1
|
George Pryzdial EL, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost 2024:S1538-7836(24)00500-2. [PMID: 39260743 DOI: 10.1016/j.jtha.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Many virus types affect the blood clotting system with correlations to pathology that range widely from thrombosis to hemorrhage linking to inflammation. Here we overview the intricate crosstalk induced by infection between proteins on the virus encoded by either the host or virus genomes, coagulation proteins, platelets, leukocytes, and endothelial cells. For blood-borne viruses with an outer covering acquired from the host cell, the envelope, a key player may be the cell-derived trigger of coagulation on the virus surface, tissue factor (TF). TF is a multifunctional transmembrane cofactor that accelerates factor (F)VIIa-dependent activation of FX to FXa, leading to clot formation. However, the nascent TF/FVIIa/FXa complex also facilitates G protein-coupled modulation of cells via protease-activated receptor 2. As a viral envelope constituent, TF can bypass the physiological modes of regulation, thereby initiating the activation of neighboring platelets, leukocytes, and endothelial cells. A thromboinflammatory environment is predicted due to feedback amplification in response to cellular release of cytokines, procoagulant proteins, neutrophil extracellular traps, and stimulus-induced accessibility of adhesive receptors, resulting in cellular aggregates. The pathobiological effects of thromboinflammation ultimately contribute to innate and adaptive immunity for viral clearance. In contrast, the preceding stages of viral infection may be enhanced via the TF-protease axis.
Collapse
Affiliation(s)
- Edward Louis George Pryzdial
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - John Ruggles Perrier
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mahamud-Ur Rashid
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Henry Euan West
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Ross Sutherland
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
He Z, Kwee EJ, Cleveland MH, Cole KD, Lin-Gibson S, He HJ. Quantitation and integrity evaluation of RNA genome in lentiviral vectors by direct reverse transcription-droplet digital PCR (direct RT-ddPCR). Sci Rep 2023; 13:14470. [PMID: 37660227 PMCID: PMC10475045 DOI: 10.1038/s41598-023-41644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023] Open
Abstract
Lentiviral vectors (LV) have proven to be powerful tools for stable gene delivery in both dividing and non-dividing cells. Approval of these LVs for use in clinical applications has been achieved by improvements in LV design. Critically important characteristics concerning quality control are LV titer quantification and the detection of impurities. However, increasing evidence concerning high variability in titration assays indicates poor harmonization of the methods undertaken to date. In this study, we developed a direct reverse transcription droplet digital PCR (Direct RT-ddPCR) approach without RNA extraction and purification for estimation of LV titer and RNA genome integrity. The RNA genome integrity was assessed by RT-ddPCR assays targeted to four distant regions of the LV genome. Results of the analyses showed that direct RT-ddPCR without RNA extraction and purification performs similarly to RT-ddPCR on purified RNA from 3 different LV samples, in terms of robustness and assay variance. Interestingly, these RNA titer results were comparable to physical titers by p24 antigen ELISA (enzyme-linked immunosorbent assay). Moreover, we confirmed the partial degradation or the incomplete RNA genomes in the prepared 3 LV samples. These results may partially explain the discrepancy of the LV particle titers to functional titers. This work not only demonstrates the feasibility of direct RT-ddPCR in determining LV titers, but also provides a method that can be easily adapted for RNA integrity assessment.
Collapse
Affiliation(s)
- Zhiyong He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA.
| | - Edward J Kwee
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Megan H Cleveland
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Kenneth D Cole
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Sheng Lin-Gibson
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA
| | - Hua-Jun He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, MS 8312, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
3
|
Suchard MS, Martinson N, Malfeld S, de Assis Rosa D, Mackelprang RD, Lingappa J, Hou X, Rees H, Delany-Moretlwe S, Goldfein H, Ranchod H, Coetzee D, Otwombe K, Morris L, Tiemessen CT, Savulescu DM. Alloimmunity to Class 2 Human Leucocyte Antigens May Reduce HIV-1 Acquisition - A Nested Case-Control Study in HIV-1 Serodiscordant Couples. Front Immunol 2022; 13:813412. [PMID: 35401581 PMCID: PMC8987441 DOI: 10.3389/fimmu.2022.813412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Enveloped viruses, including the Human Immunodeficiency Virus-1 (HIV), incorporate host proteins such as human leucocyte antigens (HLA) into their envelope. Pre-existing antibodies against HLA, termed HLA antibodies, may bind to these surface proteins and reduce viral infectivity. Related evidence includes macaque studies which suggest that xenoimmunization with HLA antigens may protect against simian immunodeficiency virus infection. Since HIV gp120 shows homology with class 2 HLA, including shared affinity for binding to CD4, class 2 HLA antibodies may influence HIV acquisition via binding to gp120 on the viral envelope. We conducted a nested case-control study on HIV serodiscordant couples, comparing the frequency of HLA antibodies among highly exposed persistently seronegative controls with those who went on to acquire HIV (HIV-seroconverters). We first performed low resolution HLA typing on 143 individuals who were HIV-infected at enrollment (index partners) and their corresponding sexual partners (115 highly exposed persistently seronegative individuals and 28 HIV-seroconverters). We then measured HLA class 1 and 2 antibodies in the highly exposed persistently seronegative individuals and HIV-seroconverters at early and late timepoints. We analyzed whether such antibodies were directed at HLA specificities of their HIV-infected index partners, and whether autoantibodies or complement-fixing class 2 HLA antibodies were present. Seventy-nine percent of highly exposed persistently seronegative individuals had HLA antibodies; 56% against class 1 and 50% against class 2 alleles. Half of the group of highly exposed persistently seronegative individuals, prior to seroconversion, expressed class 2 HLA antibodies, compared with only 29% of controls (p=0.05). HIV infection was a sensitizing event leading to de novo development of antibodies against HLA-A and HLA-B loci, but not against class 2 loci. HLA autoantibodies were present in 27% of highly exposed persistently seronegative individuals. Complement-fixing class 2 HLA antibodies did not differ significantly between highly exposed persistently seronegative individuals and seroconverters. In multivariable regression, presence of class 2 HLA antibodies at early timepoints was associated with reduced odds of HIV acquisition (odds ratio 0.330, confidence interval 0.112-0.976, p=0.045). These epidemiological data suggest that pre-existing class 2 HLA antibodies were associated with reduced odds of HIV acquisition.
Collapse
Affiliation(s)
- Melinda S. Suchard
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal Health Research Unit (PHRU), University of The Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University Centre for TB Research, Baltimore, MD, United States
| | - Susan Malfeld
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Debbie de Assis Rosa
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Romel D. Mackelprang
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Jairam Lingappa
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Medicine and Department of Paediatrics, University of Washington, Seattle, WA, United States
| | - Xuanlin Hou
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Helen Rees
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Sinead Delany-Moretlwe
- Wits Reproductive Health and HIV Institute, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Hadassa Goldfein
- School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Heena Ranchod
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - David Coetzee
- Division of Public Health Medicine, School of Public Health and Family Medicine, University of Cape Town, Johannesburg, South Africa
| | - Kennedy Otwombe
- Perinatal Health Research Unit (PHRU), University of The Witwatersrand, Johannesburg, South Africa
- Epidemiology and Biostatistics Department, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Virology Department, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Caroline T. Tiemessen
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
- Virology Department, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dana M. Savulescu
- National Institute for Communicable Diseases, A Division of the National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
4
|
Bryer AJ, Reddy T, Lyman E, Perilla JR. Full scale structural, mechanical and dynamical properties of HIV-1 liposomes. PLoS Comput Biol 2022; 18:e1009781. [PMID: 35041642 PMCID: PMC8797243 DOI: 10.1371/journal.pcbi.1009781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/28/2022] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Enveloped viruses are enclosed by a lipid membrane inside of which are all of the components necessary for the virus life cycle; viral proteins, the viral genome and metabolites. Viral envelopes are lipid bilayers that adopt morphologies ranging from spheres to tubes. The envelope is derived from the host cell during viral replication. Thus, the composition of the bilayer depends on the complex constitution of lipids from the host-cell's organelle(s) where assembly and/or budding of the viral particle occurs. Here, molecular dynamics (MD) simulations of authentic, asymmetric HIV-1 liposomes are used to derive a unique level of resolution of its full-scale structure, mechanics and dynamics. Analysis of the structural properties reveal the distribution of thicknesses of the bilayers over the entire liposome as well as its global fluctuations. Moreover, full-scale mechanical analyses are employed to derive the global bending rigidity of HIV-1 liposomes. Finally, dynamical properties of the lipid molecules reveal important relationships between their 3D diffusion, the location of lipid-rafts and the asymmetrical composition of the envelope. Overall, our simulations reveal complex relationships between the rich lipid composition of the HIV-1 liposome and its structural, mechanical and dynamical properties with critical consequences to different stages of HIV-1's life cycle.
Collapse
Affiliation(s)
- Alexander J. Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Tyler Reddy
- CCS-7 Applied Computer Science, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Edward Lyman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, United States of America
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
5
|
Lustig G, Cele S, Karim F, Derache A, Ngoepe A, Khan K, Gosnell BI, Moosa MYS, Ntshuba N, Marais S, Jeena PM, Govender K, Adamson J, Kløverpris H, Gupta RK, Harrichandparsad R, Patel VB, Sigal A. T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy. PLoS Pathog 2021; 17:e1009871. [PMID: 34555123 PMCID: PMC8509856 DOI: 10.1371/journal.ppat.1009871] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/12/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.
Collapse
Affiliation(s)
- Gila Lustig
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Sandile Cele
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Farina Karim
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | | | - Khadija Khan
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bernadett I. Gosnell
- Department of Infectious Diseases, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Suzaan Marais
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Prakash M. Jeena
- Discipline of Pediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa
| | | | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | - Henrik Kløverpris
- Africa Health Research Institute, Durban, South Africa
- Division of Infection and Immunity, University College London, London, United Kingdom
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ravindra K. Gupta
- Africa Health Research Institute, Durban, South Africa
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Vinod B. Patel
- Department of Neurology, University of KwaZulu-Natal, Durban, South Africa
| | - Alex Sigal
- Africa Health Research Institute, Durban, South Africa
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail:
| |
Collapse
|
6
|
Bubeck F, Grimm D. 'Hit and run' therapy averts macular degeneration. Nat Biomed Eng 2021; 5:132-133. [PMID: 33580229 DOI: 10.1038/s41551-021-00690-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Felix Bubeck
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany
- BioQuant, University of Heidelberg, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Medical Faculty, University of Heidelberg, Heidelberg, Germany.
- BioQuant, University of Heidelberg, Heidelberg, Germany.
- German Center for Infection Research (DZIF) and German Center for Cardiovascular Research (DZHK), Heidelberg, Germany.
| |
Collapse
|
7
|
Burnie J, Tang VA, Welsh JA, Persaud AT, Thaya L, Jones JC, Guzzo C. Flow Virometry Quantification of Host Proteins on the Surface of HIV-1 Pseudovirus Particles. Viruses 2020; 12:v12111296. [PMID: 33198254 PMCID: PMC7697180 DOI: 10.3390/v12111296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4β7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4β7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Vera A. Tang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Flow Cytometry and Virometry Core Facility, Ottawa, ON K1H 8M5, Canada;
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-(416)-287-7436
| |
Collapse
|
8
|
Dunn N, Kharlamova N, Fogdell-Hahn A. The role of herpesvirus 6A and 6B in multiple sclerosis and epilepsy. Scand J Immunol 2020; 92:e12984. [PMID: 33037649 PMCID: PMC7757173 DOI: 10.1111/sji.12984] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
Human herpesvirus 6A (HHV‐6A) and 6B (HHV‐6B) are two closely related viruses that can infect cells of the central nervous system (CNS). The similarities between these viruses have made it difficult to separate them on serological level. The broad term HHV‐6 remains when referring to studies where the two species were not distinguished, and as such, the seroprevalence is over 90% in the adult population. HHV‐6B has been detected in up to 100% of infants with the primary infection roseola infantum, but less is known about the primary infection of HHV‐6A. Both viruses are neurotropic and have capacity to establish lifelong latency in cells of the central nervous system, with potential to reactivate and cause complications later in life. HHV‐6A infection has been associated with an increased risk of multiple sclerosis (MS), whereas HHV‐6B is indicated to be involved in pathogenesis of epilepsy. These two associations show how neurological diseases might be caused by viral infections, but as suggested here, through completely different molecular mechanisms, in an autoimmune disease, such as MS, by triggering an overreaction of the immune system and in epilepsy by hampering internal cellular functions when the immune system fails to eliminate the virus. Understanding the viral mechanisms of primary infection and reactivation and their spectrum of associated symptoms will aid our ability to diagnose, treat and prevent these severe and chronic diseases. This review explores the role of HHV‐6A and HHV‐6B specifically in MS and epilepsy, the evidence to date and the future directions of this field.
Collapse
Affiliation(s)
- Nicky Dunn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Nastya Kharlamova
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| | - Anna Fogdell-Hahn
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Stockholm, Sweden
| |
Collapse
|
9
|
Kirui J, Freed EO. Generation and validation of a highly sensitive bioluminescent HIV-1 reporter vector that simplifies measurement of virus release. Retrovirology 2020; 17:12. [PMID: 32430080 PMCID: PMC7235552 DOI: 10.1186/s12977-020-00521-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/12/2020] [Indexed: 02/23/2023] Open
Abstract
Background The continued persistence of HIV-1 as a public health concern due to the lack of a cure calls for the development of new tools for studying replication of the virus. Here, we used NanoLuc, a small and extremely bright luciferase protein, to develop an HIV-1 bioluminescent reporter virus that simplifies functional measurement of virus particle production. Results The reporter virus encodes a Gag protein containing NanoLuc inserted between the matrix (MA) and capsid (CA) domains of Gag, thereby generating virus particles that package high levels of the NanoLuc reporter. We observe that inserting the NanoLuc protein within HIV-1 Gag has minimal impact on Gag expression and virus particle release. We show that the reporter virus recapitulates inhibition of HIV-1 particle release by Gag mutations, the restriction factor tetherin, and the small-molecule inhibitor amphotericin-B methyl ester. Conclusion These results demonstrate that this vector will provide a simple and rapid tool for functional studies of virus particle assembly and release and high-throughput screening for cellular factors and small molecules that promote or inhibit HIV-1 particle production.
Collapse
Affiliation(s)
- James Kirui
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
10
|
Martín-Moreno A, Muñoz-Fernández MA. Dendritic Cells, the Double Agent in the War Against HIV-1. Front Immunol 2019; 10:2485. [PMID: 31708924 PMCID: PMC6820366 DOI: 10.3389/fimmu.2019.02485] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/04/2019] [Indexed: 12/19/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) infects cells from the immune system and has thus developed tools to circumvent the host immunity and use it in its advance. Dendritic cells (DCs) are the first immune cells to encounter the HIV, and being the main antigen (Ag) presenting cells, they link the innate and the adaptive immune responses. While DCs work to promote an efficient immune response and halt the infection, HIV-1 has ways to take advantage of their role and uses DCs to gain faster and more efficient access to CD4+ T cells. Due to their ability to activate a specific immune response, DCs are promising candidates to achieve the functional cure of HIV-1 infection, but knowing the molecular partakers that determine the relationship between virus and cell is the key for the rational and successful design of a DC-based therapy. In this review, we summarize the current state of knowledge on how both DC subsets (myeloid and plasmacytoid DCs) act in presence of HIV-1, and focus on different pathways that the virus can take after binding to DC. First, we explore the consequences of HIV-1 recognition by each receptor on DCs, including CD4 and DC-SIGN. Second, we look at cellular mechanisms that prevent productive infection and weapons that turn cellular defense into a Trojan horse that hides the virus all the way to T cell. Finally, we discuss the possible outcomes of DC-T cell contact.
Collapse
Affiliation(s)
- Alba Martín-Moreno
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Mª Angeles Muñoz-Fernández
- Sección de Inmunología, Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain.,Instituto Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Spanish HIV-HGM BioBank, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER BBN), Madrid, Spain
| |
Collapse
|
11
|
Plissonnier ML, Cottarel J, Piver E, Kullolli M, Centonze FG, Pitteri S, Farhan H, Meunier JC, Zoulim F, Parent R. LARP1 binding to hepatitis C virus particles is correlated with intracellular retention of viral infectivity. Virus Res 2019; 271:197679. [PMID: 31398365 DOI: 10.1016/j.virusres.2019.197679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/27/2019] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often composed of interesting virus-interacting factors. A proteomic analysis performed on double gradient-purified clinical HCV highlighted the translation regulator LARP1 on these virions. This finding was validated using post-virion capture and immunoelectron microscopy, as well as immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a, JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5 cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization with core proteins. RNAi-mediated depletion of LARP1 using the C911 control approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and Gt3a (S52 chimeric strain), yet increased their intracellular infectivity. This latter effect was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a functional RUSH assay. These results indicate that LARP1 binds to HCV, an event associated with retention of intracellular infectivity.
Collapse
Affiliation(s)
- Marie-Laure Plissonnier
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France
| | - Jessica Cottarel
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France
| | - Eric Piver
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, INSERM U966, Université de Tours, F-37000, Tours, France
| | - Majlinda Kullolli
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | | | - Sharon Pitteri
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94304, USA
| | - Hesso Farhan
- Institute of Basic Medical Science, University of Oslo, N-0372, Olso, Norway
| | - Jean-Christophe Meunier
- Morphogenesis and Antigenicity of HIV and Hepatitis Viruses, INSERM U966, Université de Tours, F-37000, Tours, France
| | - Fabien Zoulim
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France; Lyon University Hospital (Hospices civils de Lyon), Hepatogastroenterology Service, F-69001, Lyon, France
| | - Romain Parent
- Pathogenesis of Hepatitis B and C -DEVweCAN LabEx, INSERM U1052-CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, F-69008, Lyon, France.
| |
Collapse
|
12
|
Burnie J, Guzzo C. The Incorporation of Host Proteins into the External HIV-1 Envelope. Viruses 2019; 11:v11010085. [PMID: 30669528 PMCID: PMC6356245 DOI: 10.3390/v11010085] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The incorporation of biologically active host proteins into HIV-1 is a well-established phenomenon, particularly due to the budding mechanism of viral egress in which viruses acquire their external lipid membrane directly from the host cell. While this mechanism might seemingly imply that host protein incorporation is a passive uptake of all cellular antigens associated with the plasma membrane at the site of budding, this is not the case. Herein, we review the evidence indicating that host protein incorporation can be a selective and conserved process. We discuss how HIV-1 virions displaying host proteins on their surface can exhibit a myriad of altered phenotypes, with notable impacts on infectivity, homing, neutralization, and pathogenesis. This review describes the canonical and emerging methods to detect host protein incorporation, highlights the well-established host proteins that have been identified on HIV-1 virions, and reflects on the role of these incorporated proteins in viral pathogenesis and therapeutic targeting. Despite many advances in HIV treatment and prevention, there remains a global effort to develop increasingly effective anti-HIV therapies. Given the broad range of biologically active host proteins acquired on the surface of HIV-1, additional studies on the mechanisms and impacts of these incorporated host proteins may inform the development of novel treatments and vaccine designs.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Christina Guzzo
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada.
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada.
| |
Collapse
|
13
|
Schimert KI, Cheng W. A method for tethering single viral particles for virus-cell interaction studies with optical tweezers. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10723:107233B. [PMID: 30872888 PMCID: PMC6411052 DOI: 10.1117/12.2500050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Direct optical trapping of single viral particles allows characterization of individual particles in suspension with single-molecule sensitivity. Alternative to direct optical trapping of particles, individual particles may be tethered specifically in suspension for manipulation by optical tweezers indirectly, which could be useful for studies of virus-cell interactions. One specific example is the interactions between cell surface receptors and the envelope glycoproteins (Env) on the surface of human immunodeficiency virus type 1 (HIV-1). Env binds to cellular receptors and undergoes a series of conformational changes, culminating in fusion of the viral and cellular membranes that mediates viral entry into cells. In addition to being required for cellular infection, Env is also the sole target for neutralizing antibodies. Thus, significant research has focused on elucidating the structure of Env and the mechanism of HIV-1 entry. However, current methods are unable to resolve the dynamics and stoichiometry of Env binding to cellular receptors during the entry process. Fluorescence and electron microscopy have visualized Env clusters in the viral membrane, but the extent to which these clusters actually bind to cellular receptors, and the mechanism of cluster formation, remain unclear. We describe the development of an optical tweezers technique that can potentially address these questions by delivering a single HIV-1 virion to a live cell with minimal perturbation to the system. Our method can be used to quantitatively probe the physical interactions between Env and cellular receptors in their native environment, which may reveal critical parameters in HIV-1 entry. Furthermore, our method can be used to investigate other protein-protein interactions in the context of live cells, such as the recognition of particulate antigens by B cells, thus offering insight into fundamental features of protein-mediated receptor activation.
Collapse
Affiliation(s)
- Kristin I Schimert
- Biophysics Program, University of Michigan, 930 North University Avenue, Room 4028, Ann Arbor, MI 48109, USA
| | - Wei Cheng
- Biophysics Program, University of Michigan, 930 North University Avenue, Room 4028, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan Medical School; University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
- Department of Biological Chemistry, University of Michigan Medical School; University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Abstract
Human immunodeficiency virus (HIV) carries abundant human cell proteins, particularly human leukocyte antigen (HLA) molecules when the virus leaves host cells. Immunization in macaques with HLAs protects the animals from simian immunodeficiency virus infection. This finding offers an alternative approach to the development of HLA molecule-based HIV vaccines. Decades of studies have enhanced a great deal of our understanding of the mechanisms of allo-immune response-mediated anti-HIV immunity. These include cell-mediated immunity, innate immunity, and antibody response. These studies provided a rationale for the future design of effective HIV vaccines.
Collapse
Affiliation(s)
- Yufei Wang
- Mucosal Immunology Unit, Dental Institute, Kings College London, Guy's Campus, London Bridge, London, SE1 9RT, UK
| |
Collapse
|
15
|
Hildreth JEK. HIV As Trojan Exosome: Immunological Paradox Explained? Front Immunol 2017; 8:1715. [PMID: 29250079 PMCID: PMC5716971 DOI: 10.3389/fimmu.2017.01715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/21/2017] [Indexed: 11/22/2022] Open
Abstract
The HIV pandemic is still a major global challenge, despite the widespread availability of antiretroviral drugs. An effective vaccine would be the ideal approach to bringing the pandemic to an end. However, developing an effective HIV vaccine has proven to be an elusive goal. Three major human HIV vaccine trials revealed a strong trend toward greater risk of infection among vaccine recipients versus controls. A similar observation was made in a macaque SIV vaccine study. The mechanism explaining this phenomenon is not known. Here, a model is presented that may explain the troubling results of vaccine studies and an immunological paradox of HIV pathogenesis: preferential infection of HIV-specific T cells. The central hypothesis of this perspective is that as “Trojan exosomes” HIV particles can directly activate HIV-specific T cells enhancing their susceptibility to infection. Understanding the biology of HIV as an exosome may provide insights that enable novel approaches to vaccine development.
Collapse
Affiliation(s)
- James E K Hildreth
- Department of Internal Medicine, School of Medicine, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
16
|
Guzzo C, Ichikawa D, Park C, Phillips D, Liu Q, Zhang P, Kwon A, Miao H, Lu J, Rehm C, Arthos J, Cicala C, Cohen MS, Fauci AS, Kehrl JH, Lusso P. Virion incorporation of integrin α4β7 facilitates HIV-1 infection and intestinal homing. Sci Immunol 2017; 2:2/11/eaam7341. [PMID: 28763793 DOI: 10.1126/sciimmunol.aam7341] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/17/2017] [Indexed: 12/11/2022]
Abstract
The intestinal mucosa is a key anatomical site for HIV-1 replication and CD4+ T cell depletion. Accordingly, in vivo treatment with an antibody to the gut-homing integrin α4β7 was shown to reduce viral transmission, delay disease progression, and induce persistent virus control in macaques challenged with simian immunodeficiency virus (SIV). We show that integrin α4β7 is efficiently incorporated into the envelope of HIV-1 virions. Incorporated α4β7 is functionally active as it binds mucosal addressin cell adhesion molecule-1 (MAdCAM-1), promoting HIV-1 capture by and infection of MAdCAM-expressing cells, which in turn mediate trans-infection of bystander cells. Functional α4β7 is present in circulating virions from HIV-infected patients and SIV-infected macaques, with peak levels during the early stages of infection. In vivo homing experiments documented selective and specific uptake of α4β7+ HIV-1 virions by high endothelial venules in the intestinal mucosa. These results extend the paradigm of tissue homing to a retrovirus and are relevant for the pathogenesis, treatment, and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Christina Guzzo
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - David Ichikawa
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Chung Park
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Damilola Phillips
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Qingbo Liu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Peng Zhang
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Alice Kwon
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Huiyi Miao
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Jacky Lu
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Catherine Rehm
- Clinical Research Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - James Arthos
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Claudia Cicala
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Myron S Cohen
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anthony S Fauci
- Immunopathogenesis Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, LIR, NIAID, NIH, Bethesda, MD 20892, USA
| | - Paolo Lusso
- Viral Pathogenesis Section, Laboratory of Immunoregulation (LIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Kolegraff K, Bostik P, Ansari AA. Characterization and Role of Lentivirus-Associated Host Proteins. Exp Biol Med (Maywood) 2016; 231:252-63. [PMID: 16514170 DOI: 10.1177/153537020623100303] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Enveloped viruses obtain their envelopes during the process of budding from infected cells. During this process, however, these viruses acquire parts of the host cell membranes and host cell-derived proteins as integral parts of their mature envelopes. These host-derived components of viral envelopes may subsequently exhibit various effects on the life cycle of the virus; virus cell interactions, especially host response to virus-incorporated self-proteins; and the pathogenesis of the disease induced by these viruses. Although it was known for some time that various viruses incorporate host cell-derived proteins, the issue of the role of these proteins has received increased attention, specifically in connection with human immunodeficiency virus (HIV) infection and development of acquired immunodeficiency syndrome (AIDS) in humans. The aim of this review is to summarize our current knowledge of the analysis and role of host-derived proteins associated with enveloped viruses, with emphasis on the potential role of these proteins in the pathogenesis of AIDS. Clearly, differences in the clinical outcome of those nonhuman primates infected with simian immunodeficiency virus (SIV) that are disease resistant compared with SIV-infected species that are disease susceptible provide a unique opportunity to determine whether differences in the incorporation of distinct sets of host proteins play a role with distinct clinical outcomes.
Collapse
Affiliation(s)
- Keli Kolegraff
- Department of Pathology and Laboratory Medicine, Emory University, WMB Room 2309, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
19
|
Viral nanoparticles, noble metal decorated viruses and their nanoconjugates. Adv Colloid Interface Sci 2015; 222:119-34. [PMID: 24836299 DOI: 10.1016/j.cis.2014.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/28/2013] [Accepted: 04/11/2014] [Indexed: 01/09/2023]
Abstract
Virus-based nanotechnology has generated interest in a number of applications due to the specificity of virus interaction with inorganic and organic nanoparticles. A well-defined structure of virus due to its multifunctional proteinaceous shell (capsid) surrounding genomic material is a promising approach to obtain nanostructured materials. Viruses hold great promise in assembling and interconnecting novel nanosized components, allowing to develop organized nanoparticle assemblies. Due to their size, monodispersity, and variety of chemical groups available for modification, they make a good scaffold for molecular assembly into nanoscale devices. Virus based nanocomposites are useful as an engineering material for the construction of smart nanoobjects because of their ability to associate into desired structures including a number of morphologies. Viruses exhibit the characteristics of an ideal template for the formation of nanoconjugates with noble metal nanoparticles. These bioinspired systems form monodispersed units that are highly amenable through genetic and chemical modifications. As nanoscale assemblies, viruses have sophisticated yet highly ordered structural features, which, in many cases, have been carefully characterized by modern structural biological methods. Plant viruses are increasingly being used for nanobiotechnology purposes because of their relative structural and chemical stability, ease of production, multifunctionality and lack of toxicity and pathogenicity in animals or humans. The multifunctional viruses interact with nanoparticles and other functional additives to the generation of bioconjugates with different properties – possible antiviral and antibacterial activities.
Collapse
|
20
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
21
|
Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. ACTA ACUST UNITED AC 2014; 2014. [PMID: 27099867 DOI: 10.1155/2014/157895] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neutralizing antibodies (NAbs) can be both sufficient and necessary for protection against viral infections, although they sometimes act in concert with cellular immunity. Successful vaccines against viruses induce NAbs but vaccine candidates against some major viral pathogens, including HIV-1, have failed to induce potent and effective such responses. Theories of how antibodies neutralize virus infectivity have been formulated and experimentally tested since the 1930s; and controversies about the mechanistic and quantitative bases for neutralization have continually arisen. Soluble versions of native oligomeric viral proteins that mimic the functional targets of neutralizing antibodies now allow the measurement of the relevant affinities of NAbs. Thereby the neutralizing occupancies on virions can be estimated and related to the potency of the NAbs. Furthermore, the kinetics and stoichiometry of NAb binding can be compared with neutralizing efficacy. Recently, the fundamental discovery that the intracellular factor TRIM21 determines the degree of neutralization of adenovirus has provided new mechanistic and quantitative insights. Since TRIM21 resides in the cytoplasm, it would not affect the neutralization of enveloped viruses, but its range of activity against naked viruses will be important to uncover. These developments bring together the old problems of virus neutralization-mechanism, stoichiometry, kinetics, and efficacy-from surprising new angles.
Collapse
|
22
|
|
23
|
Alfadhli A, Barklis E. The roles of lipids and nucleic acids in HIV-1 assembly. Front Microbiol 2014; 5:253. [PMID: 24917853 PMCID: PMC4042026 DOI: 10.3389/fmicb.2014.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| |
Collapse
|
24
|
Aiba Y, Yamashita M, Katakura Y, Furukawa Y, Matsumoto SE, Tomimatsu K, Teruya K, Shirahata S. Identification of Genes Involved in the Suppression of Antibody Production from Human Peripheral Blood Lymphocytes. Biosci Biotechnol Biochem 2014; 70:966-70. [PMID: 16636465 DOI: 10.1271/bbb.70.966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pretreatment with L-leucyl-L-leucine methyl ester (LLME) is a prerequisite for peripheral blood mononuclear cells (PBMCs) to produce antigen-specific antibodies when sensitized with an antigen. Little information, however, is available regarding the mechanisms involved in LLME-induced augmentation of antibody production from PBMCs that are antigen sensitized. In the present study, we attempted to identify the genes involved in the suppression of antibody production from PBMCs that was not treated with LLME, but sensitized with an antigen. Using subtractive screening, we obtained 63 independent genes, including 17 EST genes, that are specific for LLME-nontreated PBMC. Among these genes, the expression of heavy chain ferritin (H-ferritin), CC chemokine ligand 18 (CCL18), and matrix metalloproteinase 12 (MMP12) were augmented in LLME-nontreated PBMCs, suggesting that inflammatory factors might be involved in the suppression of antibody production in LLME-nontreated PBMCs.
Collapse
Affiliation(s)
- Yoshihiro Aiba
- Graduate School of Systems Life Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Page M, Quartey-Papafio R, Robinson M, Hassall M, Cranage M, Stott J, Almond N. Complement-mediated virus infectivity neutralisation by HLA antibodies is associated with sterilising immunity to SIV challenge in the macaque model for HIV/AIDS. PLoS One 2014; 9:e88735. [PMID: 24551145 PMCID: PMC3925162 DOI: 10.1371/journal.pone.0088735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/10/2014] [Indexed: 01/26/2023] Open
Abstract
Sterilising immunity is a desired outcome for vaccination against human immunodeficiency virus (HIV) and has been observed in the macaque model using inactivated simian immunodeficiency virus (SIV). This protection was attributed to antibodies specific for cell proteins including human leucocyte antigens (HLA) class I and II incorporated into virions during vaccine and challenge virus preparation. We show here, using HLA bead arrays, that vaccinated macaques protected from virus challenge had higher serum antibody reactivity compared with non-protected animals. Moreover, reactivity was shown to be directed against HLA framework determinants. Previous studies failed to correlate serum antibody mediated virus neutralisation with protection and were confounded by cytotoxic effects. Using a virus entry assay based on TZM-bl cells we now report that, in the presence of complement, serum antibody titres that neutralise virus infectivity were higher in protected animals. We propose that complement-augmented virus neutralisation is a key factor in inducing sterilising immunity and may be difficult to achieve with HIV/SIV Env-based vaccines. Understanding how to overcome the apparent block of inactivated SIV vaccines to elicit anti-envelope protein antibodies that effectively engage the complement system could enable novel anti-HIV antibody vaccines that induce potent, virolytic serological response to be developed.
Collapse
Affiliation(s)
- Mark Page
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
- * E-mail:
| | - Ruby Quartey-Papafio
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Mark Robinson
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Mark Hassall
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Martin Cranage
- Centre for Infection & Immunity, Division of Clinical Sciences, St George’s, University of London, London, United Kingdom
| | - James Stott
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| | - Neil Almond
- Division of Virology, National Institute of Biological Standards and Control, South Mimms, Potters Bar, Herts, United Kingdom
| |
Collapse
|
26
|
He F, Ling L, Liao Y, Li S, Han W, Zhao B, Sun Y, Qiu HJ. Beta-actin interacts with the E2 protein and is involved in the early replication of classical swine fever virus. Virus Res 2014; 179:161-8. [DOI: 10.1016/j.virusres.2013.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
|
27
|
Virnik K, Hockenbury M, Ni Y, Beren J, Pavlakis GN, Felber BK, Berkower I. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques. Retrovirology 2013; 10:99. [PMID: 24041113 PMCID: PMC3849444 DOI: 10.1186/1742-4690-10-99] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/22/2013] [Indexed: 01/13/2023] Open
Abstract
Background Live attenuated viruses are among our most potent and effective vaccines. For human immunodeficiency virus, however, a live attenuated strain could present substantial safety concerns. We have used the live attenuated rubella vaccine strain RA27/3 as a vector to express SIV and HIV vaccine antigens because its safety and immunogenicity have been demonstrated in millions of children. One dose protects for life against rubella infection. In previous studies, rubella vectors replicated to high titers in cell culture while stably expressing SIV and HIV antigens. Their viability in vivo, however, as well as immunogenicity and antibody persistence, were unknown. Results This paper reports the first successful trial of rubella vectors in rhesus macaques, in combination with DNA vaccines in a prime and boost strategy. The vectors grew robustly in vivo, and the protein inserts were highly immunogenic. Antibody titers elicited by the SIV Gag vector were greater than or equal to those elicited by natural SIV infection. The antibodies were long lasting, and they were boosted by a second dose of replication-competent rubella vectors given six months later, indicating the induction of memory B cells. Conclusions Rubella vectors can serve as a vaccine platform for safe delivery and expression of SIV and HIV antigens. By presenting these antigens in the context of an acute infection, at a high level and for a prolonged duration, these vectors can stimulate a strong and persistent immune response, including maturation of memory B cells. Rhesus macaques will provide an ideal animal model for demonstrating immunogenicity of novel vectors and protection against SIV or SHIV challenge.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, Division of Viral Products, Office of Vaccines, Center for Biologics, FDA, NIH Campus, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Arakelyan A, Fitzgerald W, Margolis L, Grivel JC. Nanoparticle-based flow virometry for the analysis of individual virions. J Clin Invest 2013; 123:3716-27. [PMID: 23925291 PMCID: PMC3754246 DOI: 10.1172/jci67042] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/06/2013] [Indexed: 11/17/2022] Open
Abstract
While flow cytometry has been used to analyze the antigenic composition of individual cells, the antigenic makeup of viral particles is still characterized predominantly in bulk. Here, we describe a technology, "flow virometry," that can be used for antigen detection on individual virions. The technology is based on binding magnetic nanoparticles to virions, staining the virions with monoclonal antibodies, separating the formed complexes with magnetic columns, and characterizing them with flow cytometers. We used this technology to study the distribution of two antigens (HLA-DR and LFA-1) that HIV-1 acquires from infected cells among individual HIV-1 virions. Flow virometry revealed that the antigenic makeup of virions from a single preparation is heterogeneous. This heterogeneity could not be detected with bulk analysis of viruses. Moreover, in two preparations of the same HIV-1 produced by different cells, the distribution of antigens among virions was different. In contrast, HIV-1 of two different HIV-1 genotypes replicating in the same cells became somewhat antigenically similar. This nanotechnology allows the study of virions in bodily fluids without virus propagation and in principle is not restricted to the analysis of HIV, but can be applied to the analysis of the individual surface antigenic makeup of any virus.
Collapse
Affiliation(s)
- Anush Arakelyan
- Program in Physical Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Beena V, Choudhary K, Rajeev R, Sivakumar R, Heera R, Padmakumar S. Human immunodeficiency virus vaccine an update. J Oral Maxillofac Pathol 2013; 17:76-81. [PMID: 23798835 PMCID: PMC3687194 DOI: 10.4103/0973-029x.110741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Since the discovery of acquired immuno deficiency syndrome (AIDS) in late1980s, the spread of human immunodeficiency virus (HIV) has reached pandemic proportions, representing a global developmental and public health threat. Finding of a safe, globally effective and affordable HIV vaccine offers the best hope for the future control of the disease pandemic. Significant progress has been made over the past years in the areas of basic virology, immunology, and pathogenesis of HIV/AIDS and the development of anti-retroviral drugs. However, the search for an HIV vaccine faces formidable scientific challenges related to the high genetic variability of the virus, the lack of immune correlates of protection, limitations with the existing animal models and logistical problems associated with the conduct of multiple clinical trials. Most of the vaccine approaches developed so far aim at inducing cell-mediated immune responses. Multiple vaccine concepts and vaccination strategies have been tested, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines, various prime-boost vaccine combinations and vaccine based on broadly neutralizing human anti-HIV Antibody 2G12. This article reviews the state of the art in HIV vaccine research, summarizes the results obtained so far and discusses the challenges to be met in the development of a successful HIV vaccine.
Collapse
Affiliation(s)
- Vt Beena
- Department of Oral and Maxillofacial Pathology, Government Dental College, Trivandrum, Kerala, India
| | | | | | | | | | | |
Collapse
|
30
|
Singh A, Warren J, Schultz A, Hackett CJ, Sharma O. Working group consultation: alloimmunity as a vaccine approach against HIV/AIDS: National Institutes of Health Meeting Report, May 24, 2012. AIDS Res Hum Retroviruses 2013; 29:851-8. [PMID: 23530996 PMCID: PMC3653387 DOI: 10.1089/aid.2013.0041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alloimmunization vaccine strategies propose to avoid the problem of the extreme antigenic variability of human immunodeficiency virus (HIV) by instead focusing on the cellular antigens incorporated into HIV virions as they bud from infected cells. This report summarizes a Consultation meeting convened by the National Institute of Allergy and Infectious Diseases, National Institutes of Health on May 24, 2012. The objectives of the meeting were to (1) reach a consensus on the essential questions surrounding alloimmunization as a strategy for vaccine design against HIV, and (2) determine the experimental elements that might be needed for addressing these questions in an optimized pilot framework nonhuman primate (NHP) protocol for allogeneic immunization. The Consultation revisited the rationale and concerns of vaccination to induce allogeneic immunity, one of the most potent natural immune responses. The panelists' consensus was that a carefully designed skin graft transplant pilot experiment, in major histocompatibility complex (MHC) disparate male Mauritian cynomolgus macaques (MCM; Macaca fascicularis), would be useful for initially evaluating if alloimmunization results in an effective or even a partially effective safe AIDS vaccine. A successful NHP study for allogeneic immunization would provide further opportunities to explore vaccine-elicited immune and genetic correlates of protection against the acquisition of viral infection.
Collapse
Affiliation(s)
- Anjali Singh
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jon Warren
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alan Schultz
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Charles J. Hackett
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Opendra Sharma
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
31
|
Tjomsland V, Ellegård R, Burgener A, Mogk K, Che KF, Westmacott G, Hinkula J, Lifson JD, Larsson M. Complement opsonization of HIV-1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells. Eur J Immunol 2013; 43:1470-83. [PMID: 23526630 PMCID: PMC3738931 DOI: 10.1002/eji.201242935] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 02/20/2013] [Accepted: 03/19/2013] [Indexed: 11/11/2022]
Abstract
Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery.
Collapse
Affiliation(s)
- Veronica Tjomsland
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Adam Burgener
- Department of Medical Microbiology, University of ManitobaWinnipeg, Canada
| | - Kenzie Mogk
- Department of Medical Microbiology, University of ManitobaWinnipeg, Canada
| | - Karlhans F Che
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | | | - Jorma Hinkula
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, SAIC Frederick, Inc., Frederick National Laboratory for Cancer ResearchFrederick, MD, USA
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping UniversityLinköping, Sweden
| |
Collapse
|
32
|
A brief history of the global effort to develop a preventive HIV vaccine. Vaccine 2013; 31:3502-18. [PMID: 23707164 DOI: 10.1016/j.vaccine.2013.05.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 05/01/2013] [Accepted: 05/07/2013] [Indexed: 01/09/2023]
Abstract
Soon after HIV was discovered as the cause of AIDS in 1983-1984, there was an expectation that a preventive vaccine would be rapidly developed. In trying to achieve that goal, three successive scientific paradigms have been explored: induction of neutralizing antibodies, induction of cell mediated immunity, and exploration of combination approaches and novel concepts. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. In 2009, the field was reinvigorated with the modest results obtained from the RV144 trial conducted in Thailand. Here, we review those vaccine development efforts, with an emphasis on events that occurred during the earlier years. The goal is to provide younger generations of scientists with information and inspiration to continue the search for an HIV vaccine.
Collapse
|
33
|
Zamani C, Elzey JD, Hildreth JE. Greater ethnic diversity correlates with lower HIV prevalence in Africa: justification for an alloimmunity vaccine. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2013; 5:75-80. [PMID: 23610530 PMCID: PMC3628525 DOI: 10.2147/hiv.s38922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Purpose After decades of research, AIDS continues to be a major pandemic and to date, adaptive immunity vaccine designs have had little to no success. Data indicate the alloimmune response is a potent mitigator of human immunodeficiency virus (HIV) infection, for which experiments of nature should be demonstrable to justify pursuit of an alloimmune vaccine strategy. We sought to determine if large-scale alloimmune diversity correlates with lower HIV infection rates. Methods Using published data of African linguistic groups to determine sub-Saharan country ethnicity profiles as a proxy for human leukocyte antigen (HLA) diversity, a correlation analysis was performed against respective sub-Saharan country HIV infection rates. Ethnicity data from 37 sub-Saharan nations in 2003 and from 38 nations in 2005 were used to calculate the Meyers-Macintosh ethnic diversity score for each nation as the independent variable. World Health Organization data on HIV infection rates for the same countries were used as the dependent variable. The main outcome measure was the correlation coefficient of ethnic diversity versus HIV infection rate. Results A significant negative correlation was shown between ethnic diversity and HIV infection: for 2003 data, −0.4586 (two-tailed P-value of 0.0043); and, for 2005 data, −0.3866 (two-tailed P-value of 0.0165). Conclusion In conjunction with substantial evidence that alloimmunity confers protection against HIV transmission and recent work identifying specific anti-HIV mechanisms, this analysis strongly justifies an HLA-based alloimmune vaccine strategy against HIV.
Collapse
Affiliation(s)
- Christopher Zamani
- Center for AIDS Health Disparities Research at Meharry Medical College, Nashville, Tennessee, USA
| | | | | |
Collapse
|
34
|
Walker TN, Cimakasky LM, Coleman EM, Madison MN, Hildreth JE. Antibody against integrin lymphocyte function-associated antigen 1 inhibits HIV type 1 infection in primary cells through caspase-8-mediated apoptosis. AIDS Res Hum Retroviruses 2013; 29:371-83. [PMID: 22697794 DOI: 10.1089/aid.2011.0395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HIV-1 infection induces formation of a virological synapse wherein CD4, chemokine receptors, and cell-adhesion molecules such as lymphocyte function-associated antigen 1 (LFA-1) form localized domains on the cell surface. Studies show that LFA-1 on the surface of HIV-1 particles retains its adhesion function and enhances virus attachment to susceptible cells by binding its counterreceptor intercellular adhesion molecule 1 (ICAM-1). This virus-cell interaction augments virus infectivity by facilitating binding and entry events. In this study, we demonstrate that inhibition of the LFA-1/ICAM-1 interaction by a monoclonal antibody leads to decreased virus production and spread in association with increased apoptosis of HIV-infected primary T cells. The data indicate that the LFA-1/ICAM-1 interaction may limit apoptosis in HIV-1-infected T cells. This phenomenon appears similar to anoikis wherein epithelial cells are protected from apoptosis conferred by ligand-bound integrins. These results have implications for further understanding HIV pathogenesis and replication in peripheral compartments and lymphoid organs.
Collapse
Affiliation(s)
- Tiffany N. Walker
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee
| | | | - Ebony M. Coleman
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, California
| | - M. Nia Madison
- Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee
| | - James E.K. Hildreth
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, California
| |
Collapse
|
35
|
Abstract
A fascinating aspect of viral evolution relates to the ability of viruses to escape the adaptive immune response. The widely held view has been that the great variability of viral glycoproteins would be an absolute obstacle to the development of antibody-based therapies or vaccines that could confer broad and long-lasting protection. In the past five years, new approaches have been developed to interrogate human memory B cells and plasma cells with high efficiency and to isolate several broadly neutralizing antiviral antibodies against highly variable pathogens such as HIV-1 and influenza virus. These antibodies not only provide new tools for prophylaxis and therapy for viral diseases but also identify conserved epitopes that may be used to design new vaccines capable of conferring broader protection.
Collapse
Affiliation(s)
- Davide Corti
- Institute for Research in Biomedicine IRB, 6500 Bellinzona, Switzerland.
| | | |
Collapse
|
36
|
Kondo N, Melikyan GB. Intercellular adhesion molecule 1 promotes HIV-1 attachment but not fusion to target cells. PLoS One 2012; 7:e44827. [PMID: 22970312 PMCID: PMC3435301 DOI: 10.1371/journal.pone.0044827] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/07/2012] [Indexed: 12/24/2022] Open
Abstract
Incorporation of intercellular adhesion molecule 1 (ICAM-1) into HIV-1 particles is known to markedly enhance the virus binding and infection of cells expressing lymphocyte function-associated antigen-1 (LFA-1). At the same time, ICAM-1 has been reported to exert a less pronounced effect on HIV-1 fusion with lymphoid cells. Here we examined the role of ICAM-1/LFA-1 interactions in productive HIV-1 entry into lymphoid cells using a direct virus-cell fusion assay. ICAM-1 promoted HIV-1 attachment to cells in a temperature-dependent manner. It exerted a marginal effect on virus binding in the cold, but enhanced binding up to 4-fold at physiological temperature. ICAM-1-independent attachment in the cold was readily reversible upon subsequent incubation at elevated temperature, whereas ICAM-1-bearing particles were largely retained by cells. The better virus retention resulted in a proportional increase in HIV-1 internalization and fusion, suggesting that ICAM-1 did not specifically accelerate endocytosis or fusion steps. We also measured the rates of CD4 engagement, productive endocytosis and HIV-endosome fusion using specific fusion inhibitors. These rates were virtually independent of the presence of ICAM-1 in viral particles. Importantly, irrespective of the presence of ICAM-1, HIV-1 escaped from the low temperature block, which stopped virus endocytosis and fusion, much later than from a membrane-impermeant fusion inhibitor targeting surface-accessible particles. This result, along with the complete inhibition of HIV-1 fusion by a small molecule dynamin inhibitor, implies this virus enters lymphoid cells used in this study via endocytosis and that this pathway is not altered by the viral ICAM-1. Our data highlight the role of ICAM-1 in stabilizing the HIV-1 attachment to LFA-1 expressing cells, which leads to a proportional enhancement of the receptor-mediated uptake and fusion with endosomes.
Collapse
Affiliation(s)
- Naoyuki Kondo
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
| | - Gregory B. Melikyan
- Division of Pediatric Infectious Diseases, Emory Children's Center, Atlanta, Georgia, United States of America
- Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
37
|
Retroviral env glycoprotein trafficking and incorporation into virions. Mol Biol Int 2012; 2012:682850. [PMID: 22811910 PMCID: PMC3395148 DOI: 10.1155/2012/682850] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/08/2012] [Accepted: 05/31/2012] [Indexed: 11/17/2022] Open
Abstract
Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.
Collapse
|
38
|
Spear M, Guo J, Wu Y. The trinity of the cortical actin in the initiation of HIV-1 infection. Retrovirology 2012; 9:45. [PMID: 22640593 PMCID: PMC3416652 DOI: 10.1186/1742-4690-9-45] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/03/2012] [Indexed: 12/16/2022] Open
Abstract
For an infecting viral pathogen, the actin cortex inside the host cell is the first line of intracellular components that it encounters. Viruses devise various strategies to actively engage or circumvent the actin structure. In this regard, the human immunodeficiency virus-1 (HIV-1) exemplifies command of cellular processes to take control of actin dynamics for the initiation of infection. It has becomes increasingly evident that cortical actin presents itself both as a barrier to viral intracellular migration and as a necessary cofactor that the virus must actively engage, particularly, in the infection of resting CD4 blood T cells, the primary targets of HIV-1. The coercion of this most fundamental cellular component permits infection by facilitating entry, reverse transcription, and nuclear migration, three essential processes for the establishment of viral infection and latency in blood T cells. It is the purpose of this review to examine, in detail, the manifestation of viral dependence on the actin cytoskeleton, and present a model of how HIV utilizes actin dynamics to initiate infection.
Collapse
Affiliation(s)
- Mark Spear
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA
| | | | | |
Collapse
|
39
|
Ren X, Xue C, Kong Q, Zhang C, Bi Y, Cao Y. Proteomic analysis of purified Newcastle disease virus particles. Proteome Sci 2012; 10:32. [PMID: 22571704 PMCID: PMC3413529 DOI: 10.1186/1477-5956-10-32] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
Background Newcastle disease virus (NDV) is an enveloped RNA virus, bearing severe economic losses to the poultry industry worldwide. Previous virion proteomic studies have shown that enveloped viruses carry multiple host cellular proteins both internally and externally during their life cycle. To address whether it also occurred during NDV infection, we performed a comprehensive proteomic analysis of highly purified NDV La Sota strain particles. Results In addition to five viral structural proteins, we detected thirty cellular proteins associated with purified NDV La Sota particles. The identified cellular proteins comprised several functional categories, including cytoskeleton proteins, annexins, molecular chaperones, chromatin modifying proteins, enzymes-binding proteins, calcium-binding proteins and signal transduction-associated proteins. Among these, three host proteins have not been previously reported in virions of other virus families, including two signal transduction-associated proteins (syntenin and Ras small GTPase) and one tumor-associated protein (tumor protein D52). The presence of five selected cellular proteins (i.e., β-actin, tubulin, annexin A2, heat shock protein Hsp90 and ezrin) associated with the purified NDV particles was validated by Western blot or immunogold labeling assays. Conclusions The current study presented the first standard proteomic profile of NDV. The results demonstrated the incorporation of cellular proteins in NDV particles, which provides valuable information for elucidating viral infection and pathogenesis.
Collapse
Affiliation(s)
- Xiangpeng Ren
- School of Environmental Science and Public Health, Wenzhou Medical College, Wenzhou, 325035, Peoples Republic of China.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chunyi Xue
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Qingming Kong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Chengwen Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Peoples Republic of China
| | - Yongchang Cao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, Peoples Republic of China
| |
Collapse
|
40
|
Zipeto D, Beretta A. HLA-C and HIV-1: friends or foes? Retrovirology 2012; 9:39. [PMID: 22571741 PMCID: PMC3386009 DOI: 10.1186/1742-4690-9-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/09/2012] [Indexed: 12/20/2022] Open
Abstract
The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins.
Collapse
Affiliation(s)
- Donato Zipeto
- Department of Life and Reproduction Sciences, Section of Biology and Genetics, University of Verona, Verona, Italy
| | | |
Collapse
|
41
|
Analysis of cellular proteome alterations in porcine alveolar macrophage cells infected with 2009 (H1N1) and classical swine H1N1 influenza viruses. J Proteomics 2012; 75:1732-41. [DOI: 10.1016/j.jprot.2011.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 11/23/2022]
|
42
|
Ghanam RH, Samal AB, Fernandez TF, Saad JS. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly. Front Microbiol 2012; 3:55. [PMID: 22363329 PMCID: PMC3281212 DOI: 10.3389/fmicb.2012.00055] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/01/2012] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) encodes a polypeptide called Gag that is able to form virus-like particles in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM) for assembly. In the past two decades, in vivo, in vitro, and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA) domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P(2)], a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5)P(2) to MA induces minor conformational changes, leading to exposure of the myristyl (myr) group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag's intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
43
|
Bristow CL, Babayeva MA, LaBrunda M, Mullen MP, Winston R. α1Proteinase inhibitor regulates CD4+ lymphocyte levels and is rate limiting in HIV-1 disease. PLoS One 2012; 7:e31383. [PMID: 22363634 PMCID: PMC3281957 DOI: 10.1371/journal.pone.0031383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 01/06/2012] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The regulation of adult stem cell migration through human hematopoietic tissue involves the chemokine CXCL12 (SDF-1) and its receptor CXCR4 (CD184). In addition, human leukocyte elastase (HLE) plays a key role. When HLE is located on the cell surface (HLE(CS)), it acts not as a proteinase, but as a receptor for α(1)proteinase inhibitor (α(1)PI, α(1)antitrypsin, SerpinA1). Binding of α(1)PI to HLE(CS) forms a motogenic complex. We previously demonstrated that α(1)PI deficiency attends HIV-1 disease and that α(1)PI augmentation produces increased numbers of immunocompetent circulating CD4(+) lymphocytes. Herein we investigated the mechanism underlying the α(1)PI deficiency that attends HIV-1 infection. METHODS AND FINDINGS Active α(1)PI in HIV-1 subjects (median 17 µM, n = 35) was significantly below normal (median 36 µM, p<0.001, n = 30). In HIV-1 uninfected subjects, CD4(+) lymphocytes were correlated with the combined factors α(1)PI, HLE(CS) (+) lymphocytes, and CXCR4(+) lymphocytes (r(2) = 0.91, p<0.001, n = 30), but not CXCL12. In contrast, in HIV-1 subjects with >220 CD4 cells/µl, CD4(+) lymphocytes were correlated solely with active α(1)PI (r(2) = 0.93, p<0.0001, n = 26). The monoclonal anti-HIV-1 gp120 antibody 3F5 present in HIV-1 patient blood is shown to bind and inactivate human α(1)PI. Chimpanzee α(1)PI differs from human α(1)PI by a single amino acid within the 3F5-binding epitope. Unlike human α(1)PI, chimpanzee α(1)PI did not bind 3F5 or become depleted following HIV-1 challenge, consistent with the normal CD4(+) lymphocyte levels and benign syndrome of HIV-1 infected chimpanzees. The presence of IgG-α(1)PI immune complexes correlated with decreased CD4(+) lymphocytes in HIV-1 subjects. CONCLUSIONS This report identifies an autoimmune component of HIV-1 disease that can be overcome therapeutically. Importantly, results identify an achievable vaccine modification with the novel objective to protect against AIDS as opposed to the current objective to protect against HIV-1 infection.
Collapse
Affiliation(s)
- Cynthia L Bristow
- Weill Cornell Medical College, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
44
|
Jiménez JL, Pion M, Mata FJDL, Gomez R, Muñoz E, Leal M, Muñoz-Fernandez MA. Dendrimers as topical microbicides with activity against HIV. NEW J CHEM 2012. [DOI: 10.1039/c1nj20396g] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Giroud C, Chazal N, Briant L. Cellular kinases incorporated into HIV-1 particles: passive or active passengers? Retrovirology 2011; 8:71. [PMID: 21888651 PMCID: PMC3182982 DOI: 10.1186/1742-4690-8-71] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/02/2011] [Indexed: 11/10/2022] Open
Abstract
Phosphorylation is one of the major mechanisms by which the activities of protein factors can be regulated. Such regulation impacts multiple key-functions of mammalian cells, including signal transduction, nucleo-cytoplasmic shuttling, macromolecular complexes assembly, DNA binding and regulation of enzymatic activities to name a few. To ensure their capacities to replicate and propagate efficiently in their hosts, viruses may rely on the phosphorylation of viral proteins to assist diverse steps of their life cycle. It has been known for several decades that particles from diverse virus families contain some protein kinase activity. While large DNA viruses generally encode for viral kinases, RNA viruses and more precisely retroviruses have acquired the capacity to hijack the signaling machinery of the host cell and to embark cellular kinases when budding. Such property was demonstrated for HIV-1 more than a decade ago. This review summarizes the knowledge acquired in the field of HIV-1-associated kinases and discusses their possible function in the retroviral life cycle.
Collapse
Affiliation(s)
- Charline Giroud
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé, UMR5236 CNRS - Université Montpellier 1-Montpellier 2, Montpellier, France
| | | | | |
Collapse
|
46
|
Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608. [PMID: 21762802 PMCID: PMC3139147 DOI: 10.1016/j.jmb.2011.04.042] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Benjamin G. Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| |
Collapse
|
47
|
Shearer GM, Boasso A. Alloantigen-based AIDS vaccine: revisiting a "rightfully" discarded promising strategy. F1000 MEDICINE REPORTS 2011; 3:12. [PMID: 21876718 PMCID: PMC3155155 DOI: 10.3410/m3-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This report revisits the accidental discovery that protection against simian immunodeficiency virus (SIV) infection in the early successful experimental AIDS vaccine studies in Rhesus macaques was due to antibodies directed against human leukocyte antigens (HLAs). The inactivated virus vaccine approach was discarded because protection was due to the host's immune reaction against the HLA acquired by SIV from the human cell lines in which it was grown, rather than against antigenic determinants of SIV itself. Subsequent studies have revealed that immune recognition of HLA on uninfected leukocytes also induces other factors that inhibit infection by both SIV and the human immunodeficiency virus. Pro and con aspects of immunization against HLA as a potential AIDS vaccine strategy are discussed.
Collapse
Affiliation(s)
- Gene M. Shearer
- Experimental Immunology Branch, Center for Cancer Research, National Institutes of HealthBuilding 10, Room 5A31, 10 Center Drive, Bethesda, MD 20892USA
| | - Adriano Boasso
- Imperial College London, Immunology Section, Chelsea and Westminster Hospital369 Fulham Road, London SW10 9NHUK
| |
Collapse
|
48
|
Brinckmann S, da Costa K, van Gils MJ, Hallengärd D, Klein K, Madeira L, Mainetti L, Palma P, Raue K, Reinhart D, Reudelsterz M, Ruffin N, Seifried J, Schäfer K, Sheik-Khalil E, Sköld A, Uchtenhagen H, Vabret N, Ziglio S, Scarlatti G, Shattock R, Wahren B, Gotch F. Rational design of HIV vaccines and microbicides: report of the EUROPRISE network annual conference 2010. J Transl Med 2011; 9:40. [PMID: 21486446 PMCID: PMC3086860 DOI: 10.1186/1479-5876-9-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/12/2011] [Indexed: 11/21/2022] Open
Abstract
Novel, exciting intervention strategies to prevent infection with HIV have been tested in the past year, and the field is rapidly evolving. EUROPRISE is a network of excellence sponsored by the European Commission and concerned with a wide range of activities including integrated developmental research on HIV vaccines and microbicides from discovery to early clinical trials. A central and timely theme of the network is the development of the unique concept of co-usage of vaccines and microbicides. This review, prepared by the PhD students of the network captures much of the research ongoing between the partners. The network is in its 5th year and involves over 50 institutions from 13 European countries together with 3 industrial partners; GSK, Novartis and Sanofi-Pasteur. EUROPRISE is involved in 31 separate world-wide trials of Vaccines and Microbicides including 6 in African countries (Tanzania, Mozambique, South Africa, Kenya, Malawi, Rwanda), and is directly supporting clinical trials including MABGEL, a gp140-hsp70 conjugate trial and HIVIS, vaccine trials in Europe and Africa.
Collapse
Affiliation(s)
- Sarah Brinckmann
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Nobels väg, Stockholm, 171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hepatitis B virus surface antigen assembly function persists when entire transmembrane domains 1 and 3 are replaced by a heterologous transmembrane sequence. J Virol 2010; 85:2439-48. [PMID: 21177825 DOI: 10.1128/jvi.02061-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Native hepatitis B surface antigen (HBsAg) spontaneously assembles into 22-nm subviral particles. The particles are lipoprotein micelles, in which HBsAg is believed to span the lipid layer four times. The first two transmembrane domains, TM1 and TM2, are required for particle assembly. We have probed the requirements for particle assembly by replacing the entire first or third TM domain of HBsAg with the transmembrane domain of HIV gp41. We found that either TM domain of HBsAg could be replaced, resulting in HBsAg-gp41 chimeras that formed particles efficiently. HBsAg formed particles even when both TM1 and TM3 were replaced with the gp41 domain. The results indicate remarkable flexibility in HBsAg particle formation and provide a novel way to express heterologous membrane proteins that are anchored to a lipid surface by their own membrane-spanning domain. The membrane-proximal exposed region (MPER) of gp41 is an important target of broadly reactive neutralizing antibodies against HIV-1, and HBsAg-MPER particles may provide a good platform for future vaccine development.
Collapse
|
50
|
Porter KA, Kelley LN, Nekorchuk MD, Jones JH, Hahn AB, de Noronha CMC, Harton JA, Duus KM. CIITA enhances HIV-1 attachment to CD4+ T cells leading to enhanced infection and cell depletion. THE JOURNAL OF IMMUNOLOGY 2010; 185:6480-8. [PMID: 21041720 DOI: 10.4049/jimmunol.1000830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.
Collapse
Affiliation(s)
- Kristen A Porter
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | | | | | |
Collapse
|