1
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
2
|
Lv W, Wang Y. Neural Influences on Tumor Progression Within the Central Nervous System. CNS Neurosci Ther 2024; 30:e70097. [PMID: 39469896 PMCID: PMC11519750 DOI: 10.1111/cns.70097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
For decades, researchers have studied how brain tumors, the immune system, and drugs interact. With the advances in cancer neuroscience, which centers on defining and therapeutically targeting nervous system-cancer interactions, both within the local tumor microenvironment (TME) and on a systemic level, the subtle relationship between neurons and tumors in the central nervous system (CNS) has been deeply studied. Neurons, as the executors of brain functional activities, have been shown to significantly influence the emergence and development of brain tumors, including both primary and metastatic tumors. They engage with tumor cells via chemical or electrical synapses, directly regulating tumors or via intricate coupling networks, and also contribute to the TME through paracrine signaling, secreting proteins that exert regulatory effects. For instance, in a study involving a mouse model of glioblastoma, the authors observed a 42% increase in tumor volume when neuronal activity was stimulated, compared to controls (p < 0.01), indicating a direct correlation between neural activity and tumor growth. These thought-provoking results offer promising new strategies for brain tumor therapies, highlighting the potential of neuronal modulation to curb tumor progression. Future strategies may focus on developing drugs to inhibit or neutralize proteins and other bioactive substances secreted by neurons, break synaptic connections and interactions between infiltrating cells and tumor cells, as well as disrupt electrical coupling within glioma cell networks. By harnessing the insights gained from this research, we aspire to usher in a new era of brain tumor therapies that are both more potent and precise.
Collapse
Affiliation(s)
- Wenhao Lv
- Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouZhejiangChina
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yongjie Wang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
3
|
Huang X, Feng Z, Liu D, Gou Y, Chen M, Tang D, Han C, Peng J, Peng D, Xue Y. PTMD 2.0: an updated database of disease-associated post-translational modifications. Nucleic Acids Res 2024:gkae850. [PMID: 39329270 DOI: 10.1093/nar/gkae850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Various post-translational modifications (PTMs) participate in nearly all aspects of biological processes by regulating protein functions, and aberrant states of PTMs are frequently associated with human diseases. Here, we present a comprehensive database of PTMs associated with diseases (PTMD 2.0), including 342 624 PTM-disease associations (PDAs) in 15 105 proteins for 93 types of PTMs and 2083 diseases. Based on the distinct PTM states in diseases, we classified all PDAs into six categories: upregulation (U) or downregulation (D) of PTM levels, absence (A) or presence (P) of PTMs, and creation (C) or disruption (N) of PTM sites. We provided detailed annotations for each PDA and carefully annotated disease-associated proteins by integrating the knowledge from 101 additional resources that covered 13 aspects, including disease-associated information, variation and mutation, protein-protein interaction, protein functional annotation, DNA and RNA element, protein structure, chemical-target relationship, mRNA expression, protein expression/proteomics, subcellular localization, biological pathway annotation, functional domain annotation and physicochemical property. With a data volume of ∼8 GB, we anticipate that PTMD 2.0 will serve as a fundamental resource for further analysing the relationships between PTMs and diseases. The online service of PTMD 2.0 is freely available at https://ptmd.biocuckoo.cn/.
Collapse
Affiliation(s)
- Xinhe Huang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Zihao Feng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dan Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yujie Gou
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Miaomiao Chen
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Dachao Tang
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Cheng Han
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Jianzhen Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Di Peng
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
| | - Yu Xue
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074, China
- Nanjing University Institute of Artificial Intelligence Biomedicine, Xianlin Avenue 163, Nanjing 210031, China
| |
Collapse
|
4
|
Dalal K, Yang W, Tian E, Chernish A, McCluggage P, Lara AJ, Ten Hagen KG, Tabak LA. In vivo mapping of the mouse Galnt3-specific O-glycoproteome. J Biol Chem 2024; 300:107628. [PMID: 39098533 PMCID: PMC11402288 DOI: 10.1016/j.jbc.2024.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.
Collapse
Affiliation(s)
- Kruti Dalal
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiming Yang
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliona Chernish
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peggy McCluggage
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander J Lara
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence A Tabak
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
6
|
Taurozzi AJ, Rüther PL, Patramanis I, Koenig C, Sinclair Paterson R, Madupe PP, Harking FS, Welker F, Mackie M, Ramos-Madrigal J, Olsen JV, Cappellini E. Deep-time phylogenetic inference by paleoproteomic analysis of dental enamel. Nat Protoc 2024; 19:2085-2116. [PMID: 38671208 DOI: 10.1038/s41596-024-00975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/12/2024] [Indexed: 04/28/2024]
Abstract
In temperate and subtropical regions, ancient proteins are reported to survive up to about 2 million years, far beyond the known limits of ancient DNA preservation in the same areas. Accordingly, their amino acid sequences currently represent the only source of genetic information available to pursue phylogenetic inference involving species that went extinct too long ago to be amenable for ancient DNA analysis. Here we present a complete workflow, including sample preparation, mass spectrometric data acquisition and computational analysis, to recover and interpret million-year-old dental enamel protein sequences. During sample preparation, the proteolytic digestion step, usually an integral part of conventional bottom-up proteomics, is omitted to increase the recovery of the randomly degraded peptides spontaneously generated by extensive diagenetic hydrolysis of ancient proteins over geological time. Similarly, we describe other solutions we have adopted to (1) authenticate the endogenous origin of the protein traces we identify, (2) detect and validate amino acid variation in the ancient protein sequences and (3) attempt phylogenetic inference. Sample preparation and data acquisition can be completed in 3-4 working days, while subsequent data analysis usually takes 2-5 days. The workflow described requires basic expertise in ancient biomolecules analysis, mass spectrometry-based proteomics and molecular phylogeny. Finally, we describe the limits of this approach and its potential for the reconstruction of evolutionary relationships in paleontology and paleoanthropology.
Collapse
Affiliation(s)
| | - Patrick L Rüther
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Claire Koenig
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Palesa P Madupe
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Florian Simon Harking
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Frido Welker
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Meaghan Mackie
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Qian Z, Sun L, Wang R, Dong X, Sun J, Dong C, Qu D, Gu X, Zhao C. High-Fidelity Spatiotemporal Recognition of Golgi ALP through an Initial-Accumulation and Postactivation Strategy. Anal Chem 2024; 96:9737-9743. [PMID: 38825763 DOI: 10.1021/acs.analchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Various signal molecules mediate complex physiological processes collectively in the Golgi. However, most currently accessible probes are questionable in illuminating the functions of these reactive species in Golgi because of the inability to irradiate these probes only at the desired Golgi location, which compromises specificity and accuracy. In this study, we rationally designed the first photocontrollable and Golgi-targeted fluorescent probe to in situ visualize the Golgi alkaline phosphatase (ALP). The designed probe with natural yellow fluorescence can provide access into Golgi and monitor the exact timing of accumulation in Golgi. On-demand photoactivation at only the desired Golgi location affords a significant emission response to ALP with illuminating red fluorescence at 710 nm. Through the photocontrollable fluorescence responsiveness to ALP, precise spatiotemporal recognition of Golgi ALP fluctuations is successfully performed. With this probe, for the first time, we revealed the Golgi ALP levels during cisplatin-induced acute kidney injury (AKI), which will further facilitate and complement the comprehensive exploration of ALP kinetics during physiological and pathological processes.
Collapse
Affiliation(s)
- Zehua Qian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lixin Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Rongchen Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jie Sun
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Chengjun Dong
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Dahui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xianfeng Gu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
8
|
Wang SK, Zhang H, Lin HC, Wang YL, Lin SC, Seymen F, Koruyucu M, Simmer JP, Hu JCC. AMELX Mutations and Genotype-Phenotype Correlation in X-Linked Amelogenesis Imperfecta. Int J Mol Sci 2024; 25:6132. [PMID: 38892321 PMCID: PMC11172428 DOI: 10.3390/ijms25116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
AMELX mutations cause X-linked amelogenesis imperfecta (AI), known as AI types IE, IIB, and IIC in Witkop's classification, characterized by hypoplastic (reduced thickness) and/or hypomaturation (reduced hardness) enamel defects. In this study, we conducted whole exome analyses to unravel the disease-causing mutations for six AI families. Splicing assays, immunoblotting, and quantitative RT-PCR were conducted to investigate the molecular and cellular effects of the mutations. Four AMELX pathogenic variants (NM_182680.1:c.2T>C; c.29T>C; c.77del; c.145-1G>A) and a whole gene deletion (NG_012494.2:g.307534_403773del) were identified. The affected individuals exhibited enamel malformations, ranging from thin, poorly mineralized enamel with a "snow-capped" appearance to severe hypoplastic defects with minimal enamel. The c.145-1G>A mutation caused a -1 frameshift (NP_001133.1:p.Val35Cysfs*5). Overexpression of c.2T>C and c.29T>C AMELX demonstrated that mutant amelogenin proteins failed to be secreted, causing elevated endoplasmic reticulum stress and potential cell apoptosis. This study reveals a genotype-phenotype relationship for AMELX-associated AI: While amorphic mutations, including large deletions and 5' truncations, of AMELX cause hypoplastic-hypomaturation enamel with snow-capped teeth (AI types IIB and IIC) due to a complete loss of gene function, neomorphic variants, including signal peptide defects and 3' truncations, lead to severe hypoplastic/aplastic enamel (AI type IE) probably caused by "toxic" cellular effects of the mutant proteins.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Hua-Chieh Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Shu-Chun Lin
- Department of Dentistry, National Taiwan University School of Dentistry, No. 1, Changde St., Taipei City 100229, Taiwan; (H.-C.L.); (Y.-L.W.); (S.-C.L.)
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No. 8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Figen Seymen
- Department of Pediatric Dentistry, Faculty of Dentistry, Altinbas University, Istanbul 34147, Turkey;
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul 34116, Turkey;
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109, USA; (H.Z.); (J.P.S.); (J.C.-C.H.)
| |
Collapse
|
9
|
Costa CRR, Chalgoumi R, Baker A, Guillou C, Yamaguti PM, Simancas Escorcia V, Abbad L, Amorin BR, de Lima CL, Cannaya V, Benassarou M, Berdal A, Chatziantoniou C, Cases O, Cosette P, Kozyraki R, Acevedo AC. Gingival proteomics reveals the role of TGF beta and YAP/TAZ signaling in Raine syndrome fibrosis. Sci Rep 2024; 14:9497. [PMID: 38664418 PMCID: PMC11045870 DOI: 10.1038/s41598-024-59713-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Raine syndrome (RNS) is a rare autosomal recessive osteosclerotic dysplasia. RNS is caused by loss-of-function disease-causative variants of the FAM20C gene that encodes a kinase that phosphorylates most of the secreted proteins found in the body fluids and extracellular matrix. The most common RNS clinical features are generalized osteosclerosis, facial dysmorphism, intracerebral calcifications and respiratory defects. In non-lethal RNS forms, oral traits include a well-studied hypoplastic amelogenesis imperfecta (AI) and a much less characterized gingival phenotype. We used immunomorphological, biochemical, and siRNA approaches to analyze gingival tissues and primary cultures of gingival fibroblasts of two unrelated, previously reported RNS patients. We showed that fibrosis, pathological gingival calcifications and increased expression of various profibrotic and pro-osteogenic proteins such as POSTN, SPARC and VIM were common findings. Proteomic analysis of differentially expressed proteins demonstrated that proteins involved in extracellular matrix (ECM) regulation and related to the TGFβ/SMAD signaling pathway were increased. Functional analyses confirmed the upregulation of TGFβ/SMAD signaling and subsequently uncovered the involvement of two closely related transcription cofactors important in fibrogenesis, Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ). Knocking down of FAM20C confirmed the TGFβ-YAP/TAZ interplay indicating that a profibrotic loop enabled gingival fibrosis in RNS patients. In summary, our in vivo and in vitro data provide a detailed description of the RNS gingival phenotype. They show that gingival fibrosis and calcifications are associated with, and most likely caused by excessed ECM production and disorganization. They furthermore uncover the contribution of increased TGFβ-YAP/TAZ signaling in the pathogenesis of the gingival fibrosis.
Collapse
Affiliation(s)
- Cláudio Rodrigues Rezende Costa
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
- Department of Dentistry, Health Group of Natal (GSAU-NT), Brazilian Air Force, Natal, Parnamirim, Brazil
| | - Rym Chalgoumi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Amina Baker
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Clément Guillou
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Paulo Marcio Yamaguti
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Grupo de Investigación GENOMA, Universidad del Sinú, Cartagena, Colombia
| | - Lilia Abbad
- MRS1155, INSERM, Sorbonne Université, 75020, Paris, France
| | - Bruna Rabelo Amorin
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Caroline Lourenço de Lima
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Mourad Benassarou
- Service de Chirurgie Maxillo-Faciale et Stomatologie, Hôpital de La Pitié Salpétrière, Sorbonne Université, 75006, Paris, France
| | - Ariane Berdal
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France
| | | | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
| | - Pascal Cosette
- Rouen University, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, 76000, Rouen, France
- Rouen University, INSERM US51, CNRS UAR 2026, HeRacles PISSARO, 76000, Rouen, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France.
- CRMR O-RARES, Hôpital Rothshild, UFR d'Odontologie-Garancière, Université de Paris Cité, 75012, Paris, France.
- Rouen University, UFR SANTE ROUEN NORMANDIE, Inserm 1096, 76000, Rouen, France.
| | - Ana Carolina Acevedo
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Oral Molecular Pathophysiology, 75006, Paris, France
- Oral Center for Inherited Diseases, University Hospital of Brasília, Oral Histopathology Laboratory, Department of Dentistry, Health Sciences Faculty, University of Brasília (UnB), Brasília, Brazil
| |
Collapse
|
10
|
Siddiqui MF, Li J, Wang S, Zhang H, Qin C, Lu Y. FAM20A is a golgi-localized Type II transmembrane protein. Sci Rep 2024; 14:6518. [PMID: 38499693 PMCID: PMC10948845 DOI: 10.1038/s41598-024-57007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/13/2024] [Indexed: 03/20/2024] Open
Abstract
Family with sequence similarity 20, member A (FAM20A) is a pseudo-kinase in the secretory pathway and is essential for enamel formation in humans. Here we examine if FAM20A is a membrane-associated protein. We show that the full-length FAM20A can be purified from HEK293 cells transfected with a FAM20A-expresing construct. Further, it is only found in the membrane fraction, but not in the soluble fraction, of cell lysate. Consistently, it is not secreted out of the expressing cells. Moreover, it is co-localized with GM130, a cis-Golgi network marker, and membrane topology analysis indicates that it has its C-terminus oriented towards the lumen of the organelle. Our results support that FAM20A is a Type II transmembrane protein within the secretory compartments.
Collapse
Affiliation(s)
- Mohammad Faizan Siddiqui
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Jiahe Li
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Suzhen Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA.
| |
Collapse
|
11
|
Srikanth KD, Elahi H, Chander P, Washburn HR, Hassler S, Mwirigi JM, Kume M, Loucks J, Arjarapu R, Hodge R, Shiers SI, Sankaranarayanan I, Erdjument-Bromage H, Neubert TA, Campbell ZT, Paik R, Price TJ, Dalva MB. VLK drives extracellular phosphorylation of EphB2 to govern the EphB2-NMDAR interaction and injury-induced pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585314. [PMID: 38562765 PMCID: PMC10983893 DOI: 10.1101/2024.03.18.585314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Phosphorylation of hundreds of protein extracellular domains is mediated by two kinase families, yet the significance of these kinases is underexplored. Here, we find that the presynaptic release of the tyrosine directed-ectokinase, Vertebrate Lonesome Kinase (VLK/Pkdcc), is necessary and sufficient for the direct extracellular interaction between EphB2 and GluN1 at synapses, for phosphorylation of the ectodomain of EphB2, and for injury-induced pain. Pkdcc is an essential gene in the nervous system, and VLK is found in synaptic vesicles, and is released from neurons in a SNARE-dependent fashion. VLK is expressed by nociceptive sensory neurons where presynaptic sensory neuron-specific knockout renders mice impervious to post-surgical pain, without changing proprioception. VLK defines an extracellular mechanism that regulates protein-protein interaction and non-opioid-dependent pain in response to injury.
Collapse
Affiliation(s)
- Kolluru D. Srikanth
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Hajira Elahi
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Praveen Chander
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Halley R. Washburn
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
- Department of Molecular Biology, Princeton University; Princeton, NJ 08544, USA
| | - Shayne Hassler
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- College of Medicine, University of Houston; Houston, TX 77004, USA
| | - Juliet M. Mwirigi
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Moeno Kume
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Jessica Loucks
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
| | - Rohita Arjarapu
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
| | - Rachel Hodge
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| | - Stephanie I. Shiers
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Hediye Erdjument-Bromage
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Thomas A. Neubert
- Department of Neuroscience and Physiology and Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Zachary T. Campbell
- Department of Anesthesiology, University of Wisconsin-Madison; Madison, WI 53792, USA
| | - Raehum Paik
- Department of Anesthesiology, University of Wisconsin-Madison; Madison, WI 53792, USA
- Department of Genetics, University of Texas Health Science Center at San Antonio; San Antonio, TX 78229, USA
| | - Theodore J. Price
- Department of Neuroscience, The University of Texas at Dallas; Richardson, TX 75080, USA
- Center for Advanced Pain Studies, University of Texas at Dallas; Richardson, TX 75080, USA
| | - Matthew B. Dalva
- Tulane Brain Institute, Department of Cell and Molecular Biology, Tulane University; New Orleans, LA 70118, USA
- Jefferson Synaptic Biology Center, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
12
|
Kalka M, Bielak K, Ptak M, Stolarski J, Dobryszycki P, Wojtas M. Calcium carbonate polymorph selection in fish otoliths: A key role of phosphorylation of Starmaker-like protein. Acta Biomater 2024; 174:437-446. [PMID: 38061675 DOI: 10.1016/j.actbio.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Fish otoliths are calcium carbonate biominerals found in the inner ear commonly used for tracking fish biochronologies and as a model system for biomineralization. The process of fish otolith formation is biologically controlled by numerous biomacromolecules which not only affect crystal size, shape, mechanical properties, but also selection of calcium carbonate polymorph (e.g., aragonite, vaterite). The proteinaceous control over calcium carbonate polymorph selection occurs in many other species (e.g., corals, mollusks, echinoderms) but the exact mechanism of protein interactions with calcium and carbonate ions - constituents of CaCO3 - are not fully elucidated. Herein, we focus on a native Starmaker-like protein isolated from vaterite asteriscus otoliths from Cyprinus carpio. The proteomic studies show the presence of the phosphorylated protein in vaterite otoliths. In a series of in vitro mineralization experiments with Starmaker-like, we show that native phosphorylation is a crucial determinant for the selection of a crystal's polymorphic form. This is the first report showing that the switch in calcium carbonate phase depends on the phosphorylation pattern of a single isolated protein. STATEMENT OF SIGNIFICANCE: Calcium carbonate has numerous applications in industry and medicine. However, we still do not understand the mechanism of biologically driven polymorph selection which results in specific biomineral properties. Previous work on calcium carbonate biominerals showed that either several macromolecular factors or high magnesium concentration (non-physiological) are required for proper polymorph selection (e.g., in mollusk shells, corals and otoliths). In this work, we showed for the first time that protein phosphorylation is a crucial factor for controlling the calcium carbonate crystal phase. This is important because a single protein from the otolith organic matrix could switch between polymorphs depending on the phosphorylation level. It seems that protein post-translational modifications (native, not artificial) are more important for biomolecular control of crystal growth than previously considered.
Collapse
Affiliation(s)
- Marta Kalka
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Klaudia Bielak
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Maciej Ptak
- Division of Optical Spectroscopy, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland
| | | | - Piotr Dobryszycki
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland
| | - Magdalena Wojtas
- Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Biochemistry, Molecular Biology and Biotechnology, Wrocław, Poland.
| |
Collapse
|
13
|
Cramer DAT, Yin V, Caval T, Franc V, Yu D, Wu G, Lloyd G, Langendorf C, Whisstock JC, Law RHP, Heck AJR. Proteoform-Resolved Profiling of Plasminogen Activation Reveals Novel Abundant Phosphorylation Site and Primary N-Terminal Cleavage Site. Mol Cell Proteomics 2024; 23:100696. [PMID: 38101751 PMCID: PMC10825491 DOI: 10.1016/j.mcpro.2023.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023] Open
Abstract
Plasminogen (Plg), the zymogen of plasmin (Plm), is a glycoprotein involved in fibrinolysis and a wide variety of other physiological processes. Plg dysregulation has been implicated in a range of diseases. Classically, human Plg is categorized into two types, supposedly having different functional features, based on the presence (type I) or absence (type II) of a single N-linked glycan. Using high-resolution native mass spectrometry, we uncovered that the proteoform profiles of human Plg (and Plm) are substantially more extensive than this simple binary classification. In samples derived from human plasma, we identified up to 14 distinct proteoforms of Plg, including a novel highly stoichiometric phosphorylation site at Ser339. To elucidate the potential functional effects of these post-translational modifications, we performed proteoform-resolved kinetic analyses of the Plg-to-Plm conversion using several canonical activators. This conversion is thought to involve at least two independent cleavage events: one to remove the N-terminal peptide and another to release the active catalytic site. Our analyses reveal that these processes are not independent but are instead tightly regulated and occur in a step-wise manner. Notably, N-terminal cleavage at the canonical site (Lys77) does not occur directly from intact Plg. Instead, an activation intermediate corresponding to cleavage at Arg68 is initially produced, which only then is further processed to the canonical Lys77 product. Based on our results, we propose a refined categorization for human Plg proteoforms. In addition, we reveal that the proteoform profile of human Plg is more extensive than that of rat Plg, which lacks, for instance, the here-described phosphorylation at Ser339.
Collapse
Affiliation(s)
- Dario A T Cramer
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Victor Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Tomislav Caval
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands
| | - Dingyi Yu
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Guojie Wu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Gordon Lloyd
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Christopher Langendorf
- Mass Spectrometry Facility, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - James C Whisstock
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Ruby H P Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia.
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, University of Utrecht, Utrecht, The Netherlands; Netherlands Proteomics Centre, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
14
|
Kawasaki K, Sasagawa I, Mikami M, Nakatomi M, Ishiyama M. Ganoin and acrodin formation on scales and teeth in spotted gar: A vital role of enamelin in the unique process of enamel mineralization. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:455-468. [PMID: 36464775 PMCID: PMC10239528 DOI: 10.1002/jez.b.23183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Gars and bichirs develop scales and teeth with ancient actinopterygian characteristics. Their scale surface and tooth collar are covered with enamel, also known as ganoin, whereas the tooth cap is equipped with an enamel-like tissue, acrodin. Here, we investigated the formation and mineralization of the ganoin and acrodin matrices in spotted gar, and the evolution of the scpp5, ameloblastin (ambn), and enamelin (enam) genes, which encode matrix proteins of ganoin. Results suggest that, in bichirs and gars, all these genes retain structural characteristics of their orthologs in stem actinopterygians, presumably reflecting the presence of ganoin on scales and teeth. During scale formation, Scpp5 and Enam were initially found in the incipient ganoin matrix and the underlying collagen matrix, whereas Ambn was detected mostly in a surface region of the well-developed ganoin matrix. Although collagen is the principal acrodin matrix protein, Scpp5 was detected within the matrix. Similarities in timings of mineralization and the secretion of Scpp5 suggest that acrodin evolved by the loss of the matrix secretory stage of ganoin formation: dentin formation is immediately followed by the maturation stage. The late onset of Ambn secretion during ganoin formation implies that Ambn is not essential for mineral ribbon formation, the hallmark of the enamel matrix. Furthermore, Scpp5 resembles amelogenin that is not important for the initial formation of mineral ribbons in mammals. It is thus likely that the evolution of ENAM was vital to the origin of the unique mineralization process of the enamel matrix.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| | - Mitsushiro Nakatomi
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata the Nippon Dental University, Niigata, Japan
| |
Collapse
|
15
|
Liu P, Li J, Tang L, Cong W, Jin H, Zhang H, Cui B, Yang S, Xiao J, Liu C, Saiyin W. Mutations of family with sequence similarity 20-member C gene causing lethal and nonlethal Raine syndrome causes hypophosphatemia rickets. J Cell Physiol 2023; 238:2556-2569. [PMID: 37698039 DOI: 10.1002/jcp.31105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
Family with sequence similarity 20-member C (FAM20C) is a kinase specific to most of the secreted phosphoproteome. FAM20C has been identified as the causative gene of Raine syndrome, initially characterized by lethal osteosclerosis bone dysplasia. However, since the identification of the cases of nonlethal Raine syndrome characterized by hypophosphatemia rickets, the previous definition of Raine syndrome has become debatable and raised a question about the role of mutations of FAM20C in controversial skeletal manifestation in the two forms of the disease. In this study, we aimed to investigate the influence of FAM20C mutations on skeletogenesis. We developed transgenic mice expressing Fam20c mutations mimicking those associated with human lethal and nonlethal Raine syndrome. The results revealed that transgenic mice expressing the mutant Fam20c found in the lethal (KO;G374R) and nonlethal (KO;D446N) Raine syndrome exhibited osteomalacia without osteosclerotic features. Additionally, both mutants significantly increased the expression of the Fgf23, indicating that Fam20c deficiency in skeletal compartments causes hypophosphatemia rickets. Furthermore, as FAM20C kinase activity catalyzes the phosphorylation of secreted proteomes other than those in the skeletal system, global FAM20C deficiency may trigger alterations in other systems resulting in osteosclerosis secondary to hypophosphatemia rickets. Together, the findings of this study suggest that FAM20C deficiency primarily causes hypophosphatemia rickets or osteomalacia; however, the heterogeneous skeletal manifestation in Raine syndrome was not determined solely by specific mutations of FAM20C. The findings also implicated that rickets or osteomalacia caused by FAM20C deficiency would deteriorate into osteosclerosis by the defects from other systems or environmental impacts.
Collapse
Affiliation(s)
- Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Laboratory of Longjiang Scholar, The First Affifiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaxuan Li
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linghao Tang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wei Cong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Zhang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Cui
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yang
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Xiao
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Chao Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Wuliji Saiyin
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Silver SV, Popovics P. The Multifaceted Role of Osteopontin in Prostate Pathologies. Biomedicines 2023; 11:2895. [PMID: 38001899 PMCID: PMC10669591 DOI: 10.3390/biomedicines11112895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
The prostate gland, located beneath the bladder and surrounding the proximal urethra in men, plays a vital role in reproductive physiology and sexual health. Despite its importance, the prostate is vulnerable to various pathologies, including prostatitis, benign prostatic hyperplasia (BPH) and prostate cancer (PCa). Osteopontin (OPN), a versatile protein involved in wound healing, inflammatory responses, and fibrotic diseases, has been implicated in all three prostate conditions. The role of OPN in prostatic pathophysiology, affecting both benign and malignant prostate conditions, is significant. Current evidence strongly suggests that OPN is expressed at a higher level in prostate cancer and promotes tumor progression and aggressiveness. Conversely, OPN is primarily secreted by macrophages and foam cells in benign prostate conditions and provokes inflammation and fibrosis. This review discusses the accumulating evidence on the role of OPN in prostatic diseases, cellular sources, and potential roles while also highlighting areas for future investigations.
Collapse
Affiliation(s)
- Samara V. Silver
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Petra Popovics
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
17
|
Zorina AA, Novikova GV, Gusev NB, Leusenko AV, Los DA, Klychnikov OI. SpkH (Sll0005) from Synechocystis sp. PCC 6803 is an active Mn 2+-dependent Ser kinase. Biochimie 2023; 213:114-122. [PMID: 37209809 DOI: 10.1016/j.biochi.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/23/2023] [Accepted: 05/10/2023] [Indexed: 05/22/2023]
Abstract
Twelve genes for the potential serine-threonine protein kinases (STPKs) have been annotated in the genome of Synechocystis sp. PCC 6803. Based on similarities and distinctive domain organization, they were divided into two clusters: serine/threonine-protein N2-like kinases (PKN2-type) and "activity of bc1 complex" kinases (ABC1-type). While the activity of the PKN2-type kinases have been demonstrated, no ABC1-type kinases activity have hitherto been reported. In this study, a recombinant protein previously annotated as a potential STPK of ABC1-type (SpkH, Sll0005) was expressed and purified to homogeneity. We demonstrated SpkH phosphorylating activity and substrate preference for casein in in vitro assays using [γ-32P]ATP. Detailed analyses of activity showed that Mn2+ had the strongest activation effect. The activity of SpkH was significantly inhibited by heparin and spermine, but not by staurosporine. By means of semi-quantitative mass-spectrometric detection of phosphopeptides, we identified a consensus motif recognized by this kinase - X1X2pSX3E. Thus, we first report here that SpkH of Synechocystis represents a true active serine protein kinase, which shares the properties of casein kinases according to its substrate specificity and sensitivity to some activity effectors.
Collapse
Affiliation(s)
- A A Zorina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - G V Novikova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - N B Gusev
- Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| | - A V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - D A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia
| | - O I Klychnikov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia; Department of Biochemistry, School of Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
18
|
Naniwa K, Hirose K, Usami Y, Hata K, Araki R, Uzawa N, Komori T, Toyosawa S. Fam20C overexpression in odontoblasts regulates dentin formation and odontoblast differentiation. J Mol Histol 2023; 54:329-347. [PMID: 37357253 DOI: 10.1007/s10735-023-10123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/27/2023] [Indexed: 06/27/2023]
Abstract
FAM20C phosphorylates secretory proteins at S-x-E/pS motifs, and previous studies of Fam20C-dificient mice revealed that FAM20C played essential roles in bone and tooth formation. Inactivation of FAM20C in mice led to hypophosphatemia that masks direct effect of FAM20C in these tissues, and consequently the direct role of FAM20C remains unknown. Our previous study reported that osteoblast/odontoblast-specific Fam20C transgenic (Fam20C-Tg) mice had normal serum phosphate levels and that osteoblastic FAM20C-mediated phosphorylation regulated bone formation and resorption. Here, we investigated the direct role of FAM20C in dentin using Fam20C-Tg mice. The tooth of Fam20C-Tg mice contained numerous highly phosphorylated proteins, including SIBLINGs, compared to that of wild-type mice. In Fam20C-Tg mice, coronal dentin volume decreased and mineral density unchanged at early age, while the volume unchanged and the mineral density elevated at maturity. In these mice, radicular dentin volume and mineral density decreased at all ages, and histologically, the radicular dentin had wider predentin and abnormal apical-side dentin with embedded cells and argyrophilic canaliculi. Immunohistochemical analyses revealed that abnormal apical-side dentin had bone and dentin matrix properties accompanied with osteoblast-lineage cells. Further, in Fam20C-Tg mice, DSPP content which is important for dentin formation, was reduced in dentin, especially radicular dentin, which might lead to defects mainly in radicular dentin. Renal subcapsular transplantations of tooth germ revealed that newly formed radicular dentin replicated apical abnormal dentin of Fam20C-Tg mice, corroborating that FAM20C overexpression indeed caused the abnormal dentin. Our findings indicate that odontoblastic FAM20C-mediated phosphorylation in the tooth regulates dentin formation and odontoblast differentiation.
Collapse
Affiliation(s)
- Kohei Naniwa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Katsutoshi Hirose
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Usami
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Rikita Araki
- Bruker Japan K.K. BioSpin Division, Application Department, 3-9 Kanagawaku Moriyacho, Yokohama, Kanagawa, 221-0022, Japan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihisa Komori
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Satoru Toyosawa
- Department of Oral and Maxillofacial Pathology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
19
|
Wang SK, Zhang H, Wang YL, Lin HY, Seymen F, Koruyucu M, Wright JT, Kim JW, Simmer JP, Hu JCC. FAM20A mutations and transcriptome analyses of dental pulp tissues of enamel renal syndrome. Int Endod J 2023; 56:943-954. [PMID: 37159186 PMCID: PMC10524697 DOI: 10.1111/iej.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
AIM Biallelic loss-of-function FAM20A mutations cause amelogenesis imperfecta (AI) type IG, better known as enamel renal syndrome (ERS), characterized by severe enamel hypoplasia, delayed/failed tooth eruption, intrapulpal calcifications, gingival hyperplasia and nephrocalcinosis. FAM20A binds to FAM20C, the Golgi casein kinase (GCK) and potentiates its function to phosphorylate secreted proteins critical for biomineralization. While many FAM20A pathogenic mutations have been reported, the pathogeneses of orodental anomalies in ERS remain to be elucidated. This study aimed to identify disease-causing mutations for patients with ERS phenotypes and to discern the molecular mechanism underlying ERS intrapulpal calcifications. METHODOLOGY Phenotypic characterization and whole exome analyses were conducted for 8 families and 2 sporadic cases with hypoplastic AI. A minigene assay was performed to investigate the molecular consequences of a FAM20A splice-site variant. RNA sequencing followed by transcription profiling and gene ontology (GO) analyses were carried out for dental pulp tissues of ERS and the control. RESULTS Biallelic FAM20A mutations were demonstrated for each affected individual, including 7 novel pathogenic variants: c.590-5T>A, c.625T>A (p.Cys209Ser), c.771del (p.Gln258Argfs*28), c.832_835delinsTGTCCGACGGTGTCCGACGGTGTC CA (p.Val278Cysfs*29), c.1232G>A (p.Arg411Gln), c.1297A>G (p.Arg433Gly) and c.1351del (p.Gln451Serfs*4). The c.590-5T>A splice-site mutation caused Exon 3 skipping, which resulted in an in-frame deletion of a unique region of the FAM20A protein, p.(Asp197_Ile214delinsVal). Analyses of differentially expressed genes in ERS pulp tissues demonstrated that genes involved in biomineralization, particularly dentinogenesis, were significantly upregulated, such as DSPP, MMP9, MMP20 and WNT10A. Enrichment analyses indicated overrepresentation of gene sets associated with BMP and SMAD signalling pathways. In contrast, GO terms related to inflammation and axon development were underrepresented. Among BMP signalling genes, BMP agonists GDF7, GDF15, BMP3, BMP8A, BMP8B, BMP4 and BMP6 were upregulated, while BMP antagonists GREM1, BMPER and VWC2 showed decreased expression in ERS dental pulp tissues. CONCLUSIONS Upregulation of BMP signalling underlies intrapulpal calcifications in ERS. FAM20A plays an essential role in pulp tissue homeostasis and prevention of ectopic mineralization in soft tissues. This critical function probably depends upon MGP (matrix Gla protein), a potent mineralization inhibitor that must be properly phosphorylated by FAM20A-FAM20C kinase complex.
Collapse
Affiliation(s)
- Shih-Kai Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Yin-Lin Wang
- Department of Dentistry, National Taiwan University School of Dentistry, No.1, Changde St., Taipei City 100229, Taiwan
- Department of Pediatric Dentistry, National Taiwan University Children’s Hospital, No.8, Zhongshan S. Rd., Taipei City 100226, Taiwan
| | - Hung-Ying Lin
- Department of Oral and Maxillofacial Surgery, National Taiwan University Hospital; No.1, Changde St., Taipei City 100229, Taiwan
| | - Figen Seymen
- Department of Pedodontics, Faculty of Dentistry, Altinbas University, Istanbul, 34147, Turkey
| | - Mine Koruyucu
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, 34116, Turkey
| | - J Timothy Wright
- Department of Pediatric Dentistry, University of North Carolina School of Dentistry, CB 7450, 228 Brauer Hall, Chapel Hill, NC 27599, USA
| | - Jung-Wook Kim
- Department of Molecular Genetics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
- Department of Pediatric Dentistry & Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - James P. Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| | - Jan C.-C. Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48108, USA
| |
Collapse
|
20
|
Groppe JC, Lu G, Tandang-Silvas MR, Pathi A, Konda S, Wu J, Le VQ, Culbert AL, Shore EM, Wharton KA, Kaplan FS. Polypeptide Substrate Accessibility Hypothesis: Gain-of-Function R206H Mutation Allosterically Affects Activin Receptor-like Protein Kinase Activity. Biomolecules 2023; 13:1129. [PMID: 37509165 PMCID: PMC10376983 DOI: 10.3390/biom13071129] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Although structurally similar to type II counterparts, type I or activin receptor-like kinases (ALKs) are set apart by a metastable helix-loop-helix (HLH) element preceding the protein kinase domain that, according to a longstanding paradigm, serves passive albeit critical roles as an inhibitor-to-substrate-binding switch. A single recurrent mutation in the codon of the penultimate residue, directly adjacent the position of a constitutively activating substitution, causes milder activation of ACVR1/ALK2 leading to sporadic heterotopic bone deposition in patients presenting with fibrodysplasia ossificans progressiva, or FOP. To determine the protein structural-functional basis for the gain of function, R206H mutant, Q207D (aspartate-substituted caALK2) and HLH subdomain-truncated (208 Ntrunc) forms were compared to one another and the wild-type enzyme through in vitro kinase and protein-protein interaction analyses that were complemented by signaling read-out (p-Smad) in primary mouse embryonic fibroblasts and Drosophila S2 cells. Contrary to the paradigm, the HLH subdomain actively suppressed the phosphotransferase activity of the enzyme, even in the absence of FKBP12. Unexpectedly, perturbation of the HLH subdomain elevated kinase activity at a distance, i.e., allosterically, at the ATP-binding and polypeptide-interacting active site cleft. Accessibility to polypeptide substrate (BMP Smad C-terminal tails) due to allosterically altered conformations of type I active sites within heterohexameric cytoplasmic signaling complexes-assembled noncanonically by activin-type II receptors extracellularly-is hypothesized to produce a gain of function of the R206H mutant protein responsible for episodic heterotopic ossification in FOP.
Collapse
Affiliation(s)
- Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Guorong Lu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Mary R Tandang-Silvas
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Anupama Pathi
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Shruti Konda
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Jingfeng Wu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, USA
| | - Viet Q Le
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Program in Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Andria L Culbert
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Eileen M Shore
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Frederick S Kaplan
- Department of Orthopaedics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Liu X, Jiang L, Zhang W, Zhang J, Luan X, Zhan Y, Wang T, Da J, Liu L, Zhang S, Guo Y, Zhang K, Wang Z, Miao N, Xie X, Liu P, Li Y, Jin H, Zhang B. Fam20c regulates the calpain proteolysis system through phosphorylating Calpasatatin to maintain cell homeostasis. J Transl Med 2023; 21:417. [PMID: 37370126 DOI: 10.1186/s12967-023-04275-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND The family with sequence similarity 20-member C (FAM20C) kinase, a Golgi casein kinase, which is responsible for phosphorylating the majority of the extracellular phosphoproteins within S-x-E/pS motifs, and is fundamentally associated with multiple biological processes to maintain cell proliferation, biomineralization, migration, adhesion, and phosphate homeostasis. In dissecting how FAM20C regulates downstream molecules and potential mechanisms, however, there are multiple target molecules of FAM20C, particularly many phenomena remain elusive, such as changes in cell-autonomous behaviors, incompatibility in genotypes and phenotypes, and others. METHODS Here, assay for transposase-accessible chromatin using sequencing (ATAC-seq), RNA sequencing (RNA-seq), proteomics, and phosphoproteomics were performed in Fam20c-dificient osteoblasts and to facilitate an integrated analysis and determine the impact of chromatin accessibility, genomic expression, protein alterations, signaling pathway, and post translational modifcations. RESULTS By combining ATAC-seq and RNA-seq, we identified TCF4 and Wnt signaling pathway as the key regulators in Fam20c-dificient cells. Further, we showed Calpastatin/Calpain proteolysis system as a novel target axis for FAM20C to regulate cell migration and F-actin cytoskeleton by integrated analysis of proteomics and phosphoproteomics. Furthermore, Calpastatin/Calpain proteolysis system could negatively regulate the Wnt signaling pathway. CONCLUSION These observations implied that Fam20c knockout osteoblasts would cause cell homeostatic imbalance, involving changes in multiple signaling pathways in the conduction system.
Collapse
Affiliation(s)
- Xinpeng Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Lili Jiang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Pediatric Dentistry, School of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenxuan Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiahui Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology and Dental Hygiene, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xinrui Luan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanbo Zhan
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tuo Wang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junlong Da
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lixue Liu
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shujian Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuyao Guo
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Zhiping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Nan Miao
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Periodontology and Oral Mucosa, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaohua Xie
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peihong Liu
- Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Li
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Han Jin
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Bin Zhang
- Heilongjiang Provincial Key Laboratory of Hard Tissue Development and Regeneration, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
22
|
Mayfield JE, Dixon JE. Emerging mechanisms of regulation for endoplasmic/sarcoplasmic reticulum Ca2+ stores by secretory pathway kinase FAM20C. Curr Opin Chem Biol 2023; 74:102279. [DOI: 10.1016/j.cbpa.2023.102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 03/28/2023]
|
23
|
Sørensen ES, Christensen B. Milk Osteopontin and Human Health. Nutrients 2023; 15:nu15112423. [PMID: 37299387 DOI: 10.3390/nu15112423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Osteopontin (OPN) is a multifunctional protein found in all vertebrates. OPN is expressed in many different cell types, and is consequently found in most tissues and physiological secretions. OPN is involved in a multitude of biological processes, such as activation and regulation of the immune system; biomineralization; tissue-transformative processes, including growth and development of the gut and brain; interaction with bacteria; and many more. OPN is found in the highest concentrations in milk, where it is believed to initiate and regulate developmental, immunological and physiological processes in infants who consume milk. Processes for the isolation of bovine OPN for use in infant formula have been developed, and in recent years, many studies have investigated the effects of the intake of milk OPN. The purpose of this article is to review and compare existing knowledge about the structure and function of milk OPN, with a particular focus on the effects of milk OPN on human health and disease.
Collapse
Affiliation(s)
- Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | - Brian Christensen
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| |
Collapse
|
24
|
Palma-Lara I, García Alonso-Themann P, Pérez-Durán J, Godínez-Aguilar R, Bonilla-Delgado J, Gómez-Archila D, Espinosa-García AM, Nolasco-Quiroga M, Victoria-Acosta G, López-Ornelas A, Serrano-Bello JC, Olguín-García MG, Palacios-Reyes C. Potential Role of Protein Kinase FAM20C on the Brain in Raine Syndrome, an In Silico Analysis. Int J Mol Sci 2023; 24:ijms24108904. [PMID: 37240249 DOI: 10.3390/ijms24108904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
FAM20C (family with sequence similarity 20, member C) is a serine/threonine-specific protein kinase that is ubiquitously expressed and mainly associated with biomineralization and phosphatemia regulation. It is mostly known due to pathogenic variants causing its deficiency, which results in Raine syndrome (RNS), a sclerosing bone dysplasia with hypophosphatemia. The phenotype is recognized by the skeletal features, which are related to hypophosphorylation of different FAM20C bone-target proteins. However, FAM20C has many targets, including brain proteins and the cerebrospinal fluid phosphoproteome. Individuals with RNS can have developmental delay, intellectual disability, seizures, and structural brain defects, but little is known about FAM20C brain-target-protein dysregulation or about a potential pathogenesis associated with neurologic features. In order to identify the potential FAM20C actions on the brain, an in silico analysis was conducted. Structural and functional defects reported in RNS were described; FAM20C targets and interactors were identified, including their brain expression. Gene ontology of molecular processes, function, and components was completed for these targets, as well as for potential involved signaling pathways and diseases. The BioGRID and Human Protein Atlas databases, the Gorilla tool, and the PANTHER and DisGeNET databases were used. Results show that genes with high expression in the brain are involved in cholesterol and lipoprotein processes, plus axo-dendritic transport and the neuron part. These results could highlight some proteins involved in the neurologic pathogenesis of RNS.
Collapse
Affiliation(s)
- Icela Palma-Lara
- Laboratorio de Morfología Celular y Molecular, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | - Javier Pérez-Durán
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | | | - José Bonilla-Delgado
- Unidad de Investigación, Hospital Regional de Ixtapaluca, Ixtapaluca 56530, Mexico
- Departamento de Biotecnología, Escuela de Ingeniería y Ciencias, Instituto Tecnológico de Monterrey, Toluca de Lerdo 50110, Mexico
| | - Damián Gómez-Archila
- Departamento de Oncología Quirúrgica, Hospital de Gineco-Obstetricia 3, Centro Médico Nacional "La Raza", Ciudad de México 02990, Mexico
| | | | - Manuel Nolasco-Quiroga
- Coordinación de Enseñanza e Investigación, Clínica Hospital Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Huauchinango 73177, Mexico
| | | | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| | - Juan Carlos Serrano-Bello
- Departamento de Patología Clínica y Experimental, Hospital Infantil de México Federico Gómez, Ciudad de México 06720, Mexico
| | | | - Carmen Palacios-Reyes
- División de Investigación, Hospital Juárez de México, Ciudad de México 11340, Mexico
| |
Collapse
|
25
|
Fasimoye R, Dong W, Nirujogi RS, Rawat ES, Iguchi M, Nyame K, Phung TK, Bagnoli E, Prescott AR, Alessi DR, Abu-Remaileh M. Golgi-IP, a tool for multimodal analysis of Golgi molecular content. Proc Natl Acad Sci U S A 2023; 120:e2219953120. [PMID: 37155866 PMCID: PMC10193996 DOI: 10.1073/pnas.2219953120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
The Golgi is a membrane-bound organelle that is essential for protein and lipid biosynthesis. It represents a central trafficking hub that sorts proteins and lipids to various destinations or for secretion from the cell. The Golgi has emerged as a docking platform for cellular signaling pathways including LRRK2 kinase whose deregulation leads to Parkinson disease. Golgi dysfunction is associated with a broad spectrum of diseases including cancer, neurodegeneration, and cardiovascular diseases. To allow the study of the Golgi at high resolution, we report a rapid Golgi immunoprecipitation technique (Golgi-IP) to isolate intact Golgi mini-stacks for subsequent analysis of their content. By fusing the Golgi-resident protein TMEM115 to three tandem HA epitopes (GolgiTAG), we purified the Golgi using Golgi-IP with minimal contamination from other compartments. We then established an analysis pipeline using liquid chromatography coupled with mass spectrometry to characterize the human Golgi proteome, metabolome, and lipidome. Subcellular proteomics confirmed known Golgi proteins and identified proteins not previously associated with the Golgi. Metabolite profiling established the human Golgi metabolome and revealed the enrichment of uridine-diphosphate (UDP) sugars and their derivatives, which is consistent with their roles in protein and lipid glycosylation. Furthermore, targeted metabolomics validated SLC35A2 as the subcellular transporter for UDP-hexose. Finally, lipidomics analysis showed that phospholipids including phosphatidylcholine, phosphatidylinositol, and phosphatidylserine are the most abundant Golgi lipids and that glycosphingolipids are enriched in this compartment. Altogether, our work establishes a comprehensive molecular map of the human Golgi and provides a powerful method to study the Golgi with high precision in health and disease.
Collapse
Affiliation(s)
- Rotimi Fasimoye
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Wentao Dong
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Raja S. Nirujogi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Eshaan S. Rawat
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Miharu Iguchi
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| | - Kwamina Nyame
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA94305
| | - Toan K. Phung
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Enrico Bagnoli
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
| | - Dario R. Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, DundeeDD1 5EH, United Kingdom
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
| | - Monther Abu-Remaileh
- Aligning Science Across Parkinson’s Collaborative Research Network, Chevy Chase, MD20815
- Department of Chemical Engineering, Stanford University, Stanford, CA94305
- Department of Genetics, Stanford University, Stanford, CA94305
- The Institute for Chemistry, Engineering & Medicine for Human Health, Stanford University, Stanford, CA94305
| |
Collapse
|
26
|
Zhang H, Lu Y, Kramer PR, Benson MD, Cheng YSL, Qin C. Intracranial calcification in Fam20c-deficient mice recapitulates human Raine syndrome. Neurosci Lett 2023; 802:137176. [PMID: 36914045 DOI: 10.1016/j.neulet.2023.137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
FAM20C (family with sequence similarity 20-member C) is a protein kinase that phosphorylates secretory proteins, including the proteins that are essential to the formation and mineralization of calcified tissues. FAM20C loss-of-function mutations cause Raine syndrome in humans, characterized by generalized osteosclerosis, distinctive craniofacial dysmorphism, along with extensive intracranial calcification. Our previous studies revealed that inactivation of Fam20c in mice led to hypophosphatemic rickets. In this study, we examined the expression of Fam20c in the mouse brain and investigated brain calcification in Fam20c-deficient mice. Reverse transcription polymerase chain reaction (RT-PCR), Western-blotting and in situ hybridization analyses demonstrated the broad expression of Fam20c in the mouse brain tissue. X-ray and histological analyses showed that the global deletion of Fam20c (mediated by Sox2-cre) resulted in brain calcification in mice after postnatal 3 months and that the calcifications were bilaterally distributed within the brain. There was mild perifocal microgliosis as well as astrogliosis around calcospherites. The calcifications were first observed in the thalamus, and later in the forebrain and hindbrain. Furthermore, brain-specific deletion (mediated by Nestin-cre) of Fam20c in mice also led to cerebral calcification at an older age (postnatal 6 months), but no obvious skeletal or dental defects. Our results suggest that the local loss of FAM20C function in the brain may directly account for intracranial calcification. We propose that FAM20C plays an essential role in maintaining normal brain homeostasis and preventing ectopic brain calcification.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA.
| | - Yongbo Lu
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Phillip R Kramer
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - M Douglas Benson
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Yi-Shing L Cheng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| | - Chunlin Qin
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, Dallas, TX 75246, USA
| |
Collapse
|
27
|
Naba A. 10 years of extracellular matrix proteomics: Accomplishments, challenges, and future perspectives. Mol Cell Proteomics 2023; 22:100528. [PMID: 36918099 PMCID: PMC10152135 DOI: 10.1016/j.mcpro.2023.100528] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023] Open
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins forming the architectural scaffold of multicellular organisms. In addition to its structural role, the ECM conveys signals orchestrating cellular phenotypes. Alterations of ECM composition, abundance, structure, or mechanics, have been linked to diseases and disorders affecting all physiological systems, including fibrosis and cancer. Deciphering the protein composition of the ECM and how it changes in pathophysiological contexts is thus the first step toward understanding the roles of the ECM in health and disease and toward the development of therapeutic strategies to correct disease-causing ECM alterations. Potentially, the ECM also represents a vast, yet untapped reservoir of disease biomarkers. ECM proteins are characterized by unique biochemical properties that have hindered their study: they are large, heavily and uniquely post-translationally modified, and highly insoluble. Overcoming these challenges, we and others have devised mass-spectrometry-based proteomic approaches to define the ECM composition, or "matrisome", of tissues. This review provides a historical overview of ECM proteomics research and presents the latest advances that now allow the profiling of the ECM of healthy and diseased tissues. The second part highlights recent examples illustrating how ECM proteomics has emerged as a powerful discovery pipeline to identify prognostic cancer biomarkers. The third part discusses remaining challenges limiting our ability to translate findings to clinical application and proposes approaches to overcome them. Last, the review introduces readers to resources available to facilitate the interpretation of ECM proteomics datasets. The ECM was once thought to be impenetrable. MS-based proteomics has proven to be a powerful tool to decode the ECM. In light of the progress made over the past decade, there are reasons to believe that the in-depth exploration of the matrisome is within reach and that we may soon witness the first translational application of ECM proteomics.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
28
|
Tu G, Guo Y, Xiao R, Tang L, Hu M, Liao B. Effects of Exercise Training on the Phosphoproteomics of the Medial Prefrontal Cortex in Rats With Autism Spectrum Disorder Induced by Valproic Acid. Neurorehabil Neural Repair 2023; 37:94-108. [PMID: 36860155 DOI: 10.1177/15459683231152814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
BACKGROUND The key neural pathological characteristics of autism spectrum disorder (ASD) include abnormal synaptic plasticity of the medial prefrontal cortex (mPFC). Exercise therapy is widely used to rehabilitate children with ASD, but its neurobiological mechanism is unclear. METHODS To clarify whether the structural and molecular plasticity of synapses in the mPFC are related to improvement in ASD behavioral deficits after continuous exercise rehabilitation training, we applied phosphoproteomic, behavioral, morphological, and molecular biological methods to investigate the impact of exercise on the phosphoprotein expression profile and synaptic structure of the mPFC in valproic acid (VPA)-induced ASD rats. RESULTS Exercise training differentially regulated the density, morphology, and ultrastructure of synapses in mPFC subregions in the VPA-induced ASD rats. In total, 1031 phosphopeptides were upregulated and 782 phosphopeptides were downregulated in the mPFC in the ASD group. After exercise training, 323 phosphopeptides were upregulated, and 1098 phosphopeptides were downregulated in the ASDE group. Interestingly, 101 upregulated and 33 downregulated phosphoproteins in the ASD group were reversed after exercise training, and these phosphoproteins were mostly involved in synapses. Consistent with the phosphoproteomics data, the total and phosphorylated levels of the proteins MARK1 and MYH10 were upregulated in the ASD group and reversed after exercise training. CONCLUSIONS The differential structural plasticity of synapses in mPFC subregions may be the basic neural architecture of ASD behavioral abnormalities. The phosphoproteins involved in mPFC synapses, such as MARK1 and MYH10, may play important roles in the exercise rehabilitation effect on ASD-induced behavioral deficits and synaptic structural plasticity, which requires further investigation.
Collapse
Affiliation(s)
- Genghong Tu
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Youli Guo
- Department of Pharmacy, Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces, Guangzhou, Guangdong, P.R. China
| | - Ruoshi Xiao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Lianying Tang
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| | - Bagen Liao
- Department of Sports Medicine, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China.,Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Scientific Research Center, Guangzhou Sport University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
29
|
Epigenetic and transcriptional activation of the secretory kinase FAM20C as an oncogene in glioma. J Genet Genomics 2023:S1673-8527(23)00023-1. [PMID: 36708808 DOI: 10.1016/j.jgg.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.
Collapse
|
30
|
Schroeder ME, Batan D, Gonzalez Rodriguez A, Speckl KF, Peters DK, Kirkpatrick BE, Hach GK, Walker CJ, Grim JC, Aguado BA, Weiss RM, Anseth KS. Osteopontin activity modulates sex-specific calcification in engineered valve tissue mimics. Bioeng Transl Med 2023; 8:e10358. [PMID: 36684107 PMCID: PMC9842038 DOI: 10.1002/btm2.10358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with aortic valve stenosis (AVS) have sexually dimorphic phenotypes in their valve tissue, where male valvular tissue adopts a calcified phenotype and female tissue becomes more fibrotic. The molecular mechanisms that regulate sex-specific calcification in valvular tissue remain poorly understood. Here, we explored the role of osteopontin (OPN), a pro-fibrotic but anti-calcific bone sialoprotein, in regulating the calcification of female aortic valve tissue. Recognizing that OPN mediates calcification processes, we hypothesized that aortic valvular interstitial cells (VICs) in female tissue have reduced expression of osteogenic markers in the presence of elevated OPN relative to male VICs. Human female valve leaflets displayed reduced and smaller microcalcifications, but increased OPN expression relative to male leaflets. To understand how OPN expression contributes to observed sex dimorphisms in valve tissue, we employed enzymatically degradable hydrogels as a 3D cell culture platform to recapitulate male or female VIC interactions with the extracellular matrix. Using this system, we recapitulated sex differences observed in human tissue, specifically demonstrating that female VICs exposed to calcifying medium have smaller mineral deposits within the hydrogel relative to male VICs. We identified a change in OPN dynamics in female VICs in the presence of calcification stimuli, where OPN deposition localized from the extracellular matrix to perinuclear regions. Additionally, exogenously delivered endothelin-1 to encapsulated VICs increased OPN gene expression in male cells, which resulted in reduced calcification. Collectively, our results suggest that increased OPN in female valve tissue may play a sex-specific role in mitigating mineralization during AVS progression.
Collapse
Affiliation(s)
- Megan E. Schroeder
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Dilara Batan
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BiochemistryUniversity of Colorado BoulderBoulderColoradoUSA
| | - Andrea Gonzalez Rodriguez
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Kelly F. Speckl
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Douglas K. Peters
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Molecular, Cellular, and Developmental BiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Bruce E. Kirkpatrick
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Medical Scientist Training ProgramUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Grace K. Hach
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Cierra J. Walker
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| | - Joseph C. Grim
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
| | - Brian A. Aguado
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
- Sanford Consortium for Regenerative MedicineLa JollaCaliforniaUSA
| | - Robert M. Weiss
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
| | - Kristi S. Anseth
- Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderColoradoUSA
- The BioFrontiers InstituteUniversity of Colorado BoulderBoulderColoradoUSA
- Materials Science and Engineering ProgramUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
31
|
Wu M, Zhang J, Xiong Y, Zhao Y, Zheng M, Huang X, Huang F, Wu X, Li X, Fan W, Hu L, Zeng Y, Cheng X, Yue J, Du J, Chen N, Wei W, Yao Q, Lu X, Huang C, Deng J, Chang Z, Liu H, Zhao TC, Chinn YE. Promotion of Lung Cancer Metastasis by SIRT2-Mediated Extracellular Protein Deacetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205462. [PMID: 36453571 PMCID: PMC9875677 DOI: 10.1002/advs.202205462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Acetylation of extracellular proteins has been observed in many independent studies where particular attention has been given to the dynamic change of the microenvironmental protein post-translational modifications. While extracellular proteins can be acetylated within the cells prior to their micro-environmental distribution, their deacetylation in a tumor microenvironment remains elusive. Here it is described that multiple acetyl-vWA domain-carrying proteins including integrin β3 (ITGB3) and collagen 6A (COL6A) are deacetylated by Sirtuin family member SIRT2 in extracellular space. SIRT2 is secreted by macrophages following toll-like receptor (TLR) family member TLR4 or TLR2 activation. TLR-activated SIRT2 undergoes autophagosome translocation. TNF receptor associated factor 6 (TRAF6)-mediated autophagy flux in response to TLR2/4 activation can then pump SIRT2 into the microenvironment to function as extracellular SIRT2 (eSIRT2). In the extracellular space, eSIRT2 deacetylates ITGB3 on aK416 involved in cell attachment and migration, leading to a promotion of cancer cell metastasis. In lung cancer patients, significantly increased serum eSIRT2 level correlates with dramatically decreased ITGB3-K416 acetylation in cancer cells. Thus, the extracellular space is a subcellular organelle-like arena where eSIRT2 promotes cancer cell metastasis via catalyzing extracellular protein deacetylation.
Collapse
|
32
|
Michigami T. Paracrine and endocrine functions of osteocytes. Clin Pediatr Endocrinol 2023; 32:1-10. [PMID: 36761497 PMCID: PMC9887291 DOI: 10.1297/cpe.2022-0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/30/2022] [Indexed: 11/04/2022] Open
Abstract
Osteocytes are dendritic-shaped cells embedded in the bone matrix and are terminally differentiated from osteoblasts. Inaccessibility due to their location has hindered the understanding of the molecular functions of osteocytes. However, scientific advances in the past few decades have revealed that osteocytes play critical roles in bone and mineral metabolism through their paracrine and endocrine functions. Sclerostin produced by osteocytes regulates bone formation and resorption by inhibiting Wnt/β-catenin signaling in osteoblast-lineage cells. Receptor activator of nuclear factor κ B ligand (RANKL) derived from osteocytes is essential for osteoclastogenesis and osteoclast activation during postnatal life. Osteocytes also secrete fibroblast growth factor 23 (FGF23), an endocrine FGF that regulates phosphate metabolism mainly by increasing phosphate excretion and decreasing 1, 25-dihydroxyvitamin D production in the kidneys. The regulation of FGF23 production in osteocytes is complex and multifactorial, involving many local and systemic regulators. Antibodies against sclerostin, RANKL, and FGF23 have emerged as new strategies for the treatment of metabolic bone diseases. Improved undrstanding of the paracrine and endocrine functions of osteocytes will provide insight into future therapeutic options.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute,
Osaka Women’s and Children’s Hospital, Osaka Prefectural Hospital Organization, Osaka,
Japan
| |
Collapse
|
33
|
Du S, Zhu C, Ren X, Chen X, Cui X, Guan S. Regulation of secretory pathway kinase or kinase-like proteins in human cancers. Front Immunol 2023; 14:942849. [PMID: 36825005 PMCID: PMC9941534 DOI: 10.3389/fimmu.2023.942849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Secretory pathway kinase or kinase-like proteins (SPKKPs) are effective in the lumen of the endoplasmic reticulum (ER), Golgi apparatus (GA), and extracellular space. These proteins are involved in secretory signaling pathways and are distinctive from typical protein kinases. Various reports have shown that SPKKPs regulate the tumorigenesis and progression of human cancer via the phosphorylation of various substrates, which is essential in physiological and pathological processes. Emerging evidence has revealed that the expression of SPKKPs in human cancers is regulated by multiple factors. This review summarizes the current understanding of the contribution of SPKKPs in tumorigenesis and the progression of immunity. With the epidemic trend of immunotherapy, targeting SPKKPs may be a novel approach to anticancer therapy. This study briefly discusses the recent advances regarding SPKKPs.
Collapse
Affiliation(s)
- Shaonan Du
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaolin Ren
- Department of Neurosurgery, Shenyang Red Cross Hospital, Shenyang, China
| | - Xin Chen
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiao Cui
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shu Guan
- Department of Surgical Oncology and Breast Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Koike T, Mikami T, Tamura JI, Kitagawa H. Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia. Nat Commun 2022; 13:7952. [PMID: 36572689 PMCID: PMC9792594 DOI: 10.1038/s41467-022-35687-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
Raine syndrome, a lethal osteosclerotic bone dysplasia in humans, is caused by loss-of-function mutations in FAM20C; however, Fam20c deficiency in mice does not recapitulate the human disorder, so the underlying pathoetiological mechanisms remain poorly understood. Here we show that FAM20C, in addition to the reported casein kinase activity, also fine-tunes the biosynthesis of chondroitin sulfate (CS) chains to impact bone homeostasis. Specifically, FAM20C with Raine-originated mutations loses the ability to interact with chondroitin 4-O-sulfotransferase-1, and is associated with reduced 4-sulfation/6-sulfation (4S/6S) ratio of CS chains and upregulated biomineralization in human osteosarcoma cells. By contrast, overexpressing chondroitin 6-O-sulfotransferase-1 reduces CS 4S/6S ratio, and induces osteoblast differentiation in vitro and higher bone mineral density in transgenic mice. Meanwhile, a potential xylose kinase activity of FAM20C does not impact CS 4S/6S ratio, and is not associated with Raine syndrome mutations. Our results thus implicate CS 4S/6S ratio imbalances caused by FAM20C mutations as a contributor of Raine syndrome etiology.
Collapse
Affiliation(s)
- Toshiyasu Koike
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Tadahisa Mikami
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| | - Jun-Ichi Tamura
- grid.265107.70000 0001 0663 5064Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori, 680-8551 Japan
| | - Hiroshi Kitagawa
- grid.411100.50000 0004 0371 6549Laboratory of Biochemistry, Kobe Pharmaceutical University, Higashinada-Ku, Kobe, 658-8558 Japan
| |
Collapse
|
35
|
Liang H, Sun Y, Li C, Lin H, Huang Q, Li C. Facile synthesis of phycocyanin/polydopamine hierarchical nanocomposites for synergizing PTT/PDT against cancer. RSC Adv 2022; 12:34815-34821. [PMID: 36540209 PMCID: PMC9724212 DOI: 10.1039/d2ra05863d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/12/2022] [Indexed: 01/15/2024] Open
Abstract
The exceptional biocompatibility and biosafety of natural proteins have made them a popular choice for tumor therapy in recent years, but their therapeutic effectiveness is severely constrained by factors including physiological instability, insufficient delivery, limited accumulation in tumor cells, etc. Here, a novel Mn-doped phycocyanin (Pc)/polydopamine (PDA) hierarchical nanostructure (MnPc@P) with excellent optical absorption, photothermal conversion, and photodynamic performances, is first designed and fabricated by a simply one-pot reaction, which not only successfully encapsulates natural protein Pc with intact activity in the nanostructure of MnPc@P but also gives them better biocompatibility. Upon laser irradiation, PDA-mediated hyperthermia and Pc-induced ROS elevation in tumor cells have been demonstrated, leading to drastic tumor cell death via combined PTT/PDT effect, greater than single PTT or PDT. In general, the expert fusion of Pc and PDA into a single nanomedicine opens fascinating perspectives in the delivery of natural proteins and tumor therapy.
Collapse
Affiliation(s)
- Huazhen Liang
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Yaling Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University Guangzhou 510630 Guangdong China
| | - Chaoming Li
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Huaming Lin
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Qiwen Huang
- Department of Pathology, Maoming People's Hospital Maoming 525000 Guangdong China
| | - Changguo Li
- Department of Oncology, Maoming People's Hospital Maoming 525000 Guangdong China
| |
Collapse
|
36
|
Venerando A, Bustos VH, Pinna LA, Cozza G. Editorial: Casein kinases in human diseases. Front Mol Biosci 2022; 9:1094922. [DOI: 10.3389/fmolb.2022.1094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
|
37
|
Li RS, Wen C, Huang CZ, Li N. Functional molecules and nano-materials for the Golgi apparatus-targeted imaging and therapy. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
39
|
Tarczewska A, Bielak K, Zoglowek A, Sołtys K, Dobryszycki P, Ożyhar A, Różycka M. The Role of Intrinsically Disordered Proteins in Liquid–Liquid Phase Separation during Calcium Carbonate Biomineralization. Biomolecules 2022; 12:biom12091266. [PMID: 36139105 PMCID: PMC9496343 DOI: 10.3390/biom12091266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Some animal organs contain mineralized tissues. These so-called hard tissues are mostly deposits of calcium salts, usually in the form of calcium phosphate or calcium carbonate. Examples of this include fish otoliths and mammalian otoconia, which are found in the inner ear, and they are an essential part of the sensory system that maintains body balance. The composition of ear stones is quite well known, but the role of individual components in the nucleation and growth of these biominerals is enigmatic. It is sure that intrinsically disordered proteins (IDPs) play an important role in this aspect. They have an impact on the shape and size of otoliths. It seems probable that IDPs, with their inherent ability to phase separate, also play a role in nucleation processes. This review discusses the major theories on the mechanisms of biomineral nucleation with a focus on the importance of protein-driven liquid–liquid phase separation (LLPS). It also presents the current understanding of the role of IDPs in the formation of calcium carbonate biominerals and predicts their potential ability to drive LLPS.
Collapse
|
40
|
Abstract
Inorganic phosphate (Pi) in the mammalian body is balanced by its influx and efflux through the intestines, kidneys, bones, and soft tissues, at which several sodium/Pi co-transporters mediate its active transport. Pi homeostasis is achieved through the complex counter-regulatory feedback balance between fibroblast growth factor 23 (FGF23), 1,25-dihydroxyvitamin D (1,25(OH)2D), and parathyroid hormone. FGF23, which is mainly produced by osteocytes in bone, plays a central role in Pi homeostasis and exerts its effects by binding to the FGF receptor (FGFR) and αKlotho in distant target organs. In the kidneys, the main target, FGF23 promotes the excretion of Pi and suppresses the production of 1,25(OH)2D. Deficient and excess FGF23 result in hyperphosphatemia and hypophosphatemia, respectively. FGF23-related hypophosphatemic rickets/osteomalacia include tumor-induced osteomalacia and various genetic diseases, such as X-linked hypophosphatemic rickets. Coverage by the national health insurance system in Japan for the measurement of FGF23 and the approval of burosumab, an FGF23-neutralizing antibody, have had a significant impact on the diagnosis and treatment of FGF23-related hypophosphatemic rickets/osteomalacia. Some of the molecules responsible for genetic hypophosphatemic rickets/osteomalacia are highly expressed in osteocytes and function as local regulators of FGF23 production. A number of systemic factors also regulate FGF23 levels. Although the mechanisms responsible for Pi sensing in mammals have not yet been elucidated in detail, recent studies have suggested the involvement of FGFR1. The further clarification of the mechanisms by which osteocytes detect Pi levels and regulate FGF23 production will lead to the development of better strategies to treat hyperphosphatemic and hypophosphatemic conditions.
Collapse
Affiliation(s)
- Toshimi Michigami
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| |
Collapse
|
41
|
Desoutter A, Cases O, Collart Dutilleul PY, Simancas Escorcia V, Cannaya V, Cuisinier F, Kozyraki R. Enamel and dentin in Enamel renal syndrome: A confocal Raman microscopy view. Front Physiol 2022; 13:957110. [PMID: 36091358 PMCID: PMC9453029 DOI: 10.3389/fphys.2022.957110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Enamel Renal Syndrome (ERS) is a rare genetic disorder caused by biallelic mutations in Family with sequence similarity 20A (FAM20A) gene encoding the secretory pathway pseudokinase FAM20A. ERS is characterized by hypoplastic amelogenesis imperfecta (AI), impaired tooth eruption, intra-pulpal calcifications, gingival fibromatosis and nephrocalcinosis of various severity. Previous studies showed that the hypoplastic enamel was also hypomineralized but its chemical composition has not been extensively studied. Furthermore it is currently unclear whether dentinal defects are associated with AI in ERS patients. The objective of the study was to provide a structural and chemical analysis of enamel, dentin and dentin enamel junction (DEJ) in ERS patients carrying four, previously reported, distinct mutations in FAM20A. Chemical cartography obtained with Raman microscopy showed that compared to control samples, ERS enamel composition was severely altered and a cementum-like structure was observed in some cases. Chemical composition of peripulpal dentin was also affected and usual gradient of phosphate intensity, shown in DEJ profile, was absent in ERS samples. DEJ and dentinal anomalies were further confirmed by scanning electron microscopy analysis. In conclusion, our study shows that enamel formation is severely compromised in ERS patients and provides evidence that dentinal defects are an additional feature of the ERS dental phenotype.
Collapse
Affiliation(s)
- Alban Desoutter
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
- *Correspondence: Alban Desoutter,
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | | | - Victor Simancas Escorcia
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- Facultad de Odontología, Universidad de Cartagena, Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena (GITOUC), Cartagena, Colombia
| | - Vidjea Cannaya
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
| | - Frédéric Cuisinier
- Laboratoire Bioingénierie et Nanosciences LBN, Université de Montpellier, Montpellier, France
| | - Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris Cité, Laboratory of Oral Molecular Pathophysiology, Paris, France
- CRMR O-RARES, Hôpital Rothshild, UFR d’Odontologie-Garancière, Université de Paris Cité, Paris, France
| |
Collapse
|
42
|
Dong C, Lamichhane B, Yamazaki H, Vasquez B, Wang J, Zhang Y, Feng JQ, Margolis HC, Beniash E, Wang X. The phosphorylation of serine 55 in enamelin is essential for murine amelogenesis. Matrix Biol 2022; 111:245-263. [PMID: 35820561 PMCID: PMC11244640 DOI: 10.1016/j.matbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Amelogenesis imperfecta (AI) is an inherited developmental enamel defect affecting tooth masticatory function, esthetic appearance, and the well-being of patients. As one of the major enamel matrix proteins (EMPs), enamelin (ENAM) has three serines located in Ser-x-Glu (S-x-E) motifs, which are potential phosphorylation sites for the Golgi casein kinase FAM20C. Defects in FAM20C have similarly been associated with AI. In our previous study of EnamRgsc514 mice, the Glu57 in the S55-X56-E57 motif was mutated into Gly, which was expected to cause a phosphorylation failure of Ser55 because Ser55 cannot be recognized by FAM20C. The severe enamel defects in ENAMRgsc514 mice reminiscent of Enam-knockout mouse enamel suggested a potentially important role of Ser55 phosphorylation in ENAM function. However, the enamel defects and ENAM dysfunction may also be attributed to distinct physicochemical differences between Glu57 and Gly57. To clarify the significance of Ser55 phosphorylation to ENAM function, we generated two lines of Enam knock-in mice using CRISPR-Cas9 method to eliminate or mimic the phosphorylation state of Ser55 by substituting it with Ala55 or Asp55 (designated as S55A or S55D), respectively. The teeth of 6-day or 4-week-old mice were subjected to histology, micro-CT, SEM, TEM, immunohistochemistry, and mass spectrometry analyses to characterize the morphological, microstructural and proteomic changes in ameloblasts, enamel matrix and enamel rods. Our results showed that the enamel formation and EMP expression in S55D heterozygotes (Het) were less disturbed than those in S55A heterozygotes, while both homozygotes (Homo) had no mature enamel formation. Proteomic analysis revealed alterations of enamel matrix biosynthetic and mineralization processes in S55A Hets. Our present findings indicate that Asp55 substitution partially mimics the phosphorylation state of Ser55 in ENAM. Ser55 phosphorylation is essential for ENAM function during amelogenesis.
Collapse
Affiliation(s)
- Changchun Dong
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Bikash Lamichhane
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Hajime Yamazaki
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brent Vasquez
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jingya Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Yongxu Zhang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States
| | - Henry C Margolis
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Periodontics and Preventive Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Elia Beniash
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University School of Dentistry, 3302 Gaston Ave, Dallas, TX 75246, United States.
| |
Collapse
|
43
|
Yamashita S, Katsumi H, Sakane T, Yamamoto A. Phosphorylated Serine-Modified Polyamidoamine Dendrimer as an Osteoid Surface-Targeting Drug Carrier. Mol Pharm 2022; 19:2573-2582. [PMID: 35666687 DOI: 10.1021/acs.molpharmaceut.2c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to develop a polyethylene glycol (PEG)-conjugated third-generation polyamidoamine dendrimer (PAMAM) with phosphorylated serine as an osteoid surface-targeting drug carrier for the treatment of bone diseases. We conjugated PAMAM backbones to l-serine and obtained Ser-PAMAM. Then, phosphoric acid and PEG were covalently bound to the Ser-PAMAM to generate PEGylated phosphorylated Ser-PAMAM (PEG-phosSer-PAMAM). Using osteoblast-like cells (MC3T3-E1 cells) cultured in 3D collagen gels, we showed that phosSer-PAMAM adsorbed both the hydroxyapatite and type I collagen components of the bone matrix. Fourier transform infrared spectroscopy analysis indicated that the phosphoryl side chains of phosSer-PAMAM formed electrostatic interactions and hydrogen bonds with the anionic amino acid residues of type I collagen. Mice were intravenously injected with the foregoing molecules, and a tissue distribution study disclosed that the lower limb bone took up about twice as much 111In-labeled PEG-phosSer-PAMAM as 111In-labeled nonphosphorylated PEG-Ser-PAMAM or unmodified PAMAM. An intrabone distribution experiment showed that fluorescein isothiocyanate (FITC)-labeled PEG-phosSer-PAMAM accumulated on the osteoid surfaces, which is associated with bone pathogenesis such as skeletal dysplasias and osteoporosis to a far greater extent than nonphosphorylated PEG-Ser-PAMAM. Our findings indicated that PEG-phosSer-PAMAM is a promising carrier for efficient drug targeting to osteoid surfaces.
Collapse
Affiliation(s)
- Shugo Yamashita
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan.,Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Hidemasa Katsumi
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiyasu Sakane
- Department of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | - Akira Yamamoto
- Department of Biopharmaceutics, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
44
|
Pathogenesis of FGF23-Related Hypophosphatemic Diseases Including X-linked Hypophosphatemia. ENDOCRINES 2022. [DOI: 10.3390/endocrines3020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since phosphate is indispensable for skeletal mineralization, chronic hypophosphatemia causes rickets and osteomalacia. Fibroblast growth factor 23 (FGF23), which is mainly produced by osteocytes in bone, functions as the central regulator of phosphate metabolism by increasing the renal excretion of phosphate and suppressing the production of 1,25-dihydroxyvitamin D. The excessive action of FGF23 results in hypophosphatemic diseases, which include a number of genetic disorders such as X-linked hypophosphatemic rickets (XLH) and tumor-induced osteomalacia (TIO). Phosphate-regulating gene homologous to endopeptidase on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), ectonucleotide pyrophosphatase phosphodiesterase-1, and family with sequence similarity 20c, the inactivating variants of which are responsible for FGF23-related hereditary rickets/osteomalacia, are highly expressed in osteocytes, similar to FGF23, suggesting that they are local negative regulators of FGF23. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by cleavage-resistant variants of FGF23, and iron deficiency increases serum levels of FGF23 and the manifestation of symptoms in ADHR. Enhanced FGF receptor (FGFR) signaling in osteocytes is suggested to be involved in the overproduction of FGF23 in XLH and autosomal recessive hypophosphatemic rickets type 1, which are caused by the inactivation of PHEX and DMP1, respectively. TIO is caused by the overproduction of FGF23 by phosphaturic tumors, which are often positive for FGFR. FGF23-related hypophosphatemia may also be associated with McCune-Albright syndrome, linear sebaceous nevus syndrome, and the intravenous administration of iron. This review summarizes current knowledge on the pathogenesis of FGF23-related hypophosphatemic diseases.
Collapse
|
45
|
Dzamukova M, Brunner TM, Miotla-Zarebska J, Heinrich F, Brylka L, Mashreghi MF, Kusumbe A, Kühn R, Schinke T, Vincent TL, Löhning M. Mechanical forces couple bone matrix mineralization with inhibition of angiogenesis to limit adolescent bone growth. Nat Commun 2022; 13:3059. [PMID: 35650194 PMCID: PMC9160028 DOI: 10.1038/s41467-022-30618-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Bone growth requires a specialised, highly angiogenic blood vessel subtype, so-called type H vessels, which pave the way for osteoblasts surrounding these vessels. At the end of adolescence, type H vessels differentiate into quiescent type L endothelium lacking the capacity to promote bone growth. Until now, the signals that switch off type H vessel identity and thus limit adolescent bone growth have remained ill defined. Here we show that mechanical forces, associated with increased body weight at the end of adolescence, trigger the mechanoreceptor PIEZO1 and thereby mediate enhanced production of the kinase FAM20C in osteoblasts. FAM20C, the major kinase of the secreted phosphoproteome, phosphorylates dentin matrix protein 1, previously identified as a key factor in bone mineralization. Thereupon, dentin matrix protein 1 is secreted from osteoblasts in a burst-like manner. Extracellular dentin matrix protein 1 inhibits vascular endothelial growth factor signalling by preventing phosphorylation of vascular endothelial growth factor receptor 2. Hence, secreted dentin matrix protein 1 transforms type H vessels into type L to limit bone growth activity and enhance bone mineralization. The discovered mechanism may suggest new options for the treatment of diseases characterised by aberrant activity of bone and vessels such as osteoarthritis, osteoporosis and osteosarcoma.
Collapse
Affiliation(s)
- Maria Dzamukova
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Tobias M Brunner
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jadwiga Miotla-Zarebska
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Frederik Heinrich
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Laura Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Regine von Ramin Lab Molecular Rheumatology, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anjali Kusumbe
- Tissue and Tumour Microenvironments Group, University of Oxford, Oxford, UK
| | - Ralf Kühn
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Max Löhning
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Centre (DRFZ), a Leibniz Institute, Berlin, Germany.
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
46
|
Leurs N, Martinand-Mari C, Marcellini S, Debiais-Thibaud M. Parallel evolution of ameloblastic scpp genes in bony and cartilaginous vertebrates. Mol Biol Evol 2022; 39:6582990. [PMID: 35535508 PMCID: PMC9122587 DOI: 10.1093/molbev/msac099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In bony vertebrates, skeletal mineralization relies on the secretory calcium-binding phosphoproteins (Scpp) family whose members are acidic extracellular proteins posttranslationally regulated by the Fam20°C kinase. As scpp genes are absent from the elephant shark genome, they are currently thought to be specific to bony fishes (osteichthyans). Here, we report a scpp gene present in elasmobranchs (sharks and rays) that evolved from local tandem duplication of sparc-L 5′ exons and show that both genes experienced recent gene conversion in sharks. The elasmobranch scpp is remarkably similar to the osteichthyan scpp members as they share syntenic and gene structure features, code for a conserved signal peptide, tyrosine-rich and aspartate/glutamate-rich regions, and harbor putative Fam20°C phosphorylation sites. In addition, the catshark scpp is coexpressed with sparc-L and fam20°C in tooth and scale ameloblasts, similarly to some osteichthyan scpp genes. Despite these strong similarities, molecular clock and phylogenetic data demonstrate that the elasmobranch scpp gene originated independently from the osteichthyan scpp gene family. Our study reveals convergent events at the sparc-L locus in the two sister clades of jawed vertebrates, leading to parallel diversification of the skeletal biomineralization toolkit. The molecular evolution of sparc-L and its coexpression with fam20°C in catshark ameloblasts provides a unifying genetic basis that suggests that all convergent scpp duplicates inherited similar features from their sparc-L precursor. This conclusion supports a single origin for the hypermineralized outer odontode layer as produced by an ancestral developmental process performed by Sparc-L, implying the homology of the enamel and enameloid tissues in all vertebrates.
Collapse
Affiliation(s)
- Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| | - Sylvain Marcellini
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Montpellier, France
| |
Collapse
|
47
|
Black MH, Gradowski M, Pawłowski K, Tagliabracci VS. Methods for discovering catalytic activities for pseudokinases. Methods Enzymol 2022; 667:575-610. [PMID: 35525554 DOI: 10.1016/bs.mie.2022.03.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pseudoenzymes resemble active enzymes, but lack key catalytic residues believed to be required for activity. Many pseudoenzymes appear to be inactive in conventional enzyme assays. However, an alternative explanation for their apparent lack of activity is that pseudoenzymes are being assayed for the wrong reaction. We have discovered several new protein kinase-like families which have revealed how different binding orientations of adenosine triphosphate (ATP) and active site residue migration can generate a novel reaction from a common kinase scaffold. These results have exposed the catalytic versatility of the protein kinase fold and suggest that atypical kinases and pseudokinases should be analyzed for alternative transferase activities. In this chapter, we discuss a general approach for bioinformatically identifying divergent or atypical members of an enzyme superfamily, then present an experimental approach to characterize their catalytic activity.
Collapse
Affiliation(s)
- Miles H Black
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Marcin Gradowski
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
48
|
Rui X, Cui M, Martewicz S, Hu M, Gagliano O, Elvassore N, Luni C. Extracellular phosphoprotein regulation is affected by culture system scale-down. Biochim Biophys Acta Gen Subj 2022; 1866:130165. [PMID: 35513203 DOI: 10.1016/j.bbagen.2022.130165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Phosphorylated proteins are known to be present in multiple body fluids in normal conditions, and abnormally accumulated under some pathological conditions. The biological significance of their role in the extracellular space has started being elucidated only recently, for example in bone mineralization, neural development, and coagulation. Here, we address some criticalities of conventional culture systems for the study of the extracellular regulation of phosphorylation. METHODS We make use of microfluidics to scale-down the culture volume to a size comparable to the interstitial spaces occurring in vivo. The phosphoprotein content of conditioned media was analyzed by a colorimetric assay that detects global phosphorylation. RESULTS We found that miniaturization of the culture system increases phosphoprotein accumulation. Moreover, we demonstrated that in conventional culture systems dilution affects the extent of the phosphorylation reactions occurring within the extracellular space. On the other hand, in microfluidics the phosphorylation status was not affected by addition of adenosine triphosphate (ATP) and FAM20C Golgi Associated Secretory Pathway Kinase (FAM20C) ectokinase, as if their concentration was already not limiting for the phosphorylation reaction to occur. CONCLUSIONS The volume of the extracellular environment plays a role in the process of extracellular phosphorylation due to its effect on the concentration of substrates, enzymes and co-factors. GENERAL SIGNIFICANCE Thus, the biological role of extracellular phosphoregulation may be better appreciated within a microfluidic culture system.
Collapse
Affiliation(s)
- Xue Rui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Meihua Cui
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Sebastian Martewicz
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Manli Hu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China
| | - Onelia Gagliano
- Department of Industrial Engineering, University of Padova, Padova 35131, Italy; Venetian Institute of Molecular Medicine, Padova 35129, Italy
| | - Nicola Elvassore
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; Department of Industrial Engineering, University of Padova, Padova 35131, Italy; Venetian Institute of Molecular Medicine, Padova 35129, Italy; Stem Cells & Regenerative Medicine Section, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Camilla Luni
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, China; Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40131, Italy.
| |
Collapse
|
49
|
Löhning M, Shen P, Dzamukova M, Durán-Hernández N, Roodselaar J, Hauser AE, Fiedler A, Niesner RA, Gaber T, Buttgereit F. [The DRFZ-a pioneer in research on the interaction between immune and stromal cells during de- and regeneration of the musculoskeletal system]. Z Rheumatol 2022; 81:652-659. [PMID: 35412048 DOI: 10.1007/s00393-022-01188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
Rheumatoid arthritis and osteoarthritis are two related chronic diseases of the musculoskeletal system which are particularly pronounced in the region of joints and bones. Their pathogeneses are associated with chronic inflammation, which can disrupt homeostasis in bones and articular cartilage. Degradation products deriving from articular cartilage can contribute to the exacerbation of inflammation in the joint region. Mechanical stimuli and blood vessels also play a central role in both the regulation of bone growth as well as in the regeneration of bone tissue. Not only chronic inflammatory processes but also hormonal changes after menopause or undesired effects of glucocorticoid therapy have an influence on the balance between bone resorption and deposition, by promoting the former and reducing the latter. This results in decreased bone quality and, in some cases, considerable loss of bone or osteoporosis. An in-depth understanding of these processes at the molecular, cellular, and tissue level, as well as of the changes present in chronic inflammatory diseases, has been the focus of research at the German Rheumatism Research Center (Deutsches Rheuma-Forschungszentrum, DRFZ) since its foundation. Based on an improved understanding of these mechanisms, the DRFZ aims to develop improved prevention and treatment strategies with effects even in early disease stages.
Collapse
Affiliation(s)
- Max Löhning
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland. .,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland.
| | - Ping Shen
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Maria Dzamukova
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Nayar Durán-Hernández
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Jay Roodselaar
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Alexander Fiedler
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Deutschland
| | - Raluca A Niesner
- Deutsches Rheuma-Forschungszentrum Berlin (DRFZ), Leibniz-Institut, Charitéplatz 1, 10117, Berlin, Deutschland.,Institut für Veterinär-Physiologie, Freie Universität Berlin, Berlin, Deutschland
| | - Timo Gaber
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Frank Buttgereit
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Deutschland
| |
Collapse
|
50
|
Rudloff S, Jahnen-Dechent W, Huynh-Do U. Tissue chaperoning—the expanded functions of fetuin-A beyond inhibition of systemic calcification. Pflugers Arch 2022; 474:949-962. [PMID: 35403906 PMCID: PMC8995415 DOI: 10.1007/s00424-022-02688-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
AbstractTraditionally, fetuin-A embodies the prototype anti-calcification protein in the blood, preventing cardiovascular calcification. Low serum fetuin-A is generally associated with mineralization dysbalance and enhanced mortality in end stage renal disease. Recent evidence indicates that fetuin-A is a crucial factor moderating tissue inflammation and fibrosis, as well as a systemic indicator of acute inflammatory disease. Here, the expanded function of fetuin-A is discussed in the context of mineralization and inflammation biology. Unbalanced depletion of fetuin-A in this context may be the critical event, triggering a vicious cycle of progressive calcification, inflammation, and tissue injury. Hence, we designate fetuin-A as tissue chaperone and propose the potential use of exogenous fetuin-A as prophylactic agent or emergency treatment in conditions that are associated with acute depletion of endogenous protein.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|