1
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Merz M, Schiffer CJ, Klingl A, Ehrmann MA. Characterization of the major autolysin (AtlC) of Staphylococcus carnosus. BMC Microbiol 2024; 24:77. [PMID: 38459514 PMCID: PMC10921637 DOI: 10.1186/s12866-024-03231-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Autolysis by cellular peptidoglycan hydrolases (PGH) is a well-known phenomenon in bacteria. During food fermentation, autolysis of starter cultures can exert an accelerating effect, as described in many studies on cheese ripening. In contrast, very little is known about autolysis of starter cultures used in other fermentations. Staphylococcus (S.) carnosus is often used in raw sausage fermentations, contributing to nitrate reduction and flavor formation. In this study, we analyzed the influence of PGHs of the strains S. carnosus TMW 2.146 and S. carnosus TMW 2.2525 on their autolytic behavior. The staphylococcal major autolysin (Atl), a bifunctional enzyme with an N-acetylmuramoyl-L-alanine amidase and a glucosaminidase as an active site, is assumed to be the enzyme by which autolysis is mainly mediated. RESULTS AtlC mutant strains showed impaired growth and almost no autolysis compared to their respective wild-type strains. Light microscopy and scanning electron microscopy showed that the mutants could no longer appropriately separate from each other during cell division, resulting in the formation of cell clusters. The surface of the mutants appeared rough with an irregular morphology compared to the smooth cell surfaces of the wild-types. Moreover, zymograms showed that eight lytic bands of S. carnosus, with a molecular mass between 140 and 35 kDa, are processed intermediates of AtlC. It was noticed that additional bands were found that had not been described in detail before and that the banding pattern changes over time. Some bands disappear entirely, while others become stronger or are newly formed. This suggests that AtlC is degraded into smaller fragments over time. A second knockout was generated for the gene encoding a N-acetylmuramoyl-L-alanine amidase domain-containing protein. Still, no phenotypic differences could be detected in this mutant compared to the wild-type, implying that the autolytic activity of S. carnosus is mediated by AtlC. CONCLUSIONS In this study, two knockout mutants of S. carnosus were generated. The atlC mutant showed a significantly altered phenotype compared to the wild-type, revealing AtlC as a key factor in staphylococcal autolysis. Furthermore, we show that Atl is degraded into smaller fragments, which are still cell wall lytic active.
Collapse
Affiliation(s)
- Maximilian Merz
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Carolin J Schiffer
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I - Botany, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | - Matthias A Ehrmann
- Chair of Microbiology, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
3
|
Zha J, Li J, Su Z, Akimbekov N, Wu X. Lysostaphin: Engineering and Potentiation toward Better Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11441-11457. [PMID: 36082619 DOI: 10.1021/acs.jafc.2c03459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lysostaphin is a potent bacteriolytic enzyme with endopeptidase activity against the common pathogen Staphylococcus aureus. By digesting the pentaglycine crossbridge in the cell wall peptidoglycan of S. aureus including the methicillin-resistant strains, lysostaphin initiates rapid lysis of planktonic and sessile cells (biofilms) and has great potential for use in agriculture, food industries, and pharmaceutical industries. In the past few decades, there have been tremendous efforts in potentiating lysostaphin for better applications in these fields, including engineering of the enzyme for higher potency and lower immunogenicity with longer-lasting effects, formulation and immobilization of the enzyme for higher stability and better durability, and recombinant expression for low-cost industrial production and in situ biocontrol. These achievements are extensively reviewed in this article focusing on applications in disease control, food preservation, surface decontamination, and pathogen detection. In addition, some basic properties of lysostaphin that have been controversial and only elucidated recently are summarized, including the substrate-binding properties, the number of zinc-binding sites, the substrate range, and the cleavage site in the pentaglycine crossbridge. Resistance to lysostaphin is also highlighted with a focus on various mechanisms. This article is concluded with a discussion on the limitations and future perspectives for the actual applications of lysostaphin.
Collapse
Affiliation(s)
- Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyuan Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Su
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Nuraly Akimbekov
- Department of Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Kunz TC, Rühling M, Moldovan A, Paprotka K, Kozjak-Pavlovic V, Rudel T, Fraunholz M. The Expandables: Cracking the Staphylococcal Cell Wall for Expansion Microscopy. Front Cell Infect Microbiol 2021; 11:644750. [PMID: 33796486 PMCID: PMC8008081 DOI: 10.3389/fcimb.2021.644750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/03/2022] Open
Abstract
Expansion Microscopy (ExM) is a novel tool improving the resolution of fluorescence microscopy by linking the sample into a hydrogel that gets physically expanded in water. Previously, we have used ExM to visualize the intracellular Gram-negative pathogens Chlamydia trachomatis, Simkania negevensis, and Neisseria gonorrhoeae. Gram-positive bacteria have a rigid and thick cell wall that impedes classic expansion strategies. Here we developed an approach, which included a series of enzymatic treatments resulting in isotropic 4× expansion of the Gram-positive pathogen Staphylococcus aureus. We further demonstrate the suitability of the technique for imaging of planktonic bacteria as well as endocytosed, intracellular bacteria at a spatial resolution of approximately 60 nm with conventional confocal laser scanning microscopy.
Collapse
Affiliation(s)
- Tobias C Kunz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Marcel Rühling
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Adriana Moldovan
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Kerstin Paprotka
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Vera Kozjak-Pavlovic
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Martin Fraunholz
- Department of Microbiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
5
|
Mahmudul HM, Rasul MG, Akbar D, Narayanan R, Mofijur M. A comprehensive review of the recent development and challenges of a solar-assisted biodigester system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:141920. [PMID: 32889316 DOI: 10.1016/j.scitotenv.2020.141920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of fossil fuels and the environmental effect of their combustion products have attracted researchers to look into renewable energy sources. In addition, global mass production of waste has motivated communities to recycle and reuse the waste in a sustainable way to lower landfill waste and associated problems. The development of waste to energy (WtE) technology including the production of bioenergy, e.g. biogas produced from various waste through Anaerobic Digestion (AD), is considered one of the potential measures to achieve the sustainable development goals of the United Nations (UN). Therefore, this study reviews the most recent studies from relevant academic literature on WtE technology (particularly AD technology) for biogas production and the application of a solar-assisted biodigester (SAB) system aimed at improving performance. In addition, socio-economic factors, challenges, and perspectives have been reported. From the analysis of different technologies, further work on effective low-cost technologies is recommended, especially using SAB system upgrading and leveraging the opportunities of this system. The study found that the performance of the AD system is affected by a variety of factors and that different approaches can be applied to improve performance. It has also been found that solar energy systems efficiently raise the biogas digester temperature and through this, they maximize the biogas yield under optimum conditions. The study revealed that the solar-assisted AD system produces less pollution and improves performance compared to the conventional AD system.
Collapse
Affiliation(s)
- H M Mahmudul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia.
| | - M G Rasul
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - D Akbar
- School of Business and Law, Central Queensland University, QLD 4701, Australia
| | - R Narayanan
- School of Engineering and Technology, Central Queensland University, QLD 4701, Australia; Clean Energy Academy, Central Queensland University, QLD 4701, Australia
| | - M Mofijur
- School of Information, Systems and Modelling, University of Technology Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
6
|
Ibeji CU, Lawal MM, Tolufashe GF, Govender T, Naicker T, Maguire GEM, Lamichhane G, Kruger HG, Honarparvar B. The Driving Force for the Acylation of β-Lactam Antibiotics by L,D-Transpeptidase 2: Quantum Mechanics/Molecular Mechanics (QM/MM) Study. Chemphyschem 2019; 20:1126-1134. [PMID: 30969480 DOI: 10.1002/cphc.201900173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Indexed: 11/06/2022]
Abstract
β-lactam antibiotics, which are used to treat infectious diseases, are currently the most widely used class of antibiotics. This study focused on the chemical reactivity of five- and six-membered ring systems attached to the β-lactam ring. The ring strain energy (RSE), force constant (FC) of amide (C-N), acylation transition states and second-order perturbation stabilization energies of 13 basic structural units of β-lactam derivatives were computed using the M06-2X and G3/B3LYP multistep method. In the ring strain calculations, an isodesmic reaction scheme was used to obtain the total energies. RSE is relatively greater in the five-(1a-2c) compared to the six-membered ring systems except for 4b, which gives a RSE that is comparable to five-membered ring lactams. These variations were also observed in the calculated inter-atomic amide bond distances (C-N), which is why the six-membered ring lactams C-N bond are more rigid than those with five-membered ring lactams. The calculated ΔG# values from the acylation reaction of the lactams (involving the S-H group of the cysteine active residue from L,D transpeptidase 2) revealed a faster rate of C-N cleavage in the five-membered ring lactams especially in the 1-2 derivatives (17.58 kcal mol-1 ). This observation is also reflected in the calculated amide bond force constant (1.26 mDyn/A) indicating a weaker bond strength, suggesting that electronic factors (electron delocalization) play more of a role on reactivity of the β-lactam ring, than ring strain.
Collapse
Affiliation(s)
- Collins U Ibeji
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,Department of Pure and Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Monsurat M Lawal
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gideon F Tolufashe
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Tricia Naicker
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Gyanu Lamichhane
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
7
|
Santesmases MJ. The Bacterial Cell Wall in the Antibiotic Era: An Ontology in Transit Between Morphology and Metabolism, 1940s-1960s. JOURNAL OF THE HISTORY OF BIOLOGY 2016; 49:3-36. [PMID: 26242745 DOI: 10.1007/s10739-015-9417-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This essay details a historical crossroad in biochemistry and microbiology in which penicillin was a co-agent. I narrate the trajectory of the bacterial cell wall as the precise target for antibiotic action. As a strategic object of research, the bacterial cell wall remained at the core of experimental practices, scientific narratives and research funding appeals throughout the antibiotic era. The research laboratory was dedicated to the search for new antibiotics while remaining the site at which the mode of action of this new substance was investigated. This combination of circumstances made the bacterial wall an ontology in transit. As invisible as the bacterial wall was for clinical purposes, in the biological laboratory, cellular meaning in regard to the action of penicillin made the bacterial wall visible within both microbiology and biochemistry. As a border to be crossed, some components of the bacterial cell wall and the biochemical destruction produced by penicillin became known during the 1950s and 1960s. The cell wall was constructed piece by piece in a transatlantic circulation of methods, names, and images of the shape of the wall itself. From 1955 onwards, microbiologists and biochemists mobilized new names and associated conceptual meanings. The composition of this thin and rigid layer would account for its shape, growth and destruction. This paper presents a history of biochemical morphology: a chemistry of shape - the shape of bacteria, as provided by its wall - that accounted for biology, for life itself. While penicillin was being established as an industrially-manufactured object, it remained a scientific tool within the research laboratory, contributing to the circulation of further scientific objects.
Collapse
Affiliation(s)
- María Jesús Santesmases
- Instituto de Filosofía, CCHS, Consejo Superior de Investigaciobnes Científicas, Calle Albasanz 26-28, 28037, Madrid, Spain.
| |
Collapse
|
8
|
Wu N, Kamioka T, Kuroda Y. A novel screening system based on VanX-mediated autolysis-Application to Gaussia luciferase. Biotechnol Bioeng 2016; 113:1413-20. [PMID: 26694096 DOI: 10.1002/bit.25910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022]
Abstract
We report a novel bacterial screening protocol based on co-expressing the target protein with VanX, an enzyme which mediates Escherichia coli's autolysis and the release of the target protein into the culture medium, thereby facilitating activity measurement and screening from crude medium. This protocol as assessed with 19 Gaussia luciferase (GLuc) expressing colonies, was able to detect bioluminescence wavelength shift as small as 1.5 nm. We demonstrate the performance and versatility of this protocol by applying it to a semi-rational search for GLuc variants with red-shifted bioluminescence. Six GLuc's sites, F113, I114, W143, L144, A149, and F151, were randomly mutated, and for each site, 50 colonies were cultivated in 3 mL samples, from which bioluminescence was measured without purification. We identified two GLuc single mutation red-shifted variants: W143V and L144A. Their red shifted bioluminescence and biophysical/biochemical properties were confirmed using HPLC purified variants. Biotechnol. Bioeng. 2016;113: 1413-1420. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nan Wu
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Tetsuya Kamioka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan
| | - Yutaka Kuroda
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo, 184-8588, Japan.
| |
Collapse
|
9
|
Chan YGY, Frankel MB, Missiakas D, Schneewind O. SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. J Bacteriol 2016; 198:1123-36. [PMID: 26811319 PMCID: PMC4800868 DOI: 10.1128/jb.00983-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The envelope of Staphylococcus aureus is comprised of peptidoglycan and its attached secondary polymers, teichoic acid, capsular polysaccharide, and protein. Peptidoglycan synthesis involves polymerization of lipid II precursors into glycan strands that are cross-linked at wall peptides. It is not clear whether peptidoglycan structure is principally determined during polymerization or whether processive enzymes affect cell wall structure and function, for example, by generating conduits for protein secretion. We show here that S. aureus lacking SagB, a membrane-associated N-acetylglucosaminidase, displays growth and cell-morphological defects caused by the exaggerated length of peptidoglycan strands. SagB cleaves polymerized glycan strands to their physiological length and modulates antibiotic resistance in methicillin-resistant S. aureus (MRSA). Deletion of sagB perturbs protein trafficking into and across the envelope, conferring defects in cell wall anchoring and secretion, as well as aberrant excretion of cytoplasmic proteins. IMPORTANCE Staphylococcus aureus is thought to secrete proteins across the plasma membrane via the Sec pathway; however, protein transport across the cell wall envelope has heretofore not been studied. We report that S. aureus sagB mutants generate elongated peptidoglycan strands and display defects in protein secretion as well as aberrant excretion of cytoplasmic proteins. These results suggest that the thick peptidoglycan layer of staphylococci presents a barrier for protein secretion and that SagB appears to extend the Sec pathway across the cell wall envelope.
Collapse
Affiliation(s)
- Yvonne G Y Chan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| |
Collapse
|
10
|
Buttó LF, Schaubeck M, Haller D. Mechanisms of Microbe-Host Interaction in Crohn's Disease: Dysbiosis vs. Pathobiont Selection. Front Immunol 2015; 6:555. [PMID: 26635787 PMCID: PMC4652232 DOI: 10.3389/fimmu.2015.00555] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease (CD) is a systemic chronic inflammatory condition mainly characterized by discontinuous transmural pathology of the gastrointestinal tract and frequent extraintestinal manifestations with intermittent episodes of remission and relapse. Genome-wide association studies identified a number of risk loci that, catalyzed by environmental triggers, result in the loss of tolerance toward commensal bacteria based on dysregulated innate effector functions and antimicrobial defense, leading to exacerbated adaptive immune responses responsible for chronic immune-mediated tissue damage. In this review, we discuss the inter-related role of changes in the intestinal microbiota, epithelial barrier integrity, and immune cell functions on the pathogenesis of CD, describing the current approaches available to investigate the molecular mechanisms underlying the disease. Substantial effort has been dedicated to define disease-associated changes in the intestinal microbiota (dysbiosis) and to link pathobionts to the etiology of inflammatory bowel diseases. A cogent definition of dysbiosis is lacking, as well as an agreement of whether pathobionts or complex shifts in the microbiota trigger inflammation in the host. Among the rarely available animal models, SAMP/Yit and TNFdeltaARE mice are the best known displaying a transmural CD-like phenotype. New hypothesis-driven mouse models, e.g., epithelial-specific Caspase8−/−, ATG16L1−/−, and XBP1−/− mice, validate pathway-focused function of specific CD-associated risk genes highlighting the role of Paneth cells in antimicrobial defense. To study the causal role of bacteria in initiating inflammation in the host, the use of germ-free mouse models is indispensable. Unraveling the interactions of genes, immune cells and microbes constitute a criterion for the development of safe, reliable, and effective treatment options for CD.
Collapse
Affiliation(s)
- Ludovica F Buttó
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Monika Schaubeck
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München , Freising-Weihenstephan , Germany
| |
Collapse
|
11
|
Teo CW, Wong PCY. Enzyme augmentation of an anaerobic membrane bioreactor treating sewage containing organic particulates. WATER RESEARCH 2014; 48:335-44. [PMID: 24139106 DOI: 10.1016/j.watres.2013.09.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/26/2013] [Accepted: 09/23/2013] [Indexed: 05/08/2023]
Abstract
Hydrolytic enzymes offer the potential for enhancing the hydrolysis of organic particulates, which tends to be rate limiting in the anaerobic treatment of particulate containing wastewaters. In this study, the effects of enzyme augmentation on the biological performance of a laboratory submerged anaerobic membrane bioreactor (AnMBR) were investigated. A hydrolytic enzyme blend containing proteases, amylases and lipases was added to the bioreactor daily at doses ranging from 0.9 to 18 mL/g of influent COD to enhance the hydrolysis of organic particulates and soluble macromolecules. Enhanced enzymatic hydrolysis resulted in the reduction of total and volatile suspended solids by approximately 19% and 22%, respectively, on the average. Overall COD removal efficiency was unaffected while the average biogas production increased from 0.27 to 0.34 L/g of influent COD. Additionally, the concentrations of bound extracellular polymeric substances (EPS) and soluble microbial products (SMP) decreased and increased respectively, suggesting the enzymatic hydrolysis of EPS to SMP. Low enzymatic activities were detected throughout the entire study, probably due to the instability of free enzymes in the bioreactor environment. Nevertheless, membrane retention of exogenous enzymes within the AnMBR is an inherent feature, as evidenced by size exclusion chromatography.
Collapse
Affiliation(s)
- Chee Wee Teo
- Division of Environmental and Water Resources Engineering, School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore; Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | | |
Collapse
|
12
|
Abstract
The cytoplasmic membrane of most bacteria is surrounded by a more or less thick murein layer (peptidoglycan) that protects the protoplast from mechanical damage, osmotic rupture and lysis. When bacteria are dividing processes are initiated stepwise that involve DNA replication, constriction of the membranes, cell growth, biosynthesis of new murein, and finally the generation of two daughter cells. As the daughter cells are still covalently interlinked by the murein network they must be separated by specific peptidoglycan hydrolases, also referred to as autolysins. In staphylococci, the major autolysin (Atl) and its processed products N-acetylmuramoyl-l-alanine amidase (AM) and endo-β-N-acetylglucosaminidase (GL) have been in the research focus for long time. This review addresses phenotypic consequences of atl mutants, impact of Atl in virulence, the mechanism of targeting to the septum region, regulation of atl, the structure of the amidase and the repeat regions, as well as the phylogeny of Atl and its use in Staphylococcus genus and species typing.
Collapse
|
13
|
Affiliation(s)
- Tomio Kawata
- Department of Food Microbiology; Tokushima University School of Medicine; Tokushima
| | - Kenji Takumi
- Department of Food Microbiology; Tokushima University School of Medicine; Tokushima
| |
Collapse
|
14
|
Khan H, Flint SH, Yu PL. Determination of the mode of action of enterolysin A, produced by Enterococcus faecalis B9510. J Appl Microbiol 2013; 115:484-94. [PMID: 23639072 DOI: 10.1111/jam.12240] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/16/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
AIM The current study aimed to visualize the damage caused by enterolysin A to the cells of sensitive strains and to find out cleavage site within the peptidoglycan moiety of bacterial cell walls. METHODS AND RESULTS Enterolysin A produced by a local isolate, Enterococcus faecalis B9510 was found to rapidly kill cells of the sensitive strain Lactococcus lactis ssp. cremoris 2144 during 120 min of treatment as compared to the untreated control where no such effect was observed. Transmission electron microscopy of the enterolysin A-treated cells revealed leaking of the cytoplasmic contents ultimately resulting in complete lysis of cell walls. To find the cleavage site, purified cell walls of L. lactis ssp. cremoris 2144, Pediococcus pentosaceus 43201 and Lactobacillus delbrueckii ssp. bulgaricus ATCC 11842 were treated with enterolysin A, and liberated amino acids were derivatized for N and C terminals and analysed using thin layer chromatography on silica gel with isopropanol as solvent. The results showed that enterolysin A cleaves the peptide bonds at two locations within peptidoglycan subunits. The first location is between L-alanine and D-glutamic acid of the stem peptide and the other location is between L-lysine of the stem peptide and D-aspartic acid of the interpeptide bridge. CONCLUSIONS Enterolysin A cleaves the peptide bonds within the stem peptide as well as in the interpeptide bridge of Gram-positive bacterial cell walls. This gives a possible reason for the broad spectrum of enterolysin A activity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report identifying the cleavage site of enterolysin A within the cell walls of sensitive bacteria. This will help in identifying potential applications for enterolysin A.
Collapse
Affiliation(s)
- H Khan
- School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
15
|
Derbise A, Pierre F, Merchez M, Pradel E, Laouami S, Ricard I, Sirard JC, Fritz J, Lemaître N, Akinbi H, Boneca IG, Sebbane F. Inheritance of the lysozyme inhibitor Ivy was an important evolutionary step by Yersinia pestis to avoid the host innate immune response. J Infect Dis 2013; 207:1535-43. [PMID: 23402825 DOI: 10.1093/infdis/jit057] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Yersinia pestis (the plague bacillus) and its ancestor, Yersinia pseudotuberculosis (which causes self-limited bowel disease), encode putative homologues of the periplasmic lysozyme inhibitor Ivy and the membrane-bound lysozyme inhibitor MliC. The involvement of both inhibitors in virulence remains subject to debate. METHODS Mutants lacking ivy and/or mliC were generated. We evaluated the mutants' ability to counter lysozyme, grow in serum, and/or counter leukocytes; to produce disease in wild-type, neutropenic, or lysozyme-deficient rodents; and to induce host inflammation. RESULTS MliC was not required for lysozyme resistance and the development of plague. Deletion of ivy decreased Y. pestis' ability to counter lysozyme and polymorphonuclear neutrophils, but it did not affect the bacterium's ability to grow in serum or resist macrophages. Y. pestis lacking Ivy had attenuated virulence, unless animals were neutropenic or lysozyme deficient. The Ivy mutant induced inflammation to a degree similar to that of the parental strain. Last, Y. pseudotuberculosis did not require Ivy to counter lysozyme and for virulence. CONCLUSIONS Ivy is required to counter lysozyme during infection, but its role as a virulence factor is species dependent. Our study also shows that a gene that is not necessary for the virulence of an ancestral bacterium may become essential in the emergence of a new pathogen.
Collapse
Affiliation(s)
- Anne Derbise
- Equipe Peste et Yersinia pestis, INSERM U1019, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yao F, Li Z, Zhang Y, Zhang S. A novel short peptidoglycan recognition protein in amphioxus: identification, expression and bioactivity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:332-341. [PMID: 22885632 DOI: 10.1016/j.dci.2012.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 07/21/2012] [Accepted: 07/22/2012] [Indexed: 06/01/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are widely distributed in invertebrates and vertebrates, and structure-activity relationship of insect and mammalian PGRPs has been well characterized, but functional and structural insights into PGRPs in other species are rather limited. Here we identified a novel short PGRP gene from the amphioxus Branchiostoma japonicum, named pgrp-s, which possesses a domain combination of ChtBD1 domain-PGRP domain, which is unique to all known PGRPs. Amphioxus pgrp-s was predominantly expressed in the hepatic caecum, hind-gut and muscle in a tissue-specific manner. Recombinant PGRP-S, rPGRP-S, and truncated protein with ChtBD1 domain deleted, rP86/250, both showed affinity to Dap-type PGN, Lys-type PGN and chitin. Consistently, they were also able to bind to Escherichia coli, Staphylococcus aureus and Pichia pastoris. Moreover, both rPGRP-S and rP86/250 had amidase enzymatic activity, capable of hydrolyzing Dap-type and Lys-type PGNs. Like vertebrate PGRPs, rPGRP-S was directly microbicidal, capable of killing E. coli, S. aureus and P. pastoris, whereas rP86/250 only inhibited the growth of E. coli and S. aureus, and its anti-P. pastoris activity was significantly reduced. It is clear that neither the binding of amphioxus PGRP-S nor its amidase enzymatic activity depend on the N-terminal ChtBD1 domain, but its antifungal activity does. Collectively, these data suggested that amphioxus PGRP-S may function as a multivalent pattern recognition receptor, capable of recognizing PGN and chitin, a microbicidal agent, capable of killing bacteria such as E. coli and S. aureus and fungus like P. pastoris, and probably a PGN scavenger, capable of hydrolyzing PGN.
Collapse
Affiliation(s)
- Feng Yao
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | | | | | | |
Collapse
|
17
|
George SE, Chikkamadaiah R, Durgaiah M, Joshi AA, Thankappan UP, Madhusudhana SN, Sriram B. Biochemical characterization and evaluation of cytotoxicity of antistaphylococcal chimeric protein P128. BMC Res Notes 2012; 5:280. [PMID: 22682527 PMCID: PMC3464943 DOI: 10.1186/1756-0500-5-280] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Antibiotic resistant S. aureus infection is a global threat. Newer approaches are required to control this organism in the current scenario. Cell wall degrading enzymes have been proposed as antibacterial agents for human therapy. P128 is a novel antistaphylococcal chimeric protein under development against S. aureus for human use which derives its bacterial cell wall degrading catalytic endopeptidase domain from ORF56, the Phage K tail-structure associated enzyme. Lead therapeutic entities have to be extensively characterized before they are assessed in animals for preclinical safety and toxicity. P128 is effective against antibiotic resistant strains as well as against a panel of isolates of global significance. Its efficacy against S. aureus in vivo has been established in our lab. Against this background, this study describes the characterization of this protein for its biochemical properties and other attributes. RESULTS We evaluated the requirement or effect of divalent cations and the metal ion chelator, EDTA upon biological activity of P128. As the protein is intended for therapeutic use, we tested its activity in presence of body fluids and antibodies specific to P128. For the same reason, we used standard human cell lines to evaluate cytotoxic effects, if any.The divalent cations, calcium and magnesium at upto 25 mM and Zinc upto 2.5 mM neither inhibited nor enhanced P128 activity. Incubation of this protein with EDTA, human serum, plasma and blood also did not alter the antibacterial properties of the molecule. No inhibitory effect was observed in presence of hyper-immune sera raised against the protein. Finally, P128 did not show any cytotoxic effect on HEp2 and Vero cells at the highest concentration (5 mg/mL) tested. CONCLUSIONS The results presented here throw light on several properties of protein P128. Taken together, these substantiate the potential of P128 for therapeutic use against S. aureus. Further development of the protein and conduct of preclinical safety studies in animals is warranted.
Collapse
Affiliation(s)
- Shilpa E George
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560 022, India
| | - Ravisha Chikkamadaiah
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560 022, India
| | - Murali Durgaiah
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560 022, India
| | - Amruta A Joshi
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560 022, India
| | - Ullas P Thankappan
- Current address: Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, 560029, India
| | - Shampur N Madhusudhana
- Current address: Department of Neurovirology, National Institute of Mental Health & Neurosciences, Bangalore, 560029, India
| | - Bharathi Sriram
- Gangagen Biotechnologies Pvt Ltd., No. 12, 5th Cross, Raghavendra Layout, Tumkur Road, Yeshwantpur, Bangalore, 560 022, India
| |
Collapse
|
18
|
Smotrov OI, Borzenkov VM, Surovtsev VI. [Cause of abnormal acidity of lysozyme ionogenic active center groups at cell wall lysis]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 37:631-6. [PMID: 22332358 DOI: 10.1134/s1068162011050177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
pH-Dependence of the kinetic parameters of Micrococcus lysodeicticus cell lysis under the action of the protein hen egg lysozyme at the pH 6.9-10.0 at 25 and 37 degrees C has been investigated. The pKb effective values for the lysozyme catalytic activity controlling group have been calculated. The DeltaHion value indicates that this group is the carboxyl one though its pK (9.15 at 25 degrees C) is found far for the limit of the carboxyl groups pK values. The cause of this abnormal pK values is supposed to be the strong negative charge of the bacterial cell wall. As a result the enzyme that catalyzes the hydrolysis ofcopolymer N-acetylglucosamine--N-acetylmuramic acid acts in the high acidity microenvironment.
Collapse
|
19
|
Anderson VJ, Kern JW, McCool JW, Schneewind O, Missiakas D. The SLH-domain protein BslO is a determinant of Bacillus anthracis chain length. Mol Microbiol 2011; 81:192-205. [PMID: 21585566 PMCID: PMC3124567 DOI: 10.1111/j.1365-2958.2011.07688.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Gram-positive pathogen Bacillus anthracis grows in characteristic chains of individual, rod-shaped cells. Here, we report the cell-separating activity of BslO, a putative N-acetylglucosaminidase bearing three N-terminal S-layer homology (SLH) domains for association with the secondary cell wall polysaccharide (SCWP). Mutants with an insertional lesion in the bslO gene exhibit exaggerated chain lengths, although individual cell dimensions are unchanged. Purified BslO complements this phenotype in trans, effectively dispersing chains of bslO-deficient bacilli without lysis and localizing to the septa of vegetative cells. Compared with the extremely long chain lengths of csaB bacilli, which are incapable of binding proteins with SLH-domains to SCWP, bslO mutants demonstrate a chaining phenotype that is intermediate between wild-type and csaB. Computational simulation suggests that BslO effects a non-random distribution of B. anthracis chain lengths, implying that all septa are not equal candidates for separation.
Collapse
Affiliation(s)
| | - Justin W. Kern
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Justin W. McCool
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
20
|
Cegelski L, O'Connor RD, Stueber D, Singh M, Poliks B, Schaefer J. Plant cell-wall cross-links by REDOR NMR spectroscopy. J Am Chem Soc 2010; 132:16052-7. [PMID: 20964382 DOI: 10.1021/ja104827k] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a new method that integrates selective biosynthetic labeling and solid-state NMR detection to identify in situ important protein cross-links in plant cell walls. We have labeled soybean cells by growth in media containing l-[ring-d(4)]tyrosine and l-[ring-4-(13)C]tyrosine, compared whole-cell and cell-wall (13)C CPMAS spectra, and examined intact cell walls using (13)C{(2)H} rotational echo double-resonance (REDOR) solid-state NMR. The proximity of (13)C and (2)H labels shows that 25% of the tyrosines in soybean cell walls are part of isodityrosine cross-links between protein chains. We also used (15)N{(13)C} REDOR of intact cell walls labeled by l-[ε-(15)N,6-(13)C]lysine and depleted in natural-abundance (15)N to establish that the side chains of lysine are not significantly involved in covalent cross-links to proteins or sugars.
Collapse
Affiliation(s)
- Lynette Cegelski
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States.
| | | | | | | | | | | |
Collapse
|
21
|
Biziulevičius GA, Kazlauskatė J, Lukauskas K, Ramanauskienė J, Sederevičius A. An enzymatic cow immunity-targeted approach to reducing milk somatic cell count. 1. A preliminary study using lysosubtilin. FOOD AGR IMMUNOL 2010. [DOI: 10.1080/09540100400003253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
22
|
Brown GW, King G, Sugiyama H. Penicillin-Lysozyme Conversion of Clostridium botulinum Types A and E into Protoplasts and Their Stabilization as L-Form Cultures. J Bacteriol 2010; 104:1325-31. [PMID: 16559111 PMCID: PMC248295 DOI: 10.1128/jb.104.3.1325-1331.1970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When logarithmically growing cultures of Clostridium botulinum types A and E are treated with penicillin in a liquid medium containing 8% polyethylene glycol, protoplast-like spherical bodies are formed. The penicillin effect shows a dose-response relationship; the largest yield of converted forms is obtained with 10,000 units/ml, but the treatment leaves many intact bacilli. Lower antibiotic concentrations produce smaller numbers of spherical bodies, but lysis of bacilli results in suspensions that are relatively free of rods. Cells grown under the same conditions and treated with 250 mug of lysozyme/ml do not form spherical bodies. However, a combination of 1,250 to 2,500 units of penicillin and 100 mug of lysozyme/ml yields suspensions which have sphere counts in excess of 1.0 x 10(8)/ml and only a few intact rods. The state of the culture at the time of addition of the antibiotic and enzyme is critical. Suspensions of these protoplasts can be adapted to grow as stable L-form cultures producing the same toxin type as the parent cultures.
Collapse
Affiliation(s)
- G W Brown
- Department of Bacteriology, and the Food Research Institute, University of Wisconsin, Madison, Wisconsin 53706
| | | | | |
Collapse
|
23
|
Wadstrom T, Vesterberg O. Studies on endo-beta-acetylglucosaminidase, staphylolytic peptidase, and N-acetylmuramyl-L-alanine amidase in lysostaphin and from Staphylococcus aureus. ACTA PATHOLOGICA ET MICROBIOLOGICA SCANDINAVICA. SECTION B: MICROBIOLOGY AND IMMUNOLOGY 2009; 79:248-64. [PMID: 4996631 DOI: 10.1111/j.1699-0463.1971.tb02152.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Parisien A, Lan CQ. Classification of bacterial cell wall hydrolysases and their potentials as novel alternatives to antibiotics - a response to the letter of Biziulevicius and Kazlauskaite. J Appl Microbiol 2009. [DOI: 10.1111/j.1365-2672.2008.04040.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Structural basis of murein peptide specificity of a gamma-D-glutamyl-l-diamino acid endopeptidase. Structure 2009; 17:303-13. [PMID: 19217401 DOI: 10.1016/j.str.2008.12.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 11/24/2008] [Accepted: 12/08/2008] [Indexed: 11/22/2022]
Abstract
The crystal structures of two homologous endopeptidases from cyanobacteria Anabaena variabilis and Nostoc punctiforme were determined at 1.05 and 1.60 A resolution, respectively, and contain a bacterial SH3-like domain (SH3b) and a ubiquitous cell-wall-associated NlpC/P60 (or CHAP) cysteine peptidase domain. The NlpC/P60 domain is a primitive, papain-like peptidase in the CA clan of cysteine peptidases with a Cys126/His176/His188 catalytic triad and a conserved catalytic core. We deduced from structure and sequence analysis, and then experimentally, that these two proteins act as gamma-D-glutamyl-L-diamino acid endopeptidases (EC 3.4.22.-). The active site is located near the interface between the SH3b and NlpC/P60 domains, where the SH3b domain may help define substrate specificity, instead of functioning as a targeting domain, so that only muropeptides with an N-terminal L-alanine can bind to the active site.
Collapse
|
26
|
Biziulevicius GA, Kazlauskaite J. Bacterial cell wall hydrolases as novel alternatives to antibiotics: a critical comment on Parisien et al.'s (2008) interpretation of the topic. J Appl Microbiol 2009; 106:1752-3; author reply 1754-9. [PMID: 19245400 DOI: 10.1111/j.1365-2672.2009.04253.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ. Binding and Cellular Activation Studies Reveal That Toll-like Receptor 2 Can Differentially Recognize Peptidoglycan from Gram-positive and Gram-negative Bacteria. J Biol Chem 2009; 284:8643-53. [PMID: 19164296 DOI: 10.1074/jbc.m806633200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although much progress has been made toward the identification of innate immune receptors, far less is known about how these receptors recognize specific microbial products. Such studies have been hampered by the need to purify compounds from microbial sources and a reliance on biological assays rather than direct binding to monitor recognition. We have employed surface plasmon resonance (SPR) binding studies using a wide range of well defined synthetic muropeptides derived from Gram-positive (lysine-containing) and Gram-negative (diaminopimelic acid (DAP)-containing) bacteria to demonstrate that Toll-like receptor 2 can recognize peptidoglycan (PGN). In the case of lysine-containing muropeptides, a limited number of compounds, which were derived from PGN remodeled by bacterial autolysins, was recognized. However, a wider range of DAP-containing muropeptides was bound with high affinity, and these compounds were derived from nascent and remodeled PGN. The difference in recognition of the two classes of muropeptides is proposed to be a strategy by the host to respond appropriately to Gram-negative and -positive bacteria, which produce vastly different quantities of PGN. It was also found that certain modifications of the carboxylic acids of isoglutamine and DAP can dramatically reduce binding, and thus, bacterial strains may employ such modifications to evade innate immune detection. Cellular activation studies employing highly purified PGN from Bacillus licheniformis, Bacillus subtilis, Escherichia coli, Lactobacillus plantarum, Micrococcus luteus, and Staphylococcus aureus support the structure binding relationship. The data firmly establish Toll-like receptor 2 as an innate immune sensor for PGN and provides an understanding of host-pathogen interactions at the molecular level.
Collapse
Affiliation(s)
- Jinkeng Asong
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
28
|
Kumar JK. Lysostaphin: an antistaphylococcal agent. Appl Microbiol Biotechnol 2008; 80:555-61. [PMID: 18607587 DOI: 10.1007/s00253-008-1579-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
Lysostaphin is a zinc metalloenzyme which has a specific lytic action against Staphylococcus aureus. Lysostaphin has activities of three enzymes namely, glycylglycine endopeptidase, endo-beta-N-acetyl glucosamidase and N-acteyl muramyl-L-alanine amidase. Glycylglycine endopeptidase specifically cleaves the glycine-glycine bonds, unique to the interpeptide cross-bridge of the S. aureus cell wall. Due to its unique specificity, lysostaphin could have high potential in the treatment of antibiotic-resistant staphylococcal infections. This review article presents a current understanding of the lysostaphin and its applications in therapeutic agent as a treatment against antibiotic-resistant S. aureus and methicillin-resistant S. aureus (MRSA) infections, either alone or in combination with other antibiotics.
Collapse
Affiliation(s)
- Jaspal K Kumar
- Department of Biochemistry, National University of Singapore, Kent Ridge, Singapore.
| |
Collapse
|
29
|
|
30
|
Herbert S, Bera A, Nerz C, Kraus D, Peschel A, Goerke C, Meehl M, Cheung A, Götz F. Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 2007; 3:e102. [PMID: 17676995 PMCID: PMC1933452 DOI: 10.1371/journal.ppat.0030102] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 06/04/2007] [Indexed: 12/19/2022] Open
Abstract
It has been shown recently that modification of peptidoglycan by O-acetylation renders pathogenic staphylococci resistant to the muramidase activity of lysozyme. Here, we show that a Staphylococcus aureus double mutant defective in O-acetyltransferase A (OatA), and the glycopeptide resistance-associated two-component system, GraRS, is much more sensitive to lysozyme than S. aureus with the oatA mutation alone. The graRS single mutant was resistant to the muramidase activity of lysozyme, but was sensitive to cationic antimicrobial peptides (CAMPs) such as the human lysozyme-derived peptide 107R-A-W-V-A-W-R-N-R115 (LP9), polymyxin B, or gallidermin. A comparative transcriptome analysis of wild type and the graRS mutant revealed that GraRS controls 248 genes. It up-regulates global regulators (rot, sarS, or mgrA), various colonization factors, and exotoxin-encoding genes, as well as the ica and dlt operons. A pronounced decrease in the expression of the latter two operons explains why the graRS mutant is also biofilm-negative. The decrease of the dlt transcript in the graRS mutant correlates with a 46.7% decrease in the content of esterified d-alanyl groups in teichoic acids. The oatA/dltA double mutant showed the highest sensitivity to lysozyme; this mutant completely lacks teichoic acid–bound d-alanine esters, which are responsible for the increased susceptibility to CAMPs and peptidoglycan O-acetylation. Our results demonstrate that resistance to lysozyme can be dissected into genes mediating resistance to its muramidase activity (oatA) and genes mediating resistance to CAMPs (graRS and dlt). The two lysozyme activities act synergistically, as the oatA/dltA or oatA/graRS double mutants are much more susceptible to lysozyme than each of the single mutants. In humans, lysozyme plays an important role in the suppression of bacterial infections. However, some bacterial pathogens, such as Staphylococcus aureus, are completely resistant to lysozyme. Here we demonstrate that lysozyme acts on S. aureus in two ways: as a muramidase (cell wall lytic enzyme) and as a cationic antimicrobial peptide (CAMP). S. aureus has developed resistance mechanisms against both activities by modifying distinct cell wall structures. Modification of the peptidoglycan by O-acetylation (OatA) renders the cells resistant to the muramidase activity. Modification of teichoic acids by d-alanine esterification (Dlt) renders the cells resistant to lysozyme's CAMPs and other CAMPs. Transcriptome analysis of the glycopeptide resistance-associated (GraRS) two-component system revealed that this global regulator controls 248 genes such as other global regulators, colonization factors, or exotoxin-encoding genes. Since GraRS also upregulates the dlt operon, it was not surprising that in the graRS mutant teichoic acid d-alanylation is markedly decreased, which explains its increased sensitivity to CAMPs. By comparative analysis of mutants we were able to dissect genes that were responsive to the dual activities of lysozyme. Here we show how efficiently S. aureus is protected from the human defense system, which enables this pathogen to cause persistent infections.
Collapse
Affiliation(s)
- Silvia Herbert
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Agnieszka Bera
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Christiane Nerz
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
| | - Dirk Kraus
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Christiane Goerke
- Medical Microbiology and Hygiene Department, University of Tübingen, Tübingen, Germany
| | - Michael Meehl
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Ambrose Cheung
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire, United States of America
| | - Friedrich Götz
- Microbial Genetics Department, University of Tübingen, Tübingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
31
|
Marraffini LA, Schneewind O. Sortase C-mediated anchoring of BasI to the cell wall envelope of Bacillus anthracis. J Bacteriol 2007; 189:6425-36. [PMID: 17586639 PMCID: PMC1951891 DOI: 10.1128/jb.00702-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Vegetative forms of Bacillus anthracis replicate in tissues of an infected host and precipitate lethal anthrax disease. Upon host death, bacilli form dormant spores that contaminate the environment, thereby gaining entry into new hosts where spores germinate and once again replicate as vegetative forms. We show here that sortase C, an enzyme that is required for the formation of infectious spores, anchors BasI polypeptide to the envelope of predivisional sporulating bacilli. BasI anchoring to the cell wall requires the active site cysteine of sortase C and an LPNTA motif sorting signal at the C-terminal end of the BasI precursor. The LPNTA motif of BasI is cleaved between the threonine (T) and the alanine (A) residue; the C-terminal carboxyl group of threonine is subsequently amide linked to the side chain amino group of diaminopimelic acid within the wall peptides of B. anthracis peptidoglycan.
Collapse
Affiliation(s)
- Luciano A Marraffini
- Department of Microbiology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | |
Collapse
|
32
|
Hamilton A, Popham DL, Carl DJ, Lauth X, Nizet V, Jones AL. Penicillin-binding protein 1a promotes resistance of group B streptococcus to antimicrobial peptides. Infect Immun 2006; 74:6179-87. [PMID: 17057092 PMCID: PMC1695509 DOI: 10.1128/iai.00895-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evasion of host immune defenses is critical for the progression of invasive infections caused by the leading neonatal pathogen, group B streptococcus (GBS). Upon characterizing the factors required for virulence in a neonatal rat sepsis model, we found that a surface-associated penicillin-binding protein (PBP1a), encoded by ponA, played an essential role in resistance of GBS to phagocytic clearance. In order to elucidate how PBP1a promotes resistance to innate immunity, we compared the susceptibility of wild-type GBS and an isogenic ponA mutant to the bactericidal components of human neutrophils. The isogenic strains were found to be equally capable of blocking complement activation on the bacterial surface and equally associated with phagocytes and susceptible to oxidative killing. In contrast, the ponA mutant was significantly more susceptible to killing by cationic antimicrobial peptides (AMPs) of the cathelicidin and defensin families, which are now recognized as integral components of innate host defense against invasive bacterial infection. These observations may help explain the sensitivity to phagocytic killing and attenuated virulence of the ponA mutant. This novel function for PBP1a in promoting resistance of GBS to AMP did not involve an alteration in bacterial surface charge or peptidoglycan cross-linking. While the peptidoglycan polymerization and cross-linking activity of PBPs are essential for bacterial survival, our study is the first to identify a role for a PBP in resistance to host AMPs.
Collapse
Affiliation(s)
- Andrea Hamilton
- Department of Pediatrics, University of Washington, and Children's Hospital and Regional Medical Center, 307 Westlake Ave. N, Suite 300, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
33
|
Bera A, Biswas R, Herbert S, Kulauzovic E, Weidenmaier C, Peschel A, Götz F. Influence of wall teichoic acid on lysozyme resistance in Staphylococcus aureus. J Bacteriol 2006; 189:280-3. [PMID: 17085565 PMCID: PMC1797201 DOI: 10.1128/jb.01221-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus peptidoglycan (PG) is completely resistant to the hydrolytic activity of lysozyme. Here we show that modifications in PG by O acetylation, wall teichoic acid, and a high degree of cross-linking contribute to this resistance.
Collapse
Affiliation(s)
- Agnieszka Bera
- Microbial Genetics, University of Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Gründling A, Schneewind O. Cross-linked peptidoglycan mediates lysostaphin binding to the cell wall envelope of Staphylococcus aureus. J Bacteriol 2006; 188:2463-72. [PMID: 16547033 PMCID: PMC1428428 DOI: 10.1128/jb.188.7.2463-2472.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Staphylococcus simulans bv. staphylolyticus secretes lysostaphin, a bacteriocin that cleaves pentaglycine cross bridges in the cell wall of Staphylococcus aureus. The C-terminal cell wall-targeting domain (CWT) of lysostaphin is required for selective binding of this bacteriocin to S. aureus cells; however, the molecular target for this was unknown. We used purified green fluorescent protein fused to CWT (GFP-CWT) to reveal species-specific association of the reporter with staphylococci. GFP-CWT bound S. aureus cells as well as purified peptidoglycan sacculi. The addition of cross-linked murein, disaccharides linked to interconnected wall peptides, blocked GFP-CWT binding to staphylococci, whereas murein monomers or lysostaphin-solubilized cell wall fragments did not. S. aureus strain Newman variants lacking the capacity for synthesizing polysaccharide capsule (capFO), poly-N-acetylglucosamine (icaAC), lipoprotein (lgt), cell wall-anchored proteins (srtA), or the glycolipid anchor of lipoteichoic acid (ypfP) bound GFP-CWT similar to wild-type staphylococci. A tagO mutant strain, defective in the synthesis of polyribitol wall teichoic acid attached to the cell wall envelope, displayed increased GFP-CWT binding. In contrast, a femAB mutation, reducing both the amount and the length of peptidoglycan cross-linking (monoglycine cross bridges), showed a dramatic reduction in GFP-CWT binding. Thus, the CWT domain of lysostaphin directs the bacteriocin to cross-linked peptidoglycan, which also serves as the substrate for its glycyl-glycine endopeptidase domain.
Collapse
|
35
|
Abstract
After starting out to become a physician, by a series of accidents I found myself at NIH in 1951 during its most productive growth phase. At age 26, I had a fully funded, independent laboratory and did not know what to work on. With advice from colleagues, I initiated a study of how penicillin kills bacteria. Twenty years later, my lab had outlined the structure and biosynthesis of the peptidoglycan of bacterial cell walls and had discovered that penicillin inhibited the terminal step in its biosynthesis catalyzed by transpeptidases. I then switched fields, moving to Harvard in 1968 and beginning the study of human HLA proteins. Twenty-five years later, the last half of which was spent in a stimulating collaboration with the late Don Wiley, our labs had isolated, crystallized, and elucidated the three-dimensional structures of these molecules and shown that their principal function was to present peptides to the immune system in initiating an immune response. More recently, the laboratory has focused on natural killer cells and their roles in peripheral blood and in the pregnant uterine decidua. It has been a wonderful scientific journey.
Collapse
Affiliation(s)
- Jack L Strominger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
36
|
Bera A, Herbert S, Jakob A, Vollmer W, Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 2005; 55:778-87. [PMID: 15661003 DOI: 10.1111/j.1365-2958.2004.04446.x] [Citation(s) in RCA: 335] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus species belong to one of the few bacterial genera that are completely lysozyme resistant, which greatly contributes to their persistence and success in colonizing the skin and mucosal areas of humans and animals. In an attempt to discover the cause of lysozyme resistance, we identified a gene, oatA, in Staphylococcus aureus. The corresponding oatA deletion mutant had an increased sensitivity to lysozyme. HPLC and electrospray ionization tandem mass spectrometry analyses of the cell wall revealed that the muramic acid of peptidoglycan of the wild-type strain was O-acetylated at C6-OH, whereas the muramic acid of the oatA mutant lacked this modification. The complemented oatA mutant was lysozyme resistant. We identified the first bacterial peptidoglycan-specific O-acetyltransferase in S. aureus and showed that OatA, an integral membrane protein, is the molecular basis for the high lysozyme resistance in staphylococci.
Collapse
Affiliation(s)
- Agnieszka Bera
- Microbial Genetics, University of Tübingen, D-72076 Tübingen, Auf der Morgenstelle, Germany
| | | | | | | | | |
Collapse
|
37
|
Dmitriev BA, Toukach FV, Holst O, Rietschel ET, Ehlers S. Tertiary structure of Staphylococcus aureus cell wall murein. J Bacteriol 2004; 186:7141-8. [PMID: 15489425 PMCID: PMC523189 DOI: 10.1128/jb.186.21.7141-7148.2004] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently described scaffold model of murein architecture depicts the gram-negative bacterial cell wall as a gel-like matrix composed of cross-linked glycan strands oriented perpendicularly to the plasma membrane while peptide bridges adopt a parallel orientation (B. A. Dmitriev, F. V. Toukach, K. J. Schaper, O. Holst, E. T. Rietschel, and S. Ehlers, J. Bacteriol. 185:3458-3468, 2003). Based on the scaffold model, we now present computer simulation studies on the peptidoglycan arrangement of the gram-positive organism Staphylococcus aureus, which show that the orientation of peptide bridges is critical for the highly cross-linked murein architecture of this microorganism. According to the proposed refined model, staphylococcal murein is composed of glycan and oligopeptide chains, both running in a plane that is perpendicular to the plasma membrane, with oligopeptide chains adopting a zigzag conformation and zippering adjacent glycan strands along their lengths. In contrast to previous models of murein in gram-positive bacteria, this model reflects the high degree of cross-linking that is the hallmark of the staphylococcal cell wall and is compatible with distinguishing features of S. aureus cytokinesis such as the triple consecutive alteration of the division plane orientation and the strictly centripetal mode of septum closure.
Collapse
Affiliation(s)
- Boris A Dmitriev
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | |
Collapse
|
38
|
Wang ZM, Li X, Cocklin RR, Wang M, Wang M, Fukase K, Inamura S, Kusumoto S, Gupta D, Dziarski R. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 2003; 278:49044-52. [PMID: 14506276 DOI: 10.1074/jbc.m307758200] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are pattern recognition molecules coded by up to 13 genes in insects and 4 genes in mammals. In insects PGRPs activate antimicrobial pathways in the hemolymph and cells, or are peptidoglycan (PGN)-lytic amidases. In mammals one PGRP is an antibacterial neutrophil protein. We report that human PGRP-L is a Zn2+-dependent N-acetylmuramoyl-l-alanine amidase (EC 3.5.1.28), an enzyme that hydrolyzes the amide bond between MurNAc and l-Ala of bacterial PGN. The minimum PGN fragment hydrolyzed by PGRP-L is MurNAc-tripeptide. PGRP-L has no direct bacteriolytic activity. The other members of the human PGRP family, PGRP-Ialpha, PGRP-Ibeta, and PGRP-S, do not have the amidase activity. The C-terminal region of PGRP-L, homologous to bacteriophage and bacterial amidases, is required and sufficient for the amidase activity of PGRP-L, although its activity (in the N-terminal delta1-343 deletion mutant) is reduced. The Zn2+ binding amino acids (conserved in PGRP-L and T7 amidase) and Cys-419 (not conserved in T7 amidase) are required for the amidase activity of PGRP-L, whereas three other amino acids, needed for the activity of T7 amidase, are not required for the activity of PGRP-L. These amino acids, although required, are not sufficient for the amidase activity, because changing them to the "active" configuration does not convert PGRP-S into an active amidase. In conclusion, human PGRP-L is an N-acetylmuramoyl-l-alanine amidase and this function is conserved in prokaryotes, insects, and mammals.
Collapse
Affiliation(s)
- Zheng-Ming Wang
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana 46408, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rohrer S, Berger-Bächi B. FemABX peptidyl transferases: a link between branched-chain cell wall peptide formation and beta-lactam resistance in gram-positive cocci. Antimicrob Agents Chemother 2003; 47:837-46. [PMID: 12604510 PMCID: PMC149326 DOI: 10.1128/aac.47.3.837-846.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- S Rohrer
- Institute of Medical Microbiology, University of Zürich, Switzerland
| | | |
Collapse
|
40
|
Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O. Passage of heme-iron across the envelope of Staphylococcus aureus. Science 2003; 299:906-9. [PMID: 12574635 DOI: 10.1126/science.1081147] [Citation(s) in RCA: 443] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cell wall envelope of Gram-positive pathogens functions as a scaffold for the attachment of virulence factors and as a sieve that prevents diffusion of molecules. Here the isd genes (iron-regulated surface determinant) of Staphylococcus aureus were found to encode factors responsible for hemoglobin binding and passage of heme-iron to the cytoplasm, where it acts as an essential nutrient. Heme-iron passage required two sortases that tether Isd proteins to unique locations within the cell wall. Thus, Isd appears to act as an import apparatus that uses cell wall-anchored proteins to relay heme-iron across the bacterial envelope.
Collapse
Affiliation(s)
- Sarkis K Mazmanian
- Committee on Microbiology, Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lin YL, Chang NY, Lim C. Factors governing intrinsic chemical reactivity differences between clavulanic and penicillanic acids. J Am Chem Soc 2002; 124:12042-53. [PMID: 12358551 DOI: 10.1021/ja020788g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To help elucidate why penicillin-G is inactivated by certain bacterial beta-lactamase enzymes, whereas clavulanic acid (Clav, which is similar to penicillin-G except at positions 1, 2, and 6) inhibits beta-lactamase, the intrinsic chemical reactivities of these two antibiotics were assessed in this work. Ab initio and continuum dielectric methods were used to map out the gas-phase and solution-phase free-energy profiles for the alkaline hydrolyses of Clav and penicillanic acid (Peni, which is similar to penicillin-G except at position 6) as well as of a fictitious hybrid compound, Peni-db, which is similar to Clav and Peni except at positions 1 and 2, respectively. Furthermore, the ring strain energies of various lactam rings and the five-membered rings of Peni and Clav as well as their respective rate-limiting transition states were computed to assess the contribution of four- and five-membered ring strains to the antibiotic's activity. The predicted product distribution, rate-limiting step, and relative reaction rates for the alkaline hydrolysis of Peni and Clav are in accord with the experimental findings. The rate-limiting step in the alkaline hydrolysis of Peni, Clav, or Peni-db is the approach of the negatively charged hydroxide ion toward the anionic reactant to form a tetrahedral intermediate. The alkaline hydrolysis of Clav generates more stable products than that of Peni mainly because the O1 atom and the hydroxyethylidene group in Clav facilitate the opening of the five-membered ring; furthermore, the O1 atom can abstract a proton easier than the less polar S1 in Peni. Clav undergoes basic hydrolysis faster than Peni mainly because its hydroxyethylidene group leads to an increase in the positive charge on the carbonyl C7 atom, therefore enhancing favorable electrostatic interactions with the incoming hydroxide anion. To a lesser extent, the oxygen at position 1 in Clav also contributes to the rate acceleration because of the greater solvent stabilization of the oxygen-containing transition state as compared to the respective ground state. The inherent strain of the four-membered beta-lactam ring or five-membered ring does not enhance the alkaline hydrolyses of beta-lactam molecules such as Peni or Clav, consistent with the observation that the rate-limiting step does not involve a breakdown of the four-membered beta-lactam ring or five-membered thiazolidine/oxazolidine rings.
Collapse
Affiliation(s)
- Yen-lin Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | | | | |
Collapse
|
42
|
Takano M, Oshida T, Yasojima A, Yamada M, Okagaki C, Sugai M, Suginaka H, Matsushita T. Modification of autolysis by synthetic peptides derived from the presumptive binding domain of Staphylococcus aureus autolysin. Microbiol Immunol 2001; 44:463-72. [PMID: 10941929 DOI: 10.1111/j.1348-0421.2000.tb02521.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The autolytic cell wall hydrolase of Staphylococcus aureus, Atl, contains three highly cationic repeats in the central region of the amino acid sequence, and the repeats are presumed to have the role of binding the enzyme to some components on the cell surface. To explain the possible function of the repeats, we synthesized a number of 10- to 30-mer oligopeptides based on the Atl amino acid sequence (Thr432-Lys610) containing repeat 1, and examined their effects on the autolysis of S. aureus cells. When the peptides were added to a cell suspension of S. aureus under low ionic strength conditions, five peptides, A10, A11, A14, A16 and B9, showed immediate increases in optical density (OD) of the cell suspension accompanied by decreases in viable cell counts. After the immediate increases, the ODs for A10 and A14 changed little in the first 2 hr. In contrast, the ODs for A11 and A16 decreased rapidly. When peptide A10 was added to suspensions of heat-killed whole cells, crude cell walls and a crude peptidoglycan preparation, their ODs were increased approximately 2-fold. In contrast, the OD was not increased when the peptide was added to a suspension of pure peptidoglycan from which anionic polymers had been removed. Light microscopic and transmission electron microscopic study showed that A10 and A14 inhibited autolysis and that A11 and A16 induced autolysis earlier than the control. These results suggest strongly that the peptides adsorb to and precipitate on the anionic cell surface polymers such as teichoic acid and lipoteichoic acid via ionic interaction. The effects of peptides on the autolysis may be the results of the modification of S. aureus autolysin activities. These peptides, especially the 10-mer peptide B9 (PGTKLYTVPW) that represents the C-terminal half of A10 and N-terminal half of A11, may be important segments for Atl to bind to the cell surface.
Collapse
Affiliation(s)
- M Takano
- Pharmaceutical Development Research Laboratory, Tanabe Seiyaku Co., Ltd., Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000; 275:24490-9. [PMID: 10827080 DOI: 10.1074/jbc.m001239200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan recognition protein (PGRP) is conserved from insects to mammals. In insects, PGRP recognizes bacterial cell wall peptidoglycan (PGN) and activates prophenoloxidase cascade, a part of the insect antimicrobial defense system. Because mammals do not have the prophenoloxidase cascade, its function in mammals is unknown. However, it was suggested that an identical protein (Tag7) was a tumor necrosis factor-like cytokine. Therefore, the aim of this study was to identify the function of PGRP in mammals. Mouse PGRP bound to PGN with fast kinetics and nanomolar affinity (K(d) = 13 nm). The binding was specific for polymeric PGN or Gram-positive bacteria with unmodified PGN, and PGRP did not bind to other cell wall components or Gram-negative bacteria. PGRP mRNA and protein were expressed in neutrophils and bone marrow cells, but not in spleen cells, mononuclear cells, T or B lymphocytes, NK cells, thymocytes, monocytes, and macrophages. PGRP was not a PGN-lytic or a bacteriolytic enzyme, but it inhibited the growth of Gram-positive but not Gram-negative bacteria. PGRP inhibited phagocytosis of Gram-positive bacteria by macrophages, induction of oxidative burst by Gram-positive bacteria in neutrophils, and induction of cytokine production by PGN in macrophages. PGRP had no tumor necrosis factor-like cytotoxicity for mammalian cells, and it was not chemotactic on its own or in combination with PGN. Therefore, mammalian PGRP binds to PGN and Gram-positive bacteria with nanomolar affinity, is expressed in neutrophils, and inhibits growth of bacteria.
Collapse
Affiliation(s)
- C Liu
- Northwest Center for Medical Education, Indiana University School of Medicine, Gary, Indiana 46408, USA
| | | | | | | | | |
Collapse
|
44
|
Zukaite V, Biziulevicius GA. Acceleration of hyaluronidase production in the course of batch cultivation of Clostridium perfringens can be achieved with bacteriolytic enzymes. Lett Appl Microbiol 2000; 30:203-6. [PMID: 10747251 DOI: 10.1046/j.1472-765x.2000.00693.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As Clostridium perfringens hyaluronidase has cell-bound enzyme features, an enzymatic approach has been designed to facilitate the release of hyaluronidase into culture through increasing the clostridial cell wall permeability. As a result of the application of lytic peptidase from Actinomyces rutgersensis, beta-N-acetylglucosaminidase and beta-N-acetylmuramidase (both from Bacillus subtilis) commercially available preparations at the end of the producer's exponential growth phase, a 5.3-, 4.8- and 4.0-fold acceleration, respectively (but no enhancement), of hyaluronidase production in the course of batch cultivation of Cl. perfringens has been achieved. This also resulted in an approximately 10-fold reduction in undesirable side lecithinase activity irrespective of the bacteriolytic enzyme preparation used.
Collapse
Affiliation(s)
- V Zukaite
- Immunobiotechnology Sector, Institute of Immunology, Vilnius, Lithuania
| | | |
Collapse
|
45
|
Beukes M, Bierbaum G, Sahl HG, Hastings JW. Purification and partial characterization of a murein hydrolase, millericin B, produced by Streptococcus milleri NMSCC 061. Appl Environ Microbiol 2000; 66:23-8. [PMID: 10618198 PMCID: PMC91780 DOI: 10.1128/aem.66.1.23-28.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus milleri NMSCC 061 was screened for antimicrobial substances and shown to produce a bacteriolytic cell wall hydrolase, termed millericin B. The enzyme was purified to homogeneity by a four-step purification procedure that consisted of ammonium sulfate precipitation followed by gel filtration, ultrafiltration, and ion-exchange chromatography. The yield following ion-exchange chromatography was 6.4%, with a greater-than-2,000-fold increase in specific activity. The molecular weight of the enzyme was 28,924 as determined by electrospray mass spectrometry. The amino acid sequences of both the N terminus of the enzyme (NH(2) SENDFSLAMVSN) and an internal fragment which was generated by cyanogen bromide cleavage (NH(2) SIQTNAPWGL) were determined by automated Edman degradation. Millericin B displayed a broad spectrum of activity against gram-positive bacteria but was not active against Bacillus subtilis W23 or Escherichia coli ATCC 486 or against the producer strain itself. N-Dinitrophenyl derivatization and hydrazine hydrolysis of free amino and free carboxyl groups liberated from peptidoglycan digested with millericin B followed by thin-layer chromatography showed millericin B to be an endopeptidase with multiple activities. It cleaves the stem peptide at the N terminus of glutamic acid as well as the N terminus of the last residue in the interpeptide cross-link of susceptible strains.
Collapse
Affiliation(s)
- M Beukes
- School of Molecular and Cellular Biosciences, University of Natal, Pietermaritzburg, Scottsville, South Africa
| | | | | | | |
Collapse
|
46
|
Biziulevicius GA, Zukaite V. Lysosubtilin modification, Fermosorb, designed for polymeric carrier-mediated intestinal delivery of lytic enzymes: pilot-scale preparation and evaluation of this veterinary medicinal product. Int J Pharm 1999; 189:43-55. [PMID: 10518684 DOI: 10.1016/s0378-5173(99)00234-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antimicrobial enzymotherapy/enzymoprophylaxis has potential for use as a measure to overcome problems associated with resistance to commonly applied antibiotics. Lysosubtilin, an authorized veterinary medicinal product, when used per os for the treatment and prophylaxis of intestinal infections in newborn calves, is not always efficient due to partial inactivation of lytic enzymes in the gastric region. In this contribution a simple technology for preparation of pH-dependent reversibly dissociating acid stable enzyme-polymer complex (two-component oral delayed-release lysosubtilin formulation, Fermosorb) designed for intestinal delivery of lytic enzymes is described. The technology is based on immobilization of lytic enzymes, using 1% lysosubtilin solution in 10 mM acetate buffer of pH 5.0, onto commercial highly porous carboxylic cation exchanger Biocarb L (v/w ratio 10:1, process duration 1 h) with after-following procedures of vacuum-filtration, oven-drying and standardization of the enzyme-polymer complex formed. The technology process of pilot-scale Fermosorb fabrication on the whole revealed itself as simply employed and highly repeatable, totalling in the final lytic enzyme activity yield of 40.2% (the average value obtained from the analysis of the 11 batches running) and approximately 4000 (3938) kg of Fermosorb (200 batches) produced. The proposed technological approach can be successfully applied for fabrication of other enzyme preparations as well and this was shown in the example of Polyferm, a preparation with both lytic and proteolytic enzyme activities. In vitro evaluation of Fermosorb revealed it was more stable when exposed to the acidic environment as well as in storage when compared with the native lysosubtilin. No negative change in the antimicrobial spectrum of action of Fermosorb versus lysosubtilin, influenced by immobilization of lytic enzymes onto Biocarb L, was observed. Moreover, all six lysosubtilin-resistant microbial strains tested have been found to be Fermosorb-susceptible. In vivo evaluation studies performed on 1200 newborn calves revealed 95.2% therapeutic as well as 95.0% prophylactic efficacy of Fermosorb in respect to colibacillosis versus 74.0 and 80.0% for lysosubtilin, respectively, the differences being statistically significant (P<0.01). As a consequence of these studies Fermosorb was authorized for use throughout the former Soviet Union. Data collected during postmarketing surveillance of Fermosorb, which was applied for more than 163,000 newborn calves, confirmed high efficacy (92.3 and 95.5% for treatment and prophylaxis, respectively) and safety of this veterinary medicinal product.
Collapse
Affiliation(s)
- G A Biziulevicius
- Sector of Immunobiotechnology, Institute of Immunology, 12 Mokslininku Street, LT-2600, Vilnius, Lithuania
| | | |
Collapse
|
47
|
Soler-Rivas C, Jolivet S, Arpin N, Olivier JM, Wichers HJ. Biochemical and physiological aspects of brown blotch disease of Agaricus bisporus. FEMS Microbiol Rev 1999; 23:591-614. [PMID: 10525168 DOI: 10.1111/j.1574-6976.1999.tb00415.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas tolaasii is a bacterium endemic to the compost beds where common mushroom (Agaricus bisporus) is cultivated. Under some environmental conditions still not well-determined, but influenced by temperature and relative humidity, the bacterium can become pathogenic and provoke the brown blotch disease. This review describes the interaction between P. tolaasii and A. bisporus that results in the appearance of brown spots on the mushroom caps, typical symptoms of the disease. Firstly, P. tolaasii is studied, the changes in pathogenicity are explained, the compounds that provoke the damage are enumerated as well as various experimental methods to identify the pathogenic form of the bacteria. Secondly, mechanisms involved in the formation of the brown colour on the A. bisporus caps upon infection are briefly mentioned, taking into account the enzymes that catalyse the reaction, their mechanism, substrates and reaction products. Afterwards, a detailed description of the infection process is presented step by step, starting by the chemotactical attraction, fixation, secretion of the toxins, membrane breakdown, effect of the toxin on mushroom polyphenol oxidases and on the discolouration reaction. A possible mechanism of infection is hypothesised at the molecular level. Finally, the strategies tested until now to control the disease are discussed.
Collapse
Affiliation(s)
- C Soler-Rivas
- Agrotechnological Research Institute (ATO-DLO), Bornsesteeg 59, 6708 PD, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Kalfa VC, Brogden KA. Anionic antimicrobial peptide-lysozyme interactions in innate pulmonary immunity. Int J Antimicrob Agents 1999; 13:47-51. [PMID: 10563404 DOI: 10.1016/s0924-8579(99)00095-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The respiratory tract contains numerous antimicrobial factors necessary for normal innate pulmonary defense. Although many of these molecules reside in airway surface liquid (ASL) simultaneously, little information exists concerning antagonistic, additive, or synergistic interactions. Since both cationic lysozyme and anionic antimicrobial peptides (AP) are found in high concentrations in ASL, the purpose of this study was to assess any interaction that might affect antimicrobial activity. For this, Pasteurella haemolytica, Micrococcus lysodeikticus, or Pseudomonas aeruginosa were added to egg white lysozyme (3.9-250.0 microg/ml) or human neutrophil lysozyme (0.8-50.0 microg/ml) and H-GADDDDD-OH (from 0.01 to 0.50 mM) mixtures in 50, 100, or 150 mM NaCl; incubated for 2 h; and then plated. In this assay, the MICs of AP for P. haemolytica, M. lysodeikticus, and P. aeruginosa varied slightly depending upon the concentration of NaCl and MICs generally increased slightly with increasing NaCl concentrations. The MIC of lysozyme for P. haemolytica and M. lysodeikticus also increased slightly with increasing NaCl concentrations. The MIC of lysozyme for P. aeruginosa was greater than 50 microg/ml and did not vary with increasing NaCl concentrations. When AP was combined with lysozyme in 50, 100, or 150 mM NaCl concentrations, there was no significant interaction that affected antimicrobial activity. In conclusion, the MICs of AP generally increased with increasing NaCl concentrations but lysozyme and AP appeared not to interact significantly at physiologically relevant concentrations.
Collapse
Affiliation(s)
- V C Kalfa
- Respiratory and Neurologic Disease Research Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, Ames, IA 50010, USA
| | | |
Collapse
|
49
|
Navarre WW, Ton-That H, Faull KF, Schneewind O. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. J Biol Chem 1999; 274:15847-56. [PMID: 10336488 DOI: 10.1074/jbc.274.22.15847] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteriophage muralytic enzymes degrade the cell wall envelope of staphylococci to release phage particles from the bacterial cytoplasm. Murein hydrolases of staphylococcal phages phi11, 80alpha, 187, Twort, and phiPVL harbor a central domain that displays sequence homology to known N-acetylmuramyl-L-alanyl amidases; however, their precise cleavage sites on the staphylococcal peptidoglycan have thus far not been determined. Here we examined the properties of the phi11 enzyme to hydrolyze either the staphylococcal cell wall or purified cell wall anchor structures attached to surface protein. Our results show that the phi11 enzyme has D-alanyl-glycyl endopeptidase as well as N-acetylmuramyl-L-alanyl amidase activity. Analysis of a deletion mutant lacking the amidase-homologous sequence, phi11(Delta181-381), revealed that the D-alanyl-glycyl endopeptidase activity is contained within the N-terminal 180 amino acid residues of the polypeptide chain. Sequences similar to this N-terminal domain are found in the murein hydrolases of staphylococcal phages but not in those of phages that infect other Gram-positive bacteria such as Listeria or Bacillus.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
50
|
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 1999; 63:174-229. [PMID: 10066836 PMCID: PMC98962 DOI: 10.1128/mmbr.63.1.174-229.1999] [Citation(s) in RCA: 925] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins.
Collapse
Affiliation(s)
- W W Navarre
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | |
Collapse
|