1
|
Nie MZ, Zhang SS, Gu SX, Long J, Zhu YY. Advances in diarylpyrimidines and related analogues as HIV-1 nonnucleoside reverse transcriptase inhibitors (2019-2023). Eur J Med Chem 2024; 280:116973. [PMID: 39432934 DOI: 10.1016/j.ejmech.2024.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a vital cornerstone of highly active antiretroviral therapy (HAART) regimens, owing to their unique antiviral activity, low toxicity and high specificity. Diarylpyrimidines (DAPYs) as the second generation NNRTIs, represented by etravirine and rilpivirine, have attracted extensive attention due to their high anti-HIV potency. However, rapid emergence of resistant mutations, suboptimal pharmacokinetics (PK), and toxicity remain significant challenges. Recent structural modifications of DAPY analogues have focused on improving resistance profiles, optimizing PK properties (such as half-life and bioavailability), diversifying core structures through scaffold hopping, refining side-chain structures to enhance activity and selectivity, and reducing toxicity and side effects. Moreover, developing new DAPY analogues with broad-spectrum antiviral activity has become a key research priority. This review provides a comprehensive overview of the evolution of DAPYs from 2019 to 2023, including scaffold hopping and structural modifications of the right wing, left wing, central pyrimidine core, and linker, affording valuable insights for the future development of effective HIV-1 inhibitors.
Collapse
Affiliation(s)
- Mu-Zi Nie
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Jiao Long
- School of Chemical Engineering and Pharmacy, Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
2
|
Zhou Z, Liu X, Kang D. Antiviral Drug Discovery. Int J Mol Sci 2024; 25:7413. [PMID: 39000520 PMCID: PMC11242367 DOI: 10.3390/ijms25137413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
A vast and painful price has been paid in the battle against viruses in global health [...].
Collapse
Affiliation(s)
- Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| |
Collapse
|
3
|
Song H, Xia Y, Zhang T, Dun C, Meng B, De Clercq E, Pannecouque C, Kang D, Zhan P, Liu X. 5-Cyano substituted diarylpyridines as potent HIV-1 NNRTIs: Rational design, synthesis, and activity evaluation. Eur J Med Chem 2023; 259:115686. [PMID: 37536208 DOI: 10.1016/j.ejmech.2023.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023]
Abstract
To develop more potent HIV-1 inhibitors against a variety of NNRTIs-resistant strains, a series of 5-cyano substituted diarylpyridines was designed based on the cocrystal structural analysis. Among them, I-5b showed the greatest potency (EC50 = 5.62-171 nM) against the wild-type (WT) and mutant HIV-1 strains. Especially for K103 N, I-5b exhibited outstanding activity with EC50 values of 9.37 nM, being much superior to that of NVP (EC50 = 5128 nM) and EFV (EC50 = 114 nM) and comparable to that of ETR (EC50 = 3.45 nM). In addition, the target of all compounds was turned out to be HIV-1 RT with moderate RT enzyme inhibitory activity (IC50 = 0.094-12.0 μM). Moreover, the binding mode of representative compounds with RT was elaborated via molecular docking.
Collapse
Affiliation(s)
- Hao Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Yu Xia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Caiyun Dun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Bairu Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
4
|
Rosen DL, Blue C, Brown M, Bradley-Bull S, DiRosa EA, Carda-Auten J. The role of detention officers in the provision of jail healthcare in the Southeastern United States. Soc Sci Med 2023; 330:116065. [PMID: 37418989 PMCID: PMC10528480 DOI: 10.1016/j.socscimed.2023.116065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023]
Abstract
Jailed individuals have considerable healthcare needs, yet jail healthcare resources are often limited. We interviewed staff from 34 Southeastern jails about strategies that jails use to deliver healthcare. One of the most prominent strategies was the use of detention officers to provide or facilitate the provision of healthcare. Officers' roles included assessing the need for medical clearance, conducting medical intake screenings, monitoring for suicide/withdrawal, transporting patients to medical appointments, medication administration, monitoring blood glucose and blood pressure, responding to medical emergencies, and communication with healthcare personnel. Several participants reported that due to officer shortages, conflicting priorities, and lack of adequate training, officers' healthcare roles can compromise privacy, delay access to care, and result in inadequate monitoring and safety. Findings suggest the need for training and standardized guidelines for officers' involvement in jail healthcare delivery and reassessment of the scope of officers' healthcare responsibilities.
Collapse
Affiliation(s)
- David L Rosen
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA.
| | - Colleen Blue
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA
| | - Mersedes Brown
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA
| | - Steven Bradley-Bull
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA
| | - Elena A DiRosa
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA
| | - Jessica Carda-Auten
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, CB #7030, Bioinformatics Building, 130 Mason Farm Road, Chapel Hill, NC, 27599-7030, USA
| |
Collapse
|
5
|
Structure-directed expansion of biphenyl-pyridone derivatives as potent non-nucleoside reverse transcriptase inhibitors with significantly improved potency and safety. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Gao S, Song L, Cheng Y, Zhao F, Kang D, Song S, Yang M, Ye B, Zhao W, Tang Y, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of novel sulfonamide substituted indolylarylsulfones as potent HIV-1 inhibitors with better safety profiles. Acta Pharm Sin B 2023. [DOI: 10.1016/j.apsb.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
7
|
Sun Y, Zhou Z, Feng D, Jing L, Zhao F, Wang Z, Zhang T, Lin H, Song H, De Clercq E, Pannecouque C, Zhan P, Liu X, Kang D. Lead Optimization and Avoidance of Metabolic-perturbing Motif Developing Novel Diarylpyrimidines as Potent HIV-1 NNRTIs. J Med Chem 2022; 65:15608-15626. [PMID: 36411036 DOI: 10.1021/acs.jmedchem.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) represent an indispensable part of anti-HIV-1 therapy. To discover novel HIV-1 NNRTIs with increased drug resistance profiles and improved pharmacokinetic (PK) properties, a series of novel diarylpyrimidine derivatives were generated via the cocrystal structure-based drug design strategy. Among them, 36a exhibited outstanding antiviral activity against HIV-1 IIIB and a panel of mutant strains (L100I, K103N, Y181C, Y188L, E138K, F227L + V106A, and RES056), with EC50 ranging from 2.22 to 53.3 nM. Besides, 36a was identified with higher binding affinity (KD = 2.50 μM) and inhibitory activity (IC50 = 0.03 μM) to HIV-1 RT. Molecular docking and molecular dynamics simulation were performed to rationalize the design and the improved drug resistance of these novel inhibitors. Additionally, 36a·HCl exhibited favorable PK (T1/2 = 5.12 h, F = 12.1%) and safety properties (LD50 > 2000 mg/kg). All these suggested that 36a·HCl may serve as a novel drug candidate anti-HIV-1 therapy.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Zhenzhen Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Hao Lin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Hao Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 250012 Jinan, P.R. China
| |
Collapse
|
8
|
Wang Z, Cherukupalli S, Xie M, Wang W, Jiang X, Jia R, Pannecouque C, De Clercq E, Kang D, Zhan P, Liu X. Contemporary Medicinal Chemistry Strategies for the Discovery and Development of Novel HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors. J Med Chem 2022; 65:3729-3757. [PMID: 35175760 DOI: 10.1021/acs.jmedchem.1c01758] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a major component of the highly active anti-retroviral therapy (HAART) regimen. However, the occurrence of drug-resistant strains and adverse reactions after long-term usage have inevitably compromised the clinical application of NNRTIs. Therefore, the development of novel inhibitors with distinct anti-resistance profiles and better pharmacological properties is still an enormous challenge. Herein, we summarize state-of-the-art medicinal chemistry strategies for the discovery of potent NNRTIs, such as structure-based design strategies, contemporary computer-aided drug design, covalent-binding strategies, and the application of multi-target-directed ligands. The strategies described here will facilitate the identification of promising HIV-1 NNRTIs.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Srinivasulu Cherukupalli
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Minghui Xie
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Wenbo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
9
|
|
10
|
Zhong X, Luo R, Yan G, Ran K, Shan H, Yang J, Liu Y, Yu S, Pu C, Zheng Y, Li R. Lead optimization to improve the antiviral potency of 2-aminobenzamide derivatives targeting HIV-1 Vif-A3G axis. Eur J Med Chem 2021; 224:113680. [PMID: 34245947 DOI: 10.1016/j.ejmech.2021.113680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/27/2021] [Accepted: 06/27/2021] [Indexed: 02/08/2023]
Abstract
The viral infectivity factor (Vif)-apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G) axis has been recognized as a valid target for developing novel small-molecule therapies for acquired immune deficiency syndrome (AIDS) or for enhancing innate immunity against viruses. Our previous work reported the novel Vif antagonist 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)sulfonyl)benzamide (2) with strong antiviral activity. In this work, through optimizations of ring C of 2, we discovered the more potent compound 6m with an EC50 of 0.07 μM in non-permissive H9 cells, reflecting an approximately 5-fold enhancement of antiviral activity compared to that of 2. Western blotting indicated that 6m more strongly suppressed the defensive protein Vif than 2 at the same concentration. Furthermore, 6m suppressed the replication of various clinical drug-resistant HIV strains (FI, NRTI, NNRTI, IN and PI) with relatively high efficacy. These results suggested that compound 6m is a more potent candidate for treating AIDS.
Collapse
Affiliation(s)
- Xinxin Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ronghua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China
| | - Guoyi Yan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475001, PR China
| | - Kai Ran
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Huifang Shan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jie Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuanyuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Su Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chunlan Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China.
| | - Rui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
11
|
Gao P, Song S, Wang Z, Sun L, Zhang J, Pannecouque C, De Clercq E, Zhan P, Liu X. Design, synthesis and anti-HIV evaluation of novel 5-substituted diarylpyrimidine derivatives as potent HIV-1 NNRTIs. Bioorg Med Chem 2021; 40:116195. [PMID: 33979774 DOI: 10.1016/j.bmc.2021.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are widely used in combination therapies against HIV-1. As a continuation of our efforts to discover and develop "me-better" drugs of DAPYs, novel diarylpyrimidine derivatives were designed, synthesized and evaluated for their anti-HIV activities in MT-4 cells. All the compounds demonstrated strong inhibition activity against wide-type HIV-1 strain (IIIB) with EC50 values in the range of 2.5 nM ~ 0.93 μM. Among them, compounds IVB-5-4 and IVB-5-8 were the most potent ones which showed anti-HIV-1IIIB activity much superior than that of Nevirapine, comparable to Efavirenz and Etravirine. What's more, some compounds also showed low nanomole activity against some mutant strains such as K103N and E138K. The selected compound IVB-5-4 was also evaluated for the activity against reverse transcriptase (RT), and exhibited submicromolar IC50 values indicating that this series compounds are specific RT inhibitors. Preliminary structure-activity relationships and modeling studies of these new analogues provide valuable avenues for future molecular optimization.
Collapse
Affiliation(s)
- Ping Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Shu Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China
| | - Jian Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, China
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, K. U. Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan 250012, China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
12
|
Sang Y, Pannecouque C, De Clercq E, Zhuang C, Chen F. Chemical space exploration of novel naphthyl-carboxamide-diarylpyrimidine derivatives with potent anti-HIV-1 activity. Bioorg Chem 2021; 111:104905. [PMID: 33895602 DOI: 10.1016/j.bioorg.2021.104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/20/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
Fifteen naphthyl-carboxamide-DAPYs were generated to explore chemical space in reverse transcriptase (RT) binding site via lead optimization strategy. They displayed up to single-digit nanomolar activity against wild-type (WT) and rilpivirine-associated resistant mutant E138K viruses, as well as potent inhibitory ability toward the RT enzyme. Compound a1 showed exceptionally inhibitory effects with an EC50 value of 3.7 nM against HIV-1 wt strain, and an EC50 of 11 nM targeting mutant E138K. The structure-activity relationships (SARs) of the newly obtained DAPYs were also investigated. Molecular docking analysis elucidated the biological activity and offered a structural insight for follow-up research.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| |
Collapse
|
13
|
Sun Y, Kang D, Da F, Zhang T, Li P, Zhang B, De Clercq E, Pannecouque C, Zhan P, Liu X. Identification of novel potent HIV-1 inhibitors by exploiting the tolerant regions of the NNRTIs binding pocket. Eur J Med Chem 2021; 214:113204. [PMID: 33567378 DOI: 10.1016/j.ejmech.2021.113204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
With our previously identified potent NNRTIs 25a and HBS-11c as leads, series of novel thiophene[3,2-d]pyrimidine and thiophene[2,3-d]pyrimidine derivatives were designed via molecular hybridization strategy. All the target compounds were evaluated for their anti-HIV-1 activity and cytotoxicity in MT-4 cells. Compounds 16a1 and 16b1 turned out to be the most potent inhibitors against WT and mutant HIV-1 strains (L100I, K103N, and E138K), with EC50 values ranging from 0.007 μM to 0.043 μM. Gratifyingly, 16b1 exhibited significantly reduced cytotoxicity (CC50 > 217.5 μM) and improved water solubility (S = 49.3 μg/mL at pH 7.0) compared to the lead 25a (S < 1 μg/mL at pH 7.0, CC50 = 2.30 μM). Moreover, molecular docking was also conducted to rationalize the structure-activity relationships of these novel derivatives and to understand their key interactions with the binding pocket.
Collapse
Affiliation(s)
- Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; Suzhou Research Institute, Shandong University, Room522, Building H of NUSP, NO.388 Ruoshui Road, SIP, Suzhou, 215123 Jiangsu, PR China.
| | - Feng Da
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Tao Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Pei Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Baodan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, PR China; China-Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province, 44 West Culture Road, 250012 Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Targeting dual tolerant regions of binding pocket: Discovery of novel morpholine-substituted diarylpyrimidines as potent HIV-1 NNRTIs with significantly improved water solubility. Eur J Med Chem 2020; 206:112811. [DOI: 10.1016/j.ejmech.2020.112811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
|
15
|
Highly synergistic drug combination prevents vaginal HIV infection in humanized mice. Sci Rep 2020; 10:12995. [PMID: 32747682 PMCID: PMC7400648 DOI: 10.1038/s41598-020-69937-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 epidemic remains an urgent global health concern. Young women are disproportionately at risk of acquiring the virus. A range of highly effective, female-controlled, discrete vaginal products therefore is needed to help curb the epidemic. Oral tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) are effective in HIV-1 pre-exposure prophylaxis (PrEP) and form a promising basis for a vaginal product. Here, we evaluate TDF and FTC in combination with the broadly neutralizing antibody VRC01-N using a highly reproducible humanized mouse model. The agents were vaginally dosed individually and in combination, and the efficacy of HIV-1 prevention was analyzed using the established, rigorous median-effect model. Surprisingly, the triple combination showed a high degree of synergism, unprecedented for in vivo HIV-1 PrEP, leading to a possible fivefold dose reduction for some of the agents. Vaginal administration of the TDF-FTC-VRC01-N combination holds significant promise for HIV-1 PrEP.
Collapse
|
16
|
Han S, Sang Y, Wu Y, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Molecular Hybridization-Inspired Optimization of Diarylbenzopyrimidines as HIV-1 Nonnucleoside Reverse Transcriptase Inhibitors with Improved Activity against K103N and E138K Mutants and Pharmacokinetic Profiles. ACS Infect Dis 2020; 6:787-801. [PMID: 31599568 DOI: 10.1021/acsinfecdis.9b00229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular hybridization is a powerful strategy in drug discovery. A series of novel diarylbenzopyrimidine (DABP) analogues were developed by the hybridization of FDA-approved drugs etravirine (ETR) and efavirenz (EFV) as potential HIV-1 nonnucleoside reverse transcriptase inhibitors (NNRTIs). Substituent modifications resulted in the identification of new DABPs with the combination of the strengths of the two drugs, especially compound 12d, which showed promising activity toward the EFV-resistant K103N mutant. 12d also had a favorable pharmacokinetic (PK) profile with liver microsome clearances of 14.4 μL/min/mg (human) and 33.2 μL/min/mg (rat) and an oral bioavailability of 15.5% in rat. However, its activity against the E138K mutant was still unsatisfactory; E138K is the most prevalent NNRTI resistance-associated mutant in ETR treatment. Further optimizations resulted in a highly potent compound (12z) with no substituents on the phenyl ring and a 2-methyl-6-nitro substitution pattern on the 4-cyanovinyl-2,6-disubstitued phenyl motif. The antiviral activity of this compound was much higher than those of ETR and EFV against the WT, E138K, and K103N variants (EC50 = 3.4, 4.3, and 3.6 nM, respectively), and the cytotoxicity was decreased while the selectivity index (SI) was increased. In particular, this compound exhibited acceptable intrinsic liver microsome stability (human, 34.5 μL/min/mg; rat, 33.2 μL/min/mg) and maintained the good PK profile of its parent compound EFV and showed an oral bioavailability of 16.5% in rat. Molecular docking and structure-activity relationship (SAR) analysis provided further insights into the binding of the DABPs with HIV-1 reverse transcriptase and provided a deeper understanding of the key structural features responsible for their interactions.
Collapse
Affiliation(s)
- Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yan Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People’s Republic of China
| |
Collapse
|
17
|
Kang D, Feng D, Ginex T, Zou J, Wei F, Zhao T, Huang B, Sun Y, Desta S, De Clercq E, Pannecouque C, Zhan P, Liu X. Exploring the hydrophobic channel of NNIBP leads to the discovery of novel piperidine-substituted thiophene[3,2- d]pyrimidine derivatives as potent HIV-1 NNRTIs. Acta Pharm Sin B 2020; 10:878-894. [PMID: 32528834 PMCID: PMC7280082 DOI: 10.1016/j.apsb.2019.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 08/25/2019] [Indexed: 01/09/2023] Open
Abstract
In this report, a series of novel piperidine-substituted thiophene[3,2-d]pyrimidine derivatives were designed to explore the hydrophobic channel of the non-nucleoside reverse transcriptase inhibitors binding pocket (NNIBP) by incorporating an aromatic moiety to the left wing of the lead K-5a2. The newly synthesized compounds were evaluated for anti-HIV potency in MT-4 cells and inhibitory activity to HIV-1 reverse transcriptase (RT). Most of the synthesized compounds exhibited broad-spectrum activity toward wild-type and a wide range of HIV-1 strains carrying single non-nucleoside reverse transcriptase inhibitors (NNRTI)-resistant mutations. Especially, compound 26 exhibited the most potent activity against wild-type and a panel of single mutations (L100I, K103N, Y181C, Y188L and E138K) with an EC50 ranging from 6.02 to 23.9 nmol/L, which were comparable to those of etravirine (ETR). Moreover, the RT inhibition activity, preliminary structure–activity relationship and molecular docking were also investigated. Furthermore, 26 exhibited favorable pharmacokinetics (PK) profiles and with a bioavailability of 33.8%. Taken together, the results could provide valuable insights for further optimization and compound 26 holds great promise as a potential drug candidate for the treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine and Institute of Theoretical and Computational Chemistry, University of Barcelona, Santa Coloma de Gramenet 08921, Spain
| | - Jinmi Zou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yanying Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Samuel Desta
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Leuven B-3000, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- Corresponding authors. Tel./fax: +86 531 88380270.
| |
Collapse
|
18
|
Chu H, He QX, Wang JW, Deng YT, Wang J, Hu Y, Wang YQ, Lin ZH. 3D-QSAR, molecular docking, and molecular dynamics simulation of a novel thieno[3,4-d]pyrimidine inhibitor targeting human immunodeficiency virus type 1 reverse transcriptase. J Biomol Struct Dyn 2019; 38:4567-4578. [PMID: 31760877 DOI: 10.1080/07391102.2019.1697366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is one of the most attractive drug targets for the treatment of AIDS. In this study, 67 thieno[3,4-d]pyrimidine derivatives were selected as novel HIV-1 RT inhibitors to combat viral resistance, and were subjected to 3 D-QSAR studies using CoMFA, CoMSIA, and T-CoMFA. In the 3 D-QSAR study, two methods of ligand-based alignment and pharmacophore-based alignment were used. The results showed that CoMFA (n = 8; q2 = 0.594; r2 = 0.974) and CoMSIA (n = 7; q2 = 0.528; r2 = 0.965) have good stability and predictability. The molecular docking study showed that the hydrogen bonding and van der Waals interactions of key residues such as Leu100, Lys101, Val106, Phe227 and Pro236 play an important role in ligand-receptor binding. Based on these results, 12 new thieno[3,4-d]pyrimidines were designed and their activities were predicted; the results indicated that these compounds have good predictive activity and reasonably good ADME/T profiles. MD simulation analysis of 50 ns showed that compound 23j formed four hydrogen bonds with the residues (Lys101, Lys104, Val106 and Thr318), and binds more closely to HIV-1 RT than compound 23j. Furthermore, the group at the R1 position and the horseshoe-like conformation of these compounds are critical for the inhibitory activity and stability. These results provide useful insights for the discovery and design of a new generation of HIV-1 RT inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Han Chu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Qing-Xiu He
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Jun-Wei Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Ya-Ting Deng
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Juan Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Yong Hu
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Yuan-Qiang Wang
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China
| | - Zhi-Hua Lin
- Department of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, P. R. China.,Key Laboratory of Screening and Activity Evaluation of Targeted Drugs, Chongqing, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| |
Collapse
|
19
|
Han S, Sang Y, Wu Y, Tao Y, Pannecouque C, De Clercq E, Zhuang C, Chen FE. Fragment hopping-based discovery of novel sulfinylacetamide-diarylpyrimidines (DAPYs) as HIV-1 nonnucleoside reverse transcriptase inhibitors. Eur J Med Chem 2019; 185:111874. [PMID: 31735575 DOI: 10.1016/j.ejmech.2019.111874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
The fragment hopping approach is widely applied in drug development. A series of diarylpyrimidines (DAPYs) were obtained by hopping the thioacetamide scaffold to novel human immunodeficiency virus type 1 (HIV-1) nonnucleoside reverse transcriptase inhibitors (NNRTIs) to address the cytotoxicity issue of Etravirine and Rilpivirine. Although the new compounds (11a-l) in the first-round optimization possessed less potent anti-viral activity, they showed much lower cytotoxicity. Further optimization on the sulfur led to the sulfinylacetamide-DAPYs exhibiting improved anti-viral activity and a higher selectivity index especially toward the K103N mutant strain. The most potent compound 12a displayed EC50 values of 0.0249 μM against WT and 0.0104 μM against the K103N mutant strain, low cytotoxicity (CC50 > 221 μM) and a high selectivity index (SI WT > 8873, SI K103N > 21186). In addition, this compound showed a favorable in vitro microsomal stability across species. Computational study predicted the binding models of these potent compounds with HIV-1 reverse transcriptase thus providing further insights for new developments.
Collapse
Affiliation(s)
- Sheng Han
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yan Wu
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | - Yuan Tao
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China.
| | - Fen-Er Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
20
|
Zhao T, Meng Q, Kang D, Ji J, De Clercq E, Pannecouque C, Liu X, Zhan P. Discovery of novel indolylarylsulfones as potent HIV-1 NNRTIs via structure-guided scaffold morphing. Eur J Med Chem 2019; 182:111619. [PMID: 31434039 DOI: 10.1016/j.ejmech.2019.111619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/22/2022]
Abstract
For more in-depth exploration of the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing different chiral N-substituted pyrrolidine, azetidine or substituted sulfonamide groups at indole-2-carboxamide were designed and synthesized as potent HIV NNRTIs by structure-guided scaffold morphing approach. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.0043 μM to 4.42 μM. Notably, compound 27 (EC50 = 4.7 nM, SI = 5183) and 33 (EC50 = 4.3 nM, SI = 7083) were identified as the most potent compounds, which were more active than nevirapine, lamivudine and efavirenz, and also reached the same order of etravirine. Furthermore, some compounds maintained excellent activity against various single HIV-1 mutants (L100I, K103 N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar concentration ranges. Notably, 34 displayed outstanding potency against F227L/V106A (EC50 = 0.094 μM), and also showed exceptional activity against E138K (EC50 = 0.014 μM), L100I (EC50 = 0.011 μM) and K103 N (EC50 = 0.025 μM). Additionally, most compounds showed markedly reduced cytotoxicity (CC50) compared to lead compounds, especially 36 (CC50 > 234.91 μM, SI > 18727) and 37 (CC50 > 252.49 μM, SI > 15152). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.
Collapse
Affiliation(s)
- Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China
| | - Qing Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China
| | - Jianbo Ji
- Department of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, K.U.Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Ji'nan, 250012, China.
| |
Collapse
|
21
|
Paneth A, Płonka W, Paneth P. Assessment of Nonnucleoside Inhibitors Binding to HIV-1 Reverse Transcriptase Using HYDE Scoring. Pharmaceuticals (Basel) 2019; 12:ph12020064. [PMID: 31022835 PMCID: PMC6631718 DOI: 10.3390/ph12020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, 48 inhibitors were docked to 107 allosteric centers of human immunodeficiency virus 1 (HIV-1) reverse transcriptase from the Protein Data Bank (PDB). Based on the average binding scores, quantitative structure-activity relationship (QSAR) equations were constructed in order to elucidate directions of further development in the design of inhibitors. Such developments, informed by structural data, must have a focus on activity against mutated forms of the enzyme, which are the cause of the emergence of multidrug-resistant viral strains. Docking studies employed the HYDE scoring function. Two types of QSARs have been considered: One based on topological descriptors and the other on structural fragments of the inhibitors. Both methods gave similar results, indicating substructures favoring binding to mutated forms of the enzyme.
Collapse
Affiliation(s)
- Agata Paneth
- Faculty of Pharmacy with Medical Analytics Division, Medical University of Lublin, Chodźki 4a, 20-093, Lublin, Poland.
| | | | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
| |
Collapse
|
22
|
Kang D, Wang Z, Chen M, Feng D, Wu G, Zhou Z, Jing L, Zuo X, Jiang X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of potent
HIV
‐1 non‐nucleoside reverse transcriptase inhibitors by exploring the structure–activity relationship of solvent‐exposed regions I. Chem Biol Drug Des 2019; 93:430-437. [DOI: 10.1111/cbdd.13429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/09/2018] [Accepted: 09/30/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Dongwei Kang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Zhao Wang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Meng Chen
- Shandong Center for Disease Control and Prevention Jinan Shandong China
| | - Da Feng
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Gaochan Wu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Zhongxia Zhou
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Lanlan Jing
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xiaofang Zuo
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xiangyi Jiang
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Dirk Daelemans
- Rega Institute for Medical ResearchK.U. Leuven Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical ResearchK.U. Leuven Leuven Belgium
| | | | - Peng Zhan
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| | - Xinyong Liu
- Department of Medicinal ChemistryKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesShandong University Jinan Shandong China
| |
Collapse
|
23
|
Kang D, Zhang H, Wang Z, Zhao T, Ginex T, Luque FJ, Yang Y, Wu G, Feng D, Wei F, Zhang J, De Clercq E, Pannecouque C, Chen CH, Lee KH, Murugan NA, Steitz TA, Zhan P, Liu X. Identification of Dihydrofuro[3,4- d]pyrimidine Derivatives as Novel HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors with Promising Antiviral Activities and Desirable Physicochemical Properties. J Med Chem 2019; 62:1484-1501. [PMID: 30624934 DOI: 10.1021/acs.jmedchem.8b01656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address drug resistance to HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs), a series of novel diarylpyrimidine (DAPY) derivatives targeting "tolerant region I" and "tolerant region II" of the NNRTIs binding pocket (NNIBP) were designed utilizing a structure-guided scaffold-hopping strategy. The dihydrofuro[3,4- d]pyrimidine derivatives 13c2 and 13c4 proved to be exceptionally potent against a wide range of HIV-1 strains carrying single NNRTI-resistant mutations (EC50 = 0.9-8.4 nM), which were remarkably superior to that of etravirine (ETV). Meanwhile, both compounds exhibited comparable activities with ETV toward the virus with double mutations F227L+V106A and K103N+Y181C. Furthermore, the most active compound 13c2 showed favorable pharmacokinetic properties with an oral bioavailability of 30.96% and a half-life of 11.1 h, which suggested that 13c2 is worth further investigation as a novel NNRTI to circumvent drug resistance.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Francisco Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy, Campus Torribera, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (IQTCUB) , University of Barcelona , 08921 Santa Coloma de Gramenet , Spain
| | - Yang Yang
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research , KU Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Chin Ho Chen
- Surgical Oncology Research Facility , Duke University Medical Center , Box 2926, Durham , North Carolina 27710 , United States
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, Eshelman School of Pharmacy , University of North Carolina , Chapel Hill , North Carolina 27599 , United States.,Chinese Medicine Research and Development Center , China Medical University and Hospital , Taichung 40402 , Taiwan
| | - N Arul Murugan
- Department of Theoretical Chemistry and Biology, Royal Institute of Technology (KTH) , AlbaNova University Center , S-106 91 Stockholm , Sweden
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Jinan , Shandong , P. R. China
| |
Collapse
|
24
|
Feng D, Wei F, Wang Z, Kang D, Zhan P, Liu X. Development of a practical synthesis of etravirine via a microwave-promoted amination. Chem Cent J 2018; 12:144. [PMID: 30569261 PMCID: PMC6768033 DOI: 10.1186/s13065-018-0504-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Etravirine (ETV) was approved as the second generation drug for use in individuals infected with HIV-1 in 2008 by the U.S. FDA with its unique antiviral activity, high specificity, and low toxicity. However, there are some shortcomings of the existing synthetic routes, such as the long reaction time and poor yield. RESULTS This article describes our efforts to develop an efficient, practical, microwave-promoted synthetic method for one key intermediate of ETV, which is capable of being operated on a scale-up synthesis level. Through this optimized synthetic procedure, the amination reaction time decreased from 12 h to 15 min and the overall yield improved from 30.4 to 38.5%. CONCLUSION Overall, we developed a practical synthesis of ETV via a microwave-promoted method, and the synthetic procedure could be amenable to scale-up, and production costs could be significantly lowered.
Collapse
Affiliation(s)
- Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Fenju Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
25
|
Jin K, Sang Y, De Clercq E, Pannecouque C, Meng G. Design and synthesis of a novel series of non-nucleoside HIV-1 inhibitors bearing pyrimidine and N-substituted aromatic piperazine. Bioorg Med Chem Lett 2018; 28:3491-3495. [PMID: 30318436 DOI: 10.1016/j.bmcl.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 01/26/2023]
Abstract
A novel series of substituted piperazine-1-yl-pyrimidine derivatives were designed and synthesized as a new type of HIV-1 non-nucleoside inhibitors. Various N-substituted aromatic groups were incorporated into the piperazine ring through a simple and practical route to investigate the biological activity of these target compounds against wild-type and resistant strains of HIV-1. All of the target compounds were also evaluated as HIV-1 reverse transcriptase inhibitors in MT-4 cell cultures. The biological results showed that six of these compounds displayed inhibitory activities against the wild-type strain, among of which 7q and 7t were found to be the two most active analogues possessing EC50 values of 31.50 μM and 3.36 μM, respectively. Molecular modeling studies of 7q provide valuable information for developing new anti-HIV-1 inhibitors.
Collapse
Affiliation(s)
- KaiJun Jin
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - YaLi Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | - Ge Meng
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| |
Collapse
|
26
|
Kang D, Wang Z, Zhang H, Wu G, Zhao T, Zhou Z, Huo Z, Huang B, Feng D, Ding X, Zhang J, Zuo X, Jing L, Luo W, Guma S, Daelemans D, Clercq ED, Pannecouque C, Zhan P, Liu X. Further Exploring Solvent-Exposed Tolerant Regions of Allosteric Binding Pocket for Novel HIV-1 NNRTIs Discovery. ACS Med Chem Lett 2018; 9:370-375. [PMID: 29670703 DOI: 10.1021/acsmedchemlett.8b00054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Based on the detailed analysis of the binding mode of diarylpyrimidines (DAPYs) with HIV-1 RT, we designed several subseries of novel NNRTIs, with the aim to probe biologically relevant chemical space of solvent-exposed tolerant regions in NNRTIs binding pocket (NNIBP). The most potent compound 21a exhibited significant activity against the whole viral panel, being about 1.5-2.6-fold (WT, EC50 = 2.44 nM; L100I, EC50 = 4.24 nM; Y181C, EC50 = 4.80 nM; F227L + V106A, EC50 = 17.8 nM) and 4-5-fold (K103N, EC50 = 1.03 nM; Y188L, EC50 = 7.16 nM; E138K, EC50 = 3.95 nM) more potent than the reference drug ETV. Furthermore, molecular simulation was conducted to understand the binding mode of interactions of these novel NNRTIs and to provide insights for the next optimization studies.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Da Feng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xiaofang Zuo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Lanlan Jing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Wei Luo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Samuel Guma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P. R. China
| |
Collapse
|
27
|
Anderson J, Olafsdottir TA, Kratochvil S, McKay PF, Östensson M, Persson J, Shattock RJ, Harandi AM. Molecular Signatures of a TLR4 Agonist-Adjuvanted HIV-1 Vaccine Candidate in Humans. Front Immunol 2018. [PMID: 29535712 PMCID: PMC5834766 DOI: 10.3389/fimmu.2018.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Systems biology approaches have recently provided new insights into the mechanisms of action of human vaccines and adjuvants. Here, we investigated early transcriptional signatures induced in whole blood of healthy subjects following vaccination with a recombinant HIV-1 envelope glycoprotein subunit CN54gp140 adjuvanted with the TLR4 agonist glucopyranosyl lipid adjuvant-aqueous formulation (GLA-AF) and correlated signatures to CN54gp140-specific serum antibody responses. Fourteen healthy volunteers aged 18–45 years were immunized intramuscularly three times at 1-month intervals and whole blood samples were collected at baseline, 6 h, and 1, 3, and 7 days post first immunization. Subtle changes in the transcriptomic profiles were observed following immunization, ranging from over 300 differentially expressed genes (DEGs) at day 1 to nearly 100 DEGs at day 7 following immunization. Functional pathway analysis revealed blood transcription modules (BTMs) related to general cell cycle activation, and innate immune cell activation at early time points, as well as BTMs related to T cells and B cell activation at the later time points post-immunization. Diverse CN54gp140-specific serum antibody responses of the subjects enabled their categorization into high or low responders, at early (<1 month) and late (up to 6 months) time points post vaccination. BTM analyses revealed repression of modules enriched in NK cells, and the mitochondrial electron chain, in individuals with high or sustained antigen-specific antibody responses. However, low responders showed an enhancement of BTMs associated with enrichment in myeloid cells and monocytes as well as integrin cell surface interactions. Flow cytometry analysis of peripheral blood mononuclear cells obtained from the subjects revealed an enhanced frequency of CD56dim NK cells in the majority of vaccines 14 days after vaccination as compared with the baseline. These results emphasize the utility of a systems biology approach to enhance our understanding on the mechanisms of action of TLR4 adjuvanted human vaccines.
Collapse
Affiliation(s)
- Jenna Anderson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thorunn A Olafsdottir
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sven Kratochvil
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Paul F McKay
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Malin Östensson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Josefine Persson
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robin J Shattock
- Department of Medicine, Mucosal Infection and Immunity Group, Section of Virology, Imperial College London, London, United Kingdom
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
28
|
Pharmacokinetics and Preliminary Safety of Pod-Intravaginal Rings Delivering the Monoclonal Antibody VRC01-N for HIV Prophylaxis in a Macaque Model. Antimicrob Agents Chemother 2017; 61:AAC.02465-16. [PMID: 28416548 DOI: 10.1128/aac.02465-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/09/2017] [Indexed: 01/02/2023] Open
Abstract
The broadly neutralizing antibody (bNAb) VRC01, capable of neutralizing 91% of known human immunodeficiency virus type 1 (HIV-1) isolates in vitro, is a promising candidate microbicide for preventing sexual HIV infection when administered topically to the vagina; however, accessibility to antibody-based prophylactic treatment by target populations in sub-Saharan Africa and other underdeveloped regions may be limited by the high cost of conventionally produced antibodies and the limited capacity to manufacture such antibodies. Intravaginal rings of the pod design (pod-IVRs) delivering Nicotiana-manufactured VRC01 (VRC01-N) over a range of release rates have been developed. The pharmacokinetics and preliminary safety of VRC01-N pod-IVRs were evaluated in a rhesus macaque model. The devices sustained VRC01-N release for up to 21 days at controlled rates, with mean steady-state VRC01-N levels in vaginal fluids in the range of 102 to 103 μg g-1 being correlated with in vitro release rates. No adverse safety indications were observed. These findings indicate that pod-IVRs are promising devices for the delivery of the candidate topical microbicide VRC01-N against HIV-1 infection and merit further preclinical evaluation.
Collapse
|
29
|
Kang D, Fang Z, Huang B, Lu X, Zhang H, Xu H, Huo Z, Zhou Z, Yu Z, Meng Q, Wu G, Ding X, Tian Y, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Structure-Based Optimization of Thiophene[3,2-d]pyrimidine Derivatives as Potent HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Resistance-Associated Variants. J Med Chem 2017; 60:4424-4443. [PMID: 28481112 DOI: 10.1021/acs.jmedchem.7b00332] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This work follows on from our initial discovery of a series of piperidine-substituted thiophene[3,2-d]pyrimidine HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTI) ( J. Med. Chem. 2016 , 59 , 7991 - 8007 ). In the present study, we designed, synthesized, and biologically tested several series of new derivatives in order to investigate previously unexplored chemical space. Some of the synthesized compounds displayed single-digit nanomolar anti-HIV potencies against wild-type (WT) virus and a panel of NNRTI-resistant mutant viruses in MT-4 cells. Compound 25a was exceptionally potent against the whole viral panel, affording 3-4-fold enhancement of in vitro antiviral potency against WT, L100I, K103N, Y181C, Y188L, E138K, and K103N+Y181C and 10-fold enhancement against F227L+V106A relative to the reference drug etravirine (ETV) in the same cellular assay. The structure-activity relationships, pharmacokinetics, acute toxicity, and cardiotoxicity were also examined. Overall, the results indicate that 25a is a promising new drug candidate for treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China.,The Second Hospital of Shandong University , no. 247 Beiyuan Avenue, Jinan 250033, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhipeng Huo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Zhao Yu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Qing Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Ye Tian
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, 250012 Jinan, Shandong P.R. China
| |
Collapse
|
30
|
Kang D, Fang Z, Li Z, Huang B, Zhang H, Lu X, Xu H, Zhou Z, Ding X, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Design, Synthesis, and Evaluation of Thiophene[3,2-d]pyrimidine Derivatives as HIV-1 Non-nucleoside Reverse Transcriptase Inhibitors with Significantly Improved Drug Resistance Profiles. J Med Chem 2016; 59:7991-8007. [PMID: 27541578 DOI: 10.1021/acs.jmedchem.6b00738] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration.
Collapse
Affiliation(s)
- Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zengjun Fang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China.,The Second Hospital, Shandong University , No. 247 Beiyuan Avenue, Jinan 250033, China
| | - Zhenyu Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Heng Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xueyi Lu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Haoran Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xiao Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven , Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44 West Culture Road, Jinan 250012, Shandong P.R. China
| |
Collapse
|
31
|
Gao P, Sun L, Zhou J, Li X, Zhan P, Liu X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin Drug Discov 2016; 11:857-71. [PMID: 27400283 DOI: 10.1080/17460441.2016.1210125] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION In recent years, a variety of new synthetic methodologies and concepts have been proposed in the search for new pharmaceutical lead structures and optimization. Notably, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click chemistry approach has drawn great attention and has become a powerful tool for the generation of privileged medicinal skeletons in the discovery of anti-HIV agents. This is due to the high degree of reliability, complete specificity (chemoselectivity and regioselectivity), mild conditions, and the biocompatibility of the reactants. AREAS COVERED Herein, the authors describe the progress thus far on the discovery of novel anti-HIV agents via the CuAAC click chemistry-based approach. EXPERT OPINION CuAAC click chemistry is a proven protocol for synthesizing triazole products which could serve as basic pharmacophores, act as replacements of traditional scaffold or substituent modification, be a linker of dual-target or dual-site inhibitors and more for the discovery of novel anti-HIV agents. What's more, it also provides convenience and feasibility for dynamic combinatorial chemistry and in situ screening. It is envisioned that click chemistry will draw more attention and make more contributions in anti-HIV drug discovery in the future.
Collapse
Affiliation(s)
- Ping Gao
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Lin Sun
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Junsu Zhou
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xiao Li
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Peng Zhan
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| | - Xinyong Liu
- a Department of Medicinal Chemistry, Key laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Jinan , P. R. China
| |
Collapse
|
32
|
Combination Pod-Intravaginal Ring Delivers Antiretroviral Agents for HIV Prophylaxis: Pharmacokinetic Evaluation in an Ovine Model. Antimicrob Agents Chemother 2016; 60:3759-66. [PMID: 27067321 DOI: 10.1128/aac.00391-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/03/2016] [Indexed: 12/24/2022] Open
Abstract
Preexposure prophylaxis (PrEP) against HIV using oral regimens based on the nucleoside reverse transcriptase inhibitor tenofovir disoproxil fumarate (TDF) has been effective to various degrees in multiple clinical trials, and the CCR5 receptor antagonist maraviroc (MVC) holds potential for complementary efficacy. The effectiveness of HIV PrEP is highly dependent on adherence. Incorporation of the TDF-MVC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described. The pharmacokinetics and preliminary local safety characteristics of a novel pod-IVR delivering a combination of TDF and MVC were evaluated in the ovine model. The device exhibited sustained release at controlled rates over the 28-day study and maintained steady-state drug levels in cervicovaginal fluids (CVFs). Dilution of CVFs during lavage sample collection was measured by ion chromatography using an inert tracer, allowing corrected drug concentrations to be measured for the first time. Median, steady-state drug levels in vaginal tissue homogenate were as follows: for tenofovir (TFV; in vivo hydrolysis product of TDF), 7.3 × 10(2) ng g(-1) (interquartile range [IQR], 3.0 × 10(2), 4.0 × 10(3)); for TFV diphosphate (TFV-DP; active metabolite of TFV), 1.8 × 10(4) fmol g(-1) (IQR, 1.5 × 10(4), 4.8 × 10(4)); and for MVC, 8.2 × 10(2) ng g(-1) (IQR, 4.7 × 10(2), 2.0 × 10(3)). No adverse events were observed. These findings, together with previous pod-IVR studies, have allowed several lead candidates to advance into clinical evaluation.
Collapse
|
33
|
Superior Efficacy of a Human Immunodeficiency Virus Vaccine Combined with Antiretroviral Prevention in Simian-Human Immunodeficiency Virus-Challenged Nonhuman Primates. J Virol 2016; 90:5315-5328. [PMID: 27009957 PMCID: PMC4934744 DOI: 10.1128/jvi.00230-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022] Open
Abstract
Although vaccines and antiretroviral (ARV) prevention have demonstrated partial success against human immunodeficiency virus (HIV) infection in clinical trials, their combined introduction could provide more potent protection. Furthermore, combination approaches could ameliorate the potential increased risk of infection following vaccination in the absence of protective immunity. We used a nonhuman primate model to determine potential interactions of combining a partially effective ARV microbicide with an envelope-based vaccine. The vaccine alone provided no protection from infection following 12 consecutive low-dose intravaginal challenges with simian-HIV strain SF162P3, with more animals infected compared to naive controls. The microbicide alone provided a 68% reduction in the risk of infection relative to that of the vaccine group and a 45% reduction relative to that of naive controls. The vaccine-microbicide combination provided an 88% reduction in the per-exposure risk of infection relative to the vaccine alone and a 79% reduction relative to that of the controls. Protected animals in the vaccine-microbicide group were challenged a further 12 times in the absence of microbicide and demonstrated a 98% reduction in the risk of infection. A total risk reduction of 91% was observed in this group over 24 exposures (P = 0.004). These important findings suggest that combined implementation of new biomedical prevention strategies may provide significant gains in HIV prevention. IMPORTANCE There is a pressing need to maximize the impact of new biomedical prevention tools in the face of the 2 million HIV infections that occur each year. Combined implementation of complementary biomedical approaches could create additive or synergistic effects that drive improved reduction of HIV incidence. Therefore, we assessed a combination of an untested vaccine with an ARV-based microbicide in a nonhuman primate vaginal challenge model. The vaccine alone provided no protection (and may have increased susceptibility to a simian-HIV vaginal challenge), while the microbicide reduced the infection risk compared to that of vaccinated and naive animals. Importantly, the combined interventions provided the greatest level of protection, which was sustained following withdrawal of the microbicide. The data suggest that provision of ARV prophylaxis during vaccination reduces the potential for unexpected increased risks of infection following immunization and augments vaccine efficacy. These findings are important for the potential adoption of ARV prophylaxis as the baseline intervention for future HIV/AIDS vaccines.
Collapse
|
34
|
Baum MM, Butkyavichene I, Churchman SA, Lopez G, Miller CS, Smith TJ, Moss JA. An intravaginal ring for the sustained delivery of tenofovir disoproxil fumarate. Int J Pharm 2015; 495:579-587. [PMID: 26386138 DOI: 10.1016/j.ijpharm.2015.09.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/08/2015] [Accepted: 09/15/2015] [Indexed: 12/27/2022]
Abstract
Recent clinical trials have demonstrated that pre-exposure prophylaxis (PrEP) may prevent HIV infection in a significant number of HIV-1 negative individuals in venerable populations; however, trial efficacy has been highly variable, with notable successes and failures. Poor adherence to PrEP regimens has been implicated as a primary factor in determining efficacy of these trials. With the exception of CAPRISA 004 where use of a pericoital tenofovir gel led to a 39% reduction in HIV infection, all successful PrEP regimens to date have used the fumarate salt of the tenofovir disoproxil ester prodrug of tenofovir (TDF) alone or in combination with emtricitabine (FTC). A sustained-release, intravaginal ring (IVR) formulation of TDF holds promise for improving adherence and, thus, increasing the effectiveness of PrEP. Here, a novel IVR delivering TDF with sustained zero-order release characteristics that may be controlled over nearly two orders of magnitude is described. Pod-IVRs containing 1-10 pods delivering TDF at 0.01-10 mg d(-1) were fabricated and their release characteristics evaluated in vitro. The pod-IVRs stabilized TDF against hydrolytic degradation both in storage and during in vitro release experiments. Successful translation of the TDF pod-IVR from laboratory evaluation to large-scale clinical trials requires the ability to manufacture the devices at low cost and in high quantity. Methods for manufacturing and scale-up were developed and applied to pilot-scale production of TDF pod-IVRs that maintained the IVR's release characteristics while significantly decreasing the variability in release rate observed between pod-IVRs. This pod-IVR enables for the first time the dose-ranging clinical studies that are required to optimize topical TDF PrEP in terms of efficacy and safety.
Collapse
Affiliation(s)
- Marc M Baum
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, United States
| | - Irina Butkyavichene
- Auritec Pharmaceuticals, Inc., 2285 E. Foothill Blvd., Pasadena, CA, United States
| | - Scott A Churchman
- Auritec Pharmaceuticals, Inc., 2285 E. Foothill Blvd., Pasadena, CA, United States
| | - Gilbert Lopez
- Auritec Pharmaceuticals, Inc., 2285 E. Foothill Blvd., Pasadena, CA, United States
| | - Christine S Miller
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, United States
| | - Thomas J Smith
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, United States; Auritec Pharmaceuticals, Inc., 2285 E. Foothill Blvd., Pasadena, CA, United States
| | - John A Moss
- Department of Chemistry, Oak Crest Institute of Science, 128-132 W. Chestnut Ave., Monrovia, CA, United States.
| |
Collapse
|
35
|
Hankins C, Macklin R, Warren M. Translating PrEP effectiveness into public health impact: key considerations for decision-makers on cost-effectiveness, price, regulatory issues, distributive justice and advocacy for access. J Int AIDS Soc 2015; 18:19973. [PMID: 26198343 PMCID: PMC4509900 DOI: 10.7448/ias.18.4.19973] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 04/06/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION The extraordinary feat of proving the effectiveness of oral pre-exposure prophylaxis (PrEP) in clinical trials in different populations in a variety of settings may prove to have been easier than ensuring it is used well. Decision-makers must make difficult choices to realize the promise of antiretroviral prophylaxis for their countries. This paper outlines key economic, regulatory and distributive justice issues that must be addressed for effective and acceptable PrEP implementation. DISCUSSION In considering the role that PrEP can play in combination prevention programmes, decision-makers must determine who can benefit most from PrEP, how PrEP can be provided safely and efficiently, and what kind of health system support will ensure successful implementation. To do this, they need contextualized information on disease burden by population, analyses of how PrEP services might best be delivered, and projections of the human resource and infrastructure requirements for each potential delivery model. There are cost considerations, varying cost-effectiveness results and regulatory challenges. The principles of ethics can inform thorny discussions about who should be prioritized for oral PrEP and how best to introduce it fairly. We describe the cost-effectiveness of PrEP in different populations at higher risk of HIV exposure, its price in low- and middle-income countries, and the current regulatory situation. We explore the principles of ethics that can inform resource allocation decision-making about PrEP anchored in distributive justice, at a time when universal access to antiretroviral treatment remains to be assured. We then highlight the role of advocacy in moving the PrEP agenda forward. CONCLUSIONS The time is ripe now for decisions about whether, how and for whom PrEP should be introduced into a country's HIV response. It has the potential to contribute significantly to high impact HIV prevention if it is tailored to those who can most benefit from it and if current regulatory and pricing barriers can be overcome. Advocacy at all levels can help inform decision-making and push the access agenda to avert HIV infections among those at highest risk of HIV exposure. The benefits will accrue beyond the individual level to slow HIV transmission at the population level.
Collapse
Affiliation(s)
- Catherine Hankins
- Department of Global Health, Academic Medical Center, Amsterdam Institute for Global Health and Development, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, England; ;
| | - Ruth Macklin
- Epidemiology & Population Health, Albert Einstein College of Medicine New York, NY, USA
| | | |
Collapse
|
36
|
Cáceres CF, Mayer KH, Baggaley R, O'Reilly KR. PrEP Implementation Science: State-of-the-Art and Research Agenda. J Int AIDS Soc 2015; 18:20527. [PMID: 26198351 PMCID: PMC4581083 DOI: 10.7448/ias.18.4.20527] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
37
|
Wamai RG, Morris BJ, Bailey RC, Klausner JD, Boedicker MN. Male circumcision for protection against HIV infection in sub-Saharan Africa: the evidence in favour justifies the implementation now in progress. Glob Public Health 2015; 10:639-66. [PMID: 25613581 PMCID: PMC6352987 DOI: 10.1080/17441692.2014.989532] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This article responds to a recent 'controversy study' in Global Public Health by de Camargo et al. directed at three randomised controlled trials (RCTs) of male circumcision (MC) for HIV prevention. These trials were conducted in three countries in sub-Saharan Africa (SSA) and published in 2005 and 2007. The RCTs confirmed observational data that had accumulated over the preceding two decades showing that MC reduces by 60% the risk of HIV infection in heterosexual men. Based on the RCT results, MC was adopted by global and national HIV policy-makers as an additional intervention for HIV prevention. Voluntary medical MC (VMMC) is now being implemented in 14 SSA countries. Thus referring to MC for HIV prevention as 'debate' and viewing MC through a lens of controversy seems mistaken. In their criticism, de Camargo et al. misrepresent and misinterpret current science supporting MC for HIV prevention, omit previous denunciations of arguments similar to theirs, and ignore evidence from ongoing scientific research. Here we point out the flaws in three areas de Camargo et al. find contentious. In doing so, we direct readers to growing evidence of MC as an efficacious, safe, acceptable, relatively low-cost one-off biomedical intervention for HIV prevention.
Collapse
Affiliation(s)
- Richard G. Wamai
- Department of African-American Studies, Northeastern University, Boston, Massachusetts, USA
| | - Brian J. Morris
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Robert C. Bailey
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jeffrey D. Klausner
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, California, USA
| | | |
Collapse
|
38
|
Pharmacokinetics and preliminary safety study of pod-intravaginal rings delivering antiretroviral combinations for HIV prophylaxis in a macaque model. Antimicrob Agents Chemother 2014; 58:5125-35. [PMID: 24936594 DOI: 10.1128/aac.02871-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Preexposure prophylaxis using oral regimens involving the HIV nucleoside reverse transcriptase inhibitors tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC) demonstrated efficacy in three clinical trials. Adherence was determined to be a key parameter for success. Incorporation of the TDF-FTC combination into intravaginal rings (IVRs) for sustained mucosal delivery could increase product adherence and efficacy compared with those of oral and vaginal gel formulations. A novel pod-IVR technology capable of delivering multiple drugs is described; this constitutes the first report of an IVR delivering TDF and FTC, as well as a triple-combination IVR delivering TDF, FTC, and the entry inhibitor maraviroc (MVC). The pharmacokinetics and preliminary local safety of the two combination pod-IVRs were evaluated in the pig-tailed macaque model. The devices exhibited sustained release at controlled rates over the 28-day study period. Median steady-state drug levels in vaginal tissues in the TDF-FTC group were 30 μg g(-1) (tenofovir [TFV], in vivo hydrolysis product of TDF) and 500 μg g(-1) (FTC) and in the TDF-FTC-MVC group were 10 μg g(-1) (TFV), 150 μg g(-1) (FTC), and 20 μg g(-1) (MVC). No adverse events were observed, and there were no toxicological findings. Mild-to-moderate increases in inflammatory infiltrates were observed in the vaginal tissues of some animals in both the presence and the absence of the IVRs. The IVRs did not disturb the vaginal microbiota, and levels of proinflammatory cytokines remained stable throughout the study. Pod-IVR candidates based on the TDF-FTC combination have potential for the prevention of vaginal HIV acquisition and merit clinical investigation.
Collapse
|
39
|
Chen J, Huang D, Chen W, Guo C, Wei B, Wu C, Peng Z, Fan J, Hou Z, Fang Y, Wang Y, Kitazato K, Yu G, Zou C, Qian C, Xiong S. Linker-extended native cyanovirin-N facilitates PEGylation and potently inhibits HIV-1 by targeting the glycan ligand. PLoS One 2014; 9:e86455. [PMID: 24475123 PMCID: PMC3903522 DOI: 10.1371/journal.pone.0086455] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 12/15/2013] [Indexed: 01/27/2023] Open
Abstract
Cyanovirin-N (CVN) potently inhibits human immunodeficiency virus type 1 (HIV-1) infection, but both cytotoxicity and immunogenicity have hindered the translation of this protein into a viable therapeutic. A molecular docking analysis suggested that up to 12 residues were involved in the interaction of the reverse parallel CVN dimer with the oligosaccharide targets, among which Leu-1 was the most prominent hot spot residue. This finding provided a possible explanation for the lack of anti-HIV-1 activity observed with N-terminal PEGylated CVN. Therefore, linker-CVN (LCVN) was designed as a CVN derivative with a flexible and hydrophilic linker (Gly4Ser)3 at the N-terminus. The N-terminal α-amine of LCVN was PEGylated to create 10 K PEG-aldehyde (ALD)-LCVN. LCVN and 10 K PEG-ALD-LCVN retained the specificity and affinity of CVN for high mannose N-glycans. Moreover, LCVN exhibited significant anti-HIV-1 activity with attenuated cytotoxicity in the HaCaT keratinocyte cell line and MT-4 T lymphocyte cell lines. 10 K PEG-ALD-LCVN also efficiently inactivated HIV-1 with remarkably decreased cytotoxicity and pronounced cell-to-cell fusion inhibitory activity in vitro. The linker-extended CVN and the mono-PEGylated derivative were determined to be promising candidates for the development of an anti-HIV-1 agent. This derivatization approach provided a model for the PEGylation of biologic candidates without introducing point mutations.
Collapse
Affiliation(s)
- Jia Chen
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Dane Huang
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Institutes of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Chen
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chaowan Guo
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki City, Nagasaki Prefecture, Japan
| | - Bo Wei
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chongchao Wu
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Zhou Peng
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Jun Fan
- Laboratory of Virus Control, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Zhibo Hou
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yongsheng Fang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yifei Wang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Kaio Kitazato
- Department of Molecular Microbiology and Immunology, Nagasaki University, Nagasaki City, Nagasaki Prefecture, Japan
| | - Guoying Yu
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chunbin Zou
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chuiwen Qian
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
- * E-mail: (SX); (CQ)
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, Guangdong, China
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (SX); (CQ)
| |
Collapse
|
40
|
Abstract
Recent advances in the immunology, pathogenesis, and prevention of human immunodeficiency virus (HIV) infection continue to reveal clues to the mechanisms involved in the progressive immunodeficiency attributed to infection, but more importantly have shed light on the correlates of immunity to infection and disease progression. HIV selectively infects, eliminates, and/or dysregulates several key cells of the human immune system, thwarting multiple arms of the host immune response, and inflicting severe damage to mucosal barriers, resulting in tissue infiltration of 'symbiotic' intestinal bacteria and viruses that essentially become opportunistic infections promoting systemic immune activation. This leads to activation and recruitment or more target cells for perpetuating HIV infection, resulting in persistent, high-level viral replication in lymphoid tissues, rapid evolution of resistant strains, and continued evasion of immune responses. However, vaccine studies and studies of spontaneous controllers are finally providing correlates of immunity from protection and disease progression, including virus-specific CD4(+) T-cell responses, binding anti-bodies, innate immune responses, and generation of antibodies with potent antibody-dependent cell-mediated cytotoxicity activity. Emerging correlates of immunity indicate that prevention of HIV infection may be possible through effective vaccine strategies that protect and stimulate key regulatory cells and immune responses in susceptible hosts. Furthermore, immune therapies specifically directed toward boosting specific aspects of the immune system may eventually lead to a cure for HIV-infected patients.
Collapse
Affiliation(s)
- Huanbin Xu
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | | | | |
Collapse
|
41
|
Zhou J, Ba M, Wang B, Zhou H, Bie J, Fu D, Cao Y, Xu B, Guo Y. Synthesis and biological evaluation of novel quinoxalinone-based HIV-1 reverse transcriptase inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00337j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel quinoxalinone derivatives were identified as potent anti-HIV-1 agents with IC50 values at 10−8 μmol L−1 level.
Collapse
Affiliation(s)
- Jie Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Mingyu Ba
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Bo Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
- Hebei University of Science and Technology
| | - Haibo Zhou
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Jianbo Bie
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Decai Fu
- Hebei University of Science and Technology
- Shijiazhuang, China
| | - Yingli Cao
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Bailing Xu
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| | - Ying Guo
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation
- Institute of Materia Medica
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing, China
| |
Collapse
|
42
|
Gunawardana M, Mullen M, Moss JA, Pyles RB, Nusbaum RJ, Patel J, Vincent KL, Wang C, Guo C, Yuan YC, Warden CD, Baum MM. Global expression of molecular transporters in the human vaginal tract: implications for HIV chemoprophylaxis. PLoS One 2013; 8:e77340. [PMID: 24143220 PMCID: PMC3797116 DOI: 10.1371/journal.pone.0077340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/30/2013] [Indexed: 02/01/2023] Open
Abstract
Background Pre-exposure chemoprophylaxis (PrECP) using antiretroviral agents is a promising strategy for the prevention of sexual HIV transmission in women. Molecular transporters in the human vaginal tract (VT) may play a pivotal role in determining drug disposition and, consequently, pharmacodynamic outcomes in these efforts. Little is known, however, on the expression of these transporters in vaginal tissues, representing a critical knowledge gap. Methodology/Principal Findings Our study analyzed the genome-wide transcriptome in 44 vaginal tissue samples from 6 reproductive-age women undergoing gynecologic surgeries. The analysis revealed that, unexpectedly, a large number (43%) of gene isoforms corresponding to membrane transporters were over-expressed (above the median expression level) in all samples. A subset of 12 highly expressed membrane transporters was identified and contained 10 members (83%) of the solute carrier superfamily. The largest difference in membrane transporter gene expression was observed across subjects, but more subtle differential expression also was found along the anterior-posterior axis of the VT. Cross-validation of the microarray analyses with measurements RT-qPCR demonstrated high concordance between these data sets. Immunofluorescence labeling of membrane transporter proteins in vaginal tissues was highly dependent on tissue/cell types. Conclusions/Significance Antiretroviral PrECP drugs currently under evaluation are substrates for molecular transporters that were commonly expressed, but fell into both over- or under-expressed categories in all samples, suggesting a complex role for carrier-mediated processes in determining the disposition of these xenobiotics in vaginal tissues. These findings hold important implications for the successful development of products, either oral or intravaginal, for female-controlled HIV PrECP.
Collapse
Affiliation(s)
- Manjula Gunawardana
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, United States of America
| | - Madeline Mullen
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, United States of America
| | - John A. Moss
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, United States of America
| | - Richard B. Pyles
- Departments of Pediatrics and Microbiology and Immunology, UTMB, Galveston, Texas, United States of America
| | - Rebecca J. Nusbaum
- Human Pathophysiology and Translational Medicine Graduate Program, UTMB, Galveston, Texas, United States of America
| | - Jignesh Patel
- Departments of Pediatrics and Microbiology and Immunology, UTMB, Galveston, Texas, United States of America
| | - Kathleen L. Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Charles Wang
- Functional Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Chao Guo
- Functional Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California, United States of America
| | - Yate-Ching Yuan
- Bioinformatics Core, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, United States of America
| | - Charles D. Warden
- Bioinformatics Core, Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, United States of America
| | - Marc M. Baum
- Department of Chemistry, Oak Crest Institute of Science, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
43
|
Abstract
The United States now has the highest incarceration rate in the world. The majority of prison and jail inmates come from predominantly nonwhite and medically underserved communities. Although incarceration has adverse effects on both individual and community health, prisons and jails have also been used successfully as venues to provide health services to people with HIV who frequently lack stable health care. We review demographic trends shaping the difficulties in providing care to incarcerated people with HIV and recommend the Centers for AIDS Research Collaboration on HIV in Corrections as a model of interdisciplinary collaboration in addressing those difficulties.
Collapse
|
44
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
45
|
Van Braeckel E, Desombere I, Clement F, Vandekerckhove L, Verhofstede C, Vogelaers D, Leroux-Roels G. Polyfunctional CD4(+) T cell responses in HIV-1-infected viral controllers compared with those in healthy recipients of an adjuvanted polyprotein HIV-1 vaccine. Vaccine 2013; 31:3739-46. [PMID: 23707169 DOI: 10.1016/j.vaccine.2013.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/11/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
Abstract
A recombinant fusion protein (F4) consisting of HIV-1 p17, p24, reverse transcriptase (RT) and Nef, adjuvanted with AS01, induced strong and broad CD4(+) T cell responses in healthy volunteers. Here we compare these vaccine-induced CD4(+) T cell responses with the ones induced by natural infection in patients with varying disease courses. Thirty-eight HIV-infected, antiretroviral treatment-naïve subjects were classified into four categories: 8 long-term non-progressors (infection ≥7 years; CD4(+) T cells ≥500/μL), 10 recently infected individuals (infection ≤2 years; CD4(+) T cells ≥500/μL), 10 typical early progressors (CD4(+) T cells ≤350/μL), and 10 viral controllers (plasma HIV-1 RNA <1000copies/mL). Peripheral blood mononuclear cells were stimulated in vitro with p17, p24, RT and Nef peptide pools and analyzed by flow cytometry for expression of IL-2, IFN-γ, TNF-α and CD40L. CD4(+) T cell responses were compared to those measured with the same method in 50 HIV-uninfected subjects immunized with the F4/AS01 candidate vaccine (NCT00434512). After in vitro stimulation with p17, p24 and RT antigen viral controllers had significantly more CD4(+) T cells co-expressing IL-2, IFN-γ and TNF-α than other HIV patient categories. The magnitude and quality of these responses in viral controllers were comparable to those observed in F4/AS01 vaccine recipients. In contrast with viral controllers, triple cytokine producing CD4(+) T cells in vaccinees also expressed CD40L. Subjects who spontaneously control an HIV infection display polyfunctional CD4(+) T cell responses to p17, p24, RT and Nef, with similar magnitude and qualities as those induced in healthy volunteers by an adjuvanted HIV candidate vaccine (F4/AS01).
Collapse
Affiliation(s)
- Eva Van Braeckel
- Center for Vaccinology, Ghent University and Hospital, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
The promise of pre-exposure prophylaxis with antiretroviral drugs to prevent HIV transmission: a review. Curr Opin HIV AIDS 2013. [PMID: 23201856 DOI: 10.1097/coh.0b013e32835b809d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW Public health experts are wrestling with how to translate recent scientific findings from pre-exposure prophylaxis (PrEP) effectiveness trials into real-world programmes. This review summarizes clinical trial findings on oral and topical PrEP, discusses how decision-makers can evaluate the place of PrEP within combination prevention and highlights anticipated developments that could be important in future HIV-prevention strategies. RECENT FINDINGS PrEP taken daily as oral tablets to create systemic protection has been found to be effective in the Pre-Exposure Prophylaxis Initiative (iPrEx), Partners' PrEP and TDF2 trials, but not in Fem-PrEP or the Vaginal and Oral Interventions to Control the Epidemic (VOICE) tenofovir arm. Tenofovir gel for topical protection was effective in CAPRISA 004 when used peri-coitally but not in VOICE with daily use. These findings underscore the importance of adherence to achieve adequate drug levels and the potential additive role of PrEP within combination prevention. Pivotal phase III trials are underway of the dapivirine ring, whereas phase I trials of injectable formulations show promise. SUMMARY Antiretroviral-based HIV-prevention programmes should be tailored to those most likely to be adherent, providing them with state-of-the-art counselling and support to achieve high adherence during the time period of use. Long-acting products, if found well tolerated and effective, could be ideal for overcoming adherence challenges.
Collapse
|
47
|
Abstract
BACKGROUND AND OBJECTIVES Antiretroviral drugs can reduce HIV acquisition among uninfected individuals (as pre-exposure prophylaxis: PrEP) and reduce onward transmission among infected individuals (as antiretroviral treatment: ART). We estimate the potential impact and cost-effectiveness of antiretroviral-based HIV prevention strategies. DESIGN AND METHODS We developed and analysed a mathematical model of a hyperendemic setting with relatively low levels of condom use. We estimated the prevention impact and cost of various PrEP interventions, assuming a fixed amount of spending on PrEP; investigated the optimal role of PrEP and earlier ART in terms of epidemiological impact and cost; and systematically explored the impact of earlier ART and PrEP, in combination with medical male circumcision services; on HIV transmission. RESULTS A PrEP intervention is unlikely to generate a large reduction in HIV incidence, unless the cost is substantially reduced. In terms of infections averted and quality adjusted life years gained, at a population-level maximal cost-effectiveness is achieved by providing ART to more infected individuals earlier rather than providing PrEP to uninfected individuals. However, early ART alone cannot reduce HIV incidence to very low levels and PrEP can be used cost-effectively in addition to earlier ART to reduce incidence further. If implemented in combination and at ambitious coverage levels, medical male circumcision, earlier ART and PrEP could produce dramatic declines in HIV incidence, but not stop transmission completely. CONCLUSION A combination prevention approach based on proven-efficacy interventions provides the best opportunity for achieving the much hoped for prevention advance and curbing the spread of HIV.
Collapse
|
48
|
Abstract
Two vaccine trials that were conducted 50 years apart are reviewed and compared: the 1954 field trial of the Salk inactivated polio vaccine and the RV144 HIV vaccine trial conducted in Thailand between 2003 and 2009. Despite the obvious differences in science and historical periods, several lessons were identified that could inform the future HIV vaccine effort. Those lessons are related to paradigm changes that occur when science progresses, the need to test scientific hypothesis in efficacy trials, the controversies surrounding those trials, the need for strong community and political support, the participation of government and nongovernment institutions, the balance between implementation of other preventive and therapeutic interventions, and the priority given by society to develop a vaccine. If we have the humility and courage to apply some of those lessons, we may be able accelerate the development of an urgently needed HIV vaccine.
Collapse
|
49
|
A 90-day tenofovir reservoir intravaginal ring for mucosal HIV prophylaxis. Antimicrob Agents Chemother 2012; 56:6272-83. [PMID: 23006751 DOI: 10.1128/aac.01431-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A vaginal gel containing the antiretroviral tenofovir (TFV) recently demonstrated 39% protection against HIV infection in women. We designed and evaluated a novel reservoir TFV intravaginal ring (IVR) to potentially improve product effectiveness by providing a more controlled and sustained vaginal dose to maintain cervicovaginal concentrations. Polyurethane tubing of various hydrophilicities was filled with a high-density TFV/glycerol/water semisolid paste and then end-sealed to create IVRs. In vitro, TFV release increased with polyurethane hydrophilicity, with 35 weight percent water-swelling polyurethane IVRs achieving an approximately 10-mg/day release for 90 days with mechanical stiffness similar to that of the commercially available NuvaRing. This design was evaluated in two 90-day in vivo sheep studies for TFV pharmacokinetics and safety. Overall, TFV vaginal tissue, vaginal fluid, and plasma levels were relatively time independent over the 90-day duration at approximately 10(4) ng/g, 10(6) ng/g, and 10(1) ng/ml, respectively, near or exceeding the highest observed concentrations in a TFV 1% gel control group. TFV vaginal fluid concentrations were approximately 1,000-fold greater than levels shown to provide significant protection in women using the TFV 1% gel. There were no toxicological findings following placebo and TFV IVR treatment for 28 or 90 days, although slight to moderate increases in inflammatory infiltrates in the vaginal epithelia were observed in these animals compared to naïve animals. In summary, the controlled release of TFV from this reservoir IVR provided elevated sheep vaginal concentrations for 90 days to merit its further evaluation as an HIV prophylactic.
Collapse
|
50
|
Safety and pharmacokinetics of intravaginal rings delivering tenofovir in pig-tailed macaques. Antimicrob Agents Chemother 2012; 56:5952-60. [PMID: 22964245 DOI: 10.1128/aac.01198-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Antiretroviral-based microbicides applied topically to the vagina may play an important role in protecting women from HIV infection. Incorporation of the nucleoside reverse transcriptase inhibitor tenofovir (TFV) into intravaginal rings (IVRs) for sustained mucosal delivery may lead to increased microbicide product adherence and efficacy compared with those of conventional vaginal formulations. Formulations of a novel "pod IVR" platform spanning a range of IVR drug loadings and daily release rates of TFV were evaluated in a pig-tailed macaque model. The rings were safe and exhibited sustained release at controlled rates over 28 days. Vaginal secretion TFV levels were independent of IVR drug loading and were able to be varied over 1.5 log units by changing the ring configuration. Mean TFV levels in vaginal secretions were 72.4 ± 109 μg ml(-1) (slow releasing) and 1.84 ± 1.97 mg ml(-1) (fast releasing). The mean TFV vaginal tissue concentration from the slow-releasing IVRs was 76.4 ± 54.8 μg g(-1) and remained at steady state 7 days after IVR removal, consistent with the long intracellular half-life of TFV. Intracellular tenofovir diphosphate (TFV-DP), the active moiety in defining efficacy, was measured in vaginal lymphocytes collected in the study using the fast-releasing IVR formulation. Mean intracellular TFV-DP levels of 446 ± 150 fmol/10(6) cells fall within a range that may be protective of simian-human immunodeficiency virus strain SF162p3 (SHIV(SF162p3)) infection in nonhuman primates. These data suggest that TFV-releasing IVRs based on the pod design have potential for the prevention of transmission of human immunodeficiency virus type 1 (HIV-1) and merit further clinical investigation.
Collapse
|