1
|
Wale N, Freimark CB, Ramirez J, Dziuba MK, Kafri AY, Bilich R, Duffy MA. Virulence and transmission biology of the widespread, ecologically important pathogen of zooplankton, Spirobacillus cienkowskii. Appl Environ Microbiol 2024; 90:e0152923. [PMID: 39264204 PMCID: PMC11497810 DOI: 10.1128/aem.01529-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/01/2024] [Indexed: 09/13/2024] Open
Abstract
Spirobacillus cienkowskii (Spirobacillus, hereafter) is a widely distributed bacterial pathogen that has significant impacts on the population dynamics of zooplankton (Daphnia spp.), particularly in months when Daphnia are asexually reproducing. However, little is known about Spirobacillus' virulence, transmission mode, and dynamics. As a result, we cannot explain the dynamics of Spirobacillus epidemics in nature or use Spirobacillus as a model pathogen, despite Daphnia's tractability as a model host. Here, we work to fill these knowledge gaps experimentally. We found that Spirobacillus is among the most virulent of Daphnia pathogens, killing its host within a week and reducing host fecundity. We further found that Spirobacillus did not transmit horizontally among hosts unless the host died or was destroyed (i.e., it is an "obligate killer"). In experiments aimed at quantifying the dynamics of horizontal transmission among asexually reproducing Daphnia, we demonstrated that Spirobacillus transmits poorly in the laboratory. In mesocosms, Spirobacillus failed to generate epidemics; in experiments wherein individual Daphnia were exposed, Spirobacillus' transmission success was low. In the (limited) set of conditions we considered, Spirobacillus' transmission success did not change with host density or pathogen dose and declined following environmental incubation. Finally, we conducted a field survey of Spirobacillus' prevalence within egg cases (ephippia) made by sexually reproducing Daphnia. We found Spirobacillus DNA in ~40% of ephippia, suggesting that, in addition to transmitting horizontally among asexually reproducing Daphnia, Spirobacillus may transmit vertically from sexually reproducing Daphnia. Our work fills critical gaps in the biology of Spirobacillus and illuminates new hypotheses vis-à-vis its life history. IMPORTANCE Spirobacillus cienkowskii is a bacterial pathogen of zooplankton, first described in the 19th century and recently placed in a new family of bacteria, the Silvanigrellaceae. Spirobacillus causes large epidemics in lake zooplankton populations and increases the probability that zooplankton will be eaten by predators. However, little is known about how Spirobacillus transmits among hosts, to what extent it reduces host survival and reproduction (i.e., how virulent it is), and what role virulence plays in Spirobacillus' life cycle. Here, we experimentally quantified Spirobacillus' virulence and showed that Spirobacillus must kill its host to transmit horizontally. We also found evidence that Spirobacillus may transmit vertically via Daphnia's seed-like egg sacks. Our work will help scientists to (i) understand Spirobacillus epidemics, (ii) use Spirobacillus as a model pathogen for the study of host-parasite interactions, and (iii) better understand the unusual group of bacteria to which Spirobacillus belongs.
Collapse
Affiliation(s)
- Nina Wale
- Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, Michigan, USA
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Claire B. Freimark
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin Ramirez
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marcin K. Dziuba
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ahmad Y. Kafri
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Penczykowski RM, Fearon ML, Hite JL, Shocket MS, Hall SR, Duffy MA. Pathways linking nutrient enrichment, habitat structure, and parasitism to host-resource interactions. Oecologia 2024; 204:439-449. [PMID: 37951848 DOI: 10.1007/s00442-023-05469-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Human activities simultaneously alter nutrient levels, habitat structure, and levels of parasitism. These activities likely have individual and joint impacts on food webs. Furthermore, there is particular concern that nutrient additions and changes to habitat structure might exacerbate the size of epidemics and impacts on host density. We used a well-studied zooplankton-fungus host-parasite system and experimental whole water column enclosures to factorially manipulate nutrient levels, habitat structure (specifically: mixing), and presence of parasites. Nutrient addition increased infection prevalence, density of infected hosts, and total host density. We hypothesized that nutrients, mixing, and parasitism were linked in multiple ways, including via their combined effects on phytoplankton (resource) abundance, and we used structural equation modeling to disentangle these pathways. In the absence of the parasite, both nutrients and mixing increased abundance of phytoplankton, whereas host density was negatively related to phytoplankton abundance, suggesting a mixture of bottom-up and top-down control of phytoplankton. In the presence of the parasite, nutrients still increased phytoplankton abundance but mixing no longer did, and there was no longer a significant relationship between host density and phytoplankton. This decoupling of host-resource dynamics may have resulted from reduced grazing due to illness-mediated changes in feeding behavior. Overall, our results show that the impact of one human activity (e.g., altered habitat structure) might depend on other human impacts (e.g., parasite introduction). Fortunately, carefully designed experiments and analyses can help tease apart these multifaceted relationships, allowing us to understand how human activities alter food webs, including interactions between hosts and their parasites and resources.
Collapse
Affiliation(s)
- Rachel M Penczykowski
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Michelle L Fearon
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Department of Geography, University of Florida, Gainesville, FL, 32611, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Meghan A Duffy
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Clay PA, Gattis S, Garcia J, Hernandez V, Ben-Ami F, Duffy MA. Age Structure Eliminates the Impact of Coinfection on Epidemic Dynamics in a Freshwater Zooplankton System. Am Nat 2023; 202:785-799. [PMID: 38033180 DOI: 10.1086/726897] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractParasites often coinfect host populations and, by interacting within hosts, might change the trajectory of multiparasite epidemics. However, host-parasite interactions often change with host age, raising the possibility that within-host interactions between parasites might also change, influencing the spread of disease. We measured how heterospecific parasites interacted within zooplankton hosts and how host age changed these interactions. We then parameterized an epidemiological model to explore how age effects altered the impact of coinfection on epidemic dynamics. In our model, we found that in populations where epidemiologically relevant parameters did not change with age, the presence of a second parasite altered epidemic dynamics. In contrast, when parameters varied with host age (based on our empirical measures), there was no longer a difference in epidemic dynamics between singly infected and coinfected populations, indicating that variable age structure within a population eliminates the impact of coinfection on epidemic dynamics. Moreover, infection prevalence of both parasites was lower in populations where epidemiologically relevant parameters changed with age. Given that host population age structure changes over time and space, these results indicate that age effects are important for understanding epidemiological processes in coinfected systems and that studies focused on a single age group could yield inaccurate insights.
Collapse
|
4
|
Dutta TK, Phani V. The pervasive impact of global climate change on plant-nematode interaction continuum. FRONTIERS IN PLANT SCIENCE 2023; 14:1143889. [PMID: 37089646 PMCID: PMC10118019 DOI: 10.3389/fpls.2023.1143889] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Pest profiles in today's global food production system are continually affected by climate change and extreme weather. Under varying climatic conditions, plant-parasitic nematodes (PPNs) cause substantial economic damage to a wide variety of agricultural and horticultural commodities. In parallel, their herbivory also accredit to diverse ecosystem services such as nutrient cycling, allocation and turnover of plant biomass, shaping of vegetation community, and alteration of rhizospheric microorganism consortium by modifying the root exudation pattern. Thus PPNs, together with the vast majority of free-living nematodes, act as ecological drivers. Because of direct exposure to the open environment, PPN biology and physiology are largely governed by environmental factors including temperature, precipitation, humidity, atmospheric and soil carbon dioxide level, and weather extremes. The negative effects of climate change such as global warming, elevated CO2, altered precipitation and the weather extremes including heat waves, droughts, floods, wildfires and storms greatly influence the biogeographic range, distribution, abundance, survival, fitness, reproduction, and parasitic potential of the PPNs. Changes in these biological and ecological parameters associated to the PPNs exert huge impact on agriculture. Yet, depending on how adaptable the species are according to their geo-spatial distribution, the consequences of climate change include both positive and negative effects on the PPN communities. While assorting the effects of climate change as a whole, it can be estimated that the changing environmental factors, on one hand, will aggravate the PPN damage by aiding to abundance, distribution, reproduction, generation, plant growth and reduced plant defense, but the phenomena like sex reversal, entering cryptobiosis, and reduced survival should act in counter direction. This seemingly creates a contraposition effect, where assessing any confluent trend is difficult. However, as the climate change effects will differ according to space and time it is apprehensible that the PPNs will react and adapt according to their location and species specificity. Nevertheless, the bio-ecological shifts in the PPNs will necessitate tweaking their management practices from the agri-horticultural perspective. In this regard, we must aim for a 'climate-smart' package that will take care of the food production, pest prevention and environment protection. Integrated nematode management involving precise monitoring and modeling-based studies of population dynamics in relation to climatic fluctuations with escalated reliance on biocontrol, host resistance, and other safer approaches like crop rotation, crop scheduling, cover cropping, biofumigation, use of farmyard manure (FYM) would surely prove to be viable options. Although the novel nematicidal molecules are target-specific and relatively less harmful to the environment, their application should not be promoted following the global aim to reduce pesticide usage in future agriculture. Thus, having a reliable risk assessment with scenario planning, the adaptive management strategies must be designed to cope with the impending situation and satisfy the farmers' need.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, West Bengal, India
| |
Collapse
|
5
|
Jiranek J, Gibson A. Diet can alter the cost of resistance to a natural parasite in Caenorhabditis elegans. Ecol Evol 2023; 13:e9793. [PMID: 36789344 PMCID: PMC9911625 DOI: 10.1002/ece3.9793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Resistance to parasites confers a fitness advantage, yet hosts show substantial variation in resistance in natural populations. Evolutionary theory indicates that resistant and susceptible genotypes can coexist if resistance is costly, but there is mixed evidence that resistant individuals have lower fitness in the absence of parasites. One explanation for this discrepancy is that the cost of resistance varies with environmental context. We tested this hypothesis using Caenorhabditis elegans and its natural microsporidian parasite, Nematocida ironsii. We used multiple metrics to compare the fitness of two near-isogenic host genotypes differing at regions associated with resistance to N. ironsii. To quantify the effect of the environment on the cost associated with these known resistance regions, we measured fitness on three microbial diets. We found that the cost of resistance varied with both diet and the measure of fitness. We detected no cost to resistance, irrespective of diet, when fitness was measured as fecundity. However, we detected a cost when fitness was measured in terms of population growth, and the magnitude of this cost varied with diet. These results provide a proof of concept that, by mediating the cost of resistance, environmental context may govern the rate and nature of resistance evolution in heterogeneous environments.
Collapse
Affiliation(s)
- Juliana Jiranek
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Amanda Gibson
- Department of BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
6
|
Virulence evolution during a naturally occurring parasite outbreak. Evol Ecol 2023; 37:113-129. [PMID: 35431396 PMCID: PMC9002213 DOI: 10.1007/s10682-022-10169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/27/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Virulence, the degree to which a pathogen harms its host, is an important but poorly understood aspect of host-pathogen interactions. Virulence is not static, instead depending on ecological context and potentially evolving rapidly. For instance, at the start of an epidemic, when susceptible hosts are plentiful, pathogens may evolve increased virulence if this maximizes their intrinsic growth rate. However, if host density declines during an epidemic, theory predicts evolution of reduced virulence. Although well-studied theoretically, there is still little empirical evidence for virulence evolution in epidemics, especially in natural settings with native host and pathogen species. Here, we used a combination of field observations and lab assays in the Daphnia-Pasteuria model system to look for evidence of virulence evolution in nature. We monitored a large, naturally occurring outbreak of Pasteuria ramosa in Daphnia dentifera, where infection prevalence peaked at ~ 40% of the population infected and host density declined precipitously during the outbreak. In controlled infections in the lab, lifespan and reproduction of infected hosts was lower than that of unexposed control hosts and of hosts that were exposed but not infected. We did not detect any significant changes in host resistance or parasite infectivity, nor did we find evidence for shifts in parasite virulence (quantified by host lifespan and number of clutches produced by hosts). However, over the epidemic, the parasite evolved to produce significantly fewer spores in infected hosts. While this finding was unexpected, it might reflect previously quantified tradeoffs: parasites in high mortality (e.g., high predation) environments shift from vegetative growth to spore production sooner in infections, reducing spore yield. Future studies that track evolution of parasite spore yield in more populations, and that link those changes with genetic changes and with predation rates, will yield better insight into the drivers of parasite evolution in the wild. Supplementary Information The online version contains supplementary material available at 10.1007/s10682-022-10169-6.
Collapse
|
7
|
A paradox of parasite resistance: disease-driven trophic cascades increase the cost of resistance, selecting for lower resistance with parasites than without them. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Ebert D. Daphnia as a versatile model system in ecology and evolution. EvoDevo 2022; 13:16. [PMID: 35941607 PMCID: PMC9360664 DOI: 10.1186/s13227-022-00199-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Water fleas of the genus Daphnia have been a model system for hundreds of years and is among the best studied ecological model organisms to date. Daphnia are planktonic crustaceans with a cyclic parthenogenetic life-cycle. They have a nearly worldwide distribution, inhabiting standing fresh- and brackish water bodies, from small temporary pools to large lakes. Their predominantly asexual reproduction allows for the study of phenotypes excluding genetic variation, enabling us to separate genetic from non-genetic effects. Daphnia are often used in studies related to ecotoxicology, predator-induced defence, host–parasite interactions, phenotypic plasticity and, increasingly, in evolutionary genomics. The most commonly studied species are Daphnia magna and D. pulex, for which a rapidly increasing number of genetic and genomic tools are available. Here, I review current research topics, where the Daphnia model system plays a critical role.
Collapse
Affiliation(s)
- Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
| |
Collapse
|
9
|
McLean KD, Gowler CD, Dziuba MK, Zamani H, Hall SR, Duffy MA. Sexual recombination and temporal gene flow maintain host resistance and genetic diversity. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Dwyer G, Mihaljevic JR, Dukic V. Can Eco-Evo Theory Explain Population Cycles in the Field? Am Nat 2022; 199:108-125. [DOI: 10.1086/717178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Downie AE, Mayer A, Metcalf CJE, Graham AL. Optimal immune specificity at the intersection of host life history and parasite epidemiology. PLoS Comput Biol 2021; 17:e1009714. [PMID: 34932551 PMCID: PMC8730424 DOI: 10.1371/journal.pcbi.1009714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/05/2022] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Hosts diverge widely in how, and how well, they defend themselves against infection and immunopathology. Why are hosts so heterogeneous? Both epidemiology and life history are commonly hypothesized to influence host immune strategy, but the relationship between immune strategy and each factor has commonly been investigated in isolation. Here, we show that interactions between life history and epidemiology are crucial for determining optimal immune specificity and sensitivity. We propose a demographically-structured population dynamics model, in which we explore sensitivity and specificity of immune responses when epidemiological risks vary with age. We find that variation in life history traits associated with both reproduction and longevity alters optimal immune strategies-but the magnitude and sometimes even direction of these effects depends on how epidemiological risks vary across life. An especially compelling example that explains previously-puzzling empirical observations is that depending on whether infection risk declines or rises at reproductive maturity, later reproductive maturity can select for either greater or lower immune specificity, potentially illustrating why studies of lifespan and immune variation across taxa have been inconclusive. Thus, the sign of selection on the life history-immune specificity relationship can be reversed in different epidemiological contexts. Drawing on published life history data from a variety of chordate taxa, we generate testable predictions for this facet of the optimal immune strategy. Our results shed light on the causes of the heterogeneity found in immune defenses both within and among species and the ultimate variability of the relationship between life history and immune specificity.
Collapse
Affiliation(s)
- Alexander E. Downie
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Andreas Mayer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - C. Jessica E. Metcalf
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- School of Public and International Affairs, Princeton University, Princeton, New Jersey, United States of America
| | - Andrea L. Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
12
|
Shaw CL, Bilich R, O'Brien B, Cáceres CE, Hall SR, James TY, Duffy MA. Genotypic variation in an ecologically important parasite is associated with host species, lake and spore size. Parasitology 2021; 148:1303-1312. [PMID: 34103104 PMCID: PMC8383271 DOI: 10.1017/s0031182021000949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/10/2022]
Abstract
Genetic variation in parasites has important consequences for host–parasite interactions. Prior studies of the ecologically important parasite Metschnikowia bicuspidata have suggested low genetic variation in the species. Here, we collected M. bicuspidata from two host species (Daphnia dentifera and Ceriodaphnia dubia) and two regions (Michigan and Indiana, USA). Within a lake, outbreaks tended to occur in one host species but not the other. Using microsatellite markers, we identified six parasite genotypes grouped within three distinct clades, one of which was rare. Of the two main clades, one was generally associated with D. dentifera, with lakes in both regions containing a single genotype. The other M. bicuspidata clade was mainly associated with C. dubia, with a different genotype dominating in each region. Despite these associations, both D. dentifera- and C. dubia-associated genotypes were found infecting both hosts in lakes. However, in lab experiments, the D. dentifera-associated genotype infected both D. dentifera and C. dubia, but the C. dubia-associated genotype, which had spores that were approximately 30% smaller, did not infect D. dentifera. We hypothesize that variation in spore size might help explain patterns of cross-species transmission. Future studies exploring the causes and consequences of variation in spore size may help explain patterns of infection and the maintenance of genotypic diversity in this ecologically important system.
Collapse
Affiliation(s)
- Clara L. Shaw
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Rebecca Bilich
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Bruce O'Brien
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Carla E. Cáceres
- Department of Evolution, Ecology, & Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801, USA
| | - Spencer R. Hall
- Department of Biology, Indiana University, Bloomington, IN47405, USA
| | - Timothy Y. James
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| | - Meghan A. Duffy
- Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI48109, USA
| |
Collapse
|
13
|
Searle CL, Christie MR. Evolutionary rescue in host-pathogen systems. Evolution 2021; 75:2948-2958. [PMID: 34018610 DOI: 10.1111/evo.14269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
Natural populations encounter a variety of threats that can increase their risk of extinction. Populations can avoid extinction through evolutionary rescue (ER), which occurs when an adaptive, genetic response to selection allows a population to recover from an environmental change that would otherwise cause extinction. While the traditional framework for ER was developed with abiotic risk factors in mind, ER may also occur in response to a biotic source of demographic change, such as the introduction of a novel pathogen. We first describe how ER in response to a pathogen differs from the traditional ER framework; density-dependent transmission, pathogen evolution, and pathogen extinction can change the strength of selection imposed by a pathogen and make host population persistence more likely. We also discuss several variables that affect traditional ER (abundance, genetic diversity, population connectivity, and community composition) that also directly affect disease risk resulting in diverse outcomes for ER in host-pathogen systems. Thus, generalizations developed in studies of traditional ER may not be relevant for ER in response to the introduction of a pathogen. Incorporating pathogens into the framework of ER will lead to a better understanding of how and when populations can avoid extinction in response to novel pathogens.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907
| | - Mark R Christie
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
14
|
Kim D, Shaw AK. Migration and tolerance shape host behaviour and response to parasite infection. J Anim Ecol 2021; 90:2315-2324. [PMID: 34014562 DOI: 10.1111/1365-2656.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 11/26/2022]
Abstract
Numerous theoretical models have demonstrated that migration, a seasonal animal movement behaviour, can minimize the risks and costs of parasite infection. Past work on migration-infection interactions assumes migration is the only strategy available to organisms for dealing with the parasite infection, that is they migrate to a different environment to recover or escape from infection. Thus, migration is similar to the non-spatial strategy of resistance, where hosts prevent infection or kill parasites once infected. However, an alternative defence strategy is to tolerate the infection and experience a lower cost to the infection. To our knowledge, no studies have examined how migration can change based on combining two host strategies (migration and tolerance) for dealing with parasites. In this paper, we aim to understand how both parasite transmission and infection tolerance can influence the host's migratory behaviour. We constructed a model that incorporates two host strategies (migration and tolerance) to understand whether allowing for tolerance affects the proportion of the population that migrates at equilibrium in response to infection. We show that the benefits of tolerance can either decrease or increase the host's migration. Also, if the benefit of migration is great, then individuals are more likely to migrate regardless of the presence of tolerance. Finally, we find that the transmission rate of parasite infection can either decrease or increase the tolerant host's migration, depending on the cost of migration. These findings highlight that adopting two defence strategies is not always beneficial to the hosts. Instead, a single strategy is often better, depending on the costs and benefits of the strategies and infection pressures. Our work further suggests that multiple host-defence strategies as a potential explanation for the evolution of migration to minimize the parasite infection. Moreover, migration can also affect the ecological and evolutionary dynamics of parasite-host interactions.
Collapse
Affiliation(s)
- Dongmin Kim
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Allison K Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
15
|
Ecology directs host-parasite coevolutionary trajectories across Daphnia-microparasite populations. Nat Ecol Evol 2021; 5:480-486. [PMID: 33589801 DOI: 10.1038/s41559-021-01390-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023]
Abstract
Host-parasite interactions often fuel coevolutionary change. However, parasitism is one of a myriad of possible ecological interactions in nature. Biotic (for example, predation) and abiotic (for example, temperature) variation can amplify or dilute parasitism as a selective force on hosts and parasites, driving population variation in (co)evolutionary trajectories. We dissected the relationships between wider ecology and coevolutionary trajectory using 16 ecologically complex Daphnia magna-Pasteuria ramosa ponds seeded with an identical starting host (Daphnia) and parasite (Pasteuria) population. We show, using a time-shift experiment and outdoor population data, how multivariate biotic and abiotic ecological differences between ponds caused coevolutionary divergence. Wider ecology drove variation in host evolution of resistance, but not parasite infectivity; parasites subsequently coevolved in response to the changing complement of host genotypes, such that parasites adapted to historically resistant host genotypes. Parasitism was a stronger interaction for the parasite than for its host, probably because the host is the principal environment and selective force, whereas for hosts, parasite-mediated selection is one of many sources of selection. Our findings reveal the mechanisms through which wider ecology creates coevolutionary hotspots and coldspots in biologically realistic arenas of host-parasite interaction, and sheds light on how the ecological theatre can affect the (co)evolutionary play.
Collapse
|
16
|
Grainger TN, Rudman SM, Schmidt P, Levine JM. Competitive history shapes rapid evolution in a seasonal climate. Proc Natl Acad Sci U S A 2021; 118:e2015772118. [PMID: 33536336 PMCID: PMC8017725 DOI: 10.1073/pnas.2015772118] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544;
| | - Seth M Rudman
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
- School of Biological Sciences, Washington State University, Vancouver, WA 98686
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Jonathan M Levine
- Ecology and Evolutionary Biology Department, Princeton University, Princeton NJ 08544
| |
Collapse
|
17
|
van Dijk JGB, Iverson SA, Gilchrist HG, Harms NJ, Hennin HL, Love OP, Buttler EI, Lesceu S, Foster JT, Forbes MR, Soos C. Herd immunity drives the epidemic fadeout of avian cholera in Arctic-nesting seabirds. Sci Rep 2021; 11:1046. [PMID: 33441657 PMCID: PMC7806777 DOI: 10.1038/s41598-020-79888-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Avian cholera, caused by the bacterium Pasteurella multocida, is a common and important infectious disease of wild birds in North America. Between 2005 and 2012, avian cholera caused annual mortality of widely varying magnitudes in Northern common eiders (Somateria mollissima borealis) breeding at the largest colony in the Canadian Arctic, Mitivik Island, Nunavut. Although herd immunity, in which a large proportion of the population acquires immunity to the disease, has been suggested to play a role in epidemic fadeout, immunological studies exploring this hypothesis have been missing. We investigated the role of three potential drivers of fadeout of avian cholera in eiders, including immunity, prevalence of infection, and colony size. Each potential driver was examined in relation to the annual real-time reproductive number (Rt) of P. multocida, previously calculated for eiders at Mitivik Island. Each year, colony size was estimated and eiders were closely monitored, and evaluated for infection and serological status. We demonstrate that acquired immunity approximated using antibody titers to P. multocida in both sexes was likely a key driver for the epidemic fadeout. This study exemplifies the importance of herd immunity in influencing the dynamics and fadeout of epidemics in a wildlife population.
Collapse
Affiliation(s)
- Jacintha G B van Dijk
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, 391 82, Kalmar, Sweden
| | - Samuel A Iverson
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Environment and Climate Change Canada, Canadian Wildlife Service, Gatineau, QC, K1A 0H3, Canada
| | - H Grant Gilchrist
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada.,Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, ON, K1S 5B6, Canada
| | - N Jane Harms
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.,Environment Yukon, Animal Health Unit, Whitehorse, YT, Y1A 4Y9, Canada
| | - Holly L Hennin
- Environment and Climate Change Canada, National Wildlife Research Center, Ottawa, ON, K1S 5B6, Canada.,Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - E Isabel Buttler
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | | | - Jeffrey T Foster
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Mark R Forbes
- Department of Biology, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - Catherine Soos
- Department of Veterinary Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada. .,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Saskatoon, SK, S7N 0X4, Canada.
| |
Collapse
|
18
|
McLean AHC, Parker BJ. Variation in intrinsic resistance of pea aphids to parasitoid wasps: A transcriptomic basis. PLoS One 2020; 15:e0242159. [PMID: 33206703 PMCID: PMC7673541 DOI: 10.1371/journal.pone.0242159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022] Open
Abstract
Evolutionary interactions between parasitoid wasps and insect hosts have been well studied at the organismal level, but little is known about the molecular mechanisms that insects use to resist wasp parasitism. Here we study the interaction between a braconid wasp (Aphidius ervi) and its pea aphid host (Acyrthosiphon pisum). We first identify variation in resistance to wasp parasitism that can be attributed to aphid genotype. We then use transcriptome sequencing to identify genes in the aphid genome that are differentially expressed at an early stage of parasitism, and we compare these patterns in highly resistant and susceptible aphid host lines. We find that resistant genotypes are upregulating genes involved in carbohydrate metabolism and several key innate immune system genes in response to parasitism, but that this response seems to be weaker in susceptible aphid genotypes. Together, our results provide a first look into the complex molecular mechanisms that underlie aphid resistance to wasp parasitism and contribute to a broader understanding of how resistance mechanisms evolve in natural populations.
Collapse
Affiliation(s)
| | - Benjamin J. Parker
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|
19
|
Large-scale disease patterns explained by climatic seasonality and host traits. Oecologia 2020; 194:723-733. [DOI: 10.1007/s00442-020-04782-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
|
20
|
Cuco AP, Wolinska J, Santos JI, Abrantes N, Gonçalves FJM, Castro BB. Can parasites adapt to pollutants? A multigenerational experiment with a Daphnia × Metschnikowia model system exposed to the fungicide tebuconazole. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105584. [PMID: 32795838 DOI: 10.1016/j.aquatox.2020.105584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/05/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
There is increasing evidence about negative effects of fungicides on non-target organisms, including parasitic species, which are key elements in food webs. Previous experiments showed that environmentally relevant concentrations of fungicide tebuconazole are toxic to the microparasite Metschnikowia bicuspidata, a yeast species that infects the planktonic crustacean Daphnia spp. However, due to their short-term nature, this and other experimental studies were not able to test if parasites could potentially adapt to these contaminants. Here, we tested if M. bicuspidata parasite can adapt to tebuconazole selective pressure. Infected D. magna lineages were reared under control conditions (no tebuconazole) and environmentally realistic tebuconazole concentrations, for four generations, and their performance was compared in a follow-up reciprocal assay. Additionally, we assessed whether the observed effects were transient (phenotypic) or permanent (genetic), by reassessing parasite fitness after the removal of selective pressure. Parasite fitness was negatively affected throughout the multigenerational exposure to the fungicide: prevalence of infection and spore load decreased, whereas host longevity increased, in comparison to control (naive) parasite lineages. In a follow-up reciprocal assay, tebuconazole-conditioned (TEB) lineages performed worse than naive parasite lineages, both in treatments without and with tebuconazole, confirming the cumulative negative effect of tebuconazole. The underperformance of TEB lineages was rapidly reversed after removing the influence of the selective pressure (tebuconazole), demonstrating that the costs of prolonged exposure to tebuconazole were phenotypic and transient. The microparasitic yeast M. bicuspidata did not reveal potential for rapid evolution to an anthropogenic selective pressure; instead, the long-term exposure to tebuconazole was hazardous to this non-target species. These findings highlight the potential environmental risks of azole fungicides on non-target parasitic fungi. The underperformance of these microbes and their inability to adapt to such stressors can interfere with the key processes where they intervene. Further research is needed to rank fungicides based on the hazard to non-target fungi (parasites, but also symbionts and decomposers), towards more effective management and protective legislation.
Collapse
Affiliation(s)
- Ana P Cuco
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal; CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal.
| | - Justyna Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Joana I Santos
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Nelson Abrantes
- CESAM, University of Aveiro, Aveiro, Portugal; Department of Environment and Planning, University of Aveiro, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, Aveiro, Portugal; CESAM, University of Aveiro, Aveiro, Portugal
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
21
|
Crawford JW, Schrader M, Hall SR, Cáceres CE. Intraspecific variation in resource use is not explained by population persistence or seasonality. Oecologia 2020; 193:135-142. [PMID: 32307672 DOI: 10.1007/s00442-020-04651-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
Abstract
Populations of generalist grazers often contain genotypes with "powerful" and "efficient" strategies. Powerful genotypes grow rapidly on rich-quality resources, but slowly on poorer-quality ones, while efficient genotypes grow relatively better on poorer resources but cannot exploit richer resources as well. Via a "power-efficiency" trade-off, variation in resource quality could maintain genetic diversity. To evaluate this mechanism, we sampled six populations of the freshwater cladoceran Daphnia pulicaria. In persisting (year-round) populations, Daphnia consume resources that vary in quality, whereas in non-persisting (spring-only) populations, Daphnia primarily encounter rich-quality resources. We hypothesized that non-persisting populations harbor no efficient clones (hence should show lower growth on poor-quality resources). Although individuals from non-persisting populations remained smaller than individuals from persisting populations, no evidence arose for a trade-off between powerful and efficient strategies. In fact, growth rates on the two diets were positively correlated (instead of negatively, as predicted). Furthermore, in the persisting populations, we predicted that clonal selection from spring to summer should shift the distribution of genotypes from powerful (specialists on richer spring resources) to efficient (poorer, summer resources). Genetic composition of populations shifted from spring to summer, but not toward more efficient genotypes. Therefore, in these lakes, maintenance of variation among genotypes must stem from more complicated factors than population persistence patterns or seasonal shifts in resource quality alone.
Collapse
Affiliation(s)
- John W Crawford
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA
| | - Matthew Schrader
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.,Department of Biology, University of the South, Sewanee, TN, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Carla E Cáceres
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
22
|
Ives AR, Barton BT, Penczykowski RM, Harmon JP, Kim KL, Oliver K, Radeloff VC. Self-perpetuating ecological–evolutionary dynamics in an agricultural host–parasite system. Nat Ecol Evol 2020; 4:702-711. [DOI: 10.1038/s41559-020-1155-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
|
23
|
Cortez MH, Patel S, Schreiber SJ. Destabilizing evolutionary and eco-evolutionary feedbacks drive empirical eco-evolutionary cycles. Proc Biol Sci 2020; 287:20192298. [PMID: 31964307 DOI: 10.1098/rspb.2019.2298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We develop a method to identify how ecological, evolutionary, and eco-evolutionary feedbacks influence system stability. We apply our method to nine empirically parametrized eco-evolutionary models of exploiter-victim systems from the literature and identify which particular feedbacks cause some systems to converge to a steady state or to exhibit sustained oscillations. We find that ecological feedbacks involving the interactions between all species and evolutionary and eco-evolutionary feedbacks involving only the interactions between exploiter species (predators or pathogens) are typically stabilizing. In contrast, evolutionary and eco-evolutionary feedbacks involving the interactions between victim species (prey or hosts) are destabilizing more often than not. We also find that while eco-evolutionary feedbacks rarely altered system stability from what would be predicted from just ecological and evolutionary feedbacks, eco-evolutionary feedbacks have the potential to alter system stability at faster or slower speeds of evolution. As the number of empirical studies demonstrating eco-evolutionary feedbacks increases, we can continue to apply these methods to determine whether the patterns we observe are common in other empirical communities.
Collapse
Affiliation(s)
- Michael H Cortez
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.,Department of Mathematics and Statistics and Ecology Center, Utah State University, Logan UT 84322, USA
| | - Swati Patel
- Department of Mathematics, Tulane University, New Orleans, LA 70115, USA
| | - Sebastian J Schreiber
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
24
|
Civitello DJ, Baker LH, Maduraiveeran S, Hartman RB. Resource fluctuations inhibit the reproduction and virulence of the human parasite Schistosoma mansoni in its snail intermediate host. Proc Biol Sci 2020; 287:20192446. [PMID: 31964301 DOI: 10.1098/rspb.2019.2446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resource availability can powerfully influence host-parasite interactions. However, we currently lack a mechanistic framework to predict how resource fluctuations alter individual infection dynamics. We address this gap with experiments manipulating resource supply and starvation for a human parasite, Schistosoma mansoni, and its snail intermediate host to test a hypothesis derived from mechanistic energy budget theory: resource fluctuations should reduce schistosome reproduction and virulence by inhibiting parasite ingestion of host biomass. Low resource supply caused hosts to remain small, reproduce less and produce fewer human-infectious cercariae. Periodic starvation also inhibited cercarial production and prevented infection-induced castration. The periodic starvation experiment also revealed substantial differences in fit between two bioenergetic model variants, which differ in their representation of host starvation. Simulations using the best-fit parameters of the winning model suggest that schistosome performance substantially declines with resource fluctuations with periods greater than 7 days. These experiments strengthen mechanistic theory, which can be readily scaled up to the population level to understand key feedbacks between resources, host population dynamics, parasitism and control interventions. Integrating resources with other environmental drivers of disease in an explicit bioenergetic framework could ultimately yield mechanistic predictions for many disease systems.
Collapse
Affiliation(s)
- David J Civitello
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Lucy H Baker
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | | - Rachel B Hartman
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
25
|
Strauss AT, Hite JL, Civitello DJ, Shocket MS, Cáceres CE, Hall SR. Genotypic variation in parasite avoidance behaviour and other mechanistic, nonlinear components of transmission. Proc Biol Sci 2019; 286:20192164. [PMID: 31744438 DOI: 10.1098/rspb.2019.2164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Traditional epidemiological models assume that transmission increases proportionally to the density of parasites. However, empirical data frequently contradict this assumption. General yet mechanistic models can explain why transmission depends nonlinearly on parasite density and thereby identify potential defensive strategies of hosts. For example, hosts could decrease their exposure rates at higher parasite densities (via behavioural avoidance) or decrease their per-parasite susceptibility when encountering more parasites (e.g. via stronger immune responses). To illustrate, we fitted mechanistic transmission models to 19 genotypes of Daphnia dentifera hosts over gradients of the trophically acquired parasite, Metschnikowia bicuspidata. Exposure rate (foraging, F) frequently decreased with parasite density (Z), and per-parasite susceptibility (U) frequently decreased with parasite encounters (F × Z). Consequently, infection rates (F × U × Z) often peaked at intermediate parasite densities. Moreover, host genotypes varied substantially in these responses. Exposure rates remained constant for some genotypes but decreased sensitively with parasite density for others (up to 78%). Furthermore, genotypes with more sensitive foraging/exposure also foraged faster in the absence of parasites (suggesting 'fast and sensitive' versus 'slow and steady' strategies). These relationships suggest that high densities of parasites can inhibit transmission by decreasing exposure rates and/or per-parasite susceptibility, and identify several intriguing axes for the evolution of host defence.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | | | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
26
|
Reznick DN, Bassar RD, Handelsman CA, Ghalambor CK, Arendt J, Coulson T, Potter T, Ruell EW, Torres-Dowdall J, Bentzen P, Travis J. Eco-Evolutionary Feedbacks Predict the Time Course of Rapid Life-History Evolution. Am Nat 2019; 194:671-692. [DOI: 10.1086/705380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Anaya-Rojas JM, Best RJ, Brunner FS, Eizaguirre C, Leal MC, Melián CJ, Seehausen O, Matthews B. An experimental test of how parasites of predators can influence trophic cascades and ecosystem functioning. Ecology 2019; 100:e02744. [PMID: 31135996 DOI: 10.1002/ecy.2744] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/21/2019] [Accepted: 03/29/2019] [Indexed: 11/07/2022]
Abstract
Parasites can shape the structure and function of ecosystems by influencing both the density and traits of their hosts. Such changes in ecosystems are particularly likely when the host is a predator that mediates the dynamics of trophic cascades. Here, we experimentally tested how parasite load of a small predatory fish, the threespine stickleback, can affect the occurrence and strength of trophic cascades and ecosystem functioning. In a factorial mesocosm experiment, we manipulated the density of stickleback (low vs. high), and the level of parasite load (natural vs. reduced). In addition, we used two stickleback populations from different lineages: an eastern European lineage with a more pelagic phenotype (Lake Constance) and a western European lineage with a more benthic phenotype (Lake Geneva). We found that stickleback caused trophic cascades in the pelagic but not the benthic food chain. Evidence for pelagic trophic cascades was stronger in treatments where parasite load of stickleback was reduced with an antihelmintic medication, and where fish originated from Lake Constance (i.e., the more pelagic lineage). A structural equation model revealed that differences in stickleback lineage and parasite load were most likely to impact trophic cascades via changes in the composition, rather than overall biomass, of zooplankton communities. Overall, our results provide experimental evidence that parasites of predators can influence the cascading effects of fish on lower trophic levels with consequences on ecosystem functioning.
Collapse
Affiliation(s)
- Jaime M Anaya-Rojas
- Department of Biological Science, Florida State University, Tallahassee, Florida, 32306, USA.,Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Aquatic Ecology Seestrasse 79, Kastanienbaum, 6047, Switzerland
| | - Rebecca J Best
- Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Aquatic Ecology Seestrasse 79, Kastanienbaum, 6047, Switzerland.,School of Earth and Sustainability, Northern Arizona University, 525 South Beaver Street, Flagstaff, Arizona, 86011, USA
| | - Franziska S Brunner
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK.,School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Miguel Costa Leal
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal.,Fish Ecology and Evolution Department, Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland
| | - Carlos J Melián
- Fish Ecology and Evolution Department, Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland
| | - Ole Seehausen
- Fish Ecology and Evolution Department, Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Seestrasse 79, Kastanienbaum, 6047, Switzerland.,Institute of Ecology & Evolution, Aquatic Ecology & Evolution, University of Bern, Baltzerstrasse 6, Bern, 3012, Switzerland
| | - Blake Matthews
- Center for Evolution & Biogeochemistry, Eawag, Swiss Federal Institute for Aquatic Science and Technology, Aquatic Ecology Seestrasse 79, Kastanienbaum, 6047, Switzerland
| |
Collapse
|
28
|
Piecyk A, Roth O, Kalbe M. Specificity of resistance and geographic patterns of virulence in a vertebrate host-parasite system. BMC Evol Biol 2019; 19:80. [PMID: 30890121 PMCID: PMC6425677 DOI: 10.1186/s12862-019-1406-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/28/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Host genotype - parasite genotype co-evolutionary dynamics are influenced by local biotic and abiotic environmental conditions. This results in spatially heterogeneous selection among host populations. How such heterogeneous selection influences host resistance, parasite infectivity and virulence remains largely unknown. We hypothesized that different co-evolutionary trajectories of a vertebrate host-parasite association result in specific virulence patterns when assessed on a large geographic scale. We used two reference host populations of three-spined sticklebacks and nine strains of their specific cestode parasite Schistocephalus solidus from across the Northern Hemisphere for controlled infection experiments. Host and parasite effects on infection phenotypes including host immune gene expression were determined. RESULTS S. solidus strains grew generally larger in hosts coming from a population with high parasite diversity and low S. solidus prevalence (DE hosts). Hosts from a population with low parasite diversity and high S. solidus prevalence (NO hosts) were better able to control the parasite's growth, regardless of the origin of the parasite. Host condition and immunological parameters converged upon infection and parasite growth showed the same geographic pattern in both host types. CONCLUSION Our results suggest that NO sticklebacks evolved resistance against a variety of S. solidus strains, whereas DE sticklebacks are less resistant against S. solidus. Our data provide evidence that differences in parasite prevalence can cause immunological heterogeneity and that parasite size, a proxy for virulence and resistance, is, on a geographic scale, determined by main effects of the host and the parasite and less by an interaction of both genotypes.
Collapse
Affiliation(s)
- Agnes Piecyk
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Olivia Roth
- Marine Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrookerweg 20, 24105 Kiel, Germany
| | - Martin Kalbe
- Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany
| |
Collapse
|
29
|
Civitello DJ, Allman BE, Morozumi C, Rohr JR. Assessing the direct and indirect effects of food provisioning and nutrient enrichment on wildlife infectious disease dynamics. Philos Trans R Soc Lond B Biol Sci 2019. [PMID: 29531153 DOI: 10.1098/rstb.2017.0101] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Anthropogenic resource supplementation can shape wildlife disease directly by altering the traits and densities of hosts and parasites or indirectly by stimulating prey, competitor or predator species. We first assess the direct epidemiological consequences of supplementation, highlighting the similarities and differences between food provisioning and two widespread forms of nutrient input: agricultural fertilization and aquatic nutrient enrichment. We then review an aquatic disease system and a general model to assess whether predator and competitor species can enhance or overturn the direct effects of enrichment. All forms of supplementation can directly affect epidemics by increasing host population size or altering parasite production within hosts, but food provisioning is most likely to aggregate hosts and increase parasite transmission. However, if predators or competitors increase in response to supplementation, they could alter resource-fuelled outbreaks in focal hosts. We recommend identifying the traits of hosts, parasites or interacting species that best predict epidemiological responses to supplementation and evaluating the relative importance of these direct and indirect mechanisms. Theory and experiments should examine the timing of behavioural, physiological and demographic changes for realistic, variable scenarios of supplementation. A more integrative view of resource supplementation and wildlife disease could yield broadly applicable disease management strategies.This article is part of the theme issue 'Anthropogenic resource subsidies and host-parasite dynamics in wildlife'.
Collapse
Affiliation(s)
- David J Civitello
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA .,Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Brent E Allman
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Connor Morozumi
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, Atlanta, GA 30322, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
30
|
Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett 2018; 22:233-244. [PMID: 30478871 DOI: 10.1111/ele.13189] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Experimental studies of evolution performed in nature and the associated demonstration of rapid evolution, observable on a time scale of months to years, were an acclaimed novelty in the 1980-1990s. Contemporary evolution is now considered ordinary and is an integrated feature of many areas of research. This shift from extraordinary to ordinary reflects a change in the perception of evolution. It was formerly thought of as a historical process, perceived through the footprints left in the fossil record or living organisms. It is now seen as a contemporary process that acts in real time. Here we review how this shift occurred and its consequences for fields as diverse as wildlife management, conservation biology, and ecosystems ecology. Incorporating contemporary evolution in these fields has caused old questions to be recast, changed the answers, caused new and previously inconceivable questions to be addressed, and inspired the development of new subdisciplines. We argue further that the potential of contemporary evolution has yet to be fulfilled. Incorporating evolutionary dynamics in any research program can provide a better assessment of how and why organisms and communities came to be as they are than is attainable without an explicit treatment of these dynamics.
Collapse
Affiliation(s)
- David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521
| | - Jonathan Losos
- Department of Biology, Washington University, St. Louis, MO, 63130
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4340
| |
Collapse
|
31
|
Bartlett LJ, Wilfert L, Boots M. A genotypic trade-off between constitutive resistance to viral infection and host growth rate. Evolution 2018; 72:2749-2757. [PMID: 30298913 PMCID: PMC6492093 DOI: 10.1111/evo.13623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Genotypic trade‐offs are fundamental to the understanding of the evolution of life‐history traits. In particular, the evolution of optimal host defense and the maintenance of variation in defense against infectious disease is thought to be underpinned by such evolutionary trade‐offs. However, empirical demonstrations of these trade‐offs that satisfy the strict assumptions made by theoretical models are rare. Additionally, none of these trade‐offs have yet been shown to be robustly replicable using a variety of different experimental approaches to rule out confounding issues with particular experimental designs. Here, we use inbred isolines as a novel experimental approach to test whether a trade‐off between viral resistance and growth rate in Plodia interpunctella, previously demonstrated by multiple selection experiments, is robust and meets the strict criteria required to underpin theoretical work in this field. Critically, we demonstrate that this trade‐off is both genetic and constitutive. This finding helps support the large body of theory that relies on these assumptions, and makes this trade‐off for resistance unique in being replicated through multiple experimental approaches and definitively shown to be genetic and constitutive.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Lena Wilfert
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, California, 94720
| |
Collapse
|
32
|
Strauss AT, Hite JL, Shocket MS, Cáceres CE, Duffy MA, Hall SR. Rapid evolution rescues hosts from competition and disease but-despite a dilution effect-increases the density of infected hosts. Proc Biol Sci 2018; 284:rspb.2017.1970. [PMID: 29212726 DOI: 10.1098/rspb.2017.1970] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/02/2017] [Indexed: 11/12/2022] Open
Abstract
Virulent parasites can depress the densities of their hosts. Taxa that reduce disease via dilution effects might alleviate this burden. However, 'diluter' taxa can also depress host densities through competition for shared resources. The combination of disease and interspecific competition could even drive hosts extinct. Then again, genetically variable host populations can evolve in response to both competitors and parasites. Can rapid evolution rescue host density from the harm caused by these ecological enemies? How might such evolution influence dilution effects or the size of epidemics? In a mesocosm experiment with planktonic hosts, we illustrate the joint harm of competition and disease: hosts with constrained evolutionary ability (limited phenotypic variation) suffered greatly from both. However, populations starting with broader phenotypic variation evolved stronger competitive ability during epidemics. In turn, enhanced competitive ability-driven especially by parasites-rescued host densities from the negative impacts of competition, disease, and especially their combination. Interspecific competitors reduced disease (supporting dilution effects) even when hosts rapidly evolved. However, this evolutionary response also elicited a potential problem. Populations that evolved enhanced competitive ability and maintained robust total densities also supported higher densities of infections. Thus, rapid evolution rescued host densities but also unleashed larger epidemics.
Collapse
Affiliation(s)
| | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Marta S Shocket
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
33
|
Christie MR, Searle CL. Evolutionary rescue in a host-pathogen system results in coexistence not clearance. Evol Appl 2018; 11:681-693. [PMID: 29875810 PMCID: PMC5979755 DOI: 10.1111/eva.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/17/2017] [Indexed: 01/14/2023] Open
Abstract
The evolutionary rescue of host populations may prevent extinction from novel pathogens. However, the conditions that facilitate rapid evolution of hosts, in particular the population variation in host susceptibility, and the effects of host evolution in response to pathogens on population outcomes remain largely unknown. We constructed an individual-based model to determine the relationships between genetic variation in host susceptibility and population persistence in an amphibian-fungal pathogen (Batrachochytrium dendrobatidis) system. We found that host populations can rapidly evolve reduced susceptibility to a novel pathogen and that this rapid evolution led to a 71-fold increase in the likelihood of host-pathogen coexistence. However, the increased rates of coexistence came at a cost to host populations; fewer populations cleared infection, population sizes were depressed, and neutral genetic diversity was lost. Larger adult host population sizes and greater adaptive genetic variation prior to the onset of pathogen introduction led to substantially reduced rates of extinction, suggesting that populations with these characteristics should be prioritized for conservation when species are threatened by novel infectious diseases.
Collapse
Affiliation(s)
- Mark Redpath Christie
- Department of Biological SciencesPurdue UniversityWest LafayetteINUSA
- Department of Forestry and Natural ResourcesPurdue UniversityWest LafayetteINUSA
| | | |
Collapse
|
34
|
Dallas TA, Krkošek M, Drake JM. Experimental evidence of a pathogen invasion threshold. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171975. [PMID: 29410876 PMCID: PMC5792953 DOI: 10.1098/rsos.171975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/11/2017] [Indexed: 05/15/2023]
Abstract
Host density thresholds to pathogen invasion separate regions of parameter space corresponding to endemic and disease-free states. The host density threshold is a central concept in theoretical epidemiology and a common target of human and wildlife disease control programmes, but there is mixed evidence supporting the existence of thresholds, especially in wildlife populations or for pathogens with complex transmission modes (e.g. environmental transmission). Here, we demonstrate the existence of a host density threshold for an environmentally transmitted pathogen by combining an epidemiological model with a microcosm experiment. Experimental epidemics consisted of replicate populations of naive crustacean zooplankton (Daphnia dentifera) hosts across a range of host densities (20-640 hosts l-1) that were exposed to an environmentally transmitted fungal pathogen (Metschnikowia bicuspidata). Epidemiological model simulations, parametrized independently of the experiment, qualitatively predicted experimental pathogen invasion thresholds. Variability in parameter estimates did not strongly influence outcomes, though systematic changes to key parameters have the potential to shift pathogen invasion thresholds. In summary, we provide one of the first clear experimental demonstrations of pathogen invasion thresholds in a replicated experimental system, and provide evidence that such thresholds may be predictable using independently constructed epidemiological models.
Collapse
Affiliation(s)
- Tad A. Dallas
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Martin Krkošek
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - John M. Drake
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, USA
| |
Collapse
|
35
|
Auld SKJR, Brand J. Environmental variation causes different (co) evolutionary routes to the same adaptive destination across parasite populations. Evol Lett 2017; 1:245-254. [PMID: 30283653 PMCID: PMC6121849 DOI: 10.1002/evl3.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/15/2017] [Indexed: 11/13/2022] Open
Abstract
Epidemics are engines for host-parasite coevolution, where parasite adaptation to hosts drives reciprocal adaptation in host populations. A key challenge is to understand whether parasite adaptation and any underlying evolution and coevolution is repeatable across ecologically realistic populations that experience different environmental conditions, or if each population follows a completely unique evolutionary path. We established twenty replicate pond populations comprising an identical suite of genotypes of crustacean host, Daphnia magna, and inoculum of their parasite, Pasteuria ramosa. Using a time-shift experiment, we compared parasite infection traits before and after epidemics and linked patterns of parasite evolution with shifts in host genotype frequencies. Parasite adaptation to the sympatric suite of host genotypes came at a cost of poorer performance on foreign genotypes across populations and environments. However, this consistent pattern of parasite adaptation was driven by different types of frequency-dependent selection that was contingent on an ecologically relevant environmental treatment (whether or not there was physical mixing of water within ponds). In unmixed ponds, large epidemics drove rapid and strong host-parasite coevolution. In mixed ponds, epidemics were smaller and host evolution was driven mainly by the mixing treatment itself; here, host evolution and parasite evolution were clear, but coevolution was absent. Population mixing breaks an otherwise robust coevolutionary cycle. These findings advance our understanding of the repeatability of (co)evolution across noisy, ecologically realistic populations.
Collapse
Affiliation(s)
- Stuart K. J. R. Auld
- Biological and Environmental SciencesUniversity of StirlingStirlingUnited Kingdom
| | - June Brand
- Biological and Environmental SciencesUniversity of StirlingStirlingUnited Kingdom
| |
Collapse
|
36
|
Tellenbach C, Tardent N, Pomati F, Keller B, Hairston NG, Wolinska J, Spaak P. Cyanobacteria facilitate parasite epidemics in Daphnia. Ecology 2017; 97:3422-3432. [PMID: 27912017 DOI: 10.1002/ecy.1576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/14/2016] [Accepted: 08/24/2016] [Indexed: 11/06/2022]
Abstract
The seasonal dominance of cyanobacteria in the phytoplankton community of lake ecosystems can have severe implications for higher trophic levels. For herbivorous zooplankton such as Daphnia, cyanobacteria have poor nutritional value and some species can produce toxins affecting zooplankton survival and reproduction. Here we present another, hitherto largely unexplored aspect of cyanobacteria, namely that they can increase Daphnia susceptibility to parasites. In a 12-yr monthly time-series analysis of the Daphnia community in Greifensee (Switzerland), we observed that cyanobacteria density correlated significantly with the epidemics of a common gut parasite of Daphnia, Caullerya mesnili, regardless of what cyanobacteria species was present or whether it was colonial or filamentous. The temperature from the previous month also affected the occurrence of Caullerya epidemics, either directly or indirectly by the promotion of cyanobacterial growth. A laboratory experiment confirmed that cyanobacteria increase the susceptibility of Daphnia to Caullerya, and suggested a possible involvement of cyanotoxins or other chemical traits of cyanobacteria in this process. These findings expand our understanding of the consequences of toxic cyanobacterial blooms for lake ecosystems and might be relevant for epidemics experienced by other aquatic species.
Collapse
Affiliation(s)
- C Tellenbach
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - N Tardent
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland
| | - F Pomati
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| | - B Keller
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Department of Systematic and Evolutionary Botany, University of Zurich, Zürich, 8008, Switzerland
| | - N G Hairston
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - J Wolinska
- Department of Ecosystem Research, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, Berlin, 12587, Germany.,Department of Biology, Chemistry and Pharmacy, Institute of Biology, Freie Universitat Berlin, Königin-Luise-Strasse 1-3, Berlin, 14195, Germany
| | - P Spaak
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, CH-8600, Switzerland.,Institute of Integrative Biology, ETH Zurich, Zurich, 8092, Switzerland
| |
Collapse
|
37
|
Stephenson JF, Young KA, Fox J, Jokela J, Cable J, Perkins SE. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160093. [PMID: 28289260 PMCID: PMC5352819 DOI: 10.1098/rstb.2016.0093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2016] [Indexed: 12/16/2022] Open
Abstract
Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts ('donors') to parasite-naive 'recipients'. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.
Collapse
Affiliation(s)
- Jessica F Stephenson
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Center for Adaptation to a Changing Environment, ETH Zürich, 8092 Zürich, Switzerland
| | - Kyle A Young
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland
| | - Jordan Fox
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Jukka Jokela
- Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Sarah E Perkins
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| |
Collapse
|
38
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
39
|
Weber JN, Kalbe M, Shim KC, Erin NI, Steinel NC, Ma L, Bolnick DI. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite. Am Nat 2017; 189:43-57. [DOI: 10.1086/689597] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Lewnard JA, Townsend JP. Climatic and evolutionary drivers of phase shifts in the plague epidemics of colonial India. Proc Natl Acad Sci U S A 2016; 113:14601-14608. [PMID: 27791071 PMCID: PMC5187705 DOI: 10.1073/pnas.1604985113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Immune heterogeneity in wild host populations indicates that disease-mediated selection is common in nature. However, the underlying dynamic feedbacks involving the ecology of disease transmission, evolutionary processes, and their interaction with environmental drivers have proven challenging to characterize. Plague presents an optimal system for interrogating such couplings: Yersinia pestis transmission exerts intense selective pressure driving the local persistence of disease resistance among its wildlife hosts in endemic areas. Investigations undertaken in colonial India after the introduction of plague in 1896 suggest that, only a decade after plague arrived, a heritable, plague-resistant phenotype had become prevalent among commensal rats of cities undergoing severe plague epidemics. To understand the possible evolutionary basis of these observations, we developed a mathematical model coupling environmentally forced plague dynamics with evolutionary selection of rats, capitalizing on extensive archival data from Indian Plague Commission investigations. Incorporating increased plague resistance among rats as a consequence of intense natural selection permits the model to reproduce observed changes in seasonal epidemic patterns in several cities and capture experimentally observed associations between climate and flea population dynamics in India. Our model results substantiate Victorian era claims of host evolution based on experimental observations of plague resistance and reveal the buffering effect of such evolution against environmental drivers of transmission. Our analysis shows that historical datasets can yield powerful insights into the transmission dynamics of reemerging disease agents with which we have limited contemporary experience to guide quantitative modeling and inference.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06520
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510;
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
41
|
Parratt SR, Numminen E, Laine AL. Infectious Disease Dynamics in Heterogeneous Landscapes. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2016. [DOI: 10.1146/annurev-ecolsys-121415-032321] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infectious diseases dynamics are affected by both spatial and temporal heterogeneity in their environments. Our ability to quantify and predict how this heterogeneity impacts risks of infection and disease emergence is the key to successful disease prevention efforts. Here, we review the literature on infectious diseases from human, agricultural, and wildlife ecosystems to describe the rapid ecological and evolutionary responses in pathogens to environmental heterogeneity, with expected impacts on their epidemiology. To date, the underlying network structures through which disease transmission proceeds have been notoriously difficult to quantify because of this variation. We show that with recent advances in statistical methods and genomic approaches, it is now more feasible than ever to trace disease transmission networks, the molecular underpinning of infection, and the environmental variation relevant to disease dynamics. We end by identifying major new opportunities and challenges in understanding disease dynamics in an ever-changing world.
Collapse
Affiliation(s)
- Steven R. Parratt
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Elina Numminen
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| | - Anna-Liisa Laine
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland;, ,
| |
Collapse
|
42
|
Kleindorfer S, Dudaniec RY. Host-parasite ecology, behavior and genetics: a review of the introduced fly parasite Philornis downsi and its Darwin’s finch hosts. BMC ZOOL 2016. [DOI: 10.1186/s40850-016-0003-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
43
|
Gibson AK, Xu JY, Lively CM. Within-population covariation between sexual reproduction and susceptibility to local parasites. Evolution 2016; 70:2049-60. [PMID: 27402345 DOI: 10.1111/evo.13001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/08/2016] [Accepted: 06/16/2016] [Indexed: 01/30/2023]
Abstract
Evolutionary biology has yet to reconcile the ubiquity of sex with its costs relative to asexual reproduction. Here, we test the hypothesis that coevolving parasites maintain sex in their hosts. Specifically, we examined the distributions of sexual reproduction and susceptibility to local parasites within a single population of freshwater snails (Potamopyrgus antipodarum). Susceptibility to local trematode parasites (Microphallus sp.) is a relative measure of the strength of coevolutionary selection in this system. Thus, if coevolving parasites maintain sex, sexual snails should be common where susceptibility is high. We tested this prediction in a mixed population of sexual and asexual snails by measuring the susceptibility of snails from multiple sites in a lake. Consistent with the prediction, the frequency of sexual snails was tightly and positively correlated with susceptibility to local parasites. Strikingly, in just two years, asexual females increased in frequency at sites where susceptibility declined. We also found that the frequency of sexual females covaries more strongly with susceptibility than with the prevalence of Microphallus infection in the field. In linking susceptibility to the frequency of sexual hosts, our results directly implicate spatial variation in coevolutionary selection in driving the geographic mosaic of sex.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Indiana University, Bloomington, Indiana, 47405.
| | - Julie Y Xu
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
44
|
Gibson AK, Jokela J, Lively CM. Fine-Scale Spatial Covariation between Infection Prevalence and Susceptibility in a Natural Population. Am Nat 2016; 188:1-14. [PMID: 27322117 DOI: 10.1086/686767] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The prevalence of infection varies dramatically on a fine spatial scale. Many evolutionary hypotheses are founded on the assumption that this variation is due to host genetics, such that sites with a high frequency of alleles conferring susceptibility are associated with higher infection prevalence. This assumption is largely untested and may be compromised at finer spatial scales where gene flow between sites is high. We put this assumption to the test in a natural snail-trematode interaction in which host susceptibility is known to have a strong genetic basis. A decade of field sampling revealed substantial spatial variation in infection prevalence between 13 sites around a small lake. Laboratory assays replicated over 3 years demonstrate striking variation in host susceptibility among sites in spite of high levels of gene flow between sites. We find that mean susceptibility can explain more than one-third of the observed variation in mean infection prevalence among sites. We estimate that variation in susceptibility and exposure together can explain the majority of variation in prevalence. Overall, our findings in this natural host-parasite system argue that spatial variation in infection prevalence covaries strongly with variation in the distribution of genetically based susceptibility, even at a fine spatial scale.
Collapse
|
45
|
Dallas T, Holtackers M, Drake JM. Costs of resistance and infection by a generalist pathogen. Ecol Evol 2016; 6:1737-44. [PMID: 26929813 PMCID: PMC4757773 DOI: 10.1002/ece3.1889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/10/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022] Open
Abstract
Pathogen infection is typically costly to hosts, resulting in reduced fitness. However, pathogen exposure may also come at a cost even if the host does not become infected. These fitness reductions, referred to as “resistance costs”, are inducible physiological costs expressed as a result of a trade‐off between resistance to a pathogen and aspects of host fitness (e.g., reproduction). Here, we examine resistance and infection costs of a generalist fungal pathogen (Metschnikowia bicuspidata) capable of infecting a number of host species. Costs were quantified as reductions in host lifespan, total reproduction, and mean clutch size as a function of pathogen exposure (resistance cost) or infection (infection cost). We provide empirical support for infection costs and modest support for resistance costs for five Daphnia host species. Specifically, only one host species examined incurred a significant cost of resistance. This species was the least susceptible to infection, suggesting the possibility that host susceptibility to infection is associated with the detectability and size of resistance cost. Host age at the time of pathogen exposure did not influence the magnitude of resistance or infection cost. Lastly, resistant hosts had fitness values intermediate between unexposed control hosts and infected hosts. Although not statistically significant, this could suggest that pathogen exposure does come at some marginal cost. Taken together, our findings suggest that infection is costly, resistance costs may simply be difficult to detect, and the magnitude of resistance cost may vary among host species as a result of host life history or susceptibility.
Collapse
Affiliation(s)
- Tad Dallas
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602
| | | | - John M Drake
- Odum School of Ecology University of Georgia 140 E. Green Street Athens Georgia 30602
| |
Collapse
|
46
|
Penczykowski RM, Laine A, Koskella B. Understanding the ecology and evolution of host-parasite interactions across scales. Evol Appl 2016; 9:37-52. [PMID: 27087838 PMCID: PMC4780374 DOI: 10.1111/eva.12294] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/18/2015] [Indexed: 12/19/2022] Open
Abstract
Predicting the emergence, spread and evolution of parasites within and among host populations requires insight to both the spatial and temporal scales of adaptation, including an understanding of within-host up through community-level dynamics. Although there are very few pathosystems for which such extensive data exist, there has been a recent push to integrate studies performed over multiple scales or to simultaneously test for dynamics occurring across scales. Drawing on examples from the literature, with primary emphasis on three diverse host-parasite case studies, we first examine current understanding of the spatial structure of host and parasite populations, including patterns of local adaptation and spatial variation in host resistance and parasite infectivity. We then explore the ways to measure temporal variation and dynamics in host-parasite interactions and discuss the need to examine change over both ecological and evolutionary timescales. Finally, we highlight new approaches and syntheses that allow for simultaneous analysis of dynamics across scales. We argue that there is great value in examining interplay among scales in studies of host-parasite interactions.
Collapse
Affiliation(s)
- Rachel M. Penczykowski
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Anna‐Liisa Laine
- Department of BiosciencesMetapopulation Research CentreUniversity of HelsinkiHelsinkiFinland
| | - Britt Koskella
- BiosciencesUniversity of ExeterTremoughUK
- Integrative BiologyUniversity of CaliforniaBerkeleyUSA
| |
Collapse
|
47
|
Reznick D. Hard and Soft Selection Revisited: How Evolution by Natural Selection Works in the Real World. J Hered 2015; 107:3-14. [PMID: 26424874 DOI: 10.1093/jhered/esv076] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/25/2015] [Indexed: 11/13/2022] Open
Abstract
The modern synthesis of evolutionary biology unified Darwin's natural selection with Mendelian genetics, but at the same time it created the dilemma of genetic load. Lewontin and Hubby's (1966) and Harris's (1966) characterization of genetic variation in natural populations increased the apparent burden of this load. Neutrality or near neutrality of genetic variation was one mechanism proposed for the revealed excessive genetic variation. Bruce Wallace coined the term "soft selection" to describe an alternative way for natural selection to operate that was consistent with observed variation. He envisioned nature as presenting ecological vacancies that could be filled by diverse genotypes. Survival and successful reproduction was a combined function of population density, genotype, and genotype frequencies, rather than a fixed value of the relative fitness of each genotype. My goal in this review is to explore the importance of soft selection in the real world. My motive and that of my colleagues as described here is not to explain what maintains genetic variation in natural populations, but rather to understand the factors that shape how organisms adapt to natural environments. We characterize how feedbacks between ecology and evolution shape both evolution and ecology. These feedbacks are mediated by density- and frequency-dependent selection, the mechanisms that underlie soft selection. Here, I report on our progress in characterizing these types of selection with a combination of a consideration of the published literature and the results from my collaborators' and my research on natural populations of guppies.
Collapse
Affiliation(s)
- David Reznick
- From the Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
48
|
Gervasi SS, Civitello DJ, Kilvitis HJ, Martin LB. The context of host competence: a role for plasticity in host-parasite dynamics. Trends Parasitol 2015; 31:419-25. [PMID: 26048486 PMCID: PMC4567474 DOI: 10.1016/j.pt.2015.05.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/15/2015] [Accepted: 05/05/2015] [Indexed: 12/17/2022]
Abstract
Even apparently similar hosts can respond differently to the same parasites. Some individuals or specific groups of individuals disproportionately affect disease dynamics. Understanding the sources of among-host heterogeneity in the ability to transmit parasites would improve disease management. A major source of host variation might be phenotypic plasticity - the tendency for phenotypes to change across different environments. Plasticity might be as important as, or even more important than, genetic change, especially in light of human modifications of the environment, because it can occur on a more rapid timescale than evolution. We argue that variation in phenotypic plasticity among and within species strongly contributes to epidemiological dynamics when parasites are shared among multiple hosts, which is often the case.
Collapse
Affiliation(s)
- Stephanie S Gervasi
- Department of Integrative Biology, University of South Florida, Science Center 110, Tampa, FL 33620, USA.
| | - David J Civitello
- Department of Integrative Biology, University of South Florida, Science Center 110, Tampa, FL 33620, USA
| | - Holly J Kilvitis
- Department of Integrative Biology, University of South Florida, Science Center 110, Tampa, FL 33620, USA
| | - Lynn B Martin
- Department of Integrative Biology, University of South Florida, Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
49
|
Decaestecker E, Verreydt D, De Meester L, Declerck SAJ. Parasite and nutrient enrichment effects on Daphnia interspecific competition. Ecology 2015; 96:1421-30. [PMID: 26236854 DOI: 10.1890/14-1167.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Increased productivity due to nutrient enrichment is hypothesized to affect density-dependent processes, such as transmission success of horizontally transmitting parasites. Changes in nutrient availability can also modify the stoichiometry and condition of individual hosts, which may affect their susceptibility for parasites as well as the growth conditions for parasites within the host. Consequently, if not balanced by increased host immuno-competence or life history responses, changes in the magnitude of parasite effects with increasing nutrient availability are expected. If these parasite effects are host-species specific, this may lead to shifts in the host community structure. We here used the Daphnia- parasite model system to study the effect of nutrient enrichment on parasite-mediated competition in experimental mesocosms. In the absence of parasites, D. magna was competitively dominant to D. pulex at both low and high nutrient levels. Introduction of parasites resulted in infections of D. magna, but not of D. pulex and, as such, reversed the competitive hierarchy between these two species. Nutrient addition resulted in an increased prevalence and infection intensity of some of the parasites on D. magna. However, there was no evidence that high nutrient levels enhanced negative effects of parasites on the hosts. Costs associated with parasite infections may have been compensated by better growth conditions for D. magna in the presence of high nutrient levels.
Collapse
|
50
|
Duffy MA, James TY, Longworth A. Ecology, Virulence, and Phylogeny of Blastulidium paedophthorum, a Widespread Brood Parasite of Daphnia spp. Appl Environ Microbiol 2015; 81:5486-96. [PMID: 26048938 PMCID: PMC4510196 DOI: 10.1128/aem.01369-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/28/2015] [Indexed: 11/20/2022] Open
Abstract
Parasitism is now recognized as a major factor impacting the ecology and evolution of plankton, including Daphnia. Parasites that attack the developing embryos of daphniids, known as brood parasites, were first described in the early 1900s but have received relatively little study. Here, we link previous morphological descriptions of the oomycete brood parasite Blastulidium paedophthorum with information on its phylogenetic placement, ecology, and virulence. Based on the morphology and phylogenetic relationship with other members of the Leptomitales, we show that a brood parasite observed in daphniids in the Midwestern United States is B. paedophthorum. We used morphology, DNA sequences, and laboratory infection experiments to show that B. paedophthorum is a multihost parasite that can be transmitted between species and genera. A field survey of six hosts in 15 lakes revealed that B. paedophthorum is common in all six host taxa (present on 38.3% of our host species-lake-sampling date combinations; the maximum infection prevalences were 8.7% of the population and 20% of the asexual adult female population). Although B. paedophthorum was observed in all 15 lakes, presence and infection prevalence varied among lakes. Infection with B. paedophthorum did not reduce host life span but significantly impacted host fecundity. Theory predicts that parasites that affect host fecundity without affecting host life span should have the strongest impact on host population dynamics. Based on its virulence and commonness in natural populations and on the central role of daphniids in freshwater food webs, we predict that B. paedophthorum will influence daphniid ecology and evolution, as well as the larger food web.
Collapse
Affiliation(s)
- Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alan Longworth
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|