1
|
Zhang H, Yan H, Che H, So K, He L, Zhu Y, Liu B, Zhang Y. Establishment of genetic transformation system in Lilium pumilum and functional analysis of LpNAC6 on abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112292. [PMID: 39414146 DOI: 10.1016/j.plantsci.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Lilium pumilum is widely distributed in northeast Asia. It exhibits strong resistance and possesses high ornamental value. However, it currently lacks an efficient and stable transformation system. Therefore, we aimed to establish an effective genetic transformation system using the Agrobacterium-mediated method for L. pumilum, enabling gene transfer into the plant for gene function research and genetic engineering breeding. Our genetic transformation system achieved a transformation efficiency of 7.25 % under specific conditions: a kanamycin (Kana) concentration of 120 mg/L, 3 days of pre-cultivation, an A. tumefaciens concentration of 0.7 OD600, an acetosyringone (AS) concentration of 20 mg/L, and a 15-minute infection period. We investigated the function of the LpNAC6 from L. pumilum by observing phenotypic and physiological changes under stresses induced by salt, alkali, and drought. Furthermore, overexpression of LpNAC6 resulted in enhanced stress tolerance as evidenced by increased levels of SOD, POD, CAT enzymes, improved photosynthetic indices, and elevated chlorophyll contents; as well as reduced levels of MDA and reactive oxygen species (ROS). These findings demonstrate that we have successfully established a transgenic transformation method for L. pumilum while also providing essential information for cultivating stress-tolerant Lilium species and advancing our understanding of the functions of LpNAC6 in plants.
Collapse
Affiliation(s)
- Hongying Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Hao Yan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Haitao Che
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Kyongsok So
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China; Laboratory for Landscape Architecture, Institute of Architectural Material, State Academy of Sciences, Pyongyang, South Korea
| | - Longyi He
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yuxin Zhu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Bin Liu
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yanni Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Guo Y, Shi YX, Song S, Zhao YQ, Lu MZ. PagNAC2a promotes phloem fiber development by regulating PagATL2 in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112283. [PMID: 39396620 DOI: 10.1016/j.plantsci.2024.112283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Phloem fiber is a key component of phloem tissue and is involved in supporting its structural integrity. NAC domain transcription factors are master switches that regulate secondary cell wall (SCW) biosynthesis in xylem fibers, but the mechanism by which NACs regulate phloem fiber development remains unexplored. Here, a NAC2-like gene in poplar, PagNAC2a, was shown to be involved in phloem fiber differentiation. qRT-PCR and GUS staining revealed that PagNAC2a was specifically expressed in the phloem zone of poplar stems. The overexpression of PagNAC2a in poplar increased plant biomass by increasing plant height, stem diameter, and leaf area. Stem anatomy analysis revealed that overexpression of PagNAC2a resulted in enhanced phloem fiber differentiation and cell wall deposition. In addition, PagNAC2a directly upregulated the expression of PagATL2, a gene involved in phloem development, as revealed by yeast one hybrid (Y1H) and electrophoretic mobility shift assay (EMSA) assays. Overall, we proposed that the PagNAC2a was a positive regulator of phloem fiber development in poplar, and these results provided insights into the molecular mechanisms involved in the differentiation of phloem fibers.
Collapse
Affiliation(s)
- Yu Guo
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yang-Xin Shi
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Shuo Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China.
| | - Yan-Qiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China; State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, Key Laboratory of Modern Silvicultural Technology of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China.
| |
Collapse
|
3
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
4
|
Han E, Geng Z, Qin Y, Wang Y, Ma S. Single-cell network analysis reveals gene expression programs for Arabidopsis root development and metabolism. PLANT COMMUNICATIONS 2024; 5:100978. [PMID: 38783601 PMCID: PMC11369779 DOI: 10.1016/j.xplc.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Single-cell RNA-sequencing datasets of Arabidopsis roots have been generated, but related comprehensive gene co-expression network analyses are lacking. We conducted a single-cell gene co-expression network analysis with publicly available scRNA-seq datasets of Arabidopsis roots using a SingleCellGGM algorithm. The analysis identified 149 gene co-expression modules, which we considered to be gene expression programs (GEPs). By examining their spatiotemporal expression, we identified GEPs specifically expressed in major root cell types along their developmental trajectories. These GEPs define gene programs regulating root cell development at different stages and are enriched with relevant developmental regulators. As examples, a GEP specific for the quiescent center (QC) contains 20 genes regulating QC and stem cell niche homeostasis, and four GEPs are expressed in sieve elements (SEs) from early to late developmental stages, with the early-stage GEP containing 17 known SE developmental regulators. We also identified GEPs for metabolic pathways with cell-type-specific expression, suggesting the existence of cell-type-specific metabolism in roots. Using the GEPs, we discovered and verified a columella-specific gene, NRL27, as a regulator of the auxin-related root gravitropism response. Our analysis thus systematically reveals GEPs that regulate Arabidopsis root development and metabolism and provides ample resources for root biology studies.
Collapse
Affiliation(s)
- Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Qin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Yuewei Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China
| | - Shisong Ma
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei 230027, China; School of Data Science, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
5
|
Hunziker P, Greb T. Stem Cells and Differentiation in Vascular Tissues. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:399-425. [PMID: 38382908 DOI: 10.1146/annurev-arplant-070523-040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Plant vascular tissues are crucial for the long-distance transport of water, nutrients, and a multitude of signal molecules throughout the plant body and, therefore, central to plant growth and development. The intricate development of vascular tissues is orchestrated by unique populations of dedicated stem cells integrating endogenous as well as environmental cues. This review summarizes our current understanding of vascular-related stem cell biology and of vascular tissue differentiation. We present an overview of the molecular and cellular mechanisms governing the maintenance and fate determination of vascular stem cells and highlight the interplay between intrinsic and external cues. In this context, we emphasize the role of transcription factors, hormonal signaling, and epigenetic modifications. We also discuss emerging technologies and the large repertoire of cell types associated with vascular tissues, which have the potential to provide unprecedented insights into cellular specialization and anatomical adaptations to distinct ecological niches.
Collapse
Affiliation(s)
- Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany; ,
| |
Collapse
|
6
|
Wu Q, Li Y, Chen M, Kong X. Companion cell mediates wound-stimulated leaf-to-leaf electrical signaling. Proc Natl Acad Sci U S A 2024; 121:e2400639121. [PMID: 38838018 PMCID: PMC11181143 DOI: 10.1073/pnas.2400639121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.
Collapse
Affiliation(s)
- Qian Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| | - Yangyang Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng475004, China
- Shenzhen Research Institute of Henan University, Shenzhen518000, China
| | - Mengjiao Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing210095, Jiangsu, China
| | - Xiaohang Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, China
| |
Collapse
|
7
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Michalak KM, Wojciechowska N, Marzec-Schmidt K, Bagniewska-Zadworna A. Conserved autophagy and diverse cell wall composition: unifying features of vascular tissues in evolutionarily distinct plants. ANNALS OF BOTANY 2024; 133:559-572. [PMID: 38324309 PMCID: PMC11037490 DOI: 10.1093/aob/mcae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND AND AIMS The formation of multifunctional vascular tissues represents a significant advancement in plant evolution. Differentiation of conductive cells is specific, involving two main pathways, namely protoplast clearance and cell wall modification. In xylogenesis, autophagy is a crucial process for complete protoplast elimination in tracheary elements, whose cell wall also undergoes strong changes. Knowledge pertaining to living sieve elements, which lose most of their protoplast during phloemogenesis, remains limited. We hypothesized that autophagy plays a crucial role, not only in complete cytoplasmic clearance in xylem but also in partial degradation in phloem. Cell wall elaborations of mature sieve elements are not so extensive. These analyses performed on evolutionarily diverse model species potentially make it possible to understand phloemogenesis to an equal extent to xylogenesis. METHODS We investigated the distribution of ATG8 protein, which is an autophagy marker, and cell wall components in the roots of ferns, gymnosperms and angiosperms (monocots, dicot herbaceous plants and trees). Furthermore, we conducted a bioinformatic analysis of complete data on ATG8 isoforms for Ceratopteris richardii. KEY RESULTS The presence of ATG8 protein was confirmed in both tracheary elements and sieve elements; however, the composition of cell wall components varied considerably among vascular tissues in the selected plants. Arabinogalactan proteins and β-1,4-galactan were detected in the roots of all studied species, suggesting their potential importance in phloem formation or function. In contrast, no evolutionary pattern was observed for xyloglucan, arabinan or homogalacturonan. CONCLUSIONS Our findings indicate that the involvement of autophagy in plants is universal during the development of tracheary elements that are dead at maturity and sieve elements that remain alive. Given the conserved nature of autophagy and its function in protoplast degradation for uninterrupted flow, autophagy might have played a vital role in the development of increasingly complex biological organizations, including the formation of vascular tissues. However, different cell wall compositions of xylem and phloem in different species might indicate diverse functionality and potential for substance transport, which is crucial in plant evolution.
Collapse
Affiliation(s)
- Kornel M Michalak
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Natalia Wojciechowska
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Agnieszka Bagniewska-Zadworna
- Department of General Botany, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
9
|
Chen M, Dai Y, Liao J, Wu H, Lv Q, Huang Y, Liu L, Feng Y, Lv H, Zhou B, Peng D. TARGET OF MONOPTEROS: key transcription factors orchestrating plant development and environmental response. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2214-2234. [PMID: 38195092 DOI: 10.1093/jxb/erae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Plants have an incredible ability to sustain root and vascular growth after initiation of the embryonic root and the specification of vascular tissue in early embryos. Microarray assays have revealed that a group of transcription factors, TARGET OF MONOPTEROS (TMO), are important for embryonic root initiation in Arabidopsis. Despite the discovery of their auxin responsiveness early on, their function and mode of action remained unknown for many years. The advent of genome editing has accelerated the study of TMO transcription factors, revealing novel functions for biological processes such as vascular development, root system architecture, and response to environmental cues. This review covers recent achievements in understanding the developmental function and the genetic mode of action of TMO transcription factors in Arabidopsis and other plant species. We highlight the transcriptional and post-transcriptional regulation of TMO transcription factors in relation to their function, mainly in Arabidopsis. Finally, we provide suggestions for further research and potential applications in plant genetic engineering.
Collapse
Affiliation(s)
- Min Chen
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yani Dai
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Jiamin Liao
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Huan Wu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Qiang Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Huang
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Lichang Liu
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Yu Feng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Hongxuan Lv
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
| | - Bo Zhou
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- National Engineering Laboratory of Applied Technology for Forestry and Ecology in Southern China, 410004, Changsha, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| | - Dan Peng
- Faculty of Life Science and Biotechnology of Central South University of Forestry and Technology, 410004, Changsha, Hunan, China
- Huitong National Field Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystem in Hunan Province, 438107, Huaihua, Hunan, China
- Forestry Biotechnology Hunan Key Laboratories, Hunan, China
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, 410004, Changsha, Hunan, China
| |
Collapse
|
10
|
Liu J, Fan Y, Liu Y, He M, Sun Y, Zheng Q, Mi L, Liu J, Liu W, Tang N, Zhao X, Hu Z, Guo S, Yan D. APP1/NTL9-CalS8 module ensures proper phloem differentiation by stabilizing callose accumulation and symplastic communication. THE NEW PHYTOLOGIST 2024; 242:154-169. [PMID: 38375601 DOI: 10.1111/nph.19617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Phloem sieve elements (PSE), the primary conduits collaborating with neighboring phloem pole pericycle (PPP) cells to facilitate unloading in Arabidopsis roots, undergo a series of developmental stages before achieving maturation and functionality. However, the mechanism that maintains the proper progression of these differentiation stages remains largely unknown. We identified a gain-of-function mutant altered phloem pole pericycle 1 Dominant (app1D), producing a truncated, nuclear-localized active form of NAC with Transmembrane Motif 1-like (NTL9). This mutation leads to ectopic expression of its downstream target CALLOSE SYNTHASE 8 (CalS8), thereby inducing callose accumulation, impeding SE differentiation, impairing phloem transport, and inhibiting root growth. The app1D phenotype could be reproduced by blocking the symplastic channels of cells within APP1 expression domain in wild-type (WT) roots. The WT APP1 is primarily membrane-tethered and dormant in the root meristem cells but entries into the nucleus in several cells in PPP near the unloading region, and this import is inhibited by blocking the symplastic intercellular transport in differentiating SE. Our results suggest a potential maintenance mechanism involving an APP1-CalS8 module, which induces CalS8 expression and modulates symplastic communication, and the proper activation of this module is crucial for the successful differentiation of SE in the Arabidopsis root.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yongxiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Meiqing He
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Yanke Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Qi Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Junzhong Liu
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Xiang Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, 475004, China
| |
Collapse
|
11
|
Liu Z, Ruonala R, Helariutta Y. Control of phloem unloading and root development. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154203. [PMID: 38428153 DOI: 10.1016/j.jplph.2024.154203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Root growth and development need proper carbon partitioning between sources and sinks. Photosynthesis products are unloaded from the phloem and enter the root meristem cell by cell. While sugar transporters play a major role in phloem loading, phloem unloading occurs via the plasmodesmata in growing root tips. The aperture and permeability of plasmodesmata strongly influence symplastic unloading. Recent research has dissected the symplastic path for phloem unloading and identified several genes that regulate phloem unloading in the root. Callose turnover and membrane lipid composition alter the shape of plasmodesmata, allowing fine-tuning to adapt phloem unloading to the environmental and developmental conditions. Unloaded sugars act both as an energy supply and as signals to coordinate root growth and development. Increased knowledge of how phloem unloading is regulated enhances our understanding of carbon allocation in plants. In the future, it may be possible to modulate carbon allocation between sources and sinks in a manner that would contribute to increased plant biomass and carbon fixation.
Collapse
Affiliation(s)
- Zixuan Liu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raili Ruonala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ykä Helariutta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Kaur G, Jain S, Bhushan S, Das N, Sharma M, Sharma D. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108334. [PMID: 38219424 DOI: 10.1016/j.plaphy.2024.108334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 10/31/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
The exponentially increasing population and the demand for food is inextricably linked. This has shifted global attention to improving crop plant traits to meet global food demands. Potato (Solanum tuberosum L.) is a major non-grain food crop that is grown all over the world. Currently, some of the major global potato research work focuses on the significance of microRNAs (miRNAs) in potato. miRNAs are a type of non-coding RNAs that regulate the gene expression of their target mRNA genes by cleavage and/or their translational inhibition. This suggests an essential role of miRNAs in a multitude of plant biological processes, including maintenance of genome integrity, plant growth, development and maturation, and initiation of responses to various stress conditions. Therefore, engineering miRNAs to generate stress-resistant varieties of potato may result in high yield and improved nutritional qualities. In this review, we discuss the potato miRNAs specifically known to play an essential role in the various stages of the potato life cycle, conferring stress-resistant characteristics, and modifying gene expression. This review highlights the significance of the miRNA machinery in plants, especially potato, encouraging further research into engineering miRNAs to boost crop yields and tolerance towards stress.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Sahil Jain
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Sakshi Bhushan
- Department of Botany, Central University of Jammu, Jammu and Kashmir (UT), India
| | - Niranjan Das
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, 147004, Punjab, India
| | - Munish Sharma
- Department of Plant Science, Central University of Himachal Pradesh, Shahpur Parisar, Kangra, Himachal Pradesh, India.
| | - Deepak Sharma
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Liu X, Roszak P, Helariutta Y. The challenge of defining rare genetic programs by single-cell RNA sequencing: Insights from phloem studies. MOLECULAR PLANT 2024; 17:22-25. [PMID: 38115581 DOI: 10.1016/j.molp.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; The Sainsbury Laboratory, University of Cambridge, CB2 1TN Cambridge, UK
| | - Pawel Roszak
- The Sainsbury Laboratory, University of Cambridge, CB2 1TN Cambridge, UK; Wood Development Group, University of Helsinki, 00100 Helsinki, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00100 Helsinki, Finland
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, CB2 1TN Cambridge, UK; Wood Development Group, University of Helsinki, 00100 Helsinki, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, 00100 Helsinki, Finland.
| |
Collapse
|
14
|
Nagahage ISP, Matsuda K, Miyashita K, Fujiwara S, Mannapperuma C, Yamada T, Sakamoto S, Ishikawa T, Nagano M, Ohtani M, Kato K, Uchimiya H, Mitsuda N, Kawai‐Yamada M, Demura T, Yamaguchi M. NAC domain transcription factors VNI2 and ATAF2 form protein complexes and regulate leaf senescence. PLANT DIRECT 2023; 7:e529. [PMID: 37731912 PMCID: PMC10507225 DOI: 10.1002/pld3.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/22/2023]
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.
Collapse
Affiliation(s)
| | - Kohei Matsuda
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | - Kyoko Miyashita
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Sumire Fujiwara
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Chanaka Mannapperuma
- Umeå Plant Science Centre, Department of Plant PhysiologyUmeå UniversityUmeåSweden
| | - Takuya Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Shingo Sakamoto
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Global Zero‐Emission Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Minoru Nagano
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
- Present address:
College of Life SciencesRitsumeikan UniversityKusatsuJapan
| | - Misato Ohtani
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- Present address:
Department of Integrated Biosciences, Graduate School of Frontier SciencesThe University of TokyoKashiwaJapan
| | - Ko Kato
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | - Hirofumi Uchimiya
- Institute for Environmental Science and TechnologySaitama UniversitySaitamaJapan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Global Zero‐Emission Research CenterNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
| | - Taku Demura
- Graduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
| | | |
Collapse
|
15
|
Matilla AJ. The Interplay between Enucleated Sieve Elements and Companion Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3033. [PMID: 37687278 PMCID: PMC10489895 DOI: 10.3390/plants12173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
In order to adapt to sessile life and terrestrial environments, vascular plants have developed highly sophisticated cells to transport photosynthetic products and developmental signals. Of these, two distinct cell types (i.e., the sieve element (SE) and companion cell) are arranged in precise positions, thus ensuring effective transport. During SE differentiation, most of the cellular components are heavily modified or even eliminated. This peculiar differentiation implies the selective disintegration of the nucleus (i.e., enucleation) and the loss of cellular translational capacity. However, some cellular components necessary for transport (e.g., plasmalemma) are retained and specific phloem proteins (P-proteins) appear. Likewise, MYB (i.e., APL) and NAC (i.e., NAC45 and NAC86) transcription factors (TFs) and OCTOPUS proteins play a notable role in SE differentiation. The maturing SEs become heavily dependent on neighboring non-conducting companion cells, to which they are connected by plasmodesmata through which only 20-70 kDa compounds seem to be able to pass. The study of sieve tube proteins still has many gaps. However, the development of a protocol to isolate proteins that are free from any contaminating proteins has constituted an important advance. This review considers the very detailed current state of knowledge of both bound and soluble sap proteins, as well as the role played by the companion cells in their presence. Phloem proteins travel long distances by combining two modes: non-selective transport via bulk flow and selective regulated movement. One of the goals of this study is to discover how the protein content of the sieve tube is controlled. The majority of questions and approaches about the heterogeneity of phloem sap will be clarified once the morphology and physiology of the plasmodesmata have been investigated in depth. Finally, the retention of specific proteins inside an SE is an aspect that should not be forgotten.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971-Santiago de Compostela, Spain
| |
Collapse
|
16
|
Pandey SS, Xu J, Achor DS, Li J, Wang N. Microscopic and Transcriptomic Analyses of Early Events Triggered by ' Candidatus Liberibacter asiaticus' in Young Flushes of Huanglongbing-Positive Citrus Trees. PHYTOPATHOLOGY 2023; 113:985-997. [PMID: 36449527 DOI: 10.1094/phyto-10-22-0360-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
'Candidatus Liberibacter asiaticus' (CLas) is associated with the devastating citrus disease Huanglongbing (HLB). Young flushes are the center of the HLB pathosystem due to their roles in the psyllid life cycle and in the acquisition and transmission of CLas. However, the early events of CLas infection and how CLas modulates young flush physiology remain poorly understood. Here, transmission electron microscopy analysis showed that the mean diameter of the sieve pores decreased in young leaves of HLB-positive trees after CLas infection, consistent with CLas-triggered callose deposition. RNA-seq-based global expression analysis of young leaves of HLB-positive sweet orange with (CLas-Pos) and without (CLas-Neg) detectable CLas demonstrated a significant impact on gene expression in young leaves, including on the expression of genes involved in host immunity, stress response, and plant hormone biosynthesis and signaling. CLas-Pos and CLas-Neg expression data displayed distinct patterns. The number of upregulated genes was higher than that of the downregulated genes in CLas-Pos for plant-pathogen interactions, glutathione metabolism, peroxisome, and calcium signaling, which are commonly associated with pathogen infections, compared with the healthy control. On the contrary, the number of upregulated genes was lower than that of the downregulated genes in CLas-Neg for genes involved in plant-pathogen interactions and peroxisome biogenesis/metabolism. Additionally, a time-course quantitative reverse transcription-PCR-based expression analysis visualized the induced expression of companion cell-specific genes, phloem protein 2 genes, and sucrose transport genes in young flushes triggered by CLas. This study advances our understanding of early events during CLas infection of citrus young flushes.
Collapse
Affiliation(s)
- Sheo Shankar Pandey
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jin Xu
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Diann S Achor
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Jinyun Li
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850
| |
Collapse
|
17
|
Hardtke CS. Phloem development. THE NEW PHYTOLOGIST 2023. [PMID: 37243530 DOI: 10.1111/nph.19003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
The evolution of the plant vascular system is a key process in Earth history because it enabled plants to conquer land and transform the terrestrial surface. Among the vascular tissues, the phloem is particularly intriguing because of its complex functionality. In angiosperms, its principal components are the sieve elements, which transport phloem sap, and their neighboring companion cells. Together, they form a functional unit that sustains sap loading, transport, and unloading. The developmental trajectory of sieve elements is unique among plant cell types because it entails selective organelle degradation including enucleation. Meticulous analyses of primary, so-called protophloem in the Arabidopsis thaliana root meristem have revealed key steps in protophloem sieve element formation at single-cell resolution. A transcription factor cascade connects specification with differentiation and also orchestrates phloem pole patterning via noncell-autonomous action of sieve element-derived effectors. Reminiscent of vascular tissue patterning in secondary growth, these involve receptor kinase pathways, whose antagonists guide the progression of sieve element differentiation. Receptor kinase pathways may also safeguard phloem formation by maintaining the developmental plasticity of neighboring cell files. Our current understanding of protophloem development in the A. thaliana root has reached sufficient detail to instruct molecular-level investigation of phloem formation in other organs.
Collapse
Affiliation(s)
- Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
18
|
Kalmbach L, Bourdon M, Belevich I, Safran J, Lemaire A, Heo JO, Otero S, Blob B, Pelloux J, Jokitalo E, Helariutta Y. Putative pectate lyase PLL12 and callose deposition through polar CALS7 are necessary for long-distance phloem transport in Arabidopsis. Curr Biol 2023; 33:926-939.e9. [PMID: 36805125 DOI: 10.1016/j.cub.2023.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
In plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE-LIKE 12 (PLL12) as critical for plant growth and development. Using genetic complementations, we established that PLL12 is required exclusively late during sieve element differentiation. Structural homology modeling, enzyme inactivation, and overexpression suggest a vital role for PLL12 in sieve-element-specific pectin remodeling. While short distance symplastic diffusion is unaffected, the pll12 mutant is unable to accommodate sustained plant development due to an incapacity to accommodate increasing hydraulic demands on phloem long-distance transport as the plant grows-a defect that is aggravated when combined with another sieve-element-specific mutant callose synthase 7 (cals7). Establishing CALS7 as a specific sieve pore marker, we investigated the subcellular dynamics of callose deposition in the developing sieve plate. Using fluorescent CALS7 then allowed identifying structural defects in pll12 sieve pores that are moderate at the cellular level but become physiologically relevant due to the serial arrangement of sieve elements in the sieve tube. Overall, pectin degradation through PLL12 appears subtle in quantitative terms. We therefore speculate that PLL12 may act as a regulator to locally remove homogalacturonan, thus potentially enabling further extracellular enzymes to access and modify the cell wall during sieve pore maturation.
Collapse
Affiliation(s)
- Lothar Kalmbach
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ilya Belevich
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Josip Safran
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Adrien Lemaire
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Jung-Ok Heo
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Sofia Otero
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Bernhard Blob
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro, BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, 80039 Amiens, France
| | - Eija Jokitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Ykä Helariutta
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
19
|
Diaz-Ardila HN, Gujas B, Wang Q, Moret B, Hardtke CS. pH-dependent CLE peptide perception permits phloem differentiation in Arabidopsis roots. Curr Biol 2023; 33:597-605.e3. [PMID: 36693368 DOI: 10.1016/j.cub.2022.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023]
Abstract
The plant vasculature delivers phloem sap to the growth apices of sink organs, the meristems, via the interconnected sieve elements of the protophloem.1,2,3 In the A. thaliana root meristem, the stem cells form two files of protophloem sieve elements (PPSEs), whose timely differentiation requires a set of positive genetic regulators. In corresponding loss-of-function mutants, signaling of secreted CLAVATA3/EMBRYO SURROUNDING REGION 45 (CLE45) peptide through the BARELY ANY MERISTEM 3 (BAM3) receptor is hyperactive and interferes with PPSE differentiation. This can be mimicked by an external CLE45 application to wild type. Because developing PPSEs express CLE45-BAM3 pathway components from early on until terminal differentiation, it remains unclear how they escape the autocrine inhibitory CLE45 signal. Here, we report that the wild type becomes insensitive to CLE45 treatment on neutral to alkaline pH media, as well as upon simultaneous treatment with a specific proton pump inhibitor at a standard pH of 5.7. We find that these observations can be explained by neither pH-dependent CLE45 uptake nor pH-dependent CLE45 charge. Moreover, pH-dependent perception specifically requires the CLE45 R4 residue and is not observed for the redundant PPSE-specific CLE25 and CLE26 peptides. Finally, pH-dependent CLE45 response in developing PPSEs as opposed to pH-independent response in neighboring cell files indicates that late-developing PPSEs can no longer sense CLE45. This is consistent with an apoplastic acidic to alkaline pH gradient we observed along developing PPSE cell files. In summary, we conclude that developing PPSEs self-organize their transition to differentiation by desensitizing themselves against autocrine CLE45 signaling through an apoplastic pH increase.
Collapse
Affiliation(s)
- H Nicholay Diaz-Ardila
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bojan Gujas
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Qian Wang
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Bernard Moret
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
20
|
A phosphoinositide hub connects CLE peptide signaling and polar auxin efflux regulation. Nat Commun 2023; 14:423. [PMID: 36702874 PMCID: PMC9879999 DOI: 10.1038/s41467-023-36200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Auxin efflux through plasma-membrane-integral PIN-FORMED (PIN) carriers is essential for plant tissue organization and tightly regulated. For instance, a molecular rheostat critically controls PIN-mediated auxin transport in developing protophloem sieve elements of Arabidopsis roots. Plasma-membrane-association of the rheostat proteins, BREVIS RADIX (BRX) and PROTEIN KINASE ASSOCIATED WITH BRX (PAX), is reinforced by interaction with PHOSPHATIDYLINOSITOL-4-PHOSPHATE-5-KINASE (PIP5K). Genetic evidence suggests that BRX dampens autocrine signaling of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED 45 (CLE45) peptide via its receptor BARELY ANY MERISTEM 3 (BAM3). How excess CLE45-BAM3 signaling interferes with protophloem development and whether it does so directly or indirectly remains unclear. Here we show that rheostat polarity is independent of PIN polarity, but interdependent with PIP5K. Catalytically inactive PIP5K confers rheostat polarity without reinforcing its localization, revealing a possible PIP5K scaffolding function. Moreover, PIP5K and PAX cooperatively control local PIN abundance. We further find that CLE45-BAM3 signaling branches via RLCK-VII/PBS1-LIKE (PBL) cytoplasmic kinases to destabilize rheostat localization. Our data thus reveal antagonism between CLE45-BAM3-PBL signaling and PIP5K that converges on auxin efflux regulation through dynamic control of PAX polarity. Because second-site bam3 mutation suppresses root as well as shoot phenotypes of pip5k mutants, CLE peptide signaling likely modulates phosphoinositide-dependent processes in various developmental contexts.
Collapse
|
21
|
Yuan Z, Geng Y, Dai Y, Li J, Lv M, Liao Q, Xie L, Zhang H. A fijiviral nonstructural protein triggers cell death in plant and bacterial cells via its transmembrane domain. MOLECULAR PLANT PATHOLOGY 2023; 24:59-70. [PMID: 36305370 PMCID: PMC9742498 DOI: 10.1111/mpp.13277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 05/10/2023]
Abstract
Southern rice black-streaked dwarf virus (SRBSDV; Fijivirus, Reoviridae) has become a threat to cereal production in East Asia in recent years. Our previous cytopathologic studies have suggested that SRBSDV induces a process resembling programmed cell death in infected tissues that results in distinctive growth abnormalities. The viral product responsible for the cell death, however, remains unknown. Here P9-2 protein, but not its RNA, was shown to induce cell death in Escherichia coli and plant cells when expressed either locally with a transient expression vector or systemically using a heterologous virus. Both computer prediction and fluorescent assays indicated that the viral nonstructural protein was targeted to the plasma membrane (PM) and further modification of its subcellular localization abolished its ability to induce cell death, indicating that its PM localization was required for the cell death induction. P9-2 was predicted to harbour two transmembrane helices within its central hydrophobic domain. A series of mutation assays further showed that its central transmembrane hydrophobic domain was crucial for cell death induction and that its conserved F90, Y101, and L103 amino acid residues could play synergistic roles in maintaining its ability to induce cell death. Its homologues in other fijiviruses also induced cell death in plant and bacterial cells, implying that the fijiviral nonstructural protein may trigger cell death by targeting conserved cellular factors or via a highly conserved mechanism.
Collapse
Affiliation(s)
- Zhengjie Yuan
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yanfei Geng
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yuanxing Dai
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
- College of Chemistry and Life ScienceZhejiang Normal UniversityJinhuaChina
| | - Jing Li
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Mingfang Lv
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qiansheng Liao
- College of Life ScienceZhejiang Sci‐Tech UniversityHangzhouChina
| | - Li Xie
- Analysis Center of Agrobiology and Environmental SciencesZhejiang UniversityHangzhouChina
| | - Heng‐Mu Zhang
- Laboratory of Virology, Institute of Virology and BiotechnologyZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
22
|
Moshchenskaya YL, Galibina NA, Nikerova KM, Tarelkina TV, Korzhenevsky MA, Sofronova IN, Ershova MA, Semenova LI. Plant-Programmed Cell Death-Associated Genes Participation in Pinus sylvestris L. Trunk Tissue Formation. PLANTS (BASEL, SWITZERLAND) 2022; 11:3438. [PMID: 36559551 PMCID: PMC9785643 DOI: 10.3390/plants11243438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Molecular genetic markers of various PCD (programmed cell death) variants during xylo- and phloemogenesis have been identified for the first time in Scots pine under lingonberry pine forest conditions in Northwest Russia (middle taiga subzone). PCD is a genetically determined process. Gene profiles of serine and cysteine proteases (endopeptidases), endonucleases, and metacaspases families are often considered markers of the final xylogenesis stage. In the present study, we examined the gene expression profiles of the BFN (bifunctional endonuclease) family-BFN, BFN1, BFN2, BFN3, and peptidase (cysteine endopeptidase, CEP and metacaspase, MC5) in the radial row, in addition to the vascular phloem and cambium (F1), differentiating xylem (F2), sapwood (SW), and transition zone during the active cambial growth period of uneven-aged pine trees (25-, 63- and 164-cambial age (c.a.) years old). We have shown that the expression patterns of the PCD-related genes did not depend on the cambial age but were largely determined by plant tissue type. In the radial row F1-F2-SW, we studied the activities of enzymes, including sucrose in metabolism (sucrose synthase, three forms of invertase); antioxidant system (AOS) enzymes (superoxide dismutase, catalase); and peroxidase andpolyphenol oxidase, which belonged to AOS enzymes and were involved in the synthesis of phenolic components of cell walls. The activity of the enzymes indicated that the trunk tissues of pine trees had varying metabolic status. Molecular genetic PCD regulation mechanisms during xylem vascular and mechanical element formation and parenchyma cells' PCD during the formation of Scots pine heartwood were discussed.
Collapse
Affiliation(s)
- Yulia L. Moshchenskaya
- Forest Research Institute, Karelian Research Centre of the Russian Academy of Sciences, 11 Pushkinskaya st., 185910 Petrozavodsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Genome-wide chromatin accessibility analysis unveils open chromatin convergent evolution during polyploidization in cotton. Proc Natl Acad Sci U S A 2022; 119:e2209743119. [PMID: 36279429 PMCID: PMC9636936 DOI: 10.1073/pnas.2209743119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a “genome shock”, leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (
Gossypium hirsutum
and
Gossypium barbadense
, AADD) and its extant AA (
Gossypium arboreum
) and DD (
Gossypium raimondii
) progenitors. We observed distinct DHS distributions between
G. arboreum
and
G. raimondii
. In contrast, the DHSs of the two subgenomes of
G. hirsutum
and
G. barbadense
showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids
Gossypium darwinii
and
G. hirsutum
var.
yucatanense
, but absent from a resynthesized hybrid of
G. arboreum
and
G. raimondii
, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative
cis
-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.
Collapse
|
24
|
Narasimhan M, Simon R. Spatial range, temporal span, and promiscuity of CLE-RLK signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:906087. [PMID: 36092449 PMCID: PMC9459042 DOI: 10.3389/fpls.2022.906087] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) signaling through receptor-like kinases (RLKs) regulates developmental transitions and responses to biotic and abiotic inputs by communicating the physiological state of cells and tissues. CLE peptides have varying signaling ranges, which can be defined as the distance between the source, i.e., the cells or tissue that secrete the peptide, and their destination, i.e., cells or tissue where the RLKs that bind the peptide and/or respond are expressed. Case-by-case analysis substantiates that CLE signaling is predominantly autocrine or paracrine, and rarely endocrine. Furthermore, upon CLE reception, the ensuing signaling responses extend from cellular to tissue, organ and whole organism level as the downstream signal gets amplified. CLE-RLK-mediated effects on tissue proliferation and differentiation, or on subsequent primordia and organ development have been widely studied. However, studying how CLE-RLK regulates different stages of proliferation and differentiation at cellular level can offer additional insights into these processes. Notably, CLE-RLK signaling also mediates diverse non-developmental effects, which are less often observed; however, this could be due to biased experimental approaches. In general, CLEs and RLKs, owing to the sequence or structural similarity, are prone to promiscuous interactions at least under experimental conditions in which they are studied. Importantly, there are regulatory mechanisms that suppress CLE-RLK cross-talk in vivo, thereby eliminating the pressure for co-evolving binding specificity. Alternatively, promiscuity in signaling may also offer evolutionary advantages and enable different CLEs to work in combination to activate or switch off different RLK signaling pathways.
Collapse
Affiliation(s)
- Madhumitha Narasimhan
- Institute for Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
25
|
He C, Liew LC, Yin L, Lewsey MG, Whelan J, Berkowitz O. The retrograde signaling regulator ANAC017 recruits the MKK9-MPK3/6, ethylene, and auxin signaling pathways to balance mitochondrial dysfunction with growth. THE PLANT CELL 2022; 34:3460-3481. [PMID: 35708648 PMCID: PMC9421482 DOI: 10.1093/plcell/koac177] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/29/2022] [Indexed: 05/12/2023]
Abstract
In plant cells, mitochondria are ideally positioned to sense and balance changes in energy metabolism in response to changing environmental conditions. Retrograde signaling from mitochondria to the nucleus is crucial for adjusting the required transcriptional responses. We show that ANAC017, the master regulator of mitochondrial stress, directly recruits a signaling cascade involving the plant hormones ethylene and auxin as well as the MAP KINASE KINASE (MKK) 9-MAP KINASE (MPK) 3/6 pathway in Arabidopsis thaliana. Chromatin immunoprecipitation followed by sequencing and overexpression demonstrated that ANAC017 directly regulates several genes of the ethylene and auxin pathways, including MKK9, 1-AMINO-CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 2, and YUCCA 5, in addition to genes encoding transcription factors regulating plant growth and stress responses such as BASIC REGION/LEUCINE ZIPPER MOTIF (bZIP) 60, bZIP53, ANAC081/ATAF2, and RADICAL-INDUCED CELL DEATH1. A time-resolved RNA-seq experiment established that ethylene signaling precedes the stimulation of auxin signaling in the mitochondrial stress response, with a large part of the transcriptional regulation dependent on ETHYLENE-INSENSITIVE 3. These results were confirmed by mutant analyses. Our findings identify the molecular components controlled by ANAC017, which integrates the primary stress responses to mitochondrial dysfunction with whole plant growth via the activation of regulatory and partly antagonistic feedback loops.
Collapse
Affiliation(s)
- Cunman He
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Lingling Yin
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Mathew G Lewsey
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
- ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia
| | | |
Collapse
|
26
|
Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, Bourdon M, Kalmbach L, Blob B, Heo JO, Peruzzo F, Laux T, Fernie AR, Tavares H, Helariutta Y. A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells. NATURE PLANTS 2022; 8:954-970. [PMID: 35927456 DOI: 10.1038/s41477-022-01178-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.
Collapse
Affiliation(s)
- Sofia Otero
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Iris Gildea
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | - Pawel Roszak
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Yipeng Lu
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Valerio Di Vittori
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Matthieu Bourdon
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Bernhard Blob
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jung-Ok Heo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | | | - Thomas Laux
- Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Yka Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
27
|
Tariq R, Hussain A, Tariq A, Khalid MHB, Khan I, Basim H, Ingvarsson PK. Genome-wide analyses of the mung bean NAC gene family reveals orthologs, co-expression networking and expression profiling under abiotic and biotic stresses. BMC PLANT BIOLOGY 2022; 22:343. [PMID: 35836131 PMCID: PMC9284730 DOI: 10.1186/s12870-022-03716-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mung bean is a short-duration and essential food crop owing to its cash prominence in Asia. Mung bean seeds are rich in protein, fiber, antioxidants, and phytonutrients. The NAC transcription factors (TFs) family is a large plant-specific family, participating in tissue development regulation and abiotic and biotic stresses. RESULTS In this study, we perform genome-wide comparisons of VrNAC with their homologs from Arabidopsis. We identified 81 NAC transcription factors (TFs) in mung bean genome and named as per their chromosome location. A phylogenetic analysis revealed that VrNACs are broadly distributed in nine groups. Moreover, we identified 20 conserved motifs across the VrNACs highlighting their roles in different biological process. Based on the gene structure of the putative VrNAC and segmental duplication events might be playing a vital role in the expansion of mung bean genome. A comparative phylogenetic analysis of mung bean NAC together with homologs from Arabidopsis allowed us to classify NAC genes into 13 groups, each containing several orthologs and paralogs. Gene ontology (GO) analysis categorized the VrNACs into biological process, cellular components and molecular functions, explaining the functions in different plant physiology processes. A gene co-expression network analysis identified 173 genes involved in the transcriptional network of putative VrNAC genes. We also investigated how miRNAs potentially target VrNACs and shape their interactions with proteins. VrNAC1.4 (Vradi01g03390.1) was targeted by the Vra-miR165 family, including 9 miRNAs. Vra-miR165 contributes to leaf development and drought tolerance. We also performed qRT-PCR on 22 randomly selected VrNAC genes to assess their expression patterns in the NM-98 genotype, widely known for being tolerant to drought and bacterial leaf spot disease. CONCLUSIONS This genome-wide investigation of VrNACs provides a unique resource for further detailed investigations aimed at predicting orthologs functions and what role the play under abiotic and biotic stress, with the ultimate aim to improve mung bean production under diverse environmental conditions.
Collapse
Affiliation(s)
- Rezwan Tariq
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey
| | - Ammara Hussain
- Department of Biotechnology, University of Okara, Punjab, 56300, Pakistan
| | - Arslan Tariq
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Hayder Bin Khalid
- College of agronomy, Sichuan Agricultural University, Ya'an, China
- National Research Center of intercropping, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Khan
- State Key Laboratory of Grassland Agro-Ecosystem, Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou, 730020, China
| | - Huseyin Basim
- Department of Plant Protection, Akdeniz University, 07070, Antalya, Turkey.
| | - Pär K Ingvarsson
- Linnean Centre for Plan Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, SE75007, Uppsala, Sweden.
| |
Collapse
|
28
|
Qian P, Song W, Zaizen-Iida M, Kume S, Wang G, Zhang Y, Kinoshita-Tsujimura K, Chai J, Kakimoto T. A Dof-CLE circuit controls phloem organization. NATURE PLANTS 2022; 8:817-827. [PMID: 35817820 DOI: 10.1038/s41477-022-01176-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
The phloem consists of sieve elements (SEs) and companion cells (CCs). Here we show that Dof-class transcription factors preferentially expressed in the phloem (phloem-Dofs) are not only necessary and sufficient for SE and CC differentiation, but also induce negative regulators of phloem development, CLAVATA3/EMBRYO SURROUNDING REGION-RELATED25 (CLE25), CLE26 and CLE45 secretory peptides. CLEs were perceived by BARELY ANY MERISTEM (BAM)-class receptors and CLAVATA3 INSENSITIVE RECEPTOR KINASE (CIK) co-receptors, and post-transcriptionally decreased phloem-Dof proteins and repressed SE and CC formation. Multiple mutations in CLE-, BAM- or CIK-class genes caused ectopic formation of SEs and CCs, producing an SE/CC cluster at each phloem region. We propose that while phloem-Dofs induce phloem cell formation, they inhibit excess phloem cell formation by inducing CLEs. Normal-positioned SE and CC precursor cells appear to overcome the effect of CLEs by reinforcing the production of phloem-Dofs through a positive feedback transcriptional regulation.
Collapse
Affiliation(s)
- Pingping Qian
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | - Wen Song
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Miki Zaizen-Iida
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Organismal and Evolutionary Biology Research Programme, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sawa Kume
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Guodong Wang
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ye Zhang
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | | | - Jijie Chai
- Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Cluster of Excellence in Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Tatsuo Kakimoto
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
29
|
Kastanaki E, Blanco-Touriñán N, Sarazin A, Sturchler A, Gujas B, Vera-Sirera F, Agustí J, Rodriguez-Villalon A. A genetic framework for proximal secondary vein branching in the Arabidopsis thaliana embryo. Development 2022; 149:275816. [PMID: 35723181 PMCID: PMC9270971 DOI: 10.1242/dev.200403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/09/2022] [Indexed: 01/09/2023]
Abstract
Over time, plants have evolved flexible self-organizing patterning mechanisms to adapt tissue functionality for continuous organ growth. An example of this process is the multicellular organization of cells into a vascular network in foliar organs. An important, yet poorly understood component of this process is secondary vein branching, a mechanism employed to extend vascular tissues throughout the cotyledon surface. Here, we uncover two distinct branching mechanisms during embryogenesis by analyzing the discontinuous vein network of the double mutant cotyledon vascular pattern 2 (cvp2) cvp2-like 1 (cvl1). Similar to wild-type embryos, distal veins in cvp2 cvl1 embryos arise from the bifurcation of cell files contained in the midvein, whereas proximal branching is absent in this mutant. Restoration of this process can be achieved by increasing OCTOPUS dosage as well as by silencing RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2) expression. Although RPK2-dependent rescue of cvp2 cvl1 is auxin- and CLE peptide-independent, distal branching involves polar auxin transport and follows a distinct regulatory mechanism. Our work defines a genetic network that confers plasticity to Arabidopsis embryos to spatially adapt vascular tissues to organ growth.
Collapse
Affiliation(s)
- Elizabeth Kastanaki
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Noel Blanco-Touriñán
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland,Authors for correspondence (; )
| | - Alexis Sarazin
- Group of RNA Biology, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Alessandra Sturchler
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Bojan Gujas
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland
| | - Francisco Vera-Sirera
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas (CSIC)-Universitat Politècnica de València (UPV), 46022 Valencia, Spain
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, CH-8092 Zurich, Switzerland,Authors for correspondence (; )
| |
Collapse
|
30
|
Ranjan A, Perrone I, Alallaq S, Singh R, Rigal A, Brunoni F, Chitarra W, Guinet F, Kohler A, Martin F, Street NR, Bhalerao R, Legué V, Bellini C. Molecular basis of differential adventitious rooting competence in poplar genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4046-4064. [PMID: 35325111 PMCID: PMC9232201 DOI: 10.1093/jxb/erac126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.
Collapse
Affiliation(s)
| | | | | | - Rajesh Singh
- Present address: Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Adeline Rigal
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Federica Brunoni
- Present address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), I-10135 Torino, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), I-31015 Conegliano (TV), Italy
| | - Frederic Guinet
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agricultural University, SE-90183 Umeå, Sweden
| | - Valérie Legué
- Present address: Université Clermont Auvergne, INRAE, UMR 547 PIAF, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
31
|
Tirnaz S, Miyaji N, Takuno S, Bayer PE, Shimizu M, Akter MA, Edwards D, Batley J, Fujimoto R. Whole-Genome DNA Methylation Analysis in Brassica rapa subsp. perviridis in Response to Albugo candida Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:849358. [PMID: 35812966 PMCID: PMC9261781 DOI: 10.3389/fpls.2022.849358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
DNA methylation is an epigenetic mark associated with several mechanisms in plants including immunity mechanisms. However, little is known about the regulatory role of DNA methylation in the resistance response of Brassica species against fungal diseases. White rust, caused by the fungus Albugo candida, is one of the most widespread and destructive diseases of all the cultivated Brassica species, particularly Brassica rapa L. and Brassica juncea (L.) Czern and Coss. Here, we investigate whole-genome DNA methylation modifications of B. rapa subsp. perviridis in response to white rust. As a result, 233 and 275 differentially methylated regions (DMRs) in the susceptible cultivar "Misugi" and the resistant cultivar "Nanane" were identified, respectively. In both cultivars, more than half of the DMRs were associated with genes (DMR-genes). Gene expression analysis showed that 13 of these genes were also differentially expressed between control and infected samples. Gene ontology enrichment analysis of DMR genes revealed their involvement in various biological processes including defense mechanisms. DMRs were unevenly distributed around genes in susceptible and resistant cultivars. In "Misugi," DMRs tended to be located within genes, while in "Nanane," DMRs tended to be located up and downstream of the genes. However, CG DMRs were predominantly located within genes in both cultivars. Transposable elements also showed association with all three sequence contexts of DMRs but predominantly with CHG and CHH DMRs in both cultivars. Our findings indicate the occurrence of DNA methylation modifications in B. rapa in response to white rust infection and suggest a potential regulatory role of DNA methylation modification in defense mechanisms which could be exploited to improve disease resistance.
Collapse
Affiliation(s)
- Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Naomi Miyaji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Shohei Takuno
- Department of Evolutionary Studies of Biosystems, SOKENDAI, The Graduate University for Advanced Studies, Hayama, Japan
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | | | - Mst. Arjina Akter
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ryo Fujimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
32
|
RNA-binding proteins and their role in translational regulation in plants. Essays Biochem 2022; 66:87-97. [PMID: 35612383 DOI: 10.1042/ebc20210069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/16/2022]
Abstract
Translation is a fundamental process for life that needs to be finely adapted to the energetical, developmental and environmental conditions; however, the molecular mechanisms behind such adaptation are not yet fully understood. By directly recognizing and binding to cis-elements present in their target mRNAs, RBPs govern all post-transcriptional regulatory processes. They orchestrate the balance between mRNA stability, storage, decay, and translation of their client mRNAs, playing a crucial role in the modulation of gene expression. In the last years exciting discoveries have been made regarding the roles of RBPs in fine-tuning translation. In this review, we focus on how these RBPs recognize their targets and modulate their translation, highlighting the complex and diverse molecular mechanisms implicated. Since the repertoire of RBPs keeps growing, future research promises to uncover new fascinating means of translational modulation, and thus, of gene expression.
Collapse
|
33
|
Bush M, Sethi V, Sablowski R. A Phloem-Expressed PECTATE LYASE-LIKE Gene Promotes Cambium and Xylem Development. FRONTIERS IN PLANT SCIENCE 2022; 13:888201. [PMID: 35557737 PMCID: PMC9087803 DOI: 10.3389/fpls.2022.888201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/12/2023]
Abstract
The plant vasculature plays essential roles in the transport of water and nutrients and is composed of xylem and phloem, both of which originate from undifferentiated cells found in the cambium. Development of the different vascular tissues is coordinated by hormonal and peptide signals and culminates in extensive cell wall modifications. Pectins are key cell wall components that are modified during cell growth and differentiation, and pectin fragments function as signals in defence and cell wall integrity pathways, although their role as developmental signals remains tentative. Here, we show that the pectin lyase-like gene PLL12 is required for growth of the vascular bundles in the Arabidopsis inflorescence stem. Although PLL12 was expressed primarily in the phloem, it also affected cambium and xylem growth. Surprisingly, PLL12 overexpression induced ectopic cambium and xylem differentiation in the inflorescence apex and inhibited development of the leaf vasculature. Our results raise the possibility that a cell wall-derived signal produced by PLL12 in the phloem regulates cambium and xylem development.
Collapse
Affiliation(s)
| | | | - Robert Sablowski
- Cell and Developmental Biology Department, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
34
|
Liu Z, Wang J, Zhou Y, Zhang Y, Qin A, Yu X, Zhao Z, Wu R, Guo C, Bawa G, Rochaix J, Sun X. Identification of novel regulators required for early development of vein pattern in the cotyledons by single-cell RNA-sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:7-22. [PMID: 35218590 PMCID: PMC9310732 DOI: 10.1111/tpj.15719] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/20/2022] [Indexed: 05/25/2023]
Abstract
The leaf veins of higher plants contain a highly specialized vascular system comprised of xylem and phloem cells that transport water, organic compounds and mineral nutrients. The development of the vascular system is controlled by phytohormones that interact with complex transcriptional regulatory networks. Before the emergence of true leaves, the cotyledons of young seedlings perform photosynthesis that provides energy for the sustainable growth and survival of seedlings. However, the mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood, in part due to the complex cellular composition of this tissue. To better understand the development of leaf veins, we analyzed 14 117 single cells from 3-day-old cotyledons using single-cell RNA sequencing. Based on gene expression patterns, we identified 10 clusters of cells and traced their developmental trajectories. We discovered multiple new marker genes and developmental features of leaf veins. The transcription factor networks of some cell types indicated potential roles of CYCLING DOF FACTOR 5 (CDF5) and REPRESSOR OF GA (RGA) in the early development and function of the leaf veins in cotyledons. These new findings lay a foundation for understanding the early developmental dynamics of cotyledon veins. The mechanisms underlying the early development of leaf veins in cotyledons are still not fully understood. In this study, we comprehensively characterized the early differentiation and development of leaf veins in 3-day-old cotyledons based on single-cell transcriptome analysis. We identified the cell types and novel marker genes of leaf veins and characterized the novel regulators of leaf vein.
Collapse
Affiliation(s)
- Zhixin Liu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Jiajing Wang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Yixin Zhang
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Aizhi Qin
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Xiaole Yu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Zihao Zhao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - George Bawa
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| | - Jean‐David Rochaix
- Departments of Molecular Biology and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, Key Laboratory of Plant Stress BiologySchool of Life Sciences, Henan University85 Minglun StreetKaifeng475001China
| |
Collapse
|
35
|
Aliaga Fandino AC, Hardtke CS. Auxin transport in developing protophloem: A case study in canalization. JOURNAL OF PLANT PHYSIOLOGY 2022; 269:153594. [PMID: 34953411 DOI: 10.1016/j.jplph.2021.153594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Spatiotemporal cues orchestrate the development of organs and cellular differentiation in multicellular organisms. For instance, in the root apical meristem an auxin gradient patterns the transition from stem cell maintenance to transit amplification and eventual differentiation. Among the proximal tissues generated by this growth apex, the early, so-called protophloem, is the first tissue to differentiate. This observation has been linked to increased auxin activity in the developing protophloem sieve element cell files as compared to the neighboring tissues. Here we review recent progress in the characterization of the unique mechanism by which auxin canalizes its activity in the developing protophloem and fine-tunes its own transport to guide proper timing of protophloem sieve element differentiation.
Collapse
Affiliation(s)
- Ana Cecilia Aliaga Fandino
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
36
|
Turley EK, Etchells JP. Laying it on thick: a study in secondary growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:665-679. [PMID: 34655214 PMCID: PMC8793872 DOI: 10.1093/jxb/erab455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 05/12/2023]
Abstract
The development of secondary vascular tissue enhances the transport capacity and mechanical strength of plant bodies, while contributing a huge proportion of the world's biomass in the form of wood. Cell divisions in the cambium, which constitutes the vascular meristem, provide progenitors from which conductive xylem and phloem are derived. The cambium is a somewhat unusual stem cell population in two respects, making it an interesting subject for developmental research. Firstly, it arises post-germination, and thus represents a model for understanding stem cell initiation beyond embryogenesis. Secondly, xylem and phloem differentiate on opposing sides of cambial stem cells, making them bifacial in nature. Recent discoveries in Arabidopsis thaliana have provided insight into the molecular mechanisms that regulate the initiation, patterning, and maintenance of the cambium. In this review, the roles of intercellular signalling via mobile transcription factors, peptide-receptor modules, and phytohormones are described. Crosstalk between these regulatory pathways is becoming increasingly apparent, yet the underlying mechanisms are not fully understood. Future study of the interaction between multiple independently identified regulators, as well as the functions of their orthologues in trees, will deepen our understanding of radial growth in plants.
Collapse
Affiliation(s)
- Emma K Turley
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, UK
| | - J Peter Etchells
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence:
| |
Collapse
|
37
|
Liu Y, Vasina VV, Kraner ME, Peters WS, Sonnewald U, Knoblauch M. Proteomics of isolated sieve tubes from Nicotiana tabacum: sieve element-specific proteins reveal differentiation of the endomembrane system. Proc Natl Acad Sci U S A 2022; 119:e2112755119. [PMID: 34983847 PMCID: PMC8740716 DOI: 10.1073/pnas.2112755119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 11/30/2022] Open
Abstract
Symplasmicly connected cells called sieve elements form a network of tubes in the phloem of vascular plants. Sieve elements have essential functions as they provide routes for photoassimilate distribution, the exchange of developmental signals, and the coordination of defense responses. Nonetheless, they are the least understood main type of plant cells. They are extremely sensitive, possess a reduced endomembrane system without Golgi apparatus, and lack nuclei and translation machineries, so that transcriptomics and similar techniques cannot be applied. Moreover, the analysis of phloem exudates as a proxy for sieve element composition is marred by methodological problems. We developed a simple protocol for the isolation of sieve elements from leaves and stems of Nicotiana tabacum at sufficient amounts for large-scale proteome analysis. By quantifying the enrichment of individual proteins in purified sieve element relative to bulk phloem preparations, proteins of increased likelyhood to function specifically in sieve elements were identified. To evaluate the validity of this approach, yellow fluorescent protein constructs of genes encoding three of the candidate proteins were expressed in plants. Tagged proteins occurred exclusively in sieve elements. Two of them, a putative cytochrome b561/ferric reductase and a reticulon-like protein, appeared restricted to segments of the endoplasmic reticulum (ER) that were inaccessible to green fluorescent protein dissolved in the ER lumen, suggesting a previously unknown differentiation of the endomembrane system in sieve elements. Evidently, our list of promising candidate proteins ( SI Appendix, Table S1) provides a valuable exploratory tool for sieve element biology.
Collapse
Affiliation(s)
- Yan Liu
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Viktoriya V Vasina
- School of Biological Sciences, Washington State University, Pullman, WA 99154
| | - Max E Kraner
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA 99154
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN 46835
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA 99154;
| |
Collapse
|
38
|
Godel-Jędrychowska K, Franke T, Kurczyńska E. Ultrastructural Analysis and Three-Dimensional Reconstruction of Plasmodesmata. Methods Mol Biol 2022; 2457:75-94. [PMID: 35349133 DOI: 10.1007/978-1-0716-2132-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Array tomography (AT) is a new high-throughput imaging method for high-resolution imaging of ultrastructure and for 3-D reconstruction of cells and organelles. Here, we describe the entire procedure for obtaining a spatial image of the distribution of plasmodesmata (PD). As example, the protocol is applied here to reconstruct the number and arrangement of PD between cells undergoing differentiation during Arabidopsis somatic embryogenesis.
Collapse
Affiliation(s)
- Kamila Godel-Jędrychowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland.
| | | | - Ewa Kurczyńska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
39
|
Paterlini A, Belevich I. Serial Block Electron Microscopy to Study Plasmodesmata in the Vasculature of Arabidopsis thaliana Roots. Methods Mol Biol 2022; 2457:95-107. [PMID: 35349134 DOI: 10.1007/978-1-0716-2132-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Serial block electron microscopy (SB-EM) is a technique that enables acquisition and reconstruction of 3D cellular volumes. The approach is valuable for the study of plasmodesmata (PD) as the relative positions of these structures are contained in the datasets. In this chapter, we describe how to prepare plant roots for SB-EM via fixation, embedding, and trimming steps. We also provide details and recommendations for later image acquisition and processing. The procedure is suitable to work on root vascular tissues.
Collapse
Affiliation(s)
| | - Ilya Belevich
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
40
|
Vargas-Hernández BY, Núñez-Muñoz L, Calderón-Pérez B, Xoconostle-Cázares B, Ruiz-Medrano R. The NAC Transcription Factor ANAC087 Induces Aerial Rosette Development and Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:818107. [PMID: 35283930 PMCID: PMC8905224 DOI: 10.3389/fpls.2022.818107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 05/22/2023]
Abstract
CmNACP1 mRNA has been shown to move long distance through the phloem in Cucurbita maxima (pumpkin) and through a graft junction. Whereas the phloem transport of several different mRNAs has been documented in other systems as well, its function remains, for most of these RNAs, largely unknown. To gain insight into the possible role of these RNAs, we searched for the closest homologs of CmNACP1 in Arabidopsis, a model plant much more amenable for analysis. A phylogenetic approach using the predicted NAC domain indicated that ANAC059, ANAC092, ANAC079, ANAC100, ANAC046, and ANAC087 form a single clade with CmNACP1. In the present work, we analyzed the possible function of the ANAC087 gene in more detail. The promoter region of this gene directed expression in the vasculature, and also in trichomes, stem, apexes, and developing flowers which supports the notion that ANAC087 and CmNACP1 are orthologs. Overexpression of the ANAC087 gene induced increased branching in inflorescence stem, and also development of ectopic or aerial rosettes in T1 and T2 plants. Furthermore, overexpression of ANAC087 leads to accelerated leaf senescence in 44 days post-germination (dpg). Interestingly, a similar phenotype was observed in plants expressing the ANAC087 gene upstream region, also showing an increase in ANAC087 transcript levels. Finally, the results shown in this work indicate a role for ANAC087 in leaf senescence and also in rosette development.
Collapse
|
41
|
Roszak P, Heo JO, Blob B, Toyokura K, Sugiyama Y, de Luis Balaguer MA, Lau WWY, Hamey F, Cirrone J, Madej E, Bouatta AM, Wang X, Guichard M, Ursache R, Tavares H, Verstaen K, Wendrich J, Melnyk CW, Oda Y, Shasha D, Ahnert SE, Saeys Y, De Rybel B, Heidstra R, Scheres B, Grossmann G, Mähönen AP, Denninger P, Göttgens B, Sozzani R, Birnbaum KD, Helariutta Y. Cell-by-cell dissection of phloem development links a maturation gradient to cell specialization. Science 2021; 374:eaba5531. [PMID: 34941412 PMCID: PMC8730638 DOI: 10.1126/science.aba5531] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.
Collapse
Affiliation(s)
- Pawel Roszak
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Jung-Ok Heo
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bernhard Blob
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Koichi Toyokura
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- GRA&GREEN Inc., Incubation Facility, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
| | | | - Winnie W Y Lau
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Fiona Hamey
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jacopo Cirrone
- Computer Science Department, Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
| | - Ewelina Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alida M Bouatta
- Plant Systems Biology, Technical University of Munich, Freising, Germany
| | - Xin Wang
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Marjorie Guichard
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Robertas Ursache
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Hugo Tavares
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Bioinformatics Training Facility, Department of Genetics, University of Cambridge, Cambridge, UK
| | - Kevin Verstaen
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jos Wendrich
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Charles W Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Genetics, the Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Dennis Shasha
- Computer Science Department, Courant Institute for Mathematical Sciences, New York University, New York, NY, USA
| | - Sebastian E Ahnert
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, British Library, London, UK
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Renze Heidstra
- Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ben Scheres
- Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
- Rijk Zwaan R&D, 4793 Fijnaart, Netherlands
| | - Guido Grossmann
- Institute of Cell and Interaction Biology, CEPLAS, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Philipp Denninger
- Plant Systems Biology, Technical University of Munich, Freising, Germany
| | - Berthold Göttgens
- Wellcome Trust and MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Rosangela Sozzani
- Plant and Microbial Biology Department, North Carolina State University, Raleigh, NC, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
42
|
Graeff M, Rana S, Wendrich JR, Dorier J, Eekhout T, Aliaga Fandino AC, Guex N, Bassel GW, De Rybel B, Hardtke CS. A single-cell morpho-transcriptomic map of brassinosteroid action in the Arabidopsis root. MOLECULAR PLANT 2021; 14:1985-1999. [PMID: 34358681 PMCID: PMC8674818 DOI: 10.1016/j.molp.2021.07.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/03/2021] [Accepted: 07/29/2021] [Indexed: 05/05/2023]
Abstract
The effects of brassinosteroid signaling on shoot and root development have been characterized in great detail but a simple consistent positive or negative impact on a basic cellular parameter was not identified. In this study, we combined digital 3D single-cell shape analysis and single-cell mRNA sequencing to characterize root meristems and mature root segments of brassinosteroid-blind mutants and wild type. The resultant datasets demonstrate that brassinosteroid signaling affects neither cell volume nor cell proliferation capacity. Instead, brassinosteroid signaling is essential for the precise orientation of cell division planes and the extent and timing of anisotropic cell expansion. Moreover, we found that the cell-aligning effects of brassinosteroid signaling can propagate to normalize the anatomy of both adjacent and distant brassinosteroid-blind cells through non-cell-autonomous functions, which are sufficient to restore growth vigor. Finally, single-cell transcriptome data discern directly brassinosteroid-responsive genes from genes that can react non-cell-autonomously and highlight arabinogalactans as sentinels of brassinosteroid-dependent anisotropic cell expansion.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Jos R Wendrich
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - Thomas Eekhout
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Ana Cecilia Aliaga Fandino
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Genopode Building, 1015 Lausanne, Switzerland
| | - George W Bassel
- School of Life Sciences, The University of Warwick, Coventry, CV4 7AL, UK
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9000 Ghent, Belgium
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland.
| |
Collapse
|
43
|
Voorburg CM, Bai Y, Kormelink R. Small RNA Profiling of Susceptible and Resistant Ty-1 Encoding Tomato Plants Upon Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:757165. [PMID: 34868151 PMCID: PMC8637622 DOI: 10.3389/fpls.2021.757165] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ty-1 presents an atypical dominant resistance gene that codes for an RNA-dependent RNA polymerase (RDR) of the gamma class and confers resistance to tomato yellow leaf curl virus (TYLCV) and other geminiviruses. Tomato lines bearing Ty-1 not only produce relatively higher amounts of viral small interfering (vsi)RNAs, but viral DNA also exhibits a higher amount of cytosine methylation. Whether Ty-1 specifically enhances posttranscriptional gene silencing (PTGS), leading to a degradation of RNA target molecules and primarily relying on 21-22 nucleotides (nts) siRNAs, and/or transcriptional gene silencing (TGS), leading to the methylation of cytosines within DNA target sequences and relying on 24-nts siRNAs, was unknown. In this study, small RNAs were isolated from systemically TYLCV-infected leaves of Ty-1 encoding tomato plants and susceptible tomato Moneymaker (MM) and sequence analyzed. While in susceptible tomato plants vsiRNAs of the 21-nt size class were predominant, their amount was drastically reduced in tomato containing Ty-1. The latter, instead, revealed elevated levels of vsiRNAs of the 22- and 24-nt size classes. In addition, the genomic distribution profiles of the vsiRNAs were changed in Ty-1 plants compared with those from susceptible MM. In MM three clear hotspots were seen, but these were less pronounced in Ty-1 plants, likely due to enhanced transitive silencing to neighboring viral genomic sequences. The largest increase in the amount of vsiRNAs was observed in the intergenic region and the V1 viral gene. The results suggest that Ty-1 enhances an antiviral TGS response. Whether the elevated levels of 22 nts vsiRNAs contribute to an enhanced PTGS response or an additional TGS response involving a noncanonical pathway of RNA dependent DNA methylation remains to be investigated.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
44
|
McCubbin TJ, Braun DM. Phloem anatomy and function as shaped by the cell wall. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153526. [PMID: 34555540 DOI: 10.1016/j.jplph.2021.153526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The partitioning of assimilated carbon is a complex process that involves the loading, long-distance transport, and subsequent unloading of carbohydrates from source to sink tissues. The network of plumbing that facilitates this coordinated process is the phloem tissue. Our understanding of the physiology of phloem transport has grown tremendously since the modern theory of mass flow was first put forward, aided by the concomitant progress of technology and experimental methodologies. Recent findings have put a renewed emphasis on the underlying anatomy of the phloem, and in particular the important role that cell walls play in enabling the high-pressure flow of photoassimilates through the sieve element. This review will briefly summarize the foundational work in phloem anatomy and highlight recent work exploring the physiology of phloem cell wall structure and mechanics.
Collapse
Affiliation(s)
- Tyler J McCubbin
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri,Columbia, MO, 65211, USA
| | - David M Braun
- Division of Plant Science and Technology, Interdisciplinary Plant Group, The Missouri Maize Center, University of Missouri,Columbia, MO, 65211, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
45
|
Sanden NC, Schulz A. Stationary sieve element proteins. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153511. [PMID: 34537466 DOI: 10.1016/j.jplph.2021.153511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/13/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Vascular plants use the phloem to move sugars and other molecules from source leaves to sink organs such as roots and fruits. Within the phloem, enucleate sieve elements provide the low-resistance pipe system that enable bulk flow of sap. In this review, we provide an overview of the highly specific protein machinery that localize to mature sieve elements without entering the phloem translocation stream. Generally, the proteins either maintain the flow, protect the sieve element against pathogens or transmit system wide signals. A notable exception is found in poppy, where part of the opium biosynthesis is compartmentalized in sieve elements. Biosynthesis of sieve element proteins happens either continuously in companion cell or transiently in immature sieve elements before nuclear disintegration. The latter population is translated during differentiation and stays functional without turnover during the entire lifespan of sieve elements. We discuss how protein longevity imposes some interesting restrictions on plants, especially in arborescent monocots with long living sieve elements.
Collapse
Affiliation(s)
- Niels Christian Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark; Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
46
|
Furuya T, Saito M, Uchimura H, Satake A, Nosaki S, Miyakawa T, Shimadzu S, Yamori W, Tanokura M, Fukuda H, Kondo Y. Gene co-expression network analysis identifies BEH3 as a stabilizer of secondary vascular development in Arabidopsis. THE PLANT CELL 2021; 33:2618-2636. [PMID: 34059919 PMCID: PMC8408481 DOI: 10.1093/plcell/koab151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/25/2021] [Indexed: 05/02/2023]
Abstract
In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Masato Saito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Haruka Uchimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shohei Nosaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shunji Shimadzu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Wataru Yamori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | | |
Collapse
|
47
|
Brioudes F, Jay F, Sarazin A, Grentzinger T, Devers EA, Voinnet O. HASTY, the Arabidopsis EXPORTIN5 ortholog, regulates cell-to-cell and vascular microRNA movement. EMBO J 2021; 40:e107455. [PMID: 34152631 PMCID: PMC8327949 DOI: 10.15252/embj.2020107455] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 01/04/2023] Open
Abstract
Plant microRNAs (miRNAs) guide cytosolic post-transcriptional gene silencing of sequence-complementary transcripts within the producing cells, as well as in distant cells and tissues. Here, we used an artificial miRNA-based system (amiRSUL) in Arabidopsis thaliana to explore the still elusive mechanisms of inter-cellular miRNA movement via forward genetics. This screen identified many mutant alleles of HASTY (HST), the ortholog of mammalian EXPORTIN5 (XPO5) with a recently reported role in miRNA biogenesis in Arabidopsis. In both epidermis-peeling and grafting assays, amiRSUL levels were reduced much more substantially in miRNA-recipient tissues than in silencing-emitting tissues. We ascribe this effect to HST controlling cell-to-cell and phloem-mediated movement of the processed amiRSUL, in addition to regulating its biogenesis. While HST is not required for the movement of free GFP or siRNAs, its cell-autonomous expression in amiRSUL-emitting tissues suffices to restore amiRSUL movement independently of its nucleo-cytosolic shuttling activity. By contrast, HST is dispensable for the movement and activity of amiRSUL within recipient tissues. Finally, HST enables movement of endogenous miRNAs that display mostly unaltered steady-state levels in hst mutant tissues. We discuss a role for HST as a hitherto unrecognized regulator of miRNA movement in relation to its recently assigned nuclear function at the nexus of MIRNA transcription and miRNA processing.
Collapse
Affiliation(s)
| | - Florence Jay
- Department of BiologyETH ZürichZürichSwitzerland
| | | | | | | | | |
Collapse
|
48
|
Serrano-Ron L, Perez-Garcia P, Sanchez-Corrionero A, Gude I, Cabrera J, Ip PL, Birnbaum KD, Moreno-Risueno MA. Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation. MOLECULAR PLANT 2021; 14:1362-1378. [PMID: 34062316 PMCID: PMC8338891 DOI: 10.1016/j.molp.2021.05.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/01/2021] [Accepted: 05/26/2021] [Indexed: 05/13/2023]
Abstract
Postembryonic organogenesis is critical for plant development. Underground, lateral roots (LRs) form the bulk of mature root systems, yet the ontogeny of the LR primordium (LRP) is not clear. In this study, we performed the single-cell RNA sequencing through the first four stages of LR formation in Arabidopsis. Our analysis led to a model in which a single group of precursor cells, with a cell identity different from their pericycle origins, rapidly reprograms and splits into a mixed ground tissue/stem cell niche fate and a vascular precursor fate. The ground tissue and stem cell niche fates soon separate and a subset of more specialized vascular cells form sucrose transporting phloem cells that appear to connect to the primary root. We did not detect cells resembling epidermis or root cap, suggesting that outer tissues may form later, preceding LR emergence. At this stage, some remaining initial precursor cells form the primordium flanks, while the rest create a reservoir of pluripotent cells that are able to replace the LR if damaged. Laser ablation of the central and lateral LRP regions showed that remaining cells restart the sequence of tissue initiation to form a LR. Collectively, our study reveals an ontological hierarchy for LR formation with an early and sequential split of main root tissues and stem cells.
Collapse
Affiliation(s)
- Laura Serrano-Ron
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - Pablo Perez-Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain.
| | - Alvaro Sanchez-Corrionero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Inmaculada Gude
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pui-Leng Ip
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Miguel A Moreno-Risueno
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain.
| |
Collapse
|
49
|
Graeff M, Hardtke CS. Metaphloem development in the Arabidopsis root tip. Development 2021; 148:270791. [PMID: 34224570 DOI: 10.1242/dev.199766] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022]
Abstract
The phloem transport network is a major evolutionary innovation that enabled plants to dominate terrestrial ecosystems. In the growth apices, the meristems, apical stem cells continuously produce early 'protophloem'. This is easily observed in Arabidopsis root meristems, in which the differentiation of individual protophloem sieve element precursors into interconnected conducting sieve tubes is laid out in a spatio-temporal gradient. The mature protophloem eventually collapses as the neighboring metaphloem takes over its function further distal from the stem cell niche. Compared with protophloem, metaphloem ontogenesis is poorly characterized, primarily because its visualization is challenging. Here, we describe the improved TetSee protocol to investigate metaphloem development in Arabidopsis root tips in combination with a set of molecular markers. We found that mature metaphloem sieve elements are only observed in the late post-meristematic root, although their specification is initiated as soon as protophloem sieve elements enucleate. Moreover, unlike protophloem sieve elements, metaphloem sieve elements only differentiate once they have fully elongated. Finally, our results suggest that metaphloem differentiation is not directly controlled by protophloem-derived cues but rather follows a distinct, robust developmental trajectory.
Collapse
Affiliation(s)
- Moritz Graeff
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015 Lausanne, Switzerland
| |
Collapse
|
50
|
Koh SWH, Marhava P, Rana S, Graf A, Moret B, Bassukas AEL, Zourelidou M, Kolb M, Hammes UZ, Schwechheimer C, Hardtke CS. Mapping and engineering of auxin-induced plasma membrane dissociation in BRX family proteins. THE PLANT CELL 2021; 33:1945-1960. [PMID: 33751121 PMCID: PMC8290284 DOI: 10.1093/plcell/koab076] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/03/2021] [Indexed: 05/04/2023]
Abstract
Angiosperms have evolved the phloem for the long-distance transport of metabolites. The complex process of phloem development involves genes that only occur in vascular plant lineages. For example, in Arabidopsis thaliana, the BREVIS RADIX (BRX) gene is required for continuous root protophloem differentiation, together with PROTEIN KINASE ASSOCIATED WITH BRX (PAX). BRX and its BRX-LIKE (BRXL) homologs are composed of four highly conserved domains including the signature tandem BRX domains that are separated by variable spacers. Nevertheless, BRX family proteins have functionally diverged. For instance, BRXL2 can only partially replace BRX in the root protophloem. This divergence is reflected in physiologically relevant differences in protein behavior, such as auxin-induced plasma membrane dissociation of BRX, which is not observed for BRXL2. Here we dissected the differential functions of BRX family proteins using a set of amino acid substitutions and domain swaps. Our data suggest that the plasma membrane-associated tandem BRX domains are both necessary and sufficient to convey the biological outputs of BRX function and therefore constitute an important regulatory entity. Moreover, PAX target phosphosites in the linker between the two BRX domains mediate the auxin-induced plasma membrane dissociation. Engineering these sites into BRXL2 renders this modified protein auxin-responsive and thereby increases its biological activity in the root protophloem context.
Collapse
Affiliation(s)
- Samuel W H Koh
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Petra Marhava
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Surbhi Rana
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | - Alina Graf
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Bernard Moret
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
| | | | - Melina Zourelidou
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Martina Kolb
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technical University of Munich, Freising 85354, Germany
| | - Christian S Hardtke
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, Lausanne 1015, Switzerland
- Author for correspondence:
| |
Collapse
|