1
|
Safi Samghabadi F, Marfai J, Cueva C, Aporvari M, Neill P, Chabi M, Robertson-Anderson RM, Conrad JC. Phage probes couple to DNA relaxation dynamics to reveal universal behavior across scales and regimes. SOFT MATTER 2025; 21:935-947. [PMID: 39803932 DOI: 10.1039/d4sm01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Microrheology has become an indispensable tool for measuring the dynamics of macromolecular systems. Yet, its ability to characterize polymer dynamics across spatiotemporal scales, which vary among polymers and concentration regimes, is limited by the selection of probe morphologies and sizes. Here, we introduce semiflexible M13 phage as a powerful microrheological probe able to circumvent these constraints to robustly capture the dynamics of polymeric solutions across decades of concentrations, sizes, and ionic conditions. We show that phage mobility directly couples to the relaxation dynamics of DNA solutions spanning from semidilute to entangled regimes with ionic strengths varying by four orders of magnitude. Phage mobility metrics across a broad range of timescales collapse onto universal master curves that are unexpectedly insensitive to ionic strength and exhibit robust crossovers from semidilute to entangled regime scaling, not captured by current theoretical models. Our results open the door to the use of phage probes to elucidate the complex dynamics of systems exhibiting a spectrum of thermal and active relaxation processes.
Collapse
Affiliation(s)
- Farshad Safi Samghabadi
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Juexin Marfai
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Camyla Cueva
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Mehdi Aporvari
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Philip Neill
- Department of Physics and Biophysics, University of San Diego, San Diego, CA 92110, USA.
| | - Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | | | - Jacinta C Conrad
- Department of Chemical & Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
2
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
3
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Neu JC, Teitsworth SW. Irreversible dynamics of a continuum driven by active matter. Phys Rev E 2024; 110:054114. [PMID: 39690575 DOI: 10.1103/physreve.110.054114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/22/2024] [Indexed: 12/19/2024]
Abstract
We study the fluctuational behavior of overdamped elastic filaments (e.g., strings or rods) driven by active matter which induces irreversibility. The statistics of discrete normal modes are translated into the continuum of the position representation which allows discernment of the spatial structure of dissipation and fluctuational work done by the active forces. The mapping of force statistics onto filament statistics leads to a generalized fluctuation-dissipation relation which predicts the components of the stochastic area tensor and its spatial proxy, the irreversibility field. We illustrate the general theory with explicit results for a tensioned string between two fixed endpoints. Plots of the stochastic area tensor components in the discrete plane of mode pairs reveal how the active forces induce spatial correlations of displacement along the filament. The irreversibility field provides additional quantitative insight into the relative spatial distributions of fluctuational work and dissipative response.
Collapse
|
5
|
Basu S, Hendler-Neumark A, Bisker G. Dynamic Tracking of Biological Processes Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377262 PMCID: PMC11492180 DOI: 10.1021/acsami.4c10955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/02/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
Biological processes are characterized by dynamic and elaborate temporal patterns driven by the interplay of genes, proteins, and cellular components that are crucial for adaptation to changing environments. This complexity spans from molecular to organismal scales, necessitating their real-time monitoring and tracking to unravel the active processes that fuel living systems and enable early disease detection, personalized medicine, and drug development. Single-walled carbon nanotubes (SWCNTs), with their unique physicochemical and optical properties, have emerged as promising tools for real-time tracking of such processes. This perspective highlights the key properties of SWCNTs that make them ideal for such monitoring. Subsequently, it surveys studies utilizing SWCNTs to track dynamic biological phenomena across hierarchical levels─from molecules to cells, tissues, organs, and whole organisms─acknowledging their pivotal role in advancing this field. Finally, the review outlines challenges and future directions, aiming to expand the frontier of real-time biological monitoring using SWCNTs, contributing to deeper insights and novel applications in biomedicine.
Collapse
Affiliation(s)
- Srestha Basu
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Hendler-Neumark
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Gili Bisker
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel
Aviv University, Tel Aviv 6997801, Israel
- Center
for Light-Matter Interaction, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
6
|
Rafeek R, Mondal D. Active Brownian information engine: Self-propulsion induced colossal performance. J Chem Phys 2024; 161:124116. [PMID: 39329308 DOI: 10.1063/5.0229087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
The information engine is a feedback mechanism that extorts work from a single heat bath using the mutual information earned during the measurement. We consider an overdamped active Ornstein-Uhlenbeck particle trapped in a 1D harmonic oscillator. The particle experiences fluctuations from an inherent thermal bath with a diffusion coefficient (D) and an active reservoir, with characteristic correlation time (τa) and strength (Da). We design a feedback-driven active Brownian information engine (ABIE) and analyze its best performance criteria. The optimal functioning criteria, the information gained during measurement, and the excess output work are reliant on the dispersion of the steady-state distribution of the particle's position. The extent of enhanced performance of such ABIE depends on the relative values of two underlying time scales of the process, namely, thermal relaxation time (τr) and the characteristic correlation time (τa). In the limit of τa/τr → 0, one can achieve the upper bound on colossal work extraction as ∼0.202γ(D+Da) (γ is the friction coefficient). The excess amount of extracted work reduces and converges to its passive counterpart (∼0.202γD) in the limit of τa/τr → high. Interestingly, when τa/τr = 1, half the upper bound of excess work is achieved irrespective of the strength of either reservoirs, thermal or active. Finally, we look into the average displacement of active Brownian particles in each feedback cycle, which surpasses its thermal analog due to the broader marginal probability distribution.
Collapse
Affiliation(s)
- Rafna Rafeek
- Department of Chemistry and Center for Molecular and Optical Sciences and Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Debasish Mondal
- Department of Chemistry and Center for Molecular and Optical Sciences and Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
7
|
Luo HY, Jiang C, Dou SX, Wang PY, Li H. Quantum Dot-Based Three-Dimensional Single-Particle Tracking Characterizes the Evolution of Spatiotemporal Heterogeneity in Necrotic Cells. Anal Chem 2024; 96:11682-11689. [PMID: 38979688 DOI: 10.1021/acs.analchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell death is a fundamental biological process with different modes including apoptosis and necrosis. In contrast to programmed apoptosis, necrosis was previously considered disordered and passive, but it is now being realized to be under regulation by certain biological pathways. However, the intracellular dynamics that coordinates with cellular structure changes during necrosis remains unknown, limiting our understanding of the principles of necrosis. Here, we characterized the spatiotemporal intracellular diffusion dynamics in cells undergoing necrosis, using three-dimensional single-particle tracking of quantum dots. We found temporally increased diffusion rates in necrotic cells and spatially enhanced diffusion heterogeneity in the cell periphery, which could be attributed to the reduced molecular crowding resulting from cell swelling and peripheral blebbing, respectively. Moreover, the three-dimensional intracellular diffusion transits from strong anisotropy to nearly isotropy, suggesting a remodeling of the cytoarchitecture that relieves the axial constraint on intracellular diffusion during necrosis. Our results reveal the remarkable alterations of intracellular diffusion dynamics and biophysical properties in necrosis, providing insight into the well-organized nonequilibrium necrotic cell death from a biophysical perspective.
Collapse
Affiliation(s)
- Hong-Yu Luo
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Jiang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Yi H, Gong D, Daddysman MK, Renn M, Scherer NF. Distinct Sub- to Superdiffuse Insulin Granule Transport Behaviors in β-Cells Are Strongly Affected by Granule Age. J Phys Chem B 2024; 128:6246-6256. [PMID: 38861346 DOI: 10.1021/acs.jpcb.4c01403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Intracellular transport is a complex process that is difficult to describe by a single general model for motion. Here, we study the transport of insulin containing vesicles, termed granules, in live MIN6 cells. We characterize how the observed heterogeneity is affected by different intracellular factors by constructing a MIN6 cell line by CRISPR-CAS9 that constitutively expresses mCherry fused to insulin and is thus packaged in granules. Confocal microscopy imaging and single particle tracking of the granule transport provide long trajectories of thousands of single granule trajectories for statistical analysis. Mean squared displacement (MSD), angle correlation distribution, and step size distribution analysis allowed identifying five distinct granule transport subpopulations, from nearly immobile and subdiffusive to run-pause and superdiffusive. The subdiffusive subpopulation recapitulates the subordinated random walk we reported earlier (Tabei, 2013; ref 18). We show that the transport characteristics of the five subpopulations have a strong dependence on the age of insulin granules. The five subpopulations also reflect the effect of local microtubule and actin networks on transport in different cellular regions. Our results provide robust metrics to clarify the heterogeneity of granule transport and demonstrate the roles of microtubule versus actin networks with granule age since initial packaging in the Golgi.
Collapse
Affiliation(s)
- Hannah Yi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Daozheng Gong
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
- Graduate Program in Biophysical Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Matthew K Daddysman
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Martha Renn
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| | - Norbert F Scherer
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Lee A, Simon AA, Boyreau A, Allain-Courtois N, Lambert B, Pradère JP, Saltel F, Cognet L. Identification of Early Stage Liver Fibrosis by Modifications in the Interstitial Space Diffusive Microenvironment Using Fluorescent Single-Walled Carbon Nanotubes. NANO LETTERS 2024; 24:5603-5609. [PMID: 38669477 DOI: 10.1021/acs.nanolett.4c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
During liver fibrosis, recurrent hepatic injuries lead to the accumulation of collagen and other extracellular matrix components in the interstitial space, ultimately disrupting liver functions. Early stages of liver fibrosis may be reversible, but opportunities for diagnosis at these stages are currently limited. Here, we show that the alterations of the interstitial space associated with fibrosis can be probed by tracking individual fluorescent single-walled carbon nanotubes (SWCNTs) diffusing in that space. In a mouse model of early liver fibrosis, we find that nanotubes generally explore elongated areas, whose lengths decrease as the disease progresses, even in regions where histopathological examination does not reveal fibrosis yet. Furthermore, this decrease in nanotube mobility is a purely geometrical effect as the instantaneous nanotube diffusivity stays unmodified. This work establishes the promise of SWCNTs both for diagnosing liver fibrosis at an early stage and for more in-depth studies of the biophysical effects of the disease.
Collapse
Affiliation(s)
- Antony Lee
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- CNRS - UMR 5298, LP2N, Institut d'Optique Graduate School, 33400 Talence, France
- CNRS UMR168, Laboratoire Physique des Cellules et Cancer, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Apolline A Simon
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- CNRS - UMR 5298, LP2N, Institut d'Optique Graduate School, 33400 Talence, France
- CNRS, Bordeaux INP, ICMCB, UMR 5026, Univ. Bordeaux, 33600 Pessac, France
| | - Adeline Boyreau
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- CNRS - UMR 5298, LP2N, Institut d'Optique Graduate School, 33400 Talence, France
| | - Nathalie Allain-Courtois
- Inserm, UMR1312, BRIC, Bordeaux Institute of Oncology, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Benjamin Lambert
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- CNRS - UMR 5298, LP2N, Institut d'Optique Graduate School, 33400 Talence, France
| | - Jean-Philippe Pradère
- Institut RESTORE - UMR 1301 - Inserm/5070-CNRS/EFS, Univ. P. Sabatier, 31037 Toulouse, France
| | - Frédéric Saltel
- Inserm, UMR1312, BRIC, Bordeaux Institute of Oncology, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, 33400 Talence, France
- CNRS - UMR 5298, LP2N, Institut d'Optique Graduate School, 33400 Talence, France
| |
Collapse
|
10
|
Krasley A, Li E, Galeana JM, Bulumulla C, Beyene AG, Demirer GS. Carbon Nanomaterial Fluorescent Probes and Their Biological Applications. Chem Rev 2024; 124:3085-3185. [PMID: 38478064 PMCID: PMC10979413 DOI: 10.1021/acs.chemrev.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Fluorescent carbon nanomaterials have broadly useful chemical and photophysical attributes that are conducive to applications in biology. In this review, we focus on materials whose photophysics allow for the use of these materials in biomedical and environmental applications, with emphasis on imaging, biosensing, and cargo delivery. The review focuses primarily on graphitic carbon nanomaterials including graphene and its derivatives, carbon nanotubes, as well as carbon dots and carbon nanohoops. Recent advances in and future prospects of these fields are discussed at depth, and where appropriate, references to reviews pertaining to older literature are provided.
Collapse
Affiliation(s)
- Andrew
T. Krasley
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Eugene Li
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Jesus M. Galeana
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| | - Chandima Bulumulla
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Abraham G. Beyene
- Janelia
Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Gozde S. Demirer
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Fylling C, Tamayo J, Gopinath A, Theillard M. Multi-population dissolution in confined active fluids. SOFT MATTER 2024; 20:1392-1409. [PMID: 38305767 DOI: 10.1039/d3sm01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings. Here, we present a new method for modeling such multi-population active fluids subject to confinement. We use a continuum multi-scale mean-field approach to represent each phase by its first three orientational moments and couple their evolution with those of the suspending fluid. The resulting coupled system is solved using a parallel adaptive level-set-based solver for high computational efficiency and maximal flexibility in the confinement geometry. Motivated by recent experimental work, we employ our method to study the spatiotemporal dynamics of confined bacterial suspensions and swarms dominated by fluid hydrodynamic effects. Our in silico explorations reproduce observed emergent collective patterns, including features of active dissolution in two-population active-passive swarms, with results clearly suggesting that hydrodynamic effects dominate dissolution dynamics. Our work lays the foundation for a systematic characterization and study of collective phenomena in natural or synthetic multi-population systems such as bacteria colonies, bird flocks, fish schools, colloid swimmers, or programmable active matter.
Collapse
Affiliation(s)
- Cayce Fylling
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Maxime Theillard
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| |
Collapse
|
12
|
Goswami K, Metzler R. Trapped tracer in a non-equilibrium bath: dynamics and energetics. SOFT MATTER 2023; 19:8802-8819. [PMID: 37946588 DOI: 10.1039/d3sm01177a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We study the dynamics of a tracer that is elastically coupled to active particles being kept at two different temperatures, as a prototype of tracer dynamics in a non-equilibrium bath. Employing analytical techniques, we find the exact solution of the probability density function for the effective motion of the tracer. The analytical results are supported by numerical simulations. By combining the experimentally accessible quantities such as the response function and the power spectrum, we measure the non-equilibrium fluctuations in terms of the effective temperature. In addition, we compute the energy dissipation rate to find the precise effects of activity. Our study is relevant in understanding athermal fluctuations arising in cytoskeletal networks or inside a chromosome.
Collapse
Affiliation(s)
- Koushik Goswami
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.
- Asia Pacific Centre for Theoretical Physics, Pohang 37673, Republic of Korea.
| |
Collapse
|
13
|
Fernandes Martins G, Horowitz JM. Topologically constrained fluctuations and thermodynamics regulate nonequilibrium response. Phys Rev E 2023; 108:044113. [PMID: 37978593 DOI: 10.1103/physreve.108.044113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/07/2023] [Indexed: 11/19/2023]
Abstract
The limits on a system's response to external perturbations inform our understanding of how physical properties can be shaped by microscopic characteristics. Here, we derive constraints on the steady-state nonequilibrium response of physical observables in terms of the topology of the microscopic state space and the strength of thermodynamic driving. Notably, evaluation of these limits requires no kinetic information beyond the state-space structure. When applied to models of receptor binding, we find that sensitivity is bounded by the steepness of a Hill function with a Hill coefficient enhanced by the chemical driving beyond the structural equilibrium limit.
Collapse
Affiliation(s)
| | - Jordan M Horowitz
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan 48104, USA
| |
Collapse
|
14
|
Bacanu A, Pelletier JF, Jung Y, Fakhri N. Inferring scale-dependent non-equilibrium activity using carbon nanotubes. NATURE NANOTECHNOLOGY 2023; 18:905-911. [PMID: 37157022 DOI: 10.1038/s41565-023-01395-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
In living systems, irreversible, yet stochastic, molecular interactions form multiscale structures (such as cytoskeletal networks), which mediate processes (such as cytokinesis and cellular motility) in a close relationship between the structure and function. However, owing to a lack of methods to quantify non-equilibrium activity, their dynamics remain poorly characterized. Here, by measuring the time-reversal asymmetry encoded in the conformational dynamics of filamentous single-walled carbon nanotubes embedded in the actomyosin network of Xenopus egg extract, we characterize the multiscale dynamics of non-equilibrium activity encoded in bending-mode amplitudes. Our method is sensitive to distinct perturbations to the actomyosin network and the concentration ratio of adenosine triphosphate to adenosine diphosphate. Thus, our method can dissect the functional coupling of microscopic dynamics to the emergence of larger scale non-equilibrium activity. We relate the spatiotemporal scales of non-equilibrium activity to the key physical parameters of a semiflexible filament embedded in a non-equilibrium viscoelastic environment. Our analysis provides a general tool to characterize steady-state non-equilibrium activity in high-dimensional spaces.
Collapse
Affiliation(s)
- Alexandru Bacanu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James F Pelletier
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain
| | - Yoon Jung
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Chen R, Tang X, Zhao Y, Shen Z, Zhang M, Shen Y, Li T, Chung CHY, Zhang L, Wang J, Cui B, Fei P, Guo Y, Du S, Yao S. Single-frame deep-learning super-resolution microscopy for intracellular dynamics imaging. Nat Commun 2023; 14:2854. [PMID: 37202407 DOI: 10.1038/s41467-023-38452-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/20/2023] Open
Abstract
Single-molecule localization microscopy (SMLM) can be used to resolve subcellular structures and achieve a tenfold improvement in spatial resolution compared to that obtained by conventional fluorescence microscopy. However, the separation of single-molecule fluorescence events that requires thousands of frames dramatically increases the image acquisition time and phototoxicity, impeding the observation of instantaneous intracellular dynamics. Here we develop a deep-learning based single-frame super-resolution microscopy (SFSRM) method which utilizes a subpixel edge map and a multicomponent optimization strategy to guide the neural network to reconstruct a super-resolution image from a single frame of a diffraction-limited image. Under a tolerable signal density and an affordable signal-to-noise ratio, SFSRM enables high-fidelity live-cell imaging with spatiotemporal resolutions of 30 nm and 10 ms, allowing for prolonged monitoring of subcellular dynamics such as interplays between mitochondria and endoplasmic reticulum, the vesicle transport along microtubules, and the endosome fusion and fission. Moreover, its adaptability to different microscopes and spectra makes it a useful tool for various imaging systems.
Collapse
Affiliation(s)
- Rong Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiao Tang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuxuan Zhao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Zeyu Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yusheng Shen
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tiantian Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Casper Ho Yin Chung
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Lijuan Zhang
- School of Pharmaceutical Sciences, Guizhou University, 550025, Guizhou, China
| | - Ji Wang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Binbin Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yusong Guo
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Shengwang Du
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Physics, The University of Texas at Dallas, Richardson, TX, 75080, USA.
| | - Shuhuai Yao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
16
|
Ebata H, Umeda K, Nishizawa K, Nagao W, Inokuchi S, Sugino Y, Miyamoto T, Mizuno D. Activity-dependent glassy cell mechanics Ⅰ: Mechanical properties measured with active microrheology. Biophys J 2023; 122:1781-1793. [PMID: 37050875 PMCID: PMC10209042 DOI: 10.1016/j.bpj.2023.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
Active microrheology was conducted in living cells by applying an optical-trapping force to vigorously fluctuating tracer beads with feedback-tracking technology. The complex shear modulus G(ω)=G'(ω)-iG″(ω) was measured in HeLa cells in an epithelial-like confluent monolayer. We found that G(ω)∝(-iω)1/2 over a wide range of frequencies (1 Hz < ω/2π < 10 kHz). Actin disruption and cell-cycle progression from G1 to S and G2 phases only had a limited effect on G(ω) in living cells. On the other hand, G(ω) was found to be dependent on cell metabolism; ATP-depleted cells showed an increased elastic modulus G'(ω) at low frequencies, giving rise to a constant plateau such that G(ω)=G0+A(-iω)1/2. Both the plateau and the additional frequency dependency ∝(-iω)1/2 of ATP-depleted cells are consistent with a rheological response typical of colloidal jamming. On the other hand, the plateau G0 disappeared in ordinary metabolically active cells, implying that living cells fluidize their internal states such that they approach the critical jamming point.
Collapse
Affiliation(s)
- Hiroyuki Ebata
- Department of Physics, Kyushu University, Fukuoka, Japan
| | | | - Kenji Nishizawa
- Institute of Developmental Biology of Marseille, Marseille, France
| | - Wataru Nagao
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Shono Inokuchi
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Yujiro Sugino
- Department of Physics, Kyushu University, Fukuoka, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Transborder Medical Research Center, University of Tsukuba, Ibaraki, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
17
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Capsule self-oscillating gels showing cell-like nonthermal membrane/shape fluctuations. MATERIALS HORIZONS 2023; 10:1332-1341. [PMID: 36722870 DOI: 10.1039/d2mh01490d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A primary interest in cell membrane and shape fluctuations is establishing experimental models reflecting only nonthermal active contributions. Here we report a millimeter-scaled capsule self-oscillating gel model mirroring the active contribution effect on cell fluctuations. In the capsule self-oscillating gels, the propagating chemical signals during a Belousov-Zhabotinsky (BZ) reaction induce simultaneous local deformations in the various regions, showing cell-like shape fluctuations. The capsule self-oscillating gels do not fluctuate without the BZ reaction, implying that only the active chemical parameter induces the gel fluctuations. The period and amplitude depend on the gel layer thickness and the concentration of the chemical substrate for the BZ reaction. Our results allow for a solid experimental platform showing actively driven cell-like fluctuations, which can potentially contribute to investigating the active parameter effect on cell fluctuations.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
18
|
Paneru G, Tlusty T, Pak HK. Bona fide stochastic resonance under nonGaussian active fluctuations. SOFT MATTER 2023; 19:1356-1362. [PMID: 36723030 DOI: 10.1039/d2sm01449a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report on the experimental observation of stochastic resonance (SR) in a nonGaussian active bath without any periodic modulation. A Brownian particle hopping in a nanoscale double-well potential under the influence of nonGaussian correlated noise, with mean interval τP and correlation time τc, shows a series of equally-spaced peaks in the residence time distribution at integral multiples of τP. The strength of the first peak is found to be maximum when the mean residence time d matches the double condition, 4τc ≈ τP ≈ d/2, demonstrating a new type of bona fide SR. The experimental findings agree with a simple model that explains the emergence of SR without periodic modulation of the double-well potential. Additionally, we show that generic SR under periodic modulation, known to degrade in strongly correlated continuous noise, is recovered by the discrete nonGaussian kicks.
Collapse
Affiliation(s)
- Govind Paneru
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Tsvi Tlusty
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyuk Kyu Pak
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| |
Collapse
|
19
|
Floyd C, Vaikuntanathan S, Dinner AR. Simulating structured fluids with tensorial viscoelasticity. J Chem Phys 2023; 158:054906. [PMID: 36754798 DOI: 10.1063/5.0123470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We consider an immersed elastic body that is actively driven through a structured fluid by a motor or an external force. The behavior of such a system generally cannot be solved analytically, necessitating the use of numerical methods. However, current numerical methods omit important details of the microscopic structure and dynamics of the fluid, which can modulate the magnitudes and directions of viscoelastic restoring forces. To address this issue, we develop a simulation platform for modeling viscoelastic media with tensorial elasticity. We build on the lattice Boltzmann algorithm and incorporate viscoelastic forces, elastic immersed objects, a microscopic orientation field, and coupling between viscoelasticity and the orientation field. We demonstrate our method by characterizing how the viscoelastic restoring force on a driven immersed object depends on various key parameters as well as the tensorial character of the elastic response. We find that the restoring force depends non-monotonically on the rate of diffusion of the stress and the size of the object. We further show how the restoring force depends on the relative orientation of the microscopic structure and the pulling direction. These results imply that accounting for previously neglected physical features, such as stress diffusion and the microscopic orientation field, can improve the realism of viscoelastic simulations. We discuss possible applications and extensions to the method.
Collapse
Affiliation(s)
- Carlos Floyd
- Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | - Aaron R Dinner
- Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
20
|
Ye Y, Homer HA. Two-step nuclear centring by competing microtubule- and actin-based mechanisms in 2-cell mouse embryos. EMBO Rep 2022; 23:e55251. [PMID: 36214648 PMCID: PMC9638869 DOI: 10.15252/embr.202255251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/01/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2024] Open
Abstract
Microtubules typically promote nuclear centring during early embryonic divisions in centrosome-containing vertebrates. In acentrosomal mouse zygotes, microtubules also centre male and female pronuclei prior to the first mitosis, this time in concert with actin. How nuclear centring is brought about in subsequent acentrosomal embryonic divisions has not been studied. Here, using time-lapse imaging in mouse embryos, we find that although nuclei are delivered to the cell centre upon completion of the first mitotic anaphase, the majority do not remain stationary and instead travel all the way to the cortex in a microtubule-dependent manner. High cytoplasmic viscosity in 2-cell embryos is associated with non-diffusive mechanisms involving actin for subsequent nuclear centring when microtubules again exert a negative influence. Thus, following the first mitotic division, pro-centring actin-dependent mechanisms work against microtubule-dependent de-centring forces. Disrupting the equilibrium of this tug-of-war compromises nuclear centring and symmetry of the subsequent division potentially risking embryonic development. This circuitous centring process exposes an embryonic vulnerability imposed by microtubule-dependent de-centring forces.
Collapse
Affiliation(s)
- Yunan Ye
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical ResearchThe University of QueenslandHerstonQLDAustralia
| | - Hayden A Homer
- The Christopher Chen Oocyte Biology Research Laboratory, Centre for Clinical ResearchThe University of QueenslandHerstonQLDAustralia
| |
Collapse
|
21
|
Ghosh A, Spakowitz AJ. Active and thermal fluctuations in multi-scale polymer structure and dynamics. SOFT MATTER 2022; 18:6629-6637. [PMID: 36000419 DOI: 10.1039/d2sm00593j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The presence of athermal noise or biological fluctuations control and maintain crucial life-processes. In this work, we present an exact analytical treatment of the dynamic behavior of a flexible polymer chain that is subjected to both thermal and active forces. Our model for active forces incorporates temporal correlation associated with the characteristic time scale and processivity of enzymatic function (driven by ATP hydrolysis), leading to an active-force time scale that competes with relaxation processes within the polymer chain. We analyze the structure and dynamics of an active-Brownian polymer using our exact results for the dynamic structure factor and the looping time for the chain ends. The spectrum of relaxation times within a polymer chain implies two different behaviors at small and large length scales. Small length-scale relaxation is faster than the active-force time scale, and the dynamic and structural behavior at these scales are oblivious to active forces and, are thus governed by the true thermal temperature. Large length-scale behavior is governed by relaxation times that are much longer than the active-force time scale, resulting in an effective active-Brownian temperature that dramatically alters structural and dynamic behavior. These complex multi-scale effects imply a time-dependent temperature that governs living and non-equilibrium systems, serving as a unifying concept for interpreting and predicting their physical behavior.
Collapse
Affiliation(s)
- Ashesh Ghosh
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California, USA.
- Biophysics Program, Stanford University, Stanford, California, USA
- Department of Materials Science & Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
22
|
Lynn CW, Holmes CM, Bialek W, Schwab DJ. Emergence of local irreversibility in complex interacting systems. Phys Rev E 2022; 106:034102. [PMID: 36266789 PMCID: PMC9751845 DOI: 10.1103/physreve.106.034102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 04/28/2023]
Abstract
Living systems are fundamentally irreversible, breaking detailed balance and establishing an arrow of time. But how does the evident arrow of time for a whole system arise from the interactions among its multiple elements? We show that the local evidence for the arrow of time, which is the entropy production for thermodynamic systems, can be decomposed. First, it can be split into two components: an independent term reflecting the dynamics of individual elements and an interaction term driven by the dependencies among elements. Adapting tools from nonequilibrium physics, we further decompose the interaction term into contributions from pairs of elements, triplets, and higher-order terms. We illustrate our methods on models of cellular sensing and logical computations, as well as on patterns of neural activity in the retina as it responds to visual inputs. We find that neural activity can define the arrow of time even when the visual inputs do not, and that the dominant contribution to this breaking of detailed balance comes from interactions among pairs of neurons.
Collapse
Affiliation(s)
- Christopher W Lynn
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Caroline M Holmes
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - William Bialek
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA
- Joseph Henry Laboratories of Physics and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - David J Schwab
- Initiative for the Theoretical Sciences, Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
23
|
Cytoplasmic forces functionally reorganize nuclear condensates in oocytes. Nat Commun 2022; 13:5070. [PMID: 36038550 PMCID: PMC9424315 DOI: 10.1038/s41467-022-32675-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 12/21/2022] Open
Abstract
Cells remodel their cytoplasm with force-generating cytoskeletal motors. Their activity generates random forces that stir the cytoplasm, agitating and displacing membrane-bound organelles like the nucleus in somatic and germ cells. These forces are transmitted inside the nucleus, yet their consequences on liquid-like biomolecular condensates residing in the nucleus remain unexplored. Here, we probe experimentally and computationally diverse nuclear condensates, that include nuclear speckles, Cajal bodies, and nucleoli, during cytoplasmic remodeling of female germ cells named oocytes. We discover that growing mammalian oocytes deploy cytoplasmic forces to timely impose multiscale reorganization of nuclear condensates for the success of meiotic divisions. These cytoplasmic forces accelerate nuclear condensate collision-coalescence and molecular kinetics within condensates. Disrupting the forces decelerates nuclear condensate reorganization on both scales, which correlates with compromised condensate-associated mRNA processing and hindered oocyte divisions that drive female fertility. We establish that cytoplasmic forces can reorganize nuclear condensates in an evolutionary conserved fashion in insects. Our work implies that cells evolved a mechanism, based on cytoplasmic force tuning, to functionally regulate a broad range of nuclear condensates across scales. This finding opens new perspectives when studying condensate-associated pathologies like cancer, neurodegeneration and viral infections. Cytoskeletal activity generates mechanical forces known to agitate and displace membrane-bound organelles in the cytoplasm. In oocytes, Al Jord et al. discover that these cytoplasmic forces functionally remodel nuclear RNA-processing condensates across scales for developmental success.
Collapse
|
24
|
Paneru G, Dutta S, Pak HK. Colossal Power Extraction from Active Cyclic Brownian Information Engines. J Phys Chem Lett 2022; 13:6912-6918. [PMID: 35866740 PMCID: PMC9358709 DOI: 10.1021/acs.jpclett.2c01736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Brownian information engines can extract work from thermal fluctuations by utilizing information. To date, the studies on Brownian information engines consider the system in a thermal bath; however, many processes in nature occur in a nonequilibrium setting, such as the suspensions of self-propelled microorganisms or cellular environments called an active bath. Here, we introduce an archetypal model for a Maxwell-demon type cyclic Brownian information engine operating in a Gaussian correlated active bath capable of extracting more work than its thermal counterpart. We obtain a general integral fluctuation theorem for the active engine that includes additional mutual information gained from the active bath with a unique effective temperature. This effective description modifies the generalized second law and provides a new upper bound for the extracted work. Unlike the passive information engine operating in a thermal bath, the active information engine extracts colossal power that peaks at the finite cycle period. Our study provides fundamental insights into the design and functioning of synthetic and biological submicrometer motors in active baths under measurement and feedback control.
Collapse
Affiliation(s)
- Govind Paneru
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| | - Sandipan Dutta
- Department
of Physics, Birla Institute of Technology
and Science, Pilani 333031, India
| | - Hyuk Kyu Pak
- Center
for Soft and Living Matter, Institute for
Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department
of Physics, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
25
|
Jiang C, Yang M, Li W, Dou SX, Wang PY, Li H. Spatiotemporal three-dimensional transport dynamics of endocytic cargos and their physical regulations in cells. iScience 2022; 25:104210. [PMID: 35479412 PMCID: PMC9035719 DOI: 10.1016/j.isci.2022.104210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Intracellular transport, regulated by complex cytoarchitectures and active driving forces, is crucial for biomolecule translocations and relates to many cellular functions. Despite extensive knowledge obtained from two-dimensional (2D) experiments, the real three-dimensional (3D) spatiotemporal characteristics of intracellular transport is still unclear. With 3D single-particle tracking, we comprehensively studied the transport dynamics of endocytic cargos. With varying timescale, the intracellular transport changes from thermal-dominated 3D-constrained motion to active-dominated quasi-2D motion. Spatially, the lateral motion is heterogeneous with peripheral regions being faster than perinuclear regions, while the axial motion is homogeneous across the cells. We further confirmed that such anisotropy and heterogeneity of vesicle transport result from actively directed motion on microtubules. Strikingly, inside the vesicles, we observed endocytic nanoparticles make diffusive motions on their inner membranes when microtubules are absent, suggesting endocytic cargos are normally localized at the inner vesicle membranes through a physical connection to the microtubules outside during transport.
Collapse
Affiliation(s)
- Chao Jiang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wei Li
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Shuo-Xing Dou
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Hui Li
- School of Systems Science and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
26
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022; 61:e202112372. [PMID: 34978752 PMCID: PMC9313876 DOI: 10.1002/anie.202112372] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/28/2021] [Indexed: 12/23/2022]
Abstract
Biosensors are powerful tools for modern basic research and biomedical diagnostics. Their development requires substantial input from the chemical sciences. Sensors or probes with an optical readout, such as fluorescence, offer rapid, minimally invasive sensing of analytes with high spatial and temporal resolution. The near-infrared (NIR) region is beneficial because of the reduced background and scattering of biological samples (tissue transparency window) in this range. In this context, single-walled carbon nanotubes (SWCNTs) have emerged as versatile NIR fluorescent building blocks for biosensors. Here, we provide an overview of advances in SWCNT-based NIR fluorescent molecular sensors. We focus on chemical design strategies for diverse analytes and summarize insights into the photophysics and molecular recognition. Furthermore, different application areas are discussed-from chemical imaging of cellular systems and diagnostics to in vivo applications and perspectives for the future.
Collapse
Affiliation(s)
- Julia Ackermann
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
- Department EBSUniversity Duisburg-EssenBismarckstrasse 8147057DuisburgGermany
| | - Justus T. Metternich
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Svenja Herbertz
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| | - Sebastian Kruss
- Physical ChemistryRuhr-University BochumUniversitätsstrasse 15044801BochumGermany
- Biomedical NanosensorsFraunhofer Institute for Microelectronic Circuits and SystemsFinkenstrasse 6147057DuisburgGermany
| |
Collapse
|
27
|
Nandi S, Caicedo K, Cognet L. When Super-Resolution Localization Microscopy Meets Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12091433. [PMID: 35564142 PMCID: PMC9105540 DOI: 10.3390/nano12091433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 12/16/2022]
Abstract
We recently assisted in a revolution in the realm of fluorescence microscopy triggered by the advent of super-resolution techniques that surpass the classic diffraction limit barrier. By providing optical images with nanometer resolution in the far field, super-resolution microscopy (SRM) is currently accelerating our understanding of the molecular organization of bio-specimens, bridging the gap between cellular observations and molecular structural knowledge, which was previously only accessible using electron microscopy. SRM mainly finds its roots in progress made in the control and manipulation of the optical properties of (single) fluorescent molecules. The flourishing development of novel fluorescent nanostructures has recently opened the possibility of associating super-resolution imaging strategies with nanomaterials’ design and applications. In this review article, we discuss some of the recent developments in the field of super-resolution imaging explicitly based on the use of nanomaterials. As an archetypal class of fluorescent nanomaterial, we mainly focus on single-walled carbon nanotubes (SWCNTs), which are photoluminescent emitters at near-infrared (NIR) wavelengths bearing great interest for biological imaging and for information optical transmission. Whether for fundamental applications in nanomaterial science or in biology, we show how super-resolution techniques can be applied to create nanoscale images “in”, “of” and “with” SWCNTs.
Collapse
Affiliation(s)
- Somen Nandi
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Karen Caicedo
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Université de Bordeaux, UMR 5298, 33400 Talence, France; (S.N.); (K.C.)
- Institut d’Optique and CNRS, LP2N UMR 5298, 33400 Talence, France
- Correspondence:
| |
Collapse
|
28
|
Ackermann J, Metternich JT, Herbertz S, Kruss S. Biosensing with Fluorescent Carbon Nanotubes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia Ackermann
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
- Department EBS University Duisburg-Essen Bismarckstrasse 81 47057 Duisburg Germany
| | - Justus T. Metternich
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Svenja Herbertz
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| | - Sebastian Kruss
- Physical Chemistry Ruhr-University Bochum Universitätsstrasse 150 44801 Bochum Germany
- Biomedical Nanosensors Fraunhofer Institute for Microelectronic Circuits and Systems Finkenstrasse 61 47057 Duisburg Germany
| |
Collapse
|
29
|
Molines AT, Lemière J, Gazzola M, Steinmark IE, Edrington CH, Hsu CT, Real-Calderon P, Suhling K, Goshima G, Holt LJ, Thery M, Brouhard GJ, Chang F. Physical properties of the cytoplasm modulate the rates of microtubule polymerization and depolymerization. Dev Cell 2022; 57:466-479.e6. [PMID: 35231427 PMCID: PMC9319896 DOI: 10.1016/j.devcel.2022.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/01/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
The cytoplasm is a crowded, visco-elastic environment whose physical properties change according to physiological or developmental states. How the physical properties of the cytoplasm impact cellular functions in vivo remains poorly understood. Here, we probe the effects of cytoplasmic concentration on microtubules by applying osmotic shifts to fission yeast, moss, and mammalian cells. We show that the rates of both microtubule polymerization and depolymerization scale linearly and inversely with cytoplasmic concentration; an increase in cytoplasmic concentration decreases the rates of microtubule polymerization and depolymerization proportionally, whereas a decrease in cytoplasmic concentration leads to the opposite. Numerous lines of evidence indicate that these effects are due to changes in cytoplasmic viscosity rather than cellular stress responses or macromolecular crowding per se. We reconstituted these effects on microtubules in vitro by tuning viscosity. Our findings indicate that, even in normal conditions, the viscosity of the cytoplasm modulates the reactions that underlie microtubule dynamic behaviors.
Collapse
Affiliation(s)
- Arthur T Molines
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Joël Lemière
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Morgan Gazzola
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France
| | | | | | - Chieh-Ting Hsu
- Department of Physics, McGill University, Montréal, Quebec, Canada
| | - Paula Real-Calderon
- Department of Cell and Tissue Biology, University of California, San Francisco, USA
| | - Klaus Suhling
- Department of Physics, King's College London, London, UK
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory and Division of Biological Science, Graduate School of Science, Nagoya University, Toba City, Mie, Japan; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Manuel Thery
- University of Grenoble-Alpes, CEA, CNRS, INRA, Interdisciplinary Research Institute of Grenoble, Laboratoire de Phyiologie Cellulaire & Vegétale, CytoMorpho Lab, 38054 Grenoble, France; Université de Paris, INSERM, CEA, Institut de Recherche Saint Louis, U 976, CytoMorpho Lab, 75010 Paris, France
| | - Gary J Brouhard
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
30
|
Kojima K, Iizumi Y, Zhang M, Okazaki T. Streptavidin-Conjugated Oxygen-Doped Single-Walled Carbon Nanotubes as Near-Infrared Labels for Immunoassays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1509-1513. [PMID: 35029992 DOI: 10.1021/acs.langmuir.1c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-walled carbon nanotubes (CNTs) are promising candidates for near-infrared (NIR) fluorescent labels in diagnostic fields. We report a complex of oxygen-doped CNT (o-CNT) and streptavidin (SA) for preparing CNT-based NIR labels with a high reaction efficiency in immunoassays. This complex specifically binds to biotin molecules by conjugating a linker molecule of phospholipid polyethylene glycol (PL-PEG) to SA (o-CNT-SA). The immunoprecipitation reaction efficiency between o-CNT-SA and biotin reaches 79.3% when the surface of o-CNTs is uniformly covered with SA-conjugated PL-PEG. The strong affinity between SA and biotin is useful for preparing CNT-based sensitive NIR fluorescent labels.
Collapse
Affiliation(s)
- Keiko Kojima
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8577, Japan
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Yoko Iizumi
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Minfang Zhang
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| | - Toshiya Okazaki
- Department of Chemistry, University of Tsukuba, Tsukuba 305-8577, Japan
- CNT-Application Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8565, Japan
| |
Collapse
|
31
|
Gel Chromatography for Separation of Single-Walled Carbon Nanotubes. Gels 2022; 8:gels8020076. [PMID: 35200458 PMCID: PMC8871249 DOI: 10.3390/gels8020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Carbon nanotubes (CNTs), having either metallic or semiconducting properties depending on their chirality, are advanced materials that can be used for different devices and materials (e.g., fuel cells, transistors, solar cells, reinforced materials, and medical materials) due to their excellent electrical conductivity, mechanical strength, and thermal conductivity. Single-walled CNTs (SWNTs) have received special attention due to their outstanding electrical and optical properties; however, the inability to selectively synthesize specific types of CNTs has been a major obstacle for their commercialization. Therefore, researchers have studied different methods for the separation of SWNTs based on their electrical and optical properties. Gel chromatography methods enable the large-scale separation of metallic/semiconducting (m/s) SWNTs and single-chirality SWNTs with specific bandgaps. The core principle of gel chromatography-based SWNT separation is the interaction between the SWNTs and gels, which depends on the unique electrical properties of the former. Controlled pore glass, silica gel, agarose-based gel, and allyl dextran-based gel have been exploited as mediums for gel chromatography. In this paper, the interaction between SWNTs and gels and the different gel chromatography-based SWNT separation technologies are introduced. This paper can serve as a reference for researchers who plan to separate SWNTs with gel chromatography.
Collapse
|
32
|
Ehrlich R, Wulf V, Hendler-Neumark A, Kagan B, Bisker G. Super-Resolution Radial Fluctuations (SRRF) nanoscopy in the near infrared. OPTICS EXPRESS 2022; 30:1130-1142. [PMID: 35209279 DOI: 10.1364/oe.440441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Super resolution microscopy methods have been designed to overcome the physical barrier of the diffraction limit and push the resolution to nanometric scales. A recently developed super resolution technique, super-resolution radial fluctuations (SRRF) [Nature communications, 7, 12471 (2016)10.1038/ncomms12471], has been shown to super resolve images taken with standard microscope setups without fluorophore localization. Herein, we implement SRRF on emitters in the near-infrared (nIR) range, single walled carbon nanotubes (SWCNTs), whose fluorescence emission overlaps with the biological transparency window. Our results open the path for super-resolving SWCNTs for biomedical imaging and sensing applications.
Collapse
|
33
|
Šarlah A. Oscillating external force as a tool to tune motility characteristics of molecular motors. Phys Rev E 2021; 104:064406. [PMID: 35030938 DOI: 10.1103/physreve.104.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Molecular motors move in a dynamic environment of the cytoskeleton which generates fluctuations exceeding the thermal agitation. Their efficient motility and force generation are generally achieved via complex gating and coupling mechanisms between chemical steps, conformational changes, and mechanical steps in the working cycle. However, the motors display various force-velocity relations seemingly related (also) to the asymmetry of their unbinding from the track depending on the direction of the applied force. Here we study theoretically how the motility of molecular motors changes when they operate under an oscillating external force. We explore the roles of the shape of the force-velocity relation and the asymmetry of the force-induced unbinding. We find that a motor speeds up under force oscillations if its unbinding has a strong load dependence and a moderate asymmetry with respect to the direction of load. Motors whose unbinding is slowed down under hindering forces withstand average loads higher than the usual stall force. The relation between the function, unbinding properties, and predicted responses to the oscillating force supports the idea that the asymmetry of the load induced unbinding could serve as an adaptation of motors to their different physiological functions.
Collapse
Affiliation(s)
- Andreja Šarlah
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Abakumov S, Deschaume O, Bartic C, Lang C, Korculanin O, Dhont JKG, Lettinga MP. Uncovering Log Jamming in Semidilute Suspensions of Quasi-Ideal Rods. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sergey Abakumov
- Laboratory for Molecular Imaging and Photonics, KU Leuven, B-3001 Leuven, Belgium
| | - Olivier Deschaume
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Carmen Bartic
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
| | - Christian Lang
- JCNS-4, Forschungzentrum Jülich, DE 85748 Jülich, Germany
| | | | | | - Minne Paul Lettinga
- Laboratory for Soft Matter and Biophysics, KU Leuven, B-3001 Leuven, Belgium
- IBI-4, Forschungzentrum Jülich, DE 52425 Jülich, Germany
| |
Collapse
|
35
|
Gaur M, Misra C, Yadav AB, Swaroop S, Maolmhuaidh FÓ, Bechelany M, Barhoum A. Biomedical Applications of Carbon Nanomaterials: Fullerenes, Quantum Dots, Nanotubes, Nanofibers, and Graphene. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5978. [PMID: 34683568 PMCID: PMC8538389 DOI: 10.3390/ma14205978] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022]
Abstract
Carbon nanomaterials (CNMs) have received tremendous interest in the area of nanotechnology due to their unique properties and flexible dimensional structure. CNMs have excellent electrical, thermal, and optical properties that make them promising materials for drug delivery, bioimaging, biosensing, and tissue engineering applications. Currently, there are many types of CNMs, such as quantum dots, nanotubes, nanosheets, and nanoribbons; and there are many others in development that promise exciting applications in the future. The surface functionalization of CNMs modifies their chemical and physical properties, which enhances their drug loading/release capacity, their ability to target drug delivery to specific sites, and their dispersibility and suitability in biological systems. Thus, CNMs have been effectively used in different biomedical systems. This review explores the unique physical, chemical, and biological properties that allow CNMs to improve on the state of the art materials currently used in different biomedical applications. The discussion also embraces the emerging biomedical applications of CNMs, including targeted drug delivery, medical implants, tissue engineering, wound healing, biosensing, bioimaging, vaccination, and photodynamic therapy.
Collapse
Affiliation(s)
- Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Charu Misra
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India; (M.G.); (C.M.)
| | - Shiv Swaroop
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305817, India;
| | - Fionn Ó. Maolmhuaidh
- National Centre for Sensor Research, School of Chemistry, Dublin City University, D09 V209 Dublin, Ireland;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University Montpellier, ENSCM, CNRS, Place Eugène Bataillon, 34095 Montpellier, France
| | - Ahmed Barhoum
- Nano Struc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Fraunhofer Project Centre, Dublin City University, D09 V209 Dublin, Ireland
| |
Collapse
|
36
|
Wu Y, Cao S, Alam MNA, Raabe M, Michel-Souzy S, Wang Z, Wagner M, Ermakova A, Cornelissen JJLM, Weil T. Fluorescent nanodiamonds encapsulated by Cowpea Chlorotic Mottle Virus (CCMV) proteins for intracellular 3D-trajectory analysis. J Mater Chem B 2021; 9:5621-5627. [PMID: 34184014 PMCID: PMC8292973 DOI: 10.1039/d1tb00890k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/20/2021] [Indexed: 02/05/2023]
Abstract
Long-term tracking of nanoparticles to resolve intracellular structures and motions is essential to elucidate fundamental parameters as well as transport processes within living cells. Fluorescent nanodiamond (ND) emitters provide cell compatibility and very high photostability. However, high stability, biocompatibility, and cellular uptake of these fluorescent NDs under physiological conditions are required for intracellular applications. Herein, highly stable NDs encapsulated with Cowpea chlorotic mottle virus capsid proteins (ND-CP) are prepared. A thin capsid protein layer is obtained around the NDs, which imparts reactive groups and high colloidal stability, while retaining the opto-magnetic properties of the coated NDs as well as the secondary structure of CPs adsorbed on the surface of NDs. In addition, the ND-CP shows excellent biocompatibility both in vitro and in vivo. Long-term 3D trajectories of the ND-CP with fine spatiotemporal resolutions are recorded; their intracellular motions are analyzed by different models, and the diffusion coefficients are calculated. The ND-CP with its brilliant optical properties and stability under physiological conditions provides us with a new tool to advance the understanding of cell biology, e.g., endocytosis, exocytosis, and active transport processes in living cells as well as intracellular dynamic parameters.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China and Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Md Noor A Alam
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Marco Raabe
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Sandra Michel-Souzy
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Zuyuan Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Measurement and Automation, Division of Sensor Technology and Measurement Systems, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, Neubiberg 85579, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany.
| | - Anna Ermakova
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute for Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, Mainz 55128, Germany
| | - Jeroen J L M Cornelissen
- Department of Molecules & Materials, MESA+Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany. and Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
37
|
Hayashi K, Miyamoto MG, Niwa S. Effects of dynein inhibitor on the number of motor proteins transporting synaptic cargos. Biophys J 2021; 120:1605-1614. [PMID: 33617835 PMCID: PMC8204214 DOI: 10.1016/j.bpj.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 11/27/2022] Open
Abstract
Synaptic cargo transport by kinesin and dynein in hippocampal neurons was investigated by noninvasively measuring the transport force based on nonequilibrium statistical mechanics. Although direct physical measurements such as force measurement using optical tweezers are difficult in an intracellular environment, the noninvasive estimations enabled enumerating force-producing units (FPUs) carrying a cargo comprising the motor proteins generating force. The number of FPUs served as a barometer for stable and long-distance transport by multiple motors, which was then used to quantify the extent of damage to axonal transport by dynarrestin, a dynein inhibitor. We found that dynarrestin decreased the FPU for retrograde transport more than for anterograde transport. This result indicates the applicability of the noninvasive force measurements. In the future, these measurements may be used to quantify damage to axonal transport resulting from neuronal diseases, including Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Kumiko Hayashi
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| | - Miki G Miyamoto
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences and Graduate School of Life Science, Tohoku University, Sendai, Japan
| |
Collapse
|
38
|
Gnesotto FS, Gradziuk G, Ronceray P, Broedersz CP. Learning the non-equilibrium dynamics of Brownian movies. Nat Commun 2020; 11:5378. [PMID: 33097699 PMCID: PMC7585442 DOI: 10.1038/s41467-020-18796-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/10/2020] [Indexed: 01/30/2023] Open
Abstract
Time-lapse microscopy imaging provides direct access to the dynamics of soft and living systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose a challenge for the dynamical analysis of these Brownian movies. Traditionally, methods to analyze such experimental data rely on tracking embedded or endogenous probes. However, it is in general unclear, especially in complex many-body systems, which degrees of freedom are the most informative about their non-equilibrium nature. Here, we introduce an alternative, tracking-free approach that overcomes these difficulties via an unsupervised analysis of the Brownian movie. We develop a dimensional reduction scheme selecting a basis of modes based on dissipation. Subsequently, we learn the non-equilibrium dynamics, thereby estimating the entropy production rate and time-resolved force maps. After benchmarking our method against a minimal model, we illustrate its broader applicability with an example inspired by active biopolymer gels.
Collapse
Affiliation(s)
- Federico S Gnesotto
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333, München, Germany
| | - Grzegorz Gradziuk
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333, München, Germany
| | - Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ, 08544, USA.
| | - Chase P Broedersz
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, D-80333, München, Germany.
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, HV, 1081, The Netherlands.
| |
Collapse
|
39
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
40
|
Carlini L, Brittingham GP, Holt LJ, Kapoor TM. Microtubules Enhance Mesoscale Effective Diffusivity in the Crowded Metaphase Cytoplasm. Dev Cell 2020; 54:574-582.e4. [PMID: 32818469 PMCID: PMC7685229 DOI: 10.1016/j.devcel.2020.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/10/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
Mesoscale macromolecular complexes and organelles, tens to hundreds of nanometers in size, crowd the eukaryotic cytoplasm. It is therefore unclear how mesoscale particles remain sufficiently mobile to regulate dynamic processes such as cell division. Here, we study mobility across dividing cells that contain densely packed, dynamic microtubules, comprising the metaphase spindle. In dividing human cells, we tracked 40 nm genetically encoded multimeric nanoparticles (GEMs), whose sizes are commensurate with the inter-filament spacing in metaphase spindles. Unexpectedly, the effective diffusivity of GEMs was similar inside the dense metaphase spindle and the surrounding cytoplasm. Eliminating microtubules or perturbing their polymerization dynamics decreased diffusivity by ~30%, suggesting that microtubule polymerization enhances random displacements to amplify diffusive-like motion. Our results suggest that microtubules effectively fluidize the mitotic cytoplasm to equalize mesoscale mobility across a densely packed, dynamic, non-uniform environment, thus spatially maintaining a key biophysical parameter that impacts biochemistry, ranging from metabolism to the nucleation of cytoskeletal filaments.
Collapse
Affiliation(s)
- Lina Carlini
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Gregory P Brittingham
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University Langone Health, New York, NY 10016, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
42
|
Liu YL, Perillo EP, Ang P, Kim M, Nguyen DT, Blocher K, Chen YA, Liu C, Hassan AM, Vu HT, Chen YI, Dunn AK, Yeh HC. Three-Dimensional Two-Color Dual-Particle Tracking Microscope for Monitoring DNA Conformational Changes and Nanoparticle Landings on Live Cells. ACS NANO 2020; 14:7927-7939. [PMID: 32668152 PMCID: PMC7456512 DOI: 10.1021/acsnano.9b08045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Here, we present a three-dimensional two-color dual-particle tracking (3D-2C-DPT) technique that can simultaneously localize two spectrally distinct targets in three dimensions with a time resolution down to 5 ms. The dual-targets can be tracked with separation distances from 33 to 250 nm with tracking precisions of ∼15 nm (for static targets) and ∼35 nm (for freely diffusing targets). Since each target is individually localized, a wealth of data can be extracted, such as the relative 3D position, the 2D rotation, and the separation distance between the two targets. Using this technique, we turn a double-stranded DNA (dsDNA)-linked dumbbell-like dimer into a nanoscopic optical ruler to quantify the bending dynamics of nicked or gapped dsDNA molecules in free solution by manipulating the design of dsDNA linkers (1-nick, 3-nt, 6-nt, or 9-nt single-strand gap), and the results show the increase of kon (linear to bent) from 3.2 to 10.7 s-1. The 3D-2C-DPT is then applied to observe translational and rotational motions of the landing of an antibody-conjugated nanoparticle on the plasma membrane of living cells, revealing the reduction of rotations possibly due to interactions with membrane receptors. This study demonstrates that this 3D-2C-DPT technique is a new tool to shed light on the conformational changes of biomolecules and the intermolecular interactions on plasma membrane.
Collapse
Affiliation(s)
- Yen-Liang Liu
- Graduate Institute of Biomedical Sciences, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Center for Molecular Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Nanostring Technologies, Seattle, Washington 98109, United States
| | - Phyllis Ang
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Computer Science, Duke University, Durham, North Carolina 27705, United States
| | - Mirae Kim
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Duc Trung Nguyen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Katherine Blocher
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Cong Liu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Ahmed M Hassan
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Huong T Vu
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Yuan-I Chen
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, The University of Texas at Austin, 107 West Dean Keeton Street, BME Building, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
43
|
Rabbani MT, Schmidt CF, Ros A. Length-Selective Dielectrophoretic Manipulation of Single-Walled Carbon Nanotubes. Anal Chem 2020; 92:8901-8908. [PMID: 32447955 DOI: 10.1021/acs.analchem.0c00794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-walled carbon nanotubes (SWNTs) possess unique physical, optical, and electrical properties with great potential for future nanoscale device applications. Common synthesis procedures yield SWNTs with large length polydispersity and varying chirality. Electrical and optical applications of SWNTs often require specific lengths, but the preparation of SWNTs with the desired length is still challenging. Insulator-based dielectrophoresis (iDEP) integrated into a microfluidic device has the potential to separate SWNTs by length. Semiconducting SWNTs of varying length suspended with sodium deoxycholate (NaDOC) show unique dielectrophoretic properties at low frequencies (<1 kHz) that were exploited here using an iDEP-based microfluidic constriction sorter device for length-based sorting. Specific migration directions in the constriction sorter were induced for long SWNTs (≥1000 nm) with negative dielectrophoretic properties compared to short (≤300 nm) SWNTs with positive dielectrophoretic properties. We report continuous fractionation conditions for length-based iDEP migration of SWNTs, and we characterize the dynamics of migration of SWNTs in the microdevice using a finite element model. Based on the length and dielectrophoretic characteristics, sorting efficiencies for long and short SWNTs recovered from separate channels of the constriction sorter amounted to >90% and were in excellent agreement with a numerical model for the sorting process.
Collapse
Affiliation(s)
- Mohammad T Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States.,Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany
| | - Christoph F Schmidt
- Third Institute of Physics - Biophysics, Department of Physics, University of Göttingen, Göttingen, Germany.,Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
44
|
Astafiev AA, Shakhov AM, Osychenko AA, Syrchina MS, Karmenyan AV, Tochilo UA, Nadtochenko VA. Probing Intracellular Dynamics Using Fluorescent Carbon Dots Produced by Femtosecond Laser In Situ. ACS OMEGA 2020; 5:12527-12538. [PMID: 32548437 PMCID: PMC7271373 DOI: 10.1021/acsomega.0c01535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/11/2020] [Indexed: 05/12/2023]
Abstract
Fluorescent particle tracking is a powerful technique for studying intracellular transport and microrheological properties within living cells, which in most cases employs exogenous fluorescent tracer particles delivered into cells or fluorescent staining of cell organelles. Herein, we propose an alternative strategy, which is based on the generation of fluorescent species in situ with ultrashort laser pulses. Using mouse germinal vesicle oocytes as a model object, we demonstrate that femtosecond laser irradiation produces compact dense areas in the intracellular material containing fluorescent carbon dots synthesized from biological molecules. These dots have tunable persistent and excitation-dependent emission, which is highly advantageous for fluorescent imaging. We further show that tight focusing and tuning of irradiation parameters allow precise control of the location and size of fluorescently labeled areas and minimization of damage inflicted to cells. Pieces of the intracellular material down to the submicrometer size can be labeled with laser-produced fluorescent dots in real time and then employed as probes for detecting intracellular motion activity via fluorescent tracking. Analyzing their diffusion in the oocyte cytoplasm, we arrive to realistic characteristics of active forces generated within the cell and frequency-dependent shear modulus of the cytoplasm. We also quantitatively characterize the level of metabolic activity and density of the cytoskeleton meshwork. Our findings establish a new technique for probing intracellular mechanical properties and also promise applications in tracking individual cells in population or studies of spatiotemporal cell organization.
Collapse
Affiliation(s)
- Artyom A. Astafiev
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Aleksander M. Shakhov
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Alina A. Osychenko
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Maria S. Syrchina
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Artashes V. Karmenyan
- National
Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien 97401, Taiwan, ROC
| | - Ulyana A. Tochilo
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| | - Victor A. Nadtochenko
- Semenov
Institute of Chemical Physics, Federal Research
Center of Chemical Physics of RAS, Kosygina Street 4, Moscow 119991, Russian Federation
| |
Collapse
|
45
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
46
|
Schaumann EN, Tian B. Biological Interfaces, Modulation, and Sensing with Inorganic Nano-Bioelectronic Materials. SMALL METHODS 2020; 4:1900868. [PMID: 34295965 PMCID: PMC8294120 DOI: 10.1002/smtd.201900868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/16/2020] [Indexed: 05/30/2023]
Abstract
The last several years have seen a large and increasing interest in scientific developments that combine methods and materials from nanotechnology with questions and applications in bioelectronics. This follows with a number of broader trends: the rapid increase in functionality for materials at the nanoscale; a growing recognition of the importance of electric fields in diverse physiological processes; and continuous improvements in technologies that are naturally complementary with bioelectronics, such as optogenetics. Here, a progress report is provided on several of the most exciting recent developments in this field. The three critical functions of biointerface formation, biological modulation, and biological sensing using newly developed nanoscale materials are considered.
Collapse
Affiliation(s)
- Erik N Schaumann
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
47
|
Meyer D, Telele S, Zelená A, Gillen AJ, Antonucci A, Neubert E, Nißler R, Mann FA, Erpenbeck L, Boghossian AA, Köster S, Kruss S. Transport and programmed release of nanoscale cargo from cells by using NETosis. NANOSCALE 2020; 12:9104-9115. [PMID: 32286598 DOI: 10.1039/d0nr00864h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cells can take up nanoscale materials, which has important implications for understanding cellular functions, biocompatibility as well as biomedical applications. Controlled uptake, transport and triggered release of nanoscale cargo is one of the great challenges in biomedical applications of nanomaterials. Here, we study how human immune cells (neutrophilic granulocytes, neutrophils) take up nanomaterials and program them to release this cargo after a certain time period. For this purpose, we let neutrophils phagocytose DNA-functionalized single-walled carbon nanotubes (SWCNTs) in vitro that fluoresce in the near infrared (980 nm) and serve as sensors for small molecules. Cells still migrate, follow chemical gradients and respond to inflammatory signals after uptake of the cargo. To program release, we make use of neutrophil extracellular trap formation (NETosis), a novel cell death mechanism that leads to chromatin swelling, subsequent rupture of the cellular membrane and release of the cell's whole content. By using the process of NETosis, we can program the time point of cargo release via the initial concentration of stimuli such as phorbol 12-myristate-13-acetate (PMA) or lipopolysaccharide (LPS). At intermediate stimulation, cells continue to migrate, follow gradients and surface cues for around 30 minutes and up to several hundred micrometers until they stop and release the SWCNTs. The transported and released SWCNT sensors are still functional as shown by subsequent detection of the neurotransmitter dopamine and reactive oxygen species (H2O2). In summary, we hijack a biological process (NETosis) and demonstrate how neutrophils transport and release functional nanomaterials.
Collapse
Affiliation(s)
- Daniel Meyer
- Institute of Physical Chemistry, Göttingen University, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Selvaggio G, Chizhik A, Nißler R, Kuhlemann L, Meyer D, Vuong L, Preiß H, Herrmann N, Mann FA, Lv Z, Oswald TA, Spreinat A, Erpenbeck L, Großhans J, Karius V, Janshoff A, Pablo Giraldo J, Kruss S. Exfoliated near infrared fluorescent silicate nanosheets for (bio)photonics. Nat Commun 2020; 11:1495. [PMID: 32198383 PMCID: PMC7083911 DOI: 10.1038/s41467-020-15299-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 12/31/2022] Open
Abstract
Imaging of complex (biological) samples in the near-infrared (NIR) is beneficial due to reduced light scattering, absorption, phototoxicity, and autofluorescence. However, there are few NIR fluorescent materials known and suitable for biomedical applications. Here we exfoliate the layered pigment CaCuSi4O10 (Egyptian Blue, EB) via ball milling and facile tip sonication into NIR fluorescent nanosheets (EB-NS). The size of EB-NS can be tailored to diameters <20 nm and heights down to 1 nm. EB-NS fluoresce at 910 nm and the fluorescence intensity correlates with the number of Cu2+ ions. Furthermore, EB-NS display no bleaching and high brightness compared with other NIR fluorophores. The versatility of EB-NS is demonstrated by in-vivo single-particle tracking and microrheology measurements in Drosophila melanogaster embryos. EB-NS can be uptaken by plants and remotely detected in a low-cost stand-off detection setup. In summary, EB-NS have the potential for a wide range of bioimaging applications.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Alexey Chizhik
- Third Institute of Physics, University of Göttingen, Göttingen, 37077, Germany
| | - Robert Nißler
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Llyas Kuhlemann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Daniel Meyer
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Loan Vuong
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Helen Preiß
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Niklas Herrmann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Florian A Mann
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Zhiyi Lv
- Institute of Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, 37077, Germany
| | - Tabea A Oswald
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Alexander Spreinat
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Luise Erpenbeck
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Jörg Großhans
- Institute of Developmental Biochemistry, Medical School, University of Göttingen, Göttingen, 37077, Germany
| | - Volker Karius
- Department of Sedimentology and Environmental Geology, Geoscience Center, University of Göttingen, Göttingen, 37077, Germany
| | - Andreas Janshoff
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, California, 92507, USA
| | - Sebastian Kruss
- Institute of Physical Chemistry, University of Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
49
|
Paviolo C, Soria FN, Ferreira JS, Lee A, Groc L, Bezard E, Cognet L. Nanoscale exploration of the extracellular space in the live brain by combining single carbon nanotube tracking and super-resolution imaging analysis. Methods 2020; 174:91-99. [DOI: 10.1016/j.ymeth.2019.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022] Open
|
50
|
Abstract
Cell and tissue shape changes are the fundamental elements of morphogenesis that drive normal development of embryos into fully functional organisms. This requires a variety of cellular processes including establishment and maintenance of polarity, tissue growth and apoptosis, and cell differentiation, rearrangement, and migration. It is widely appreciated that the cytoskeletal networks play an important role in regulating many of these processes and, in particular, that pulsed actomyosin contractions are a core cellular mechanism driving cell shape changes and cell rearrangement. In this review, we discuss the role of pulsed actomyosin contractions during developmental morphogenesis, advances in our understanding of the mechanisms regulating actomyosin pulsing, and novel techniques to probe the role of pulsed actomyosin processes in
in vivo model systems.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|