
|
Dimitrova-Paternoga L, Jagtap PKA, Cyrklaff A, Vaishali, Lapouge K, Sehr P, Perez K, Heber S, Löw C, Hennig J, Ephrussi A. Molecular basis of mRNA transport by a kinesin-1-atypical tropomyosin complex. Genes Dev 2021; 35:976-991. [PMID: 34140355 PMCID: PMC8247599 DOI: 10.1101/gad.348443.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/24/2022]
Abstract
Here, Dimitrova-Paternoga et al. present the high-resolution crystal structure of Khc–aTm1 (Drosophila kinesin-1, also called kinesin heavy chain [Khc], in complex with a putative cargo adaptor, the atypical tropomyosin [aTm1]), which mediates transport of oskar mRNA to the posterior pole of the Drosophila oocyte. They show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, demonstrate that Khc binds RNA directly, and show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors. Kinesin-1 carries cargos including proteins, RNAs, vesicles, and pathogens over long distances within cells. The mechanochemical cycle of kinesins is well described, but how they establish cargo specificity is not fully understood. Transport of oskar mRNA to the posterior pole of the Drosophila oocyte is mediated by Drosophila kinesin-1, also called kinesin heavy chain (Khc), and a putative cargo adaptor, the atypical tropomyosin, aTm1. How the proteins cooperate in mRNA transport is unknown. Here, we present the high-resolution crystal structure of a Khc–aTm1 complex. The proteins form a tripartite coiled coil comprising two in-register Khc chains and one aTm1 chain, in antiparallel orientation. We show that aTm1 binds to an evolutionarily conserved cargo binding site on Khc, and mutational analysis confirms the importance of this interaction for mRNA transport in vivo. Furthermore, we demonstrate that Khc binds RNA directly and that it does so via its alternative cargo binding domain, which forms a positively charged joint surface with aTm1, as well as through its adjacent auxiliary microtubule binding domain. Finally, we show that aTm1 plays a stabilizing role in the interaction of Khc with RNA, which distinguishes aTm1 from classical motor adaptors.
Collapse
Affiliation(s)
- Lyudmila Dimitrova-Paternoga
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany.,Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, 22607 Hamburg, Germany
| | | | - Anna Cyrklaff
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Vaishali
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Kathryn Perez
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Simone Heber
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Deutsches Elektronen-Synchrotron (DESY), EMBL Hamburg, 22607 Hamburg, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Anne Ephrussi
- Developmental Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
35
|
Pandey H, Popov M, Goldstein-Levitin A, Gheber L. Mechanisms by Which Kinesin-5 Motors Perform Their Multiple Intracellular Functions. Int J Mol Sci 2021; 22:6420. [PMID: 34203964 PMCID: PMC8232732 DOI: 10.3390/ijms22126420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Bipolar kinesin-5 motor proteins perform multiple intracellular functions, mainly during mitotic cell division. Their specialized structural characteristics enable these motors to perform their essential functions by crosslinking and sliding apart antiparallel microtubules (MTs). In this review, we discuss the specialized structural features of kinesin-5 motors, and the mechanisms by which these features relate to kinesin-5 functions and motile properties. In addition, we discuss the multiple roles of the kinesin-5 motors in dividing as well as in non-dividing cells, and examine their roles in pathogenetic conditions. We describe the recently discovered bidirectional motility in fungi kinesin-5 motors, and discuss its possible physiological relevance. Finally, we also focus on the multiple mechanisms of regulation of these unique motor proteins.
Collapse
Affiliation(s)
| | | | | | - Larisa Gheber
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel; (H.P.); (M.P.); (A.G.-L.)
| |
Collapse
|
36
|
Keren-Kaplan T, Bonifacino JS. ARL8 Relieves SKIP Autoinhibition to Enable Coupling of Lysosomes to Kinesin-1. Curr Biol 2020; 31:540-554.e5. [PMID: 33232665 DOI: 10.1016/j.cub.2020.10.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/16/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
Long-range movement of organelles within the cytoplasm relies on coupling to microtubule motors, a process that is often mediated by adaptor proteins. In many cases, this coupling involves organelle- or adaptor-induced activation of the microtubule motors by conformational reversal of an autoinhibited state. Herein, we show that a similar regulatory mechanism operates for an adaptor protein named SKIP (also known as PLEKHM2). SKIP binds to the small guanosine triphosphatase (GTPase) ARL8 on the lysosomal membrane to couple lysosomes to the anterograde microtubule motor kinesin-1. Structure-function analyses of SKIP reveal that the C-terminal region comprising three pleckstrin homology (PH) domains interacts with the N-terminal region comprising ARL8- and kinesin-1-binding sites. This interaction inhibits coupling of lysosomes to kinesin-1 and, consequently, lysosome movement toward the cell periphery. We also find that ARL8 does not just recruit SKIP to the lysosomal membrane but also relieves SKIP autoinhibition, promoting kinesin-1-driven, anterograde lysosome transport. Finally, our analyses show that the largely disordered middle region of SKIP mediates self-association and that this self-association enhances the interaction of SKIP with kinesin-1. These findings indicate that SKIP is not just a passive connector of lysosome-bound ARL8 to kinesin-1 but is itself subject to intra- and inter-molecular interactions that regulate its function. We anticipate that similar organelle- or GTPase-induced conformational changes could regulate the activity of other kinesin adaptors.
Collapse
Affiliation(s)
- Tal Keren-Kaplan
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Revealing PAK2's Function in the Cell Division through MKLP1's Interactome. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8854245. [PMID: 33204722 PMCID: PMC7666706 DOI: 10.1155/2020/8854245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Cell division-related proteins are essential for the normal development and differentiation of cells and may be related to the occurrence of cancer and the drug resistance mechanism of cancer cells. The mitotic kinesin-like protein 1 (MKLP1) is a kinesin protein that has been involved in the assembly of the midzone/midbody during mitosis and cytokinesis. In this study, we found that the tail domain of MKLP1 exhibited an autoinhibitory effect on its motor activity. Overexpression of the tail domain in HEK293 cells blocked cytokinesis and caused bi-/multinucleation. It is possible that protein binding to the MKLP1 tail relieves this autoinhibition and induces the motility of MKLP1. We used the GST pull-down assay followed by the LC-MS/MS analysis and identified 54 MKLP1 tail domain-specific binding proteins. Further, we confirmed the MS result by coimmunoprecipitation and FRET that a serine/threonine kinase, p21-activated kinase 2 (PAK2), binding to MKLP1. Endogenous PAK2 expression was found to be identical to that of MKLP1 in HEK293 cells during cytokinesis. Finally, functional studies indicated that when PAK2 expression was downregulated by siRNA, MKLP1 underwent a change in its localization away from the midbody, and cell cytokinesis was subsequently impeded. This study presents a novel regulatory mechanism that PAK2 promotes the activation of MKLP1 and contributes to complete cell cytokinesis.
Collapse
|
38
|
Twelvetrees AE. The lifecycle of the neuronal microtubule transport machinery. Semin Cell Dev Biol 2020; 107:74-81. [DOI: 10.1016/j.semcdb.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
|
39
|
How Kinesin-1 Utilize the Energy of Nucleotide: The Conformational Changes and Mechanochemical Coupling in the Unidirectional Motion of Kinesin-1. Int J Mol Sci 2020; 21:ijms21186977. [PMID: 32972035 PMCID: PMC7555842 DOI: 10.3390/ijms21186977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/12/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022] Open
Abstract
Kinesin-1 is a typical motile molecular motor and the founding member of the kinesin family. The most significant feature in the unidirectional motion of kinesin-1 is its processivity. To realize the fast and processive movement on the microtubule lattice, kinesin-1 efficiently transforms the chemical energy of nucleotide binding and hydrolysis to the energy of mechanical movement. The chemical and mechanical cycle of kinesin-1 are coupled to avoid futile nucleotide hydrolysis. In this paper, the research on the mechanical pathway of energy transition and the regulating mechanism of the mechanochemical cycle of kinesin-1 is reviewed.
Collapse
|
40
|
Long-range intramolecular allostery and regulation in the dynein-like AAA protein Mdn1. Proc Natl Acad Sci U S A 2020; 117:18459-18469. [PMID: 32694211 DOI: 10.1073/pnas.2002792117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mdn1 is an essential mechanoenzyme that uses the energy from ATP hydrolysis to physically reshape and remodel, and thus mature, the 60S subunit of the ribosome. This massive (>500 kDa) protein has an N-terminal AAA (ATPase associated with diverse cellular activities) ring, which, like dynein, has six ATPase sites. The AAA ring is followed by large (>2,000 aa) linking domains that include an ∼500-aa disordered (D/E-rich) region, and a C-terminal substrate-binding MIDAS domain. Recent models suggest that intramolecular docking of the MIDAS domain onto the AAA ring is required for Mdn1 to transmit force to its ribosomal substrates, but it is not currently understood what role the linking domains play, or why tethering the MIDAS domain to the AAA ring is required for protein function. Here, we use chemical probes, single-particle electron microscopy, and native mass spectrometry to study the AAA and MIDAS domains separately or in combination. We find that Mdn1 lacking the D/E-rich and MIDAS domains retains ATP and chemical probe binding activities. Free MIDAS domain can bind to the AAA ring of this construct in a stereo-specific bimolecular interaction, and, interestingly, this binding reduces ATPase activity. Whereas intramolecular MIDAS docking appears to require a treatment with a chemical inhibitor or preribosome binding, bimolecular MIDAS docking does not. Hence, tethering the MIDAS domain to the AAA ring serves to prevent, rather than promote, MIDAS docking in the absence of inducing signals.
Collapse
|
41
|
Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 2020; 11:3123. [PMID: 32561740 PMCID: PMC7305210 DOI: 10.1038/s41467-020-16972-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023] Open
Abstract
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments. Intracellular trafficking of organelles is driven by kinesin-1 stepping along microtubules, but crowding conditions impede kinesin-1 motility. Here authors demonstrate that TRAK1, an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces.
Collapse
|
42
|
Microtubule Organization in Striated Muscle Cells. Cells 2020; 9:cells9061395. [PMID: 32503326 PMCID: PMC7349303 DOI: 10.3390/cells9061395] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Distinctly organized microtubule networks contribute to the function of differentiated cell types such as neurons, epithelial cells, skeletal myotubes, and cardiomyocytes. In striated (i.e., skeletal and cardiac) muscle cells, the nuclear envelope acts as the dominant microtubule-organizing center (MTOC) and the function of the centrosome—the canonical MTOC of mammalian cells—is attenuated, a common feature of differentiated cell types. We summarize the mechanisms known to underlie MTOC formation at the nuclear envelope, discuss the significance of the nuclear envelope MTOC for muscle function and cell cycle progression, and outline potential mechanisms of centrosome attenuation.
Collapse
|
43
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
44
|
Świątek M, Gudowska-Nowak E. Delineating elastic properties of kinesin linker and their sensitivity to point mutations. Sci Rep 2020; 10:4832. [PMID: 32179821 PMCID: PMC7075872 DOI: 10.1038/s41598-020-61399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze free energy estimators from simulation trials mimicking single-molecule pulling experiments on a neck linker of a kinesin motor. For that purpose, we have performed a version of steered molecular dynamics (SMD) calculations. The sample trajectories have been analyzed to derive distribution of work done on the system. In order to induce stretching of the linker, we have applied a constant pulling force to the molecule and allowed for a subsequent relaxation of its structure. The use of fluctuation relations (FR) relevant to non-equilibrium systems subject to thermal fluctuations allows us to assess the difference in free energy between stretched and relaxed conformations. To further understand effects of potential mutations on elastic properties of the linker, we have performed similar in silico studies on a structure formed of a polyalanine sequence (Ala-only) and on three other structures, created by substituting selected types of amino acid residues in the linker’s sequence with alanine (Ala) ones. The results of SMD simulations indicate a crucial role played by the Asparagine (Asn) and Lysine (Lys) residues in controlling stretching and relaxation properties of the linker domain of the motor.
Collapse
Affiliation(s)
- Michał Świątek
- Department of Pharmaceutical Biophysics, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland. .,Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland.
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Marian Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland
| |
Collapse
|
45
|
Sonar P, Youyen W, Cleetus A, Wisanpitayakorn P, Mousavi SI, Stepp WL, Hancock WO, Tüzel E, Ökten Z. Kinesin-2 from C. reinhardtii Is an Atypically Fast and Auto-inhibited Motor that Is Activated by Heterotrimerization for Intraflagellar Transport. Curr Biol 2020; 30:1160-1166.e5. [PMID: 32142698 DOI: 10.1016/j.cub.2020.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/17/2022]
Abstract
Construction and function of virtually all cilia require the universally conserved process of intraflagellar transport (IFT) [1, 2]. During the atypically fast IFT in the green alga C. reinhardtii, on average, 10 kinesin-2 motors "line up" in a tight assembly on the trains [3], provoking the question of how these motors coordinate their action to ensure smooth and fast transport along the flagellum without standing in each other's way. Here, we show that the heterodimeric FLA8/10 kinesin-2 alone is responsible for the atypically fast IFT in C. reinhardtii. Notably, in single-molecule studies, FLA8/10 moved at speeds matching those of in vivo IFT [4] but additionally displayed a slow velocity distribution, indicative of auto-inhibition. Addition of the KAP subunit to generate the heterotrimeric FLA8/10/KAP relieved this inhibition, thus providing a mechanistic rationale for heterotrimerization with the KAP subunit fully activating FLA8/10 for IFT in vivo. Finally, we linked fast FLA8/10 and slow KLP11/20 kinesin-2 from C. reinhardtii and C. elegans through a DNA tether to understand the molecular underpinnings of motor coordination during IFT in vivo. For motor pairs from both species, the co-transport velocities very nearly matched the single-molecule velocities, and both complexes spent roughly 80% of the time with only one of the two motors attached to the microtubule. Thus, irrespective of phylogeny and kinetic properties, kinesin-2 motors work mostly alone without sacrificing efficiency. Our findings thus offer a simple mechanism for how efficient IFT is achieved across diverse organisms despite being carried out by motors with different properties.
Collapse
Affiliation(s)
- Punam Sonar
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - Wiphu Youyen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Augustine Cleetus
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | | | - Sayed I Mousavi
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Willi L Stepp
- Physik Department E22, Technische Universität München, Garching 85748, Germany
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Erkan Tüzel
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching 85748, Germany.
| |
Collapse
|
46
|
Fluorescence correlation spectroscopy reveals the dynamics of kinesins interacting with organelles during microtubule-dependent transport in cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118572. [DOI: 10.1016/j.bbamcr.2019.118572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/20/2019] [Indexed: 01/26/2023]
|
47
|
Twelvetrees AE, Lesept F, Holzbaur ELF, Kittler JT. The adaptor proteins HAP1a and GRIP1 collaborate to activate the kinesin-1 isoform KIF5C. J Cell Sci 2019; 132:jcs.215822. [PMID: 31757889 PMCID: PMC6955223 DOI: 10.1242/jcs.215822] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Binding of motor proteins to cellular cargoes is regulated by adaptor proteins. HAP1 and GRIP1 are kinesin-1 adaptors that have been implicated individually in the transport of vesicular cargoes in the dendrites of neurons. We find that HAP1a and GRIP1 form a protein complex in the brain, and co-operate to activate the kinesin-1 subunit KIF5C in vitro. Based upon this co-operative activation of kinesin-1, we propose a modification to the kinesin activation model that incorporates stabilisation of the central hinge region known to be critical to autoinhibition of kinesin-1. Summary: The adaptor proteins HAP1a and GRIP1 form a protein complex in the brain, and co-operate to activate the kinesin-1 subunit KIF5C in vitro.
Collapse
Affiliation(s)
- Alison E Twelvetrees
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Flavie Lesept
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
48
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Burute M, Kapitein LC. Cellular Logistics: Unraveling the Interplay Between Microtubule Organization and Intracellular Transport. Annu Rev Cell Dev Biol 2019; 35:29-54. [DOI: 10.1146/annurev-cellbio-100818-125149] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microtubules are core components of the cytoskeleton and serve as tracks for motor protein–based intracellular transport. Microtubule networks are highly diverse across different cell types and are believed to adapt to cell type–specific transport demands. Here we review how the spatial organization of different subsets of microtubules into higher-order networks determines the traffic rules for motor-based transport in different animal cell types. We describe the interplay between microtubule network organization and motor-based transport within epithelial cells, oocytes, neurons, cilia, and the spindle apparatus.
Collapse
Affiliation(s)
- Mithila Burute
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Lukas C. Kapitein
- Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
50
|
Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Biophys J 2019; 117:331-345. [PMID: 31301807 DOI: 10.1016/j.bpj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023] Open
Abstract
High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering
| | - Annan S I Cook
- Department of Biomedical Engineering; Department of Physics, Pennsylvania State University, University Park, Pennsylvania
| | | | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering.
| |
Collapse
|