1
|
Mekhaiel DY, Goodale MA, Corneil BD. Rapid integration of face detection and task set in visually guided reaching. Eur J Neurosci 2024; 60:5328-5347. [PMID: 39161111 DOI: 10.1111/ejn.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
The superior colliculus (SC) has been increasingly implicated in the rapid processing of evolutionarily relevant stimuli like faces, but the behavioural relevance of such processing is unclear. The SC has also been implicated in the generation of express visuomotor responses (EVR), which are very short-latency (~80 ms) bursts of muscle activity time-locked to visual target presentation. These observations led us to investigate the influence of faces on EVRs. We recorded upper limb muscle activity from healthy participants as they reached toward targets in the presence of a distractor. In some experiments, faces were used as stimuli. Across blocks of trials, we varied the instruction as to which stimulus served as the target or distractor. Doing so allowed us to assess the impact of instruction on muscle recruitment given identical visual stimuli. We found that responses were uniquely modulated in tasks involving high-contrast faces, promoting reaches toward or away from a face depending on instruction. Follow-up experiments confirmed that the phenomenon required highly salient repeated faces and was not observed to non-facial stimuli nor to faces expressing different affects. This study extends the hypothesis that the SC mediates the EVR by demonstrating that faces impact muscle recruitment at short latencies that precede cortical activity for face perception. Our results constitute direct evidence for the behavioural relevance of face detection in the brainstem, and also implicate a role for top-down cortical pre-setting of the EVR depending on task context.
Collapse
Affiliation(s)
- David Y Mekhaiel
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
| | - Melvyn A Goodale
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Brian D Corneil
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
- Robarts Research Institute, London, Ontario, Canada
| |
Collapse
|
2
|
Rafal RD. Seeing without a Scene: Neurological Observations on the Origin and Function of the Dorsal Visual Stream. J Intell 2024; 12:50. [PMID: 38786652 PMCID: PMC11121949 DOI: 10.3390/jintelligence12050050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/15/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
In all vertebrates, visual signals from each visual field project to the opposite midbrain tectum (called the superior colliculus in mammals). The tectum/colliculus computes visual salience to select targets for context-contingent visually guided behavior: a frog will orient toward a small, moving stimulus (insect prey) but away from a large, looming stimulus (a predator). In mammals, visual signals competing for behavioral salience are also transmitted to the visual cortex, where they are integrated with collicular signals and then projected via the dorsal visual stream to the parietal and frontal cortices. To control visually guided behavior, visual signals must be encoded in body-centered (egocentric) coordinates, and so visual signals must be integrated with information encoding eye position in the orbit-where the individual is looking. Eye position information is derived from copies of eye movement signals transmitted from the colliculus to the frontal and parietal cortices. In the intraparietal cortex of the dorsal stream, eye movement signals from the colliculus are used to predict the sensory consequences of action. These eye position signals are integrated with retinotopic visual signals to generate scaffolding for a visual scene that contains goal-relevant objects that are seen to have spatial relationships with each other and with the observer. Patients with degeneration of the superior colliculus, although they can see, behave as though they are blind. Bilateral damage to the intraparietal cortex of the dorsal stream causes the visual scene to disappear, leaving awareness of only one object that is lost in space. This tutorial considers what we have learned from patients with damage to the colliculus, or to the intraparietal cortex, about how the phylogenetically older midbrain and the newer mammalian dorsal cortical visual stream jointly coordinate the experience of a spatially and temporally coherent visual scene.
Collapse
Affiliation(s)
- Robert D Rafal
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Stimulus-dependent differences in cortical versus subcortical contributions to visual detection in mice. Curr Biol 2024; 34:1940-1952.e5. [PMID: 38640924 PMCID: PMC11080572 DOI: 10.1016/j.cub.2024.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/08/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.
Collapse
Affiliation(s)
- Jackson J Cone
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA.
| | - Autumn O Mitchell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - Rachel K Parker
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| | - John H R Maunsell
- Department of Neurobiology and Neuroscience Institute, University of Chicago, 5812 S. Ellis Ave. MC 0912, Suite P-400, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Russell LE, Fişek M, Yang Z, Tan LP, Packer AM, Dalgleish HWP, Chettih SN, Harvey CD, Häusser M. The influence of cortical activity on perception depends on behavioral state and sensory context. Nat Commun 2024; 15:2456. [PMID: 38503769 PMCID: PMC10951313 DOI: 10.1038/s41467-024-46484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/28/2024] [Indexed: 03/21/2024] Open
Abstract
The mechanistic link between neural circuit activity and behavior remains unclear. While manipulating cortical activity can bias certain behaviors and elicit artificial percepts, some tasks can still be solved when cortex is silenced or removed. Here, mice were trained to perform a visual detection task during which we selectively targeted groups of visually responsive and co-tuned neurons in L2/3 of primary visual cortex (V1) for two-photon photostimulation. The influence of photostimulation was conditional on two key factors: the behavioral state of the animal and the contrast of the visual stimulus. The detection of low-contrast stimuli was enhanced by photostimulation, while the detection of high-contrast stimuli was suppressed, but crucially, only when mice were highly engaged in the task. When mice were less engaged, our manipulations of cortical activity had no effect on behavior. The behavioral changes were linked to specific changes in neuronal activity. The responses of non-photostimulated neurons in the local network were also conditional on two factors: their functional similarity to the photostimulated neurons and the contrast of the visual stimulus. Functionally similar neurons were increasingly suppressed by photostimulation with increasing visual stimulus contrast, correlating with the change in behavior. Our results show that the influence of cortical activity on perception is not fixed, but dynamically and contextually modulated by behavioral state, ongoing activity and the routing of information through specific circuits.
Collapse
Affiliation(s)
- Lloyd E Russell
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Mehmet Fişek
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zidan Yang
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Lynn Pei Tan
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Adam M Packer
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Henry W P Dalgleish
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | | | | | - Michael Häusser
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
5
|
Chen S, Liu Y, Wang ZA, Colonell J, Liu LD, Hou H, Tien NW, Wang T, Harris T, Druckmann S, Li N, Svoboda K. Brain-wide neural activity underlying memory-guided movement. Cell 2024; 187:676-691.e16. [PMID: 38306983 PMCID: PMC11492138 DOI: 10.1016/j.cell.2023.12.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/19/2023] [Accepted: 12/27/2023] [Indexed: 02/04/2024]
Abstract
Behavior relies on activity in structured neural circuits that are distributed across the brain, but most experiments probe neurons in a single area at a time. Using multiple Neuropixels probes, we recorded from multi-regional loops connected to the anterior lateral motor cortex (ALM), a circuit node mediating memory-guided directional licking. Neurons encoding sensory stimuli, choices, and actions were distributed across the brain. However, choice coding was concentrated in the ALM and subcortical areas receiving input from the ALM in an ALM-dependent manner. Diverse orofacial movements were encoded in the hindbrain; midbrain; and, to a lesser extent, forebrain. Choice signals were first detected in the ALM and the midbrain, followed by the thalamus and other brain areas. At movement initiation, choice-selective activity collapsed across the brain, followed by new activity patterns driving specific actions. Our experiments provide the foundation for neural circuit models of decision-making and movement initiation.
Collapse
Affiliation(s)
- Susu Chen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi Liu
- Stanford University, Palo Alto, CA, USA
| | | | - Jennifer Colonell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Liu D Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA
| | - Han Hou
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Nai-Wen Tien
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Tim Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Timothy Harris
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Johns Hopkins University, Baltimore, MD, USA
| | - Shaul Druckmann
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Stanford University, Palo Alto, CA, USA.
| | - Nuo Li
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Baylor College of Medicine, Houston, TX, USA.
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
6
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus bidirectionally modulates choice activity in frontal cortex. Nat Commun 2023; 14:7358. [PMID: 37963894 PMCID: PMC10645979 DOI: 10.1038/s41467-023-43252-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kylie Swiekatowski
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD, USA
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
8
|
Bean NL, Stein BE, Rowland BA. Cross-modal exposure restores multisensory enhancement after hemianopia. Cereb Cortex 2023; 33:11036-11046. [PMID: 37724427 PMCID: PMC10646694 DOI: 10.1093/cercor/bhad343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Hemianopia is a common consequence of unilateral damage to visual cortex that manifests as a profound blindness in contralesional space. A noninvasive cross-modal (visual-auditory) exposure paradigm has been developed in an animal model to ameliorate this disorder. Repeated stimulation of a visual-auditory stimulus restores overt responses to visual stimuli in the blinded hemifield. It is believed to accomplish this by enhancing the visual sensitivity of circuits remaining after a lesion of visual cortex; in particular, circuits involving the multisensory neurons of the superior colliculus. Neurons in this midbrain structure are known to integrate spatiotemporally congruent visual and auditory signals to amplify their responses, which, in turn, enhances behavioral performance. Here we evaluated the relationship between the rehabilitation of hemianopia and this process of multisensory integration. Induction of hemianopia also eliminated multisensory enhancement in the blinded hemifield. Both vision and multisensory enhancement rapidly recovered with the rehabilitative cross-modal exposures. However, although both reached pre-lesion levels at similar rates, they did so with different spatial patterns. The results suggest that the capability for multisensory integration and enhancement is not a pre-requisite for visual recovery in hemianopia, and that the underlying mechanisms for recovery may be more complex than currently appreciated.
Collapse
Affiliation(s)
- Naomi L Bean
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, United States
| |
Collapse
|
9
|
Schenke N, Eling P, Duning T, Hildebrandt H. Monocular eye patching modulates ipsilesional reactive saccades and smooth pursuit in patients with left hemispatial neglect. Brain Cogn 2023; 173:106101. [PMID: 39492218 DOI: 10.1016/j.bandc.2023.106101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 11/05/2024]
Abstract
Patients with hemispatial neglect show multiple oculomotor deficits like delayed contralesional saccade latencies, hypometric saccade amplitudes, and impaired smooth pursuit. We aimed to investigate whether modulation of superior colliculus (SC) activity via monocular eye patching improves neglect patients' eye movements to the contralesional side of space. Thirteen neglect patients with left-hemispheric (LH) stroke, 22 neglect patients with right-hemispheric (RH) stroke, and 24 healthy controls completed a video-oculographic examination of horizontal smooth pursuit and reactive saccades twice, while the left or right eye was covered with an eye patch. Independent of the eye patch position, LH and RH patients showed enlarged saccade latencies toward contralesional stimuli. In addition, both during smooth pursuit and reactive saccades, RH patients made significantly fewer rightward saccades when the right than when the left eye was patched. Moreover, during reactive saccades, RH patients made significantly fewer right than left saccades, but only when the right eye was patched. These findings suggest that the ipsilesional eye patch modulated ipsilesional ocular performance in the RH group, presumably resulting from differences in SC activity. Yet, ipsilesional eye patching did not improve eye movements to the contralesional side of space, possibly due to the incomplete contralateral retinocollicular projection in humans.
Collapse
Affiliation(s)
- Nadine Schenke
- Clinic for Neurology, Klinikum Bremen-Ost, Bremen, Germany; Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
| | - Paul Eling
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, The Netherlands
| | - Thomas Duning
- Clinic for Neurology, Klinikum Bremen-Ost, Bremen, Germany
| | - Helmut Hildebrandt
- Clinic for Neurology, Klinikum Bremen-Ost, Bremen, Germany; Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
10
|
Abstract
The superior colliculus (SC) is a subcortical brain structure that is relevant for sensation, cognition, and action. In nonhuman primates, a rich history of studies has provided unprecedented detail about this structure's role in controlling orienting behaviors; as a result, the primate SC has become primarily regarded as a motor control structure. However, as in other species, the primate SC is also a highly visual structure: A fraction of its inputs is retinal and complemented by inputs from visual cortical areas, including the primary visual cortex. Motivated by this, recent investigations are revealing the rich visual pattern analysis capabilities of the primate SC, placing this structure in an ideal position to guide orienting movements. The anatomical proximity of the primate SC to both early visual inputs and final motor control apparatuses, as well as its ascending feedback projections to the cortex, affirms an important role for this structure in active perception.
Collapse
Affiliation(s)
- Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany;
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | - Chih-Yang Chen
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan;
| | - Amarender R Bogadhi
- Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany;
| |
Collapse
|
11
|
Ding L. Contributions of the Basal Ganglia to Visual Perceptual Decisions. Annu Rev Vis Sci 2023; 9:385-407. [PMID: 37713277 DOI: 10.1146/annurev-vision-111022-123804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
The basal ganglia (BG) make up a prominent nexus between visual and motor-related brain regions. In contrast to the BG's well-established roles in movement control and value-based decision making, their contributions to the transformation of visual input into an action remain unclear, especially in the context of perceptual decisions based on uncertain visual evidence. This article reviews recent progress in our understanding of the BG's contributions to the formation, evaluation, and adjustment of such decisions. From theoretical and experimental perspectives, the review focuses on four key stations in the BG network, namely, the striatum, pallidum, subthalamic nucleus, and midbrain dopamine neurons, which can have different roles and together support the decision process.
Collapse
Affiliation(s)
- Long Ding
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| |
Collapse
|
12
|
Wang Y, Chen Z, Ma G, Wang L, Liu Y, Qin M, Fei X, Wu Y, Xu M, Zhang S. A frontal transcallosal inhibition loop mediates interhemispheric balance in visuospatial processing. Nat Commun 2023; 14:5213. [PMID: 37626171 PMCID: PMC10457336 DOI: 10.1038/s41467-023-40985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Interhemispheric communication through the corpus callosum is required for both sensory and cognitive processes. Impaired transcallosal inhibition causing interhemispheric imbalance is believed to underlie visuospatial bias after frontoparietal cortical damage, but the synaptic circuits involved remain largely unknown. Here, we show that lesions in the mouse anterior cingulate area (ACA) cause severe visuospatial bias mediated by a transcallosal inhibition loop. In a visual-change-detection task, ACA callosal-projection neurons (CPNs) were more active with contralateral visual field changes than with ipsilateral changes. Unilateral CPN inactivation impaired contralateral change detection but improved ipsilateral detection by altering interhemispheric interaction through callosal projections. CPNs strongly activated contralateral parvalbumin-positive (PV+) neurons, and callosal-input-driven PV+ neurons preferentially inhibited ipsilateral CPNs, thus mediating transcallosal inhibition. Unilateral PV+ neuron activation caused a similar behavioral bias to contralateral CPN activation and ipsilateral CPN inactivation, and bilateral PV+ neuron activation eliminated this bias. Notably, restoring interhemispheric balance by activating contralesional PV+ neurons significantly improved contralesional detection in ACA-lesioned animals. Thus, a frontal transcallosal inhibition loop comprising CPNs and callosal-input-driven PV+ neurons mediates interhemispheric balance in visuospatial processing, and enhancing contralesional transcallosal inhibition restores interhemispheric balance while also reversing lesion-induced bias.
Collapse
Affiliation(s)
- Yanjie Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zhaonan Chen
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Guofen Ma
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lizhao Wang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yanmei Liu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Meiling Qin
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiang Fei
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yifan Wu
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Siyu Zhang
- Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200025, China.
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
13
|
Cone JJ, Mitchell AO, Parker RK, Maunsell JHR. Temporal weighting of cortical and subcortical spikes reveals stimulus dependent differences in their contributions to behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554473. [PMID: 37662213 PMCID: PMC10473714 DOI: 10.1101/2023.08.23.554473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with V1 supporting perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports perception of many of the same visual features traditionally associated with V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to perception of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near perceptual threshold while we presented white noise patterns of optogenetic stimulation to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in SC are critical for detection of both luminance or contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK, but no sign of a comparable modulation for luminance detection. The data suggest that perception of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually-guided behaviors.
Collapse
|
14
|
Schenke N, Diestel E, Kastrup A, Eling P, Hildebrandt H. Monocular eye patching modulates reorienting of covert attention in patients with unilateral middle cerebral artery stroke. Brain Cogn 2023; 169:106000. [PMID: 37253302 DOI: 10.1016/j.bandc.2023.106000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023]
Abstract
Unilateral brain lesions can lead to impaired contralesional attention and reduced ipsilesional and enhanced contralesional superior colliculus (SC) activity. We aimed to investigate whether modulation of SC activation via monocular eye patching can improve contralesional attention. Twenty left-hemispheric (LH) and 20 right-hemispheric (RH) patients with an acute or subacute middle cerebral artery (MCA) stroke completed an endogenous version of the Posner cueing task twice, while the left or right eye was covered with an eye patch. The LH and RH patients showed significantly slower reactions to contralesional than to ipsilesional stimuli. In addition, the eye patch modulated responses to invalidly but not those to validly cued stimuli. Post hoc analyses could not discriminate whether this effect pertained to a particular target side or eye patch position. However, exploratory analyses indicated that the observed eye patch effect might affect the RH group more than the LH group. As predicted 36 years ago, monocular eye patching modulates visuospatial attention, presumably due to differences in SC activation between the two eye patch conditions. However, this modulation seems too weak and unspecific, and therefore possibly not strong enough to be a treatment option for patients with visuospatial attention impairments.
Collapse
Affiliation(s)
- Nadine Schenke
- Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany.
| | - Elfriede Diestel
- Department for Education and Human Development, Leibniz Institute for Research and Information in Education, Frankfurt/Main, Germany
| | - Andreas Kastrup
- Department of Neurology, Klinikum Bremen-Mitte, Bremen, Germany
| | - Paul Eling
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, the Netherlands
| | - Helmut Hildebrandt
- Department of Psychology, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Department of Neurology, Klinikum Bremen-Ost, Bremen, Germany
| |
Collapse
|
15
|
Quintana D, Bounds HA, Brown J, Wang M, Bhatla N, Wiegert JS, Adesnik H. Dissociating instructive from permissive roles of brain circuits with reversible neural activity manipulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540397. [PMID: 37214966 PMCID: PMC10197619 DOI: 10.1101/2023.05.11.540397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Neuroscientists rely on targeted perturbations and lesions to causally map functions in the brain1. Yet, since the brain is highly interconnected, manipulation of one area can impact behavior through indirect effects on many other brain regions, complicating the interpretation of such results2,3. On the other hand, the often-observed recovery of behavior performance after lesion can cast doubt on whether the lesioned area was ever directly involved4,5. Recent studies have highlighted how the results of acute and irreversible inactivation can directly conflict4-6, making it unclear whether a brain area is instructive or merely permissive in a specific brain function. To overcome this challenge, we developed a three-stage optogenetic approach which leverages the ability to precisely control the temporal period of regional inactivation with either brief or sustained illumination. Using a visual detection task, we found that acute optogenetic inactivation of the primary visual cortex (V1) suppressed task performance if cortical inactivation was intermittent across trials within each behavioral session. However, when we inactivated V1 for entire behavioral sessions, animals quickly recovered performance in just one to two days. Most importantly, after returning these recovered animals to intermittent cortical inactivation, they quickly reverted to failing on optogenetic inactivation trials. These data support a revised model where the cortex is the default circuit that instructs perceptual performance in basic sensory tasks. More generally, this novel, temporally controllable optogenetic perturbation paradigm can be broadly applied to brain circuits and specific cell types to assess whether they are instructive or merely permissive in a brain function or behavior.
Collapse
Affiliation(s)
- Daniel Quintana
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Hayley A Bounds
- Department of Molecular and Cell Biology, University of California, Berkeley
- The Helen Wills Neuroscience Institute
| | - Jennifer Brown
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - May Wang
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - Nikhil Bhatla
- Department of Molecular and Cell Biology, University of California, Berkeley
| | - J Simon Wiegert
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hillel Adesnik
- Department of Molecular and Cell Biology, University of California, Berkeley
- The Helen Wills Neuroscience Institute
| |
Collapse
|
16
|
Thomas A, Yang W, Wang C, Tipparaju SL, Chen G, Sullivan B, Swiekatowski K, Tatam M, Gerfen C, Li N. Superior colliculus cell types bidirectionally modulate choice activity in frontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537884. [PMID: 37162880 PMCID: PMC10168218 DOI: 10.1101/2023.04.22.537884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.
Collapse
Affiliation(s)
- Alyse Thomas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Weiguo Yang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Catherine Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Guang Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Brennan Sullivan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | | | - Mahima Tatam
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| | - Charles Gerfen
- Section on Neuroanatomy, National Institute of Mental Health, Bethesda, MD
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, Houston, TX
| |
Collapse
|
17
|
Zhou J, Hormigo S, Busel N, Castro-Alamancos MA. The Orienting Reflex Reveals Behavioral States Set by Demanding Contexts: Role of the Superior Colliculus. J Neurosci 2023; 43:1778-1796. [PMID: 36750370 PMCID: PMC10010463 DOI: 10.1523/jneurosci.1643-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Sensory stimuli can trigger an orienting reflex (response) by which animals move the head to position their sensors (e.g., eyes, pinna, whiskers). Orienting responses may be important to evaluate stimuli that call for action (e.g., approach, escape, ignore), but little is known about the dynamics of orienting responses in the context of goal-directed actions. Using mice of either sex, we found that, during a signaled avoidance action, the orienting response evoked by the conditioned stimulus (CS) consisted of a fast head movement containing rotational and translational components that varied substantially as a function of the behavioral and underlying brain states of the animal set by different task contingencies. Larger CS-evoked orienting responses were associated with high-intensity auditory stimuli, failures to produce the appropriate signaled action, and behavioral states resulting from uncertain or demanding situations and the animal's ability to cope with them. As a prototypical orienting neural circuit, we confirmed that the superior colliculus controls and codes the direction of spontaneous exploratory orienting movements. In addition, superior colliculus activity correlated with CS-evoked orienting responses, and either its optogenetic inhibition or excitation potentiated CS-evoked orienting responses, which are likely generated downstream in the medulla. CS-evoked orienting responses may be a useful probe to assess behavioral and related brain states, and state-dependent modulation of orienting responses may involve the superior colliculus.SIGNIFICANCE STATEMENT Humans and other animals produce an orienting reflex (also known as orienting response) by which they rapidly orient their head and sensors to evaluate novel or salient stimuli. Spontaneous orienting movements also occur during exploration of the environment in the absence of explicit, salient stimuli. We monitored stimulus-evoked orienting responses in mice performing signaled avoidance behaviors and found that these responses reflect the behavioral state of the animal set by contextual demands and the animal's ability to cope with them. Various experiments involving the superior colliculus revealed a well-established role in spontaneous orienting but only an influencing effect over orienting responses. Stimulus-evoked orienting responses may be a useful probe of behavioral and related brain states.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Sebastian Hormigo
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Natan Busel
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| | - Manuel A Castro-Alamancos
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut 06001
| |
Collapse
|
18
|
Rowland BA, Bushnell CD, Duncan PW, Stein BE. Ameliorating Hemianopia with Multisensory Training. J Neurosci 2023; 43:1018-1026. [PMID: 36604169 PMCID: PMC9908311 DOI: 10.1523/jneurosci.0962-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hemianopia (unilateral blindness), a common consequence of stroke and trauma to visual cortex, is a debilitating disorder for which there are few treatments. Research in an animal model has suggested that visual-auditory stimulation therapy, which exploits the multisensory architecture of the brain, may be effective in restoring visual sensitivity in hemianopia. It was tested in two male human patients who were hemianopic for at least 8 months following a stroke. The patients were repeatedly exposed to congruent visual-auditory stimuli within their blinded hemifield during 2 h sessions over several weeks. The results were dramatic. Both recovered the ability to detect and describe visual stimuli throughout their formerly blind field within a few weeks. They could also localize these stimuli, identify some of their features, and perceive multiple visual stimuli simultaneously in both fields. These results indicate that the multisensory therapy is a rapid and effective method for restoring visual function in hemianopia.SIGNIFICANCE STATEMENT Hemianopia (blindness on one side of space) is widely considered to be a permanent disorder. Here, we show that a simple multisensory training paradigm can ameliorate this disorder in human patients.
Collapse
Affiliation(s)
| | - Cheryl D Bushnell
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | - Pamela W Duncan
- Neurology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | |
Collapse
|
19
|
Alves PN, Forkel SJ, Corbetta M, Thiebaut de Schotten M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun Biol 2022; 5:1343. [PMID: 36477440 PMCID: PMC9729227 DOI: 10.1038/s42003-022-04281-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Attention is a core cognitive function that filters and selects behaviourally relevant information in the environment. The cortical mapping of attentional systems identified two segregated networks that mediate stimulus-driven and goal-driven processes, the Ventral and the Dorsal Attention Networks (VAN, DAN). Deep brain electrophysiological recordings, behavioral data from phylogenetic distant species, and observations from human brain pathologies challenge purely corticocentric models. Here, we used advanced methods of functional alignment applied to resting-state functional connectivity analyses to map the subcortical architecture of the Ventral and Dorsal Attention Networks. Our investigations revealed the involvement of the pulvinar, the superior colliculi, the head of caudate nuclei, and a cluster of brainstem nuclei relevant to both networks. These nuclei are densely connected structural network hubs, as revealed by diffusion-weighted imaging tractography. Their projections establish interrelations with the acetylcholine nicotinic receptor as well as dopamine and serotonin transporters, as demonstrated in a spatial correlation analysis with a normative atlas of neurotransmitter systems. This convergence of functional, structural, and neurochemical evidence provides a comprehensive framework to understand the neural basis of attention across different species and brain diseases.
Collapse
Affiliation(s)
- Pedro Nascimento Alves
- Laboratório de Estudos de Linguagem, Centro de Estudos Egas Moniz, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
- Serviço de Neurologia, Departmento de Neurociências e Saúde Mental, Hospital de Santa Maria, CHULN, Lisboa, Portugal.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France
- Donders Institute for Brain Cognition Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525GD, Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Departments of Neurosurgery, Technical University of Munich School of Medicine, Munich, Germany
| | - Maurizio Corbetta
- Clinica Neurologica, Department of Neuroscience, University of Padova, Padova, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Venetian Institute of Molecular Medicine, VIMM, Padova, Italy
- Department of Neurology, Radiology, Neuroscience Washington University School of Medicine, St.Louis, MO, USA
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne University, Paris, France.
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
20
|
Chapin BA, Pisanuwongrak K, Williamson JB, Heilman KM. Vertical pseudoneglect: Sensory-attentional versus action-intentional. J Clin Exp Neuropsychol 2022; 44:163-170. [PMID: 35819050 DOI: 10.1080/13803395.2022.2098934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Healthy persons demonstrate an upward bias on the vertical-line bisection test (vertical or "altitudinal" pseudoneglect). This bias might be sensory-attentional or action-intentional in origin. To test the action-intention hypothesis, we analyze whether the direction of action has an effect on altitudinal pseudoneglect. METHODS Twenty-four healthy right-handed adults performed vertical-line bisection on an apparatus designed to distinguish the effects of sensory-attention and action-intention. Depending on hand placement, participants estimated line midpoints with a marker that moved in the same (congruent) or opposite (incongruent) direction as their hand movements. Two binary factors - hand movement in the upward versus downward direction and congruent vs incongruent hand movements - produced four conditions. RESULTS There was upward deviation from the midline across all conditions. Bisections in the incongruent condition were higher than in the congruent condition. Bisections were also higher with upward hand movements than with downward hand movements. There was not a significant interaction between these factors. CONCLUSIONS These results suggest that vertical pseudoneglect is primarily influenced by the allocation of allocentric attention, rather than action-intention. However, action-perceptual spatial incongruence increased this deviation. Perhaps the incongruent condition requires greater allocation of attention, but further exploration is needed. Additionally, these results suggest that visual attention follows the direction of motor action. Future studies of visual attention should consider the potential influence of this factor.
Collapse
Affiliation(s)
- Benjamin A Chapin
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - K Pisanuwongrak
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA.,Department of Neurology, Synphaet Hospital, Bangkok, Thailand.,Department of Neurology, Prasat Neurological Institute, Bangkok, Thailand
| | - John B Williamson
- Brain Rehabilitation Research Center, VAMC, North Florida/South, Georgia.,Center for OCD and Anxiety Related Disorders, Department of Psychiatry, University of Florida, Gainesville, FL, USA.,Center for Cognitive Aging and Memory, College of Medicine, University of Florida, Gainesville, FL, USA
| | - K M Heilman
- Division of Behavioral Neurology and Neuropsychiatry, Department of Neurology, University of Florida, Gainesville, FL, USA.,Geriatric Research, Education, and Clinical Center (GRECC), Malcom Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
21
|
Fakhar K, Hilgetag CC. Systematic perturbation of an artificial neural network: A step towards quantifying causal contributions in the brain. PLoS Comput Biol 2022; 18:e1010250. [PMID: 35714139 PMCID: PMC9246164 DOI: 10.1371/journal.pcbi.1010250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/30/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Lesion inference analysis is a fundamental approach for characterizing the causal contributions of neural elements to brain function. This approach has gained new prominence through the arrival of modern perturbation techniques with unprecedented levels of spatiotemporal precision. While inferences drawn from brain perturbations are conceptually powerful, they face methodological difficulties. Particularly, they are challenged to disentangle the true causal contributions of the involved elements, since often functions arise from coalitions of distributed, interacting elements, and localized perturbations have unknown global consequences. To elucidate these limitations, we systematically and exhaustively lesioned a small artificial neural network (ANN) playing a classic arcade game. We determined the functional contributions of all nodes and links, contrasting results from sequential single-element perturbations with simultaneous perturbations of multiple elements. We found that lesioning individual elements, one at a time, produced biased results. By contrast, multi-site lesion analysis captured crucial details that were missed by single-site lesions. We conclude that even small and seemingly simple ANNs show surprising complexity that needs to be addressed by multi-lesioning for a coherent causal characterization.
Collapse
Affiliation(s)
- Kayson Fakhar
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
22
|
Kaiser AP, Villadsen KW, Samani A, Knoche H, Evald L. Virtual Reality and Eye-Tracking Assessment, and Treatment of Unilateral Spatial Neglect: Systematic Review and Future Prospects. Front Psychol 2022; 13:787382. [PMID: 35391965 PMCID: PMC8982678 DOI: 10.3389/fpsyg.2022.787382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/26/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral spatial neglect (USN) is a disorder characterized by the failure to report, respond to, or orient toward the contralateral side of space to a brain lesion. Current assessment methods often fail to discover milder forms, cannot differentiate between unilateral spatial neglect subtypes and lack ecological validity. There is also a need for treatment methods that target subtypes. Immersive virtual reality (VR) systems in combination with eye-tracking (ET) have the potential to overcome these shortcomings, by providing more naturalistic environments and tasks, with sensitive and detailed measures. This systematic review examines the state of the art of research on these technologies as applied in the assessment and treatment of USN. As we found no studies that combined immersive VR and ET, we reviewed these approaches individually. The review of VR included seven articles, the ET review twelve. The reviews revealed promising results. (1) All included studies found significant group-level differences for several USN measures. In addition, several studies found asymmetric behavior in VR and ET tasks for patients who did not show signs of USN in conventional tests. Particularly promising features were multitasking in complex VR environments and detailed eye-movement analysis. (2) No VR and only a few ET studies attempted to differentiate USN subtypes, although the technologies appeared appropriate. One ET study grouped USN participants using individual heatmaps, and another differentiated between subtypes on drawing tasks. Regarding (3) ecological validity, although no studies tested the prognostic validity of their assessment methods, VR and ET studies utilized naturalistic tasks and stimuli reflecting everyday situations. Technological characteristics, such as the field of view and refresh rate of the head-mounted displays, could be improved, though, to improve ecological validity. We found (4) no studies that utilized VR or ET technologies for USN treatment up until the search date of the 26th of February 2020. In conclusion, VR-ET-based systems show great potential for USN assessment. VR-ET holds great promise for treatment, for example, by monitoring behavior and adapting and tailoring to the individual person's needs and abilities. Future research should consider developing methods for individual subtypes and differential diagnostics to inform individual treatment programs.
Collapse
Affiliation(s)
- Alexander Pilgaard Kaiser
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark,Department of Psychology and Behavioral Sciences, Aarhus University, Aarhus, Denmark
| | - Kristian Westergaard Villadsen
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark,Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Afshin Samani
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hendrik Knoche
- Department of Architecture, Design and Media Technology, Aalborg University, Aalborg, Denmark
| | - Lars Evald
- Hammel Neurorehabilitation Centre and University Research Clinic, Hammel, Denmark,Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark,*Correspondence: Lars Evald,
| |
Collapse
|
23
|
Baron M, Devor M. Might pain be experienced in the brainstem rather than in the cerebral cortex? Behav Brain Res 2022; 427:113861. [DOI: 10.1016/j.bbr.2022.113861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|
24
|
Xu J, Schoenfeld MA, Rossini PM, Tatlisumak T, Nürnberger A, Antal A, He H, Gao Y, Sabel BA. Adaptive and maladaptive brain functional network reorganization after stroke in hemianopia patients: an EEG-tracking study. Brain Connect 2022; 12:725-739. [PMID: 35088596 DOI: 10.1089/brain.2021.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Hemianopia following occipital stroke is believed to be mainly due to local damage at or near the lesion site. Yet, MRI studies suggest functional connectivity network (FCN) reorganization also in distant brain regions. Because it is unclear if reorganization is adaptive or maladaptive, compensating for, or aggravating vision loss, we characterized FCNs electrophysiologically to explore local and global brain plasticity and correlated FCN reorganization with visual performance. METHODS Resting-state EEG was recorded in chronic, unilateral stroke patients and healthy age-matched controls (n=24 each). The correlation of oscillating EEG activity was calculated with the imaginary part of coherence between pairs of interested regions, and FCN graph theory metrics (degree, strength, clustering coefficient) were correlated with stimulus detection and reaction time. RESULTS Stroke brains showed altered FCNs in the alpha- and beta-band in numerous occipital, temporal and frontal brain structures. On a global level, FCN had a less efficient network organization while on the local level node networks reorganized especially in the intact hemisphere. Here, the occipital network was 58% more rigid (with a more "regular" network structure) while the temporal network was 32% more efficient (showing greater "small-worldness"), both of which correlated with worse or better visual processing, respectively. CONCLUSIONS Occipital stroke is associated with both local and global FCN reorganization, but this can be both, adaptive and maladaptive. We propose that the more "regular" FCN structure in the intact visual cortex indicates maladaptive plasticity where less processing efficacy with reduced signal/noise ratio may cause perceptual deficits in the intact visual field. In contrast, reorganization in intact temporal brain regions is presumably adaptive, possibly supporting enhanced peripheral movement perception.
Collapse
Affiliation(s)
- Jiahua Xu
- Otto von Guericke Universität Magdeburg, 9376, Magdeburg, Sachsen-Anhalt, Germany;
| | | | | | | | - Andreas Nürnberger
- Otto von Guericke Universität Magdeburg, 9376, Magdeburg, Sachsen-Anhalt, Germany;
| | - Andrea Antal
- University Medical Center Göttingen, 84922, Gottingen, Niedersachsen, Germany;
| | - Huiguang He
- Chinese Academy of Sciences Institute of Automation, 74522, Beijing, Beijing, China;
| | - Ying Gao
- Chinese Academy of Sciences Institute of Automation, 74522, Beijing, Beijing, China;
| | - Bernhard A Sabel
- Otto von Guericke Universität Magdeburg, 9376, Magdeburg, Sachsen-Anhalt, Germany;
| |
Collapse
|
25
|
Boukrina O, Chen P. Neural Mechanisms of Prism Adaptation in Healthy Adults and Individuals with Spatial Neglect after Unilateral Stroke: A Review of fMRI Studies. Brain Sci 2021; 11:1468. [PMID: 34827467 PMCID: PMC8615640 DOI: 10.3390/brainsci11111468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 12/24/2022] Open
Abstract
Functional disability due to spatial neglect hinders recovery in up to 30% of stroke survivors. Prism adaptation treatment (PAT) may alleviate the disabling consequences of spatial neglect, but we do not yet know why some individuals show much better outcomes following PAT than others. The goal of this scoping review and meta-analysis was to investigate the neural mechanisms underlying prism adaptation (PA). We conducted both quantitative and qualitative analyses across fMRI studies investigating brain activity before, during, and after PA, in healthy individuals and patients with right or left brain damage (RBD or LBD) due to stroke. In healthy adults, PA was linked with activity in posterior parietal and cerebellar clusters, reduced bilateral parieto-frontal connectivity, and increased fronto-limbic and sensorimotor network connectivity. In contrast, RBD individuals with spatial neglect relied on different circuits, including an activity cluster in the intact left occipital cortex. This finding is consistent with a shift in hemispheric dominance in spatial processing to the left hemisphere. However, more studies are needed to clarify the contribution of lesion location and load on the circuits involved in PA after unilateral brain damage. Future studies are also needed to clarify the relationship of decreasing resting state functional connectivity (rsFC) to visuomotor function.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ 07052, USA;
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Peii Chen
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ 07052, USA;
- Department of Physical Medicine and Rehabilitation, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
26
|
Jiang H, Stanford TR, Rowland BA, Stein BE. Association Cortex Is Essential to Reverse Hemianopia by Multisensory Training. Cereb Cortex 2021; 31:5015-5023. [PMID: 34056645 DOI: 10.1093/cercor/bhab138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/14/2022] Open
Abstract
Hemianopia induced by unilateral visual cortex lesions can be resolved by repeatedly exposing the blinded hemifield to auditory-visual stimuli. This rehabilitative "training" paradigm depends on mechanisms of multisensory plasticity that restore the lost visual responsiveness of multisensory neurons in the ipsilesional superior colliculus (SC) so that they can once again support vision in the blinded hemifield. These changes are thought to operate via the convergent visual and auditory signals relayed to the SC from association cortex (the anterior ectosylvian sulcus [AES], in cat). The present study tested this assumption by cryogenically deactivating ipsilesional AES in hemianopic, anesthetized cats during weekly multisensory training sessions. No signs of visual recovery were evident in this condition, even after providing animals with up to twice the number of training sessions required for effective rehabilitation. Subsequent training under the same conditions, but with AES active, reversed the hemianopia within the normal timeframe. These results indicate that the corticotectal circuit that is normally engaged in SC multisensory plasticity has to be operational for the brain to use visual-auditory experience to resolve hemianopia.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Terrence R Stanford
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
27
|
Cortical Visual Impairment in Childhood: 'Blindsight' and the Sprague Effect Revisited. Brain Sci 2021; 11:brainsci11101279. [PMID: 34679344 PMCID: PMC8533908 DOI: 10.3390/brainsci11101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
The paper discusses and provides support for diverse processes of brain plasticity in visual function after damage in infancy and childhood in comparison with injury that occurs in the adult brain. We provide support and description of neuroplastic mechanisms in childhood that do not seemingly exist in the same way in the adult brain. Examples include the ability to foster the development of thalamocortical connectivities that can circumvent the lesion and reach their cortical destination in the occipital cortex as the developing brain is more efficient in building new connections. Supporting this claim is the fact that in those with central visual field defects we can note that the extrastriatal visual connectivities are greater when a lesion occurs earlier in life as opposed to in the neurologically mature adult. The result is a significantly more optimized system of visual and spatial exploration within the ‘blind’ field of view. The discussion is provided within the context of “blindsight” and the “Sprague Effect”.
Collapse
|
28
|
Dakos AS, Jiang H, Stein BE, Rowland BA. Using the Principles of Multisensory Integration to Reverse Hemianopia. Cereb Cortex 2021; 30:2030-2041. [PMID: 31799618 DOI: 10.1093/cercor/bhz220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/03/2019] [Accepted: 08/28/2019] [Indexed: 11/14/2022] Open
Abstract
Hemianopia can be rehabilitated by an auditory-visual "training" procedure, which restores visual responsiveness in midbrain neurons indirectly compromised by the cortical lesion and reinstates vision in contralesional space. Presumably, these rehabilitative changes are induced via mechanisms of multisensory integration/plasticity. If so, the paradigm should fail if the stimulus configurations violate the spatiotemporal principles that govern these midbrain processes. To test this possibility, hemianopic cats were provided spatially or temporally noncongruent auditory-visual training. Rehabilitation failed in all cases even after approximately twice the number of training trials normally required for recovery, and even after animals learned to approach the location of the undetected visual stimulus. When training was repeated with these stimuli in spatiotemporal concordance, hemianopia was resolved. The results identify the conditions needed to engage changes in remaining neural circuits required to support vision in the absence of visual cortex, and have implications for rehabilitative strategies in human patients.
Collapse
Affiliation(s)
| | - Huai Jiang
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - Barry E Stein
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| | - Benjamin A Rowland
- Department of Neurobiology & Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1010, USA
| |
Collapse
|
29
|
Cortical control of behavior and attention from an evolutionary perspective. Neuron 2021; 109:3048-3054. [PMID: 34297915 DOI: 10.1016/j.neuron.2021.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
For animals to survive, they must interact with their environment, taking in sensory information and making appropriate motor responses. Early on during vertebrate evolution, this was accomplished with neural circuits located mostly within the spinal cord and brainstem. As the cerebral cortex evolved, it provided additional and powerful advantages for assessing environmental cues and guiding appropriate responses. Importantly, the cerebral cortex was added onto an already functional nervous system. Moreover, every cortical area, including areas traditionally considered sensory, provides input to the subcortical motor structures that are bottlenecks for driving action. These facts have important ramifications for cognitive aspects of motor control. Here we consider the evolution of cortical mechanisms for attention from the perspective of having to work through these subcortical bottlenecks. From this perspective, many features of attention can be explained, including the preferential engagement of some cortical areas at the cost of disengagement from others to improve appropriate behavioral responses.
Collapse
|
30
|
Basso MA, Bickford ME, Cang J. Unraveling circuits of visual perception and cognition through the superior colliculus. Neuron 2021; 109:918-937. [PMID: 33548173 PMCID: PMC7979487 DOI: 10.1016/j.neuron.2021.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/29/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
The superior colliculus is a conserved sensorimotor structure that integrates visual and other sensory information to drive reflexive behaviors. Although the evidence for this is strong and compelling, a number of experiments reveal a role for the superior colliculus in behaviors usually associated with the cerebral cortex, such as attention and decision-making. Indeed, in addition to collicular outputs targeting brainstem regions controlling movements, the superior colliculus also has ascending projections linking it to forebrain structures including the basal ganglia and amygdala, highlighting the fact that the superior colliculus, with its vast inputs and outputs, can influence processing throughout the neuraxis. Today, modern molecular and genetic methods combined with sophisticated behavioral assessments have the potential to make significant breakthroughs in our understanding of the evolution and conservation of neuronal cell types and circuits in the superior colliculus that give rise to simple and complex behaviors.
Collapse
Affiliation(s)
- Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | - Jianhua Cang
- University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
31
|
Transcranial static magnetic stimulation over the motor cortex can facilitate the contralateral cortical excitability in human. Sci Rep 2021; 11:5370. [PMID: 33686102 PMCID: PMC7940605 DOI: 10.1038/s41598-021-84823-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/19/2021] [Indexed: 01/27/2023] Open
Abstract
Transcranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.
Collapse
|
32
|
Toba MN, Malherbe C, Godefroy O, Rushmore RJ, Zavaglia M, Maatoug R, Mandonnet E, Valero-Cabré A, Hilgetag CC. Reply: Inhibition between human brain areas or methodological artefact? Brain 2020; 143:e39. [PMID: 32413896 DOI: 10.1093/brain/awaa093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (EA 4559), University of Picardie Jules Verne, Amiens, France.,FRONTLAB Team, Cerebral Dynamics, Plasticity and Rehabilitation Group, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, and IHU-A-ICM, Paris, France
| | - Caroline Malherbe
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Olivier Godefroy
- Laboratory of Functional Neurosciences (EA 4559), University of Picardie Jules Verne, Amiens, France.,Department of Neurology, Amiens University Hospital, Amiens, France
| | - R Jarrett Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA 02118, USA
| | - Melissa Zavaglia
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Focus Area Health, Jacobs University Bremen, Germany
| | - Redwan Maatoug
- FRONTLAB Team, Cerebral Dynamics, Plasticity and Rehabilitation Group, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, and IHU-A-ICM, Paris, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, APHP, Paris, France, and University Paris 7, Paris, France
| | - Antoni Valero-Cabré
- FRONTLAB Team, Cerebral Dynamics, Plasticity and Rehabilitation Group, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, and IHU-A-ICM, Paris, France.,Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA 02118, USA.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Catalunya, Spain
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Health Sciences Department, Boston University, 635 Commonwealth Ave. Boston, MA 02215, USA
| |
Collapse
|
33
|
Hobson JA, Gott JA, Friston KJ. Minds and Brains, Sleep and Psychiatry. PSYCHIATRIC RESEARCH AND CLINICAL PRACTICE 2020; 3:12-28. [PMID: 35174319 PMCID: PMC8834904 DOI: 10.1176/appi.prcp.20200023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Objective This article offers a philosophical thesis for psychiatric disorders that rests upon some simple truths about the mind and brain. Specifically, it asks whether the dual aspect monism—that emerges from sleep research and theoretical neurobiology—can be applied to pathophysiology and psychopathology in psychiatry. Methods Our starting point is that the mind and brain are emergent aspects of the same (neuronal) dynamics; namely, the brain–mind. Our endpoint is that synaptic dysconnection syndromes inherit the same dual aspect; namely, aberrant inference or belief updating on the one hand, and a failure of neuromodulatory synaptic gain control on the other. We start with some basic considerations from sleep research that integrate the phenomenology of dreaming with the neurophysiology of sleep. Results We then leverage this treatment by treating the brain as an organ of inference. Our particular focus is on the role of precision (i.e., the representation of uncertainty) in belief updating and the accompanying synaptic mechanisms. Conclusions Finally, we suggest a dual aspect approach—based upon belief updating (i.e., mind processes) and its neurophysiological implementation (i.e., brain processes)—has a wide explanatory compass for psychiatry and various movement disorders. This approach identifies the kind of pathophysiology that underwrites psychopathology—and points to certain psychotherapeutic and psychopharmacological targets, which may stand in mechanistic relation to each other. The ‘mind’ emerges from Bayesian belief updating in the ‘brain’ Psychopathology can be read as aberrant belief updating. Aberrant belief updating follows from any neuromodulatory synaptopathy
Collapse
Affiliation(s)
- J. Allan Hobson
- Division of Sleep Medicine Harvard Medical School Boston Massachusetts
| | - Jarrod A. Gott
- Donders Institute for Brain, Cognition and Behaviour Radboud University Nijmegen
| | - Karl J. Friston
- The Wellcome Centre for Human Neuroimaging University College London London
| |
Collapse
|
34
|
Sajid N, Parr T, Gajardo-Vidal A, Price CJ, Friston KJ. Paradoxical lesions, plasticity and active inference. Brain Commun 2020; 2:fcaa164. [PMID: 33376985 PMCID: PMC7750943 DOI: 10.1093/braincomms/fcaa164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/01/2022] Open
Abstract
Paradoxical lesions are secondary brain lesions that ameliorate functional deficits caused by the initial insult. This effect has been explained in several ways; particularly by the reduction of functional inhibition, or by increases in the excitatory-to-inhibitory synaptic balance within perilesional tissue. In this article, we simulate how and when a modification of the excitatory-inhibitory balance triggers the reversal of a functional deficit caused by a primary lesion. For this, we introduce in-silico lesions to an active inference model of auditory word repetition. The first in-silico lesion simulated damage to the extrinsic (between regions) connectivity causing a functional deficit that did not fully resolve over 100 trials of a word repetition task. The second lesion was implemented in the intrinsic (within region) connectivity, compromising the model's ability to rebalance excitatory-inhibitory connections during learning. We found that when the second lesion was mild, there was an increase in experience-dependent plasticity that enhanced performance relative to a single lesion. This paradoxical lesion effect disappeared when the second lesion was more severe because plasticity-related changes were disproportionately amplified in the intrinsic connectivity, relative to lesioned extrinsic connections. Finally, this framework was used to predict the physiological correlates of paradoxical lesions. This formal approach provides new insights into the computational and neurophysiological mechanisms that allow some patients to recover after large or multiple lesions.
Collapse
Affiliation(s)
- Noor Sajid
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Andrea Gajardo-Vidal
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| |
Collapse
|
35
|
Toba MN, Godefroy O, Rushmore RJ, Zavaglia M, Maatoug R, Hilgetag CC, Valero-Cabré A. Revisiting 'brain modes' in a new computational era: approaches for the characterization of brain-behavioural associations. Brain 2020; 143:1088-1098. [PMID: 31764975 DOI: 10.1093/brain/awz343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 08/07/2019] [Accepted: 08/28/2019] [Indexed: 11/12/2022] Open
Abstract
The study of brain-function relationships is undergoing a conceptual and methodological transformation due to the emergence of network neuroscience and the development of multivariate methods for lesion-deficit inferences. Anticipating this process, in 1998 Godefroy and co-workers conceptualized the potential of four elementary typologies of brain-behaviour relationships named 'brain modes' (unicity, equivalence, association, summation) as building blocks able to describe the association between intact or lesioned brain regions and cognitive processes or neurological deficits. In the light of new multivariate lesion inference and network approaches, we critically revisit and update the original theoretical notion of brain modes, and provide real-life clinical examples that support their existence. To improve the characterization of elementary units of brain-behavioural relationships further, we extend such conceptualization with a fifth brain mode (mutual inhibition/masking summation). We critically assess the ability of these five brain modes to account for any type of brain-function relationship, and discuss past versus future contributions in redefining the anatomical basis of human cognition. We also address the potential of brain modes for predicting the behavioural consequences of lesions and their future role in the design of cognitive neurorehabilitation therapies.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens and University of Picardy Jules Verne, Amiens, France
| | - Olivier Godefroy
- Laboratory of Functional Neurosciences (EA 4559), University Hospital of Amiens and University of Picardy Jules Verne, Amiens, France
| | - R Jarrett Rushmore
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA 02118, USA.,Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Zavaglia
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Focus Area Health, Jacobs University Bremen, Germany
| | - Redwan Maatoug
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, Brain and Spine Institute, ICM, Paris, France.,Sorbonne Université, INSERM UMR S 1127, CNRS UMR 7225, F-75013, and IHU-A-ICM, Paris, France
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Health Sciences Department, Boston University, 635 Commonwealth Ave. Boston, MA 02215, USA
| | - Antoni Valero-Cabré
- Laboratory of Cerebral Dynamics, Plasticity and Rehabilitation, Boston University School of Medicine, Boston, MA 02118, USA.,Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, Brain and Spine Institute, ICM, Paris, France.,Sorbonne Université, INSERM UMR S 1127, CNRS UMR 7225, F-75013, and IHU-A-ICM, Paris, France.,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Catalunya, Spain
| |
Collapse
|
36
|
Lasaponara S, Pinto M, Scozia G, Pellegrino M, D'Onofrio M, Isabella R, Doricchi F. Pre-motor deficits in left spatial neglect: An EEG study on Contingent Negative Variation (CNV) and response-related beta oscillatory activity. Neuropsychologia 2020; 147:107572. [PMID: 32721497 DOI: 10.1016/j.neuropsychologia.2020.107572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
Right Brain Damaged patients with left spatial neglect (N+), are characterised by poor allocation of attention in the contralesional left side of space. In a recent study (Lasaponara et al., 2018) we showed during orienting of spatial attention with endogenous central cues, both the EEG markers reflecting the early phases of orienting (Early Directing Attention Negativity) and those reflecting the late setting-up of sensory facilitation in the visual cortex (Late Directing Attention Positivity) are disturbed in N+ when these patients attend the left side of space. In the healthy brain, endogenous cues also elicit EEG activity related to the preparation of manual responses to upcoming spatial targets. Here, we wished to expand on our previous findings and investigate the EEG correlates of cue-related response preparation in N+ patients. To this aim we investigated the Contingent Negative Variation (CNV) response and the pre-motor Beta-oscillatory activity evoked by spatially informative central cues during the performance of a Posner task. Due to concomitant contralesional motor impairments, N+ an N- patients performed the task only with the ipsilesional right-hand. Compared to healthy controls and patients without neglect, N+ displayed a pathological suppression of CNV component that was independent of cue direction. In addition, the amplitude of the CNV in response to right-pointing cues was positively correlated with neglect severity in line bisection. N+ also displayed a pathological enhancement of pre-motor Beta oscillations over the left hemisphere during the time period that preceded manual responses to targets in the left side of space, particularly to invalidly cued ones. Synchronization in the Beta-band (ERS) was also correlated with lower detection rate and slower RTs to Invalid targets in the left side of space. These results provide new insights on the premotor components of the spatial orienting deficits suffered by patients with left spatial neglect and can help improving its diagnosis and rehabilitation.
Collapse
Affiliation(s)
- Stefano Lasaponara
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Via dei Marsi 78, 00185, Roma, Italy; Fondazione Santa Lucia, Centro Ricerche di Neuropsicologia, IRCCS, Via Ardeatina 306, 00179, Roma, Italy.
| | - Mario Pinto
- Fondazione Santa Lucia, Centro Ricerche di Neuropsicologia, IRCCS, Via Ardeatina 306, 00179, Roma, Italy
| | - Gabriele Scozia
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Via dei Marsi 78, 00185, Roma, Italy
| | - Michele Pellegrino
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Via dei Marsi 78, 00185, Roma, Italy; Fondazione Santa Lucia, Centro Ricerche di Neuropsicologia, IRCCS, Via Ardeatina 306, 00179, Roma, Italy
| | - Marianna D'Onofrio
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Via dei Marsi 78, 00185, Roma, Italy
| | | | - Fabrizio Doricchi
- Dipartimento di Psicologia 39, Università degli Studi di Roma "La Sapienza", Via dei Marsi 78, 00185, Roma, Italy; Fondazione Santa Lucia, Centro Ricerche di Neuropsicologia, IRCCS, Via Ardeatina 306, 00179, Roma, Italy
| |
Collapse
|
37
|
Zerr P, Ossandón JP, Shareef I, Van der Stigchel S, Kekunnaya R, Röder B. Successful visually guided eye movements following sight restoration after congenital cataracts. J Vis 2020; 20:3. [PMID: 38755792 PMCID: PMC7424140 DOI: 10.1167/jov.20.7.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/09/2020] [Indexed: 11/24/2022] Open
Abstract
Sensitive periods have previously been identified for several human visual system functions. Yet, it is unknown to what degree the development of visually guided oculomotor control depends on early visual experience-for example, whether and to what degree humans whose sight was restored after a transient period of congenital visual deprivation are able to conduct visually guided eye movements. In the present study, we developed new calibration and analysis techniques for eye tracking data contaminated with pervasive nystagmus, which is typical for this population. We investigated visually guided eye movements in sight recovery individuals with long periods of visual pattern deprivation (3-36 years) following birth due to congenital, dense, total, bilateral cataracts. As controls we assessed (1) individuals with nystagmus due to causes other than cataracts, (2) individuals with developmental cataracts after cataract removal, and (3) individuals with normal vision. Congenital cataract reversal individuals were able to perform visually guided gaze shifts, even when their blindness had lasted for decades. The typical extensive nystagmus of this group distorted eye movement trajectories, but measures of latency and accuracy were as expected from their prevailing nystagmus-that is, not worse than in the nystagmus control group. To the best of our knowledge, the present quantitative study is the first to investigate the characteristics of oculomotor control in congenital cataract reversal individuals, and it indicates a remarkable effectiveness of visually guided eye movements despite long-lasting periods of visual deprivation.
Collapse
Affiliation(s)
- Paul Zerr
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - José Pablo Ossandón
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| | - Idris Shareef
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | | | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Center, LV Prasad Eye Institute, Hyderabad, India
| | - Brigitte Röder
- Biological Psychology and Neuropsychology, Hamburg University, Hamburg, Germany
| |
Collapse
|
38
|
Làdavas E, Tosatto L, Bertini C. Behavioural and functional changes in neglect after multisensory stimulation. Neuropsychol Rehabil 2020; 32:662-689. [DOI: 10.1080/09602011.2020.1786411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Elisabetta Làdavas
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Department of Psychology, University of Bologna, Bologna, Italy
| | | | - Caterina Bertini
- Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy
- Department of Psychology, University of Bologna, Bologna, Italy
| |
Collapse
|
39
|
Rethinking causality and data complexity in brain lesion-behaviour inference and its implications for lesion-behaviour modelling. Cortex 2020; 126:49-62. [DOI: 10.1016/j.cortex.2020.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/04/2023]
|
40
|
Grasso PA, Gallina J, Bertini C. Shaping the visual system: cortical and subcortical plasticity in the intact and the lesioned brain. Neuropsychologia 2020; 142:107464. [PMID: 32289349 DOI: 10.1016/j.neuropsychologia.2020.107464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Visual system is endowed with an incredibly complex organization composed of multiple visual pathway affording both hierarchical and parallel processing. Even if most of the visual information is conveyed by the retina to the lateral geniculate nucleus of the thalamus and then to primary visual cortex, a wealth of alternative subcortical pathways is present. This complex organization is experience dependent and retains plastic properties throughout the lifespan enabling the system with a continuous update of its functions in response to variable external needs. Changes can be induced by several factors including learning and experience but can also be promoted by the use non-invasive brain stimulation techniques. Furthermore, besides the astonishing ability of our visual system to spontaneously reorganize after injuries, we now know that the exposure to specific rehabilitative training can produce not only important functional modifications but also long-lasting changes within cortical and subcortical structures. The present review aims to update and address the current state of the art on these topics gathering studies that reported relevant modifications of visual functioning together with plastic changes within cortical and subcortical structures both in the healthy and in the lesioned visual system.
Collapse
Affiliation(s)
- Paolo A Grasso
- Department of Neuroscience, Psychology, Pharmacology and Child Health, University of Florence, Florence, 50135, Italy.
| | - Jessica Gallina
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| | - Caterina Bertini
- Department of Psychology, University of Bologna, Bologna, 40127, Italy; CsrNC, Centre for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, 47521, Italy
| |
Collapse
|
41
|
Toba MN, Zavaglia M, Malherbe C, Moreau T, Rastelli F, Kaglik A, Valabrègue R, Pradat-Diehl P, Hilgetag CC, Valero-Cabré A. Game theoretical mapping of white matter contributions to visuospatial attention in stroke patients with hemineglect. Hum Brain Mapp 2020; 41:2926-2950. [PMID: 32243676 PMCID: PMC7336155 DOI: 10.1002/hbm.24987] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/24/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
White matter bundles linking gray matter nodes are key anatomical players to fully characterize associations between brain systems and cognitive functions. Here we used a multivariate lesion inference approach grounded in coalitional game theory (multiperturbation Shapley value analysis, MSA) to infer causal contributions of white matter bundles to visuospatial orienting of attention. Our work is based on the characterization of the lesion patterns of 25 right hemisphere stroke patients and the causal analysis of their impact on three neuropsychological tasks: line bisection, letter cancellation, and bells cancellation. We report that, out of the 11 white matter bundles included in our MSA coalitions, the optic radiations, the inferior fronto-occipital fasciculus and the anterior cingulum were the only tracts to display task-invariant contributions (positive, positive, and negative, respectively) to the tasks. We also report task-dependent influences for the branches of the superior longitudinal fasciculus and the posterior cingulum. By extending prior findings to white matter tracts linking key gray matter nodes, we further characterize from a network perspective the anatomical basis of visual and attentional orienting processes. The knowledge about interactions patterns mediated by white matter tracts linking cortical nodes of attention orienting networks, consolidated by further studies, may help develop and customize brain stimulation approaches for the rehabilitation of visuospatial neglect.
Collapse
Affiliation(s)
- Monica N Toba
- Cerebral Dynamics, Plasticity and Rehabilitation Team, Frontlab, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, & IHU-A-ICM, Paris, France.,Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,AP-HP, HxU Pitié-Salpêtrière-Charles-Foix, service de Médecine Physique et de Réadaptation & PHRC Régional NEGLECT, Paris, France.,Laboratory of Functional Neurosciences (EA 4559), University of Picardie Jules Verne, Amiens, France
| | - Melissa Zavaglia
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Jacobs University, Focus Area Health, Bremen, Germany
| | - Caroline Malherbe
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, Head and Neuro Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tristan Moreau
- Cerebral Dynamics, Plasticity and Rehabilitation Team, Frontlab, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, & IHU-A-ICM, Paris, France
| | - Federica Rastelli
- Cerebral Dynamics, Plasticity and Rehabilitation Team, Frontlab, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, & IHU-A-ICM, Paris, France.,AP-HP, HxU Pitié-Salpêtrière-Charles-Foix, service de Médecine Physique et de Réadaptation & PHRC Régional NEGLECT, Paris, France
| | - Anna Kaglik
- Cerebral Dynamics, Plasticity and Rehabilitation Team, Frontlab, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, & IHU-A-ICM, Paris, France.,AP-HP, HxU Pitié-Salpêtrière-Charles-Foix, service de Médecine Physique et de Réadaptation & PHRC Régional NEGLECT, Paris, France
| | - Romain Valabrègue
- Centre for NeuroImaging Research-CENIR, Paris Brain Institute, ICM, Sorbonne Universités, Inserm UMR S 1127, CNRS UMR 7225, F-75013, Paris, France
| | - Pascale Pradat-Diehl
- AP-HP, HxU Pitié-Salpêtrière-Charles-Foix, service de Médecine Physique et de Réadaptation & PHRC Régional NEGLECT, Paris, France.,GRC-UPMC n° 18-Handicap cognitif et réadaptation, Paris, France
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, Massachusetts, 02215, USA
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Team, Frontlab, Paris Brain Institute, ICM, Sorbonne Universités, UPMC Paris 06, Inserm UMR S 1127, CNRS UMR 7225, F-75013, & IHU-A-ICM, Paris, France.,AP-HP, HxU Pitié-Salpêtrière-Charles-Foix, service de Médecine Physique et de Réadaptation & PHRC Régional NEGLECT, Paris, France.,Laboratory for Cerebral Dynamics, Plasticity & Rehabilitation, Boston University School of Medicine, Boston, Massachusetts, 02118, USA
| |
Collapse
|
42
|
Stein BE, Rowland BA. Using superior colliculus principles of multisensory integration to reverse hemianopia. Neuropsychologia 2020; 141:107413. [PMID: 32113921 DOI: 10.1016/j.neuropsychologia.2020.107413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 11/18/2022]
Abstract
The diversity of our senses conveys many advantages; it enables them to compensate for one another when needed, and the information they provide about a common event can be integrated to facilitate its processing and, ultimately, adaptive responses. These cooperative interactions are produced by multisensory neurons. A well-studied model in this context is the multisensory neuron in the output layers of the superior colliculus (SC). These neurons integrate and amplify their cross-modal (e.g., visual-auditory) inputs, thereby enhancing the physiological salience of the initiating event and the probability that it will elicit SC-mediated detection, localization, and orientation behavior. Repeated experience with the same visual-auditory stimulus can also increase the neuron's sensitivity to these individual inputs. This observation raised the possibility that such plasticity could be engaged to restore visual responsiveness when compromised. For example, unilateral lesions of visual cortex compromise the visual responsiveness of neurons in the multisensory output layers of the ipsilesional SC and produces profound contralesional blindness (hemianopia). The possibility that multisensory plasticity could restore the visual responses of these neurons, and reverse blindness, was tested in the cat model of hemianopia. Hemianopic subjects were repeatedly presented with spatiotemporally congruent visual-auditory stimulus pairs in the blinded hemifield on a daily or weekly basis. After several weeks of this multisensory exposure paradigm, visual responsiveness was restored in SC neurons and behavioral responses were elicited by visual stimuli in the previously blind hemifield. The constraints on the effectiveness of this procedure proved to be the same as those constraining SC multisensory plasticity: whereas repetitions of a congruent visual-auditory stimulus was highly effective, neither exposure to its individual component stimuli, nor to these stimuli in non-congruent configurations was effective. The restored visual responsiveness proved to be robust, highly competitive with that in the intact hemifield, and sufficient to support visual discrimination.
Collapse
Affiliation(s)
- Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
43
|
Jiang H, Rowland BA, Stein BE. Reversing Hemianopia by Multisensory Training Under Anesthesia. Front Syst Neurosci 2020; 14:4. [PMID: 32076401 PMCID: PMC7006460 DOI: 10.3389/fnsys.2020.00004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/13/2020] [Indexed: 02/04/2023] Open
Abstract
Hemianopia is characterized by blindness in one half of the visual field and is a common consequence of stroke and unilateral injury to the visual cortex. There are few effective rehabilitative strategies that can relieve it. Using the cat as an animal model of hemianopia, we found that blindness induced by lesions targeting all contiguous areas of the visual cortex could be rapidly reversed by a non-invasive, multisensory (auditory-visual) exposure procedure even while animals were anesthetized. Surprisingly few trials were required to reinstate vision in the previously blind hemisphere. That rehabilitation was possible under anesthesia indicates that the visuomotor behaviors commonly believed to be essential are not required for this recovery, nor are factors such as attention, motivation, reward, or the various other cognitive features that are generally thought to facilitate neuro-rehabilitative therapies.
Collapse
Affiliation(s)
- Huai Jiang
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Benjamin A Rowland
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| | - Barry E Stein
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, United States
| |
Collapse
|
44
|
Yrondi A, Valton L, Bouilleret V, Aghakhani N, Curot J, Birmes PJ. Post-traumatic Stress Disorder With Flashbacks of an Old Childhood Memory Triggered by Right Temporal Lobe Epilepsy Surgery in Adulthood. Front Psychiatry 2020; 11:351. [PMID: 32411032 PMCID: PMC7198875 DOI: 10.3389/fpsyt.2020.00351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A plethora of data show that the hippocampus and the amygdala are involved in post-traumatic stress disorder (PTSD). Neural dysfunctions leading to PTSD (e.g. how the amygdala and the hippocampus are altered) are only partially known. The unusual case of a patient presenting with refractory epilepsy and developing PTSD immediately after surgery is described. Such symptoms in epileptic patients may help to explore PTSD mechanisms. CASE REPORT A 41-year-old male suffering from partial refractory temporal lobe epilepsy was operated in May 2017. A right amygdala, hippocampus, and temporal pole selective resection was performed. He experienced intense PTSD symptoms 1 month after surgery. He complained about repetitive intrusive memories of abuse. The PTSD checklist score was equal to 62/80. He reported a history of childhood abuse: physical and emotional abuse as well as emotional negligence, assessed with the Childhood Trauma Questionnaire. No other medical history was recorded. He never complained about PTSD or any other psychiatric symptoms before surgery. CONCLUSION this case indicates that PTSD may occur after temporal lobe epilepsy surgery and may specifically stem, as in this context, from the excision of part of the medial temporal lobe structures. Although rarely reported, PTSD may be undiagnosed when not selectively detected via multi-disciplinary neurological and psychiatric management, in the preoperative period and the immediate and delayed postoperative period.
Collapse
Affiliation(s)
- Antoine Yrondi
- Service de Psychiatrie et de Psychologie Médicale, Centre Expert Dépression Résistante FondaMental, CHU de Toulouse, Hôpital Purpan, ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Luc Valton
- Explorations Neurophysiologiques, Hôpital Pierre Paul Riquet, CHU Purpan, Toulouse, France.,Centre de Recherche Cerveau et Cognition, University of Toulouse, Centre National de la Recherche Scientifique CerCo, Toulouse, France
| | - Viviane Bouilleret
- Service de Neurophysiologie Clinique et D'épileptologie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Nozar Aghakhani
- Service de Neurochirurgie, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Jonathan Curot
- Explorations Neurophysiologiques, Hôpital Pierre Paul Riquet, CHU Purpan, Toulouse, France.,Centre de Recherche Cerveau et Cognition, University of Toulouse, Centre National de la Recherche Scientifique CerCo, Toulouse, France
| | - Philippe Jean Birmes
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
45
|
Neuronavigated TMS of early visual cortex eliminates unconscious processing of chromatic stimuli. Neuropsychologia 2020; 136:107266. [DOI: 10.1016/j.neuropsychologia.2019.107266] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 11/22/2022]
|
46
|
Zebhauser PT, Vernet M, Unterburger E, Brem AK. Visuospatial Neglect - a Theory-Informed Overview of Current and Emerging Strategies and a Systematic Review on the Therapeutic Use of Non-invasive Brain Stimulation. Neuropsychol Rev 2019; 29:397-420. [PMID: 31748841 PMCID: PMC6892765 DOI: 10.1007/s11065-019-09417-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 09/27/2019] [Indexed: 01/12/2023]
Abstract
Visuospatial neglect constitutes a supramodal cognitive deficit characterized by reduction or loss of spatial awareness for the contralesional space. It occurs in over 40% of right- and 20% of left-brain-lesioned stroke patients with lesions located mostly in parietal, frontal and subcortical brain areas. Visuospatial neglect is a multifaceted syndrome - symptoms can be divided into sensory, motor and representational neglect - and therefore requires an individually adapted diagnostic and therapeutic approach. Several models try to explain the origins of visuospatial neglect, of which the "interhemispheric rivalry model" is strongly supported by animal and human research. This model proposes that allocation of spatial attention is balanced by transcallosal inhibition and both hemispheres compete to direct attention to the contralateral hemi-space. Accordingly, a brain lesion causes an interhemispheric imbalance, which may be re-installed by activation of lesioned, or deactivation of unlesioned (over-activated) brain areas through noninvasive brain stimulation. Research in larger patient samples is needed to confirm whether noninvasive brain stimulation can improve long-term outcomes and whether these also affect activities of daily living and discharge destination.
Collapse
Affiliation(s)
- Paul Theo Zebhauser
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar der Technischen Universität, Munich, Germany
| | - Marine Vernet
- Section on Neurocircuitry, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD, USA
| | - Evelyn Unterburger
- Division of Neuropsychology, Universitätsklinik Zürich USZ, Frauenklinikstrasse 26, Zurich, Switzerland
| | - Anna-Katharine Brem
- Department of Neuropsychology, Max-Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804, Munich, Germany.
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Ni A, Zhou R, Tian F. Modulation of human visuospatial attention analysis by transcranial direct current stimulation (tDCS) in the line bisection performance. Saudi J Biol Sci 2019; 26:1956-1960. [PMID: 31885486 PMCID: PMC6921300 DOI: 10.1016/j.sjbs.2019.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/30/2022] Open
Abstract
The general population shows physiologic biases in the line bisection performance for visuospatial attention, almost to the left known as pseudoneglect. Previous studies have shown that tDCS affects visuospatial attention in line bisection. This research applies tDCS over left posterior parietal cortice (P3) or right posterior parietal cortice (P4) to explore the effect on pseudoneglect. Subjects randomly were divided into five groups by stimulation distribution: (i) P3-anodal (P3A), (ii) P3-cathodal (P3C), (iii) P4-anodal (P4A), (iv) P4-cathodal (P4C), (v) sham. Participants respectively finished the post-tDCS line-bisection assignment (lines on the left/right side of the monitor (LL/LR), and lines in the center of the monitor (LC)) the same as the pre-tDCS task over the session (P3A, P3C, P4A, P4C and sham) tDCS condition. The principal findings were that P3A tDCS reduced the leftward shift in the horizontal line bisection task, as well as P4C tDCS reduced the leftward shift in LL. Sham stimulation as well as P3C and P4A stimulation didn't have systematic improvements in the line bisection tasks. Therefore, an activation-orientation model of pseudoneglect is corroborated by these findings. Activation of intact structures in the rebalance of left and right parietal cortex might impose modulating effects on tDCS.
Collapse
Affiliation(s)
- Aijuan Ni
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| | - Rongchao Zhou
- Department of Radiology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Feng Tian
- Institute of Medical Support Technology, Academy of Military Sciences, Tianjin 300161, China
| |
Collapse
|
48
|
An interhemispheric neural circuit allowing binocular integration in the optic tectum. Nat Commun 2019; 10:5471. [PMID: 31784529 PMCID: PMC6884480 DOI: 10.1038/s41467-019-13484-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 10/30/2019] [Indexed: 11/16/2022] Open
Abstract
Binocular stereopsis requires the convergence of visual information from corresponding points in visual space seen by two different lines of sight. This may be achieved by superposition of retinal input from each eye onto the same downstream neurons via ipsi- and contralaterally projecting optic nerve fibers. Zebrafish larvae can perceive binocular cues during prey hunting but have exclusively contralateral retinotectal projections. Here we report brain activity in the tectal neuropil ipsilateral to the visually stimulated eye, despite the absence of ipsilateral retinotectal projections. This activity colocalizes with arbors of commissural neurons, termed intertectal neurons (ITNs), that connect the tectal hemispheres. ITNs are GABAergic, establish tectal synapses bilaterally and respond to small moving stimuli. ITN-ablation impairs capture swim initiation when prey is positioned in the binocular strike zone. We propose an intertectal circuit that controls execution of the prey-capture motor program following binocular localization of prey, without requiring ipsilateral retinotectal projections. Zebrafish larvae can binocularly detect prey objects in order to strike but lack ipsilateral retinotectal fibers for binocular superposition of visual information. Here the authors describe commissural intertectal neurons and show that they are required for the initiation of capture strikes.
Collapse
|
49
|
Hu F, Kamigaki T, Zhang Z, Zhang S, Dan U, Dan Y. Prefrontal Corticotectal Neurons Enhance Visual Processing through the Superior Colliculus and Pulvinar Thalamus. Neuron 2019; 104:1141-1152.e4. [PMID: 31668485 DOI: 10.1016/j.neuron.2019.09.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 08/26/2019] [Accepted: 09/12/2019] [Indexed: 11/30/2022]
Abstract
Top-down modulation of visual processing is mediated in part by direct prefrontal to visual cortical projections. Here, we show that the mouse cingulate cortex (Cg) regulates visual processing not only through corticocortical neurons projecting to the visual cortex but also through corticotectal neurons projecting subcortically. Bidirectional optogenetic manipulation demonstrated a prominent contribution of Cg corticotectal neurons to visually guided behavior, which is mediated by their collateral projections to both the motor-related layers of the superior colliculus (SC) and the lateral posterior nucleus of the thalamus (LP, analogous to the primate pulvinar). Whereas the Cg innervates the anterior LP (LPa), the SC innervates the posterior LP (LPp). Activating each stage of the Cg→SC→LPp or the Cg→LPa pathway strongly enhanced visual performance of the mouse and the sensory responses of visual cortical neurons. These results delineate two subcortical pathways by which a subtype of prefrontal pyramidal neurons exerts a powerful top-down influence on visual processing. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Fei Hu
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tsukasa Kamigaki
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhe Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Siyu Zhang
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Usan Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
50
|
Flierman NA, Ignashchenkova A, Negrello M, Thier P, De Zeeuw CI, Badura A. Glissades Are Altered by Lesions to the Oculomotor Vermis but Not by Saccadic Adaptation. Front Behav Neurosci 2019; 13:194. [PMID: 31507389 PMCID: PMC6716469 DOI: 10.3389/fnbeh.2019.00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022] Open
Abstract
Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description. One way in which a saccade can deviate from its trajectory is the presence of an overshoot or undershoot at the end of a saccadic eye movement just before fixation. This additional movement, known as a glissade, is regarded as a motor command error and was characterized decades ago but was almost never studied. Using rhesus macaques, we investigated the properties of glissades and changes to glissade kinematics following cerebellar lesions. Additionally, in monkeys with an intact cerebellum, we investigated whether the glissade amplitude can be modulated using multiple adaptation paradigms. Our results show that saccade kinematics are altered by the presence of a glissade, and that glissades do not appear to have any adaptive function as they do not bring the eye closer to the target. Quantification of these results establishes a detailed description of glissades. Further, we show that lesions to the posterior cerebellum have a deleterious effect on both saccade and glissade properties, which recovers over time. Finally, the saccadic adaptation experiments reveal that glissades cannot be modulated by this training paradigm. Together our work offers a functional study of glissades and provides new insight into the cerebellar involvement in this type of motor error.
Collapse
Affiliation(s)
- Nico A Flierman
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Alla Ignashchenkova
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter Thier
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | |
Collapse
|