1
|
Kim YD, Park HG, Song S, Kim J, Lee BJ, Broadie K, Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J Cell Biol 2024; 223:e202309095. [PMID: 38748250 PMCID: PMC11096849 DOI: 10.1083/jcb.202309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.
Collapse
Affiliation(s)
- Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Seunghwan Song
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Joohyung Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Byoung Ju Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kendal Broadie
- Departments of Cell and Developmental Biology, Pharmacology, and Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, USA
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
2
|
Joyce M, Falconio FA, Blackhurst L, Prieto-Godino L, French AS, Gilestro GF. Divergent evolution of sleep in Drosophila species. Nat Commun 2024; 15:5091. [PMID: 38876988 PMCID: PMC11178934 DOI: 10.1038/s41467-024-49501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
Living organisms synchronize their biological activities with the earth's rotation through the circadian clock, a molecular mechanism that regulates biology and behavior daily. This synchronization factually maximizes positive activities (e.g., social interactions, feeding) during safe periods, and minimizes exposure to dangers (e.g., predation, darkness) typically at night. Beyond basic circadian regulation, some behaviors like sleep have an additional layer of homeostatic control, ensuring those essential activities are fulfilled. While sleep is predominantly governed by the circadian clock, a secondary homeostatic regulator, though not well-understood, ensures adherence to necessary sleep amounts and hints at a fundamental biological function of sleep beyond simple energy conservation and safety. Here we explore sleep regulation across seven Drosophila species with diverse ecological niches, revealing that while circadian-driven sleep aspects are consistent, homeostatic regulation varies significantly. The findings suggest that in Drosophilids, sleep evolved primarily for circadian purposes. The more complex, homeostatically regulated functions of sleep appear to have evolved independently in a species-specific manner, and are not universally conserved. This laboratory model may reproduce and recapitulate primordial sleep evolution.
Collapse
Affiliation(s)
- Michaela Joyce
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Research Institute, London, UK
| | | | | | | | - Alice S French
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Research Institute, London, UK.
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK.
| | | |
Collapse
|
3
|
Yamada D, Davidson AM, Hige T. Cyclic nucleotide-induced bidirectional long-term synaptic plasticity in Drosophila mushroom body. J Physiol 2024; 602:2019-2045. [PMID: 38488688 PMCID: PMC11068490 DOI: 10.1113/jp285745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odour-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we developed a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrated that they are indeed an exception in which activation of the cAMP-protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging found no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we found that forskolin-induced cAMP increase alone was insufficient for plasticity induction; it additionally required simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induced slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioural study. Finally, KC subtype-specific interrogation of synapses revealed that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model. KEY POINTS: Although presynaptic cAMP increase generally facilitates synapses, olfactory associative learning in Drosophila, which depends on dopamine and cAMP signalling genes, induces long-term depression (LTD) at the mushroom body output synapses. By combining electrophysiology, pharmacology and optogenetics, we directly demonstrate that these synapses are an exception where activation of the cAMP-protein kinase A pathway leads to presynaptic LTD. Dopamine- or forskolin-induced cAMP increase alone is not sufficient for LTD induction; neuronal activity, which has been believed to trigger cAMP synthesis in synergy with dopamine input, is required in the downstream pathway of cAMP. In contrast to cAMP, activation of the cGMP pathway paired with neuronal activity induces presynaptic long-term potentiation, which explains behaviourally observed opposing actions of transmitters co-released by dopaminergic neurons. Our work not only revises the role of cAMP in synaptic plasticity, but also provides essential methods to address physiological mechanisms of synaptic plasticity in this important model system.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Andrew M. Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
4
|
Yamada D, Davidson AM, Hige T. Cyclic nucleotide-induced bidirectional long-term synaptic plasticity in Drosophila mushroom body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.560058. [PMID: 37808762 PMCID: PMC10557778 DOI: 10.1101/2023.09.28.560058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Activation of the cAMP pathway is one of the common mechanisms underlying long-term potentiation (LTP). In the Drosophila mushroom body, simultaneous activation of odor-coding Kenyon cells (KCs) and reinforcement-coding dopaminergic neurons activates adenylyl cyclase in KC presynaptic terminals, which is believed to trigger synaptic plasticity underlying olfactory associative learning. However, learning induces long-term depression (LTD) at these synapses, contradicting the universal role of cAMP as a facilitator of transmission. Here, we develop a system to electrophysiologically monitor both short-term and long-term synaptic plasticity at KC output synapses and demonstrate that they are indeed an exception where activation of the cAMP/protein kinase A pathway induces LTD. Contrary to the prevailing model, our cAMP imaging finds no evidence for synergistic action of dopamine and KC activity on cAMP synthesis. Furthermore, we find that forskolin-induced cAMP increase alone is insufficient for plasticity induction; it additionally requires simultaneous KC activation to replicate the presynaptic LTD induced by pairing with dopamine. On the other hand, activation of the cGMP pathway paired with KC activation induces slowly developing LTP, proving antagonistic actions of the two second-messenger pathways predicted by behavioral study. Finally, KC subtype-specific interrogation of synapses reveals that different KC subtypes exhibit distinct plasticity duration even among synapses on the same postsynaptic neuron. Thus, our work not only revises the role of cAMP in synaptic plasticity by uncovering the unexpected convergence point of the cAMP pathway and neuronal activity, but also establishes the methods to address physiological mechanisms of synaptic plasticity in this important model.
Collapse
Affiliation(s)
- Daichi Yamada
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Andrew M. Davidson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Toshihide Hige
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
5
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
6
|
Park HG, Kim YD, Cho E, Lu TY, Yao CK, Lee J, Lee S. Vav independently regulates synaptic growth and plasticity through distinct actin-based processes. J Cell Biol 2022; 221:213401. [PMID: 35976098 PMCID: PMC9388202 DOI: 10.1083/jcb.202203048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/23/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Modulation of presynaptic actin dynamics is fundamental to synaptic growth and functional plasticity; yet the underlying molecular and cellular mechanisms remain largely unknown. At Drosophila NMJs, the presynaptic Rac1-SCAR pathway mediates BMP-induced receptor macropinocytosis to inhibit BMP growth signaling. Here, we show that the Rho-type GEF Vav acts upstream of Rac1 to inhibit synaptic growth through macropinocytosis. We also present evidence that Vav-Rac1-SCAR signaling has additional roles in tetanus-induced synaptic plasticity. Presynaptic inactivation of Vav signaling pathway components, but not regulators of macropinocytosis, impairs post-tetanic potentiation (PTP) and enhances synaptic depression depending on external Ca2+ concentration. Interfering with the Vav-Rac1-SCAR pathway also impairs mobilization of reserve pool (RP) vesicles required for tetanus-induced synaptic plasticity. Finally, treatment with an F-actin–stabilizing drug completely restores RP mobilization and plasticity defects in Vav mutants. We propose that actin-regulatory Vav-Rac1-SCAR signaling independently regulates structural and functional presynaptic plasticity by driving macropinocytosis and RP mobilization, respectively.
Collapse
Affiliation(s)
- Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Eunsang Cho
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Ting-Yi Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Kuang Yao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jihye Lee
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea.,Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Dlg Is Required for Short-Term Memory and Interacts with NMDAR in the Drosophila Brain. Int J Mol Sci 2022; 23:ijms23169187. [PMID: 36012453 PMCID: PMC9409279 DOI: 10.3390/ijms23169187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
The vertebrates’ scaffold proteins of the Dlg-MAGUK family are involved in the recruitment, clustering, and anchoring of glutamate receptors to the postsynaptic density, particularly the NMDA subtype glutamate-receptors (NRs), necessary for long-term memory and LTP. In Drosophila, the only gene of the subfamily generates two main products, dlgA, broadly expressed, and dlgS97, restricted to the nervous system. In the Drosophila brain, NRs are expressed in the adult brain and are involved in memory, however, the role of Dlg in these processes and its relationship with NRs has been scarcely explored. Here, we show that the dlg mutants display defects in short-term memory in the olfactory associative-learning paradigm. These defects are dependent on the presence of DlgS97 in the Mushroom Body (MB) synapses. Moreover, Dlg is immunoprecipitated with NRs in the adult brain. Dlg is also expressed in the larval neuromuscular junction (NMJ) pre and post-synaptically and is important for development and synaptic function, however, NR is absent in this synapse. Despite that, we found changes in the short-term plasticity paradigms in dlg mutant larval NMJ. Together our results show that larval NMJ and the adult brain relies on Dlg for short-term memory/plasticity, but the mechanisms differ in the two types of synapses.
Collapse
|
8
|
Maiellaro I. In Vivo cAMP Dynamics in Drosophila Larval Neurons. Methods Mol Biol 2022; 2483:181-194. [PMID: 35286676 DOI: 10.1007/978-1-0716-2245-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that mediates a myriad of cell functions across all kingdoms of life.The ability to monitor intracellular changes of cAMP concentration in living cells using FRET-based biosensors is proving to be of paramount importance to unraveling the sophisticated organization of cAMP signaling.Here we describe the deployment of the fruit fly Drosophila melanogaster, specifically the third instar larval stage, as an in vivo model to study the spatio-temporal dynamics of cAMP in neurons. The ubiquity of cAMP signaling and conservation of fundamental mechanisms across species ensures relevance to vertebrate neurons while providing a more structurally and ethically simple model.
Collapse
Affiliation(s)
- Isabella Maiellaro
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| |
Collapse
|
9
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
10
|
Zhao K, Hong H, Zhao L, Huang S, Gao Y, Metwally E, Jiang Y, Sigrist SJ, Zhang YQ. Postsynaptic cAMP signalling regulates the antagonistic balance of Drosophila glutamate receptor subtypes. Development 2020; 147:226061. [PMID: 33234716 PMCID: PMC7758632 DOI: 10.1242/dev.191874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022]
Abstract
The balance among different subtypes of glutamate receptors (GluRs) is crucial for synaptic function and plasticity at excitatory synapses. However, the mechanisms balancing synaptic GluR subtypes remain unclear. Herein, we show that the two subtypes of GluRs (A and B) expressed at Drosophila neuromuscular junction synapses mutually antagonize each other in terms of their relative synaptic levels and affect subsynaptic localization of each other, as shown by super-resolution microscopy. Upon temperature shift-induced neuromuscular junction plasticity, GluR subtype A increased but subtype B decreased with a timecourse of hours. Inhibition of the activity of GluR subtype A led to imbalance of GluR subtypes towards more GluRIIA. To gain a better understanding of the signalling pathways underlying the balance of GluR subtypes, we performed an RNA interference screen of candidate genes and found that postsynaptic-specific knockdown of dunce, which encodes cAMP phosphodiesterase, increased levels of GluR subtype A but decreased subtype B. Furthermore, bidirectional alterations of postsynaptic cAMP signalling resulted in the same antagonistic regulation of the two GluR subtypes. Our findings thus identify a direct role of postsynaptic cAMP signalling in control of the plasticity-related balance of GluRs. Summary: The antagonistic balance of GluR subtypes, which is associated with synaptic plasticity, is regulated by cAMP signalling in postsynaptic muscles of Drosophila NMJ synapses.
Collapse
Affiliation(s)
- Kai Zhao
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Huilin Hong
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Zhao
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng Huang
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, 14195 Berlin, Germany
| | - Ying Gao
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Elsayed Metwally
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuqiang Jiang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology/Genetics, Takustrasse 6, 14195 Berlin, Germany.,NeuroCure, Charite, Chariteplatz 1, 10117 Berlin, Germany
| | - Yong Q Zhang
- Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Abstract
The Mushroom Body (MB) is the primary location of stored associative memories in the Drosophila brain. We discuss recent advances in understanding the MB's neuronal circuits made using advanced light microscopic methods and cell-type-specific genetic tools. We also review how the compartmentalized nature of the MB's organization allows this brain area to form and store memories with widely different dynamics.
Collapse
Affiliation(s)
- Yoshinori Aso
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| |
Collapse
|
12
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
13
|
da Silva LVF, Veras Mourão RH, Manimala J, Lnenicka GA. The essential oil of Lippia alba and its components affect Drosophila behavior and synaptic physiology. ACTA ACUST UNITED AC 2018; 221:jeb.176909. [PMID: 29880632 DOI: 10.1242/jeb.176909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022]
Abstract
Lippia alba is a flowering shrub in the verbena family and its essential oil (EO) is known for its sedative, antidepressant and analgesic properties. In the Amazon region of Brazil, it is used in aquaculture to anesthetize fish during transport. Many of the specialized metabolites found in EOs presumably evolved to protect plants from herbivores, especially insects. We used Drosophila to test the behavioral and physiological actions of this EO and its components. We found that a 150 min exposure to the EO vapors resulted in immobilization of adult flies. Gas chromatography-mass spectrometry identified the major components of the EO as the monoterpenes citral (59%), carvone (7%) and limonene (7%). Fly immobilization by the EO was due to citral and carvone, with citral producing more rapid effects than carvone. We tested whether the EO affected synaptic physiology by applying it to the larval neuromuscular junction. The EO delivered at 0.012% (v/v) produced over a 50% reduction in excitatory postsynaptic potential (EPSP) amplitude within 3-4 min. When the EO components were applied at 0.4 mmol l-1, citral and carvone produced a significant reduction in EPSP amplitude, with citral producing the largest effect. Measurement of miniature EPSP amplitudes demonstrated that citral produced over a 50% reduction in transmitter release. Calcium imaging experiments showed that citral produced about 30% reduction in presynaptic Ca2+ influx, which likely resulted in the decrease in transmitter release. Thus, the EO blocks synaptic transmission, largely due to citral, and this likely contributes to its behavioral effects.
Collapse
Affiliation(s)
- Lenise Vargas Flores da Silva
- Water Science and Technology Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá, Brazil
| | - Rosa Helena Veras Mourão
- Health Collective Institute, University of Western Para, Av. Mendonça Furtado, 2946- Bairro Fátima, CEP 68040-470, Santarem, Párá- Brazil
| | - Jibin Manimala
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| | - Gregory A Lnenicka
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA
| |
Collapse
|
14
|
Shao L, Lu B, Wen Z, Teng S, Wang L, Zhao Y, Wang L, Ishizuka K, Xu X, Sawa A, Song H, Ming G, Zhong Y. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Hum Mol Genet 2018; 26:2634-2648. [PMID: 28472294 DOI: 10.1093/hmg/ddx147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.
Collapse
Affiliation(s)
- Lisha Shao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Binyan Lu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P.R. China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Lingling Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Liyuan Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongjun Song
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guoli Ming
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
15
|
Vasin A, Bykhovskaia M. Focal Macropatch Recordings of Synaptic Currents from the Drosophila Larval Neuromuscular Junction. J Vis Exp 2017. [PMID: 28994789 DOI: 10.3791/56493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Drosophila neuromuscular junction (NMJ) is an excellent model system to study glutamatergic synaptic transmission. We describe the technique of focal macropatch recordings of synaptic currents from visualized boutons at the Drosophila larval NMJ. This technique requires customized fabrication of recording micropipettes, as well as a compound microscope equipped with a high magnification, long-distance water immersion objective, differential interference contrast (DIC) optics, and a fluorescent attachment. The recording electrode is positioned on the top of a selected synaptic bouton visualized with DIC optics, epi-fluorescence, or both. The advantage of this technique is that it allows monitoring the synaptic activity of a limited number of sites of release. The recording electrode has a diameter of several microns, and the release sites positioned outside of the electrode rim do not significantly affect the recorded currents. The recorded synaptic currents have fast kinetics and can be readily resolved. These advantages are especially important for the studies of mutant fly lines with enhanced spontaneous or asynchronous synaptic activity.
Collapse
Affiliation(s)
- Alexander Vasin
- Department of Neurology, School of Medicine, Wayne State University
| | - Maria Bykhovskaia
- Department of Neurology, School of Medicine, Wayne State University; Department of Anatomy and Cell Biology, School of Medicine, Wayne State University;
| |
Collapse
|
16
|
Bykhovskaia M, Vasin A. Electrophysiological analysis of synaptic transmission in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.277. [PMID: 28544556 PMCID: PMC5980642 DOI: 10.1002/wdev.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/22/2017] [Accepted: 04/14/2017] [Indexed: 01/10/2023]
Abstract
Synaptic transmission is dynamic, plastic, and highly regulated. Drosophila is an advantageous model system for genetic and molecular studies of presynaptic and postsynaptic mechanisms and plasticity. Electrical recordings of synaptic responses represent a wide-spread approach to study neuronal signaling and synaptic transmission. We discuss experimental techniques that allow monitoring synaptic transmission in Drosophila neuromuscular and central systems. Recordings of synaptic potentials or currents at the larval neuromuscular junction (NMJ) are most common and provide numerous technical advantages due to robustness of the preparation, large and identifiable muscles, and synaptic boutons which can be readily visualized. In particular, focal macropatch recordings combined with the analysis of neurosecretory quanta enable rigorous quantification of the magnitude and kinetics of transmitter release. Patch-clamp recordings of synaptic transmission from the embryonic NMJ enable overcoming the problem of lethality in mutant lines. Recordings from the adult NMJ proved instrumental in the studies of temperature-sensitive paralytic mutants. Genetic studies of behavioral learning in Drosophila compel an investigation of synaptic transmission in the central nervous system (CNS), including primary cultured neurons and an intact brain. Cholinergic and GABAergic synaptic transmission has been recorded from the Drosophila CNS both in vitro and in vivo. In vivo patch-clamp recordings of synaptic transmission from the neurons in the olfactory pathway is a very powerful approach, which has a potential to elucidate how synaptic transmission is associated with behavioral learning. WIREs Dev Biol 2017, 6:e277. doi: 10.1002/wdev.277 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Alexander Vasin
- Department of Neurology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
17
|
Kuromi H, Kidokoro Y. Exocytosis and Endocytosis of Synaptic Vesicles and Functional Roles of Vesicle Pools: Lessons from the Drosophila Neuromuscular Junction. Neuroscientist 2016; 11:138-47. [PMID: 15746382 DOI: 10.1177/1073858404271679] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To maintain synaptic transmission during intense neuronal activities, the synaptic vesicle (SV) pool at release sites is effectively replenished by recruitment of SVs from the reserve pool and/or by endocytosis. The authors have studied dynamics of SVs using a fluorescence dye, FM1-43, which is incorporated into SVs during endocytosis and released by exocytosis. Drosophila is one of the most suitable preparations for genetic and pharmacological analyses, and this provides a useful model system. The authors found at the neuromuscular junctions of Drosophila that exocytosis and endocytosis of SVs are triggered by Ca2+influx through distinct routes and that selective inhibition of exocytosis or endocytosis resulted in depression of synaptic transmission with a distinct time course. They identified two SV pools in a single presynaptic bouton. The exo/endo cycling pool (ECP) is loaded with FM1-43 during low-frequency stimulation and locates close to release sites in the periphery of boutons, whereas the reserve pool (RP) is loaded and unloaded only during high-frequency stimulation and resides primarily in the center of boutons. The size of ECP closely correlates with the quantal content of evoked release, suggesting that SVs in the ECP are primarily involved in synaptic transmission. SVs in the RP are recruited to synaptic transmission by a process involving the cAMP/PKA cascade during high-frequency stimulation. Cytochalasin D blocked this recruitment process, suggesting involvement of filamentous actin. Endocytosed SVs replenish the ECP during stimulation and the RP after tetanic stimulation. Replenishment of the ECP depends on Ca2+influx from external solutions, and that of the RP is initiated by Ca2+release from internal stores. Thus, SV dynamics is closely involved in modulation of synaptic efficacy and influences synaptic plasticity.
Collapse
Affiliation(s)
- Hiroshi Kuromi
- Institute for Behavioral Sciences, Gunma University School of Medicine, 3-39-22 Showamachi, Maebashi 371-8511, Japan.
| | | |
Collapse
|
18
|
Naganos S, Ueno K, Horiuchi J, Saitoe M. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity. Mol Brain 2016; 9:37. [PMID: 27048332 PMCID: PMC4822261 DOI: 10.1186/s13041-016-0217-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/29/2016] [Indexed: 11/10/2022] Open
Abstract
Background Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. Results In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut+ transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Conclusions Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.
Collapse
Affiliation(s)
- Shintaro Naganos
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Junjiro Horiuchi
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan
| | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya, 185-8506, Tokyo, Japan.
| |
Collapse
|
19
|
Cho RW, Buhl LK, Volfson D, Tran A, Li F, Akbergenova Y, Littleton JT. Phosphorylation of Complexin by PKA Regulates Activity-Dependent Spontaneous Neurotransmitter Release and Structural Synaptic Plasticity. Neuron 2016; 88:749-61. [PMID: 26590346 DOI: 10.1016/j.neuron.2015.10.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/20/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Synaptic plasticity is a fundamental feature of the nervous system that allows adaptation to changing behavioral environments. Most studies of synaptic plasticity have examined the regulated trafficking of postsynaptic glutamate receptors that generates alterations in synaptic transmission. Whether and how changes in the presynaptic release machinery contribute to neuronal plasticity is less clear. The SNARE complex mediates neurotransmitter release in response to presynaptic Ca(2+) entry. Here we show that the SNARE fusion clamp Complexin undergoes activity-dependent phosphorylation that alters the basic properties of neurotransmission in Drosophila. Retrograde signaling following stimulation activates PKA-dependent phosphorylation of the Complexin C terminus that selectively and transiently enhances spontaneous release. Enhanced spontaneous release is required for activity-dependent synaptic growth. These data indicate that SNARE-dependent fusion mechanisms can be regulated in an activity-dependent manner and highlight the key role of spontaneous neurotransmitter release as a mediator of functional and structural plasticity.
Collapse
Affiliation(s)
- Richard W Cho
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Lauren K Buhl
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dina Volfson
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adrienne Tran
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Feng Li
- Department of Cell Biology, Nanobiology Institute, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yulia Akbergenova
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J Troy Littleton
- Department of Biology and Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Ostrowski D, Kahsai L, Kramer EF, Knutson P, Zars T. Place memory retention in Drosophila. Neurobiol Learn Mem 2015; 123:217-24. [DOI: 10.1016/j.nlm.2015.06.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/25/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
21
|
Lee D. Global and local missions of cAMP signaling in neural plasticity, learning, and memory. Front Pharmacol 2015; 6:161. [PMID: 26300775 PMCID: PMC4523784 DOI: 10.3389/fphar.2015.00161] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/20/2015] [Indexed: 01/08/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been a popular model to study cAMP signaling and resultant behaviors due to its powerful genetic approaches. All molecular components (AC, PDE, PKA, CREB, etc) essential for cAMP signaling have been identified in the fly. Among them, adenylyl cyclase (AC) gene rutabaga and phosphodiesterase (PDE) gene dunce have been intensively studied to understand the role of cAMP signaling. Interestingly, these two mutant genes were originally identified on the basis of associative learning deficits. This commentary summarizes findings on the role of cAMP in Drosophila neuronal excitability, synaptic plasticity and memory. It mainly focuses on two distinct mechanisms (global versus local) regulating excitatory and inhibitory synaptic plasticity related to cAMP homeostasis. This dual regulatory role of cAMP is to increase the strength of excitatory neural circuits on one hand, but to act locally on postsynaptic GABA receptors to decrease inhibitory synaptic plasticity on the other. Thus the action of cAMP could result in a global increase in the neural circuit excitability and memory. Implications of this cAMP signaling related to drug discovery for neural diseases are also described.
Collapse
Affiliation(s)
- Daewoo Lee
- Neuroscience Program, Department of Biological Sciences, Ohio University , Athens, OH, USA
| |
Collapse
|
22
|
Wise A, Tenezaca L, Fernandez RW, Schatoff E, Flores J, Ueda A, Zhong X, Wu CF, Simon AF, Venkatesh T. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J Neurogenet 2015; 29:135-43. [PMID: 26100104 DOI: 10.3109/01677063.2015.1064916] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.
Collapse
Affiliation(s)
- Alexandria Wise
- a Department of Biology , City College of New York , NY , USA
| | - Luis Tenezaca
- a Department of Biology , City College of New York , NY , USA
| | - Robert W Fernandez
- b Department of Molecular Biophysics and Biochemistry , Yale University , New Haven, Connecticut , USA
| | - Emma Schatoff
- a Department of Biology , City College of New York , NY , USA
| | - Julian Flores
- a Department of Biology , City College of New York , NY , USA
| | - Atsushi Ueda
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Xiaotian Zhong
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Chun-Fang Wu
- c Department of Biology , University of Iowa , Iowa City , IA , USA
| | - Anne F Simon
- d Department of Biology,Western University , Ontario , Canada
| | | |
Collapse
|
23
|
Dissel S, Angadi V, Kirszenblat L, Suzuki Y, Donlea J, Klose M, Koch Z, English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ. Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 2015; 25:1270-81. [PMID: 25913403 DOI: 10.1016/j.cub.2015.03.027] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 02/18/2015] [Accepted: 03/18/2015] [Indexed: 12/01/2022]
Abstract
Given the role that sleep plays in modulating plasticity, we hypothesized that increasing sleep would restore memory to canonical memory mutants without specifically rescuing the causal molecular lesion. Sleep was increased using three independent strategies: activating the dorsal fan-shaped body, increasing the expression of Fatty acid binding protein (dFabp), or by administering the GABA-A agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]pyridine-3-ol (THIP). Short-term memory (STM) or long-term memory (LTM) was evaluated in rutabaga (rut) and dunce (dnc) mutants using aversive phototaxic suppression and courtship conditioning. Each of the three independent strategies increased sleep and restored memory to rut and dnc mutants. Importantly, inducing sleep also reverses memory defects in a Drosophila model of Alzheimer's disease. Together, these data demonstrate that sleep plays a more fundamental role in modulating behavioral plasticity than previously appreciated and suggest that increasing sleep may benefit patients with certain neurological disorders.
Collapse
Affiliation(s)
- Stephane Dissel
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Veena Angadi
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Leonie Kirszenblat
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yasuko Suzuki
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeff Donlea
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford 1 3SR, UK
| | - Markus Klose
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Zachary Koch
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Denis English
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Raphaelle Winsky-Sommerer
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey 2 7XH, UK
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul J Shaw
- Department of Anatomy and Neurobiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
24
|
Ueda A, Wu CF. The role of cAMP in synaptic homeostasis in response to environmental temperature challenges and hyperexcitability mutations. Front Cell Neurosci 2015; 9:10. [PMID: 25698925 PMCID: PMC4313691 DOI: 10.3389/fncel.2015.00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
Homeostasis is the ability of physiological systems to regain functional balance following environment or experimental insults and synaptic homeostasis has been demonstrated in various species following genetic or pharmacological disruptions. Among environmental challenges, homeostatic responses to temperature extremes are critical to animal survival under natural conditions. We previously reported that axon terminal arborization in Drosophila larval neuromuscular junctions (NMJs) is enhanced at elevated temperatures; however, the amplitude of excitatory junctional potentials (EJPs) remains unaltered despite the increase in synaptic bouton numbers. Here we determine the cellular basis of this homeostatic adjustment in larvae reared at high temperature (HT, 29°C). We found that synaptic current focally recorded from individual synaptic boutons was unaffected by rearing temperature (<15°C to >30°C). However, HT rearing decreased the quantal size (amplitude of spontaneous miniature EJPs, or mEJPs), which compensates for the increased number of synaptic releasing sites to retain a normal EJP size. The quantal size decrease is accounted for by a decrease in input resistance of the postsynaptic muscle fiber, indicating an increase in membrane area that matches the synaptic growth at HT. Interestingly, a mutation in rutabaga (rut) encoding adenylyl cyclase (AC) exhibited no obvious changes in quantal size or input resistance of postsynaptic muscle cells after HT rearing, suggesting an important role for rut AC in temperature-induced synaptic homeostasis in Drosophila. This extends our previous finding of rut-dependent synaptic homeostasis in hyperexcitable mutants, e.g., slowpoke (slo). In slo larvae, the lack of BK channel function is partially ameliorated by upregulation of presynaptic Shaker (Sh) IA current to limit excessive transmitter release in addition to postsynaptic glutamate receptor recomposition that reduces the quantal size.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa Iowa City, IA, USA
| | - Chun-Fang Wu
- Department of Biology, University of Iowa Iowa City, IA, USA
| |
Collapse
|
25
|
Kim KH, Jun YW, Park Y, Lee JA, Suh BC, Lim CS, Lee YS, Kaang BK, Jang DJ. Intracellular membrane association of the Aplysia cAMP phosphodiesterase long and short forms via different targeting mechanisms. J Biol Chem 2014; 289:25797-811. [PMID: 25077971 DOI: 10.1074/jbc.m114.572222] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Phosphodiesterases (PDEs) play key roles in cAMP compartmentalization, which is required for intracellular signaling processes, through specific subcellular targeting. Previously, we showed that the long and short forms of Aplysia PDE4 (ApPDE4), which are localized to the membranes of distinct subcellular organelles, play key roles in 5-hydroxytryptamine-induced synaptic facilitation in Aplysia sensory and motor synapses. However, the molecular mechanism of the isoform-specific distinct membrane targeting was not clear. In this study, we further investigated the molecular mechanism of the membrane targeting of the ApPDE4 long and short forms. We found that the membrane targeting of the long form was mediated by hydrophobic interactions, mainly via 16 amino acids at the N-terminal region, whereas the short form was targeted solely to the plasma membrane, mainly by nonspecific electrostatic interactions between their N termini and the negatively charged lipids such as the phosphatidylinositol polyphosphates PI4P and PI(4,5)P2, which are embedded in the inner leaflet of the plasma membrane. Moreover, oligomerization of the long or short form by interaction of their respective upstream conserved region domains, UCR1 and UCR2, enhanced their plasma membrane targeting. These results suggest that the long and short forms of ApPDE4 are distinctly targeted to intracellular membranes through their direct association with the membranes via hydrophobic and electrostatic interactions, respectively.
Collapse
Affiliation(s)
- Kun-Hyung Kim
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yong-Woo Jun
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea
| | - Yongsoo Park
- the Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jin-A Lee
- the Department of Biotechnology, College of Life Science and Nanotechnology, Hannam University, 461-6, Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Korea
| | - Byung-Chang Suh
- the Department of Brain Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873, Korea
| | - Chae-Seok Lim
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Yong-Seok Lee
- the Department of Life Science, College of Natural Science, Chung-Ang University, Seoul 156-756, Korea
| | - Bong-Kiun Kaang
- the Department of Biological Sciences, College of Natural Sciences, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-747, Korea, and
| | - Deok-Jin Jang
- From the Department of Ecological Science, College of Ecology and Environment, Kyungpook National University, 386, Gajang-dong, Sangju-si, Kyungbuk 742-711, Korea,
| |
Collapse
|
26
|
Conditioned avoidance responses survive contingency degradation in the garden slug, Lehmannia valentiana. Learn Behav 2014; 42:305-12. [PMID: 24946946 DOI: 10.3758/s13420-014-0147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Joint presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US) strengthen the contingency between them, whereas presentations of one stimulus without the other degrade this contingency. For example, the CS can be presented without the US either before conditioning (CS-no US and then CS-US; latent inhibition) or after conditioning (CS-US and then CS-no US; extinction). In vertebrate subjects and several invertebrate species, a time lapse usually results in a return of the conditioned response, or spontaneous recovery. However, in land mollusks, spontaneous recovery from extinction has only recently been reported, and response recovery after latent inhibition has not been reported. In two experiments, using conditioned aversion to a food odor as a measure of learning and memory retention, we observed contingency degradation via latent inhibition (Experiment 1) and extinction (Experiment 2) in the common garden slug, Lehmannia valentiana. In both situations, the contingency degradation procedure successfully attenuated conditioned responding, and delaying testing by several days resulted in recovery of the conditioned response. This suggests that the CS-US association survived the degradation manipulation and was retained over an interval of several days.
Collapse
|
27
|
Nicol X, Gaspar P. Routes to cAMP: shaping neuronal connectivity with distinct adenylate cyclases. Eur J Neurosci 2014; 39:1742-51. [PMID: 24628976 DOI: 10.1111/ejn.12543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/22/2023]
Abstract
cAMP signaling affects a large number of the developmental processes needed for the construction of the CNS, including cell differentiation, axon outgrowth, response to guidance molecules or modulation of synaptic connections. This points to a key role of adenylate cyclases (ACs), the synthetic enzymes of cAMP, for neural development. ACs exist as 10 different isoforms, which are activated by distinct signaling pathways. The implication of specific AC isoforms in neural wiring was only recently demonstrated in mouse mutants, knockout (KO) for different AC isoforms, AC1, AC3, AC5, AC8 and soluble (s)AC/AC10. These studies stressed the importance of three of these isoforms, as sensors of neural activity that could modify the survival of neurons (sAC), axon outgrowth (sAC), or the response of axons to guidance molecules such as ephrins (AC1) or semaphorins (AC3). We summarize here the current knowledge on the role of these ACs for the development of sensory maps, in the somatosensory, visual and olfactory systems, which have been the most extensively studied. In these systems, AC1/AC3 KO revealed targeting mistakes due to the defective pruning and lack of discrimination of incoming axons to signals present in target structures. In contrast, no changes in cell differentiation, survival or axon outgrowth were noted in these mutants, suggesting a specificity of cAMP production routes for individual cellular processes within a given neuron. Further studies indicate that the subcellular localization of ACs could be key to their specific role in axon targeting and may explain their selective roles in neuronal wiring.
Collapse
Affiliation(s)
- Xavier Nicol
- Inserm UMR-S 968, Institut de la Vision, 75012, Paris, France; CNRS UMR 7210, 75012, Paris, France; Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
28
|
Wright NJD. Evolution of the techniques used in studying associative olfactory learning and memory in adult Drosophila in vivo: a historical and technical perspective. INVERTEBRATE NEUROSCIENCE 2013; 14:1-11. [PMID: 24149895 DOI: 10.1007/s10158-013-0163-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/08/2013] [Indexed: 11/25/2022]
Abstract
Drosophila melanogaster behavioral mutants have been isolated in which the ability to form associative olfactory memories has been disrupted primarily by altering cyclic adenosine monophosphate signal transduction. Unfortunately, the small size of the fruit fly and its neurons has made the application of neurobiological techniques typically used to investigate the physiology underlying these behaviors daunting. However, the realization that adult fruit flies could tolerate a window in the head capsule allowing access to the central structures thought to be involved plus the development of genetically expressed reporters of neuronal function has allowed a meteoric expansion of this field over the last decade. This review attempts to summarize the evolution of the techniques involved from the first use of a window to access these brain areas thought to be involved in associative olfactory learning and memory, the mushroom bodies and antennal lobes, to the current refinements which allow both high-resolution multiphoton imaging and patch clamping of identified neurons while applying the stimuli used in the behavioral protocols. This area of research now appears poised to reveal some very exciting mechanisms underlying behavior.
Collapse
Affiliation(s)
- Nicholas J D Wright
- Levine College of Health Sciences, Wingate University School of Pharmacy, 515 N. Main Street, Wingate, NC, 28174, USA,
| |
Collapse
|
29
|
Yoon J, Matsuo E, Yamada D, Mizuno H, Morimoto T, Miyakawa H, Kinoshita S, Ishimoto H, Kamikouchi A. Selectivity and plasticity in a sound-evoked male-male interaction in Drosophila. PLoS One 2013; 8:e74289. [PMID: 24086330 PMCID: PMC3782482 DOI: 10.1371/journal.pone.0074289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/26/2013] [Indexed: 11/18/2022] Open
Abstract
During courtship, many animals, including insects, birds, fish, and mammals, utilize acoustic signals to transmit information about species identity. Although auditory communication is crucial across phyla, the neuronal and physiologic processes are poorly understood. Sound-evoked chaining behavior, a display of homosexual courtship behavior in Drosophila males, has long been used as an excellent model for analyzing auditory behavior responses, outcomes of acoustic perception and higher-order brain functions. Here we developed a new method, termed ChaIN (Chain Index Numerator), in which we use a computer-based auto detection system for chaining behavior. The ChaIN system can systematically detect the chaining behavior induced by a series of modified courtship song playbacks. Two evolutionarily related Drosophila species, Drosophila melanogaster and Drosophila simulans, exhibited dramatic selective increases in chaining behavior when exposed to specific auditory cues, suggesting that auditory discrimination processes are involved in the acceleration of chaining behavior. Prolonged monotonous pulse sounds containing courtship song components also induced high intense chaining behavior. Interestingly, the chaining behavior was gradually suppressed over time when song playback continued. This behavioral change is likely to be a plastic behavior and not a simple sensory adaptation or fatigue, because the suppression was released by applying a different pulse pattern. This behavioral plasticity is not a form of habituation because different modality stimuli did not recover the behavioral suppression. Intriguingly, this plastic behavior partially depended on the cAMP signaling pathway controlled by the rutabaga adenylyl cyclase gene that is important for learning and memory. Taken together, this study demonstrates the selectivity and behavioral kinetics of the sound-induced interacting behavior of Drosophila males, and provides a basis for the systematic analysis of genes and neural circuits underlying complex acoustic behavior.
Collapse
Affiliation(s)
- Jeonghyeon Yoon
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Eriko Matsuo
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Daichi Yamada
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Hiroshi Mizuno
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Takako Morimoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Hiroyoshi Miyakawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | | | - Hiroshi Ishimoto
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Azusa Kamikouchi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- PRESTO, JST, Chiyoda, Tokyo, Japan
- * E-mail:
| |
Collapse
|
30
|
Farca-Luna AJ, Sprecher SG. Plasticity in the Drosophila larval visual system. Front Cell Neurosci 2013; 7:105. [PMID: 23847470 PMCID: PMC3701117 DOI: 10.3389/fncel.2013.00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023] Open
Abstract
The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions and it may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.
Collapse
Affiliation(s)
- Abud J Farca-Luna
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg Fribourg, Switzerland
| | | |
Collapse
|
31
|
Kanamori T, Kanai MI, Dairyo Y, Yasunaga KI, Morikawa RK, Emoto K. Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 2013; 340:1475-8. [PMID: 23722427 DOI: 10.1126/science.1234879] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Dendrite pruning is critical for sculpting the final connectivity of neural circuits as it removes inappropriate projections, yet how neurons can selectively eliminate unnecessary dendritic branches remains elusive. Here, we show that calcium transients that are compartmentalized in specific dendritic branches act as temporal and spatial cues to trigger pruning in Drosophila sensory neurons. Calcium transients occurred in local dendrites at ~3 hours before branch elimination. In dendritic branches, intrinsic excitability increased locally to activate calcium influx via the voltage-gated calcium channels (VGCCs), and blockade of the VGCC activities impaired pruning. Further genetic analyses suggest that the calcium-activated protease calpain functions downstream of the calcium transients. Our findings reveal the importance of the compartmentalized subdendritic calcium signaling in spatiotemporally selective elimination of dendritic branches.
Collapse
Affiliation(s)
- Takahiro Kanamori
- Department of Cell Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Memories are classified as consolidated (stable) or labile according to whether they withstand amnestic treatment, or not. In contrast to the general prevalence of this classification, its neuronal and molecular basis is poorly understood. Here, we focused on consolidated and labile memories induced after a single cycle training in the Drosophila aversive olfactory conditioning paradigm and we used mutants to define the impact of cAMP signals. At the biochemical level we report that cAMP signals misrelated in either rutabaga (rut) or dunce (dnc) mutants separate between consolidated anesthesia-resistant memory (ARM) and labile anesthesia-sensitive memory (ASM). Those functionally distinct cAMP signals act within different neuronal populations: while rut-dependent cAMP signals act within Kenyon cells (KCs) of the mushroom bodies to support ASM, dnc-sensitive cAMP signals support ARM within antennal lobe local neurons (LNs) and KCs. Collectively, different key positions along the olfactory circuitry seem to get modified during storage of ARM or ASM independently. A precise separation between those functionally distinct cAMP signals seems mandatory to allocate how they support appropriate memories.
Collapse
|
33
|
Ganguly A, Lee D. Suppression of inhibitory GABAergic transmission by cAMP signaling pathway: alterations in learning and memory mutants. Eur J Neurosci 2013; 37:1383-93. [PMID: 23387411 DOI: 10.1111/ejn.12144] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/12/2012] [Accepted: 01/05/2013] [Indexed: 01/29/2023]
Abstract
The cAMP signaling pathway mediates synaptic plasticity and is essential for memory formation in both vertebrates and invertebrates. In the fruit fly Drosophila melanogaster, mutations in the cAMP pathway lead to impaired olfactory learning. These mutant genes are preferentially expressed in the mushroom body (MB), an anatomical structure essential for learning. While cAMP-mediated synaptic plasticity is known to be involved in facilitation at the excitatory synapses, little is known about its function in GABAergic synaptic plasticity and learning. In this study, using whole-cell patch-clamp techniques on Drosophila primary neuronal cultures, we demonstrate that focal application of an adenylate cyclase activator forskolin (FSK) suppressed inhibitory GABAergic postsynaptic currents (IPSCs). We observed a dual regulatory role of FSK on GABAergic transmission, where it increases overall excitability at GABAergic synapses, while simultaneously acting on postsynaptic GABA receptors to suppress GABAergic IPSCs. Further, we show that cAMP decreased GABAergic IPSCs in a PKA-dependent manner through a postsynaptic mechanism. PKA acts through the modulation of ionotropic GABA receptor sensitivity to the neurotransmitter GABA. This regulation of GABAergic IPSCs is altered in the cAMP pathway and short-term memory mutants dunce and rutabaga, with both showing altered GABA receptor sensitivity. Interestingly, this effect is also conserved in the MB neurons of both these mutants. Thus, our study suggests that alterations in cAMP-mediated GABAergic plasticity, particularly in the MB neurons of cAMP mutants, account for their defects in olfactory learning.
Collapse
Affiliation(s)
- Archan Ganguly
- Department of Biological Sciences, Neuroscience Program, Ohio University, 213 Life Science Building, Athens, OH, 45701, USA.
| | | |
Collapse
|
34
|
Neurofibromin mediates FAK signaling in confining synapse growth at Drosophila neuromuscular junctions. J Neurosci 2013; 32:16971-81. [PMID: 23175848 DOI: 10.1523/jneurosci.1756-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurofibromatosis type I (NF1), caused by the mutation in the NF1 gene, is characterized by multiple pathological symptoms. Importantly, ~50% of NF1 patients also suffer learning difficulty. Although downstream pathways are well studied, regulation of the NF1-encoded neurofibromin protein is less clear. Here, we focused on the pathophysiology of Drosophila NF1 mutants in synaptic growth at neuromuscular junctions. Our analysis suggests that the Drosophila neurofibromin protein NF1 is required to constrain synaptic growth and transmission. NF1 functions downstream of the Drosophila focal adhesion kinase (FAK) Fak56 and physically interacts with Fak56. The N-terminal region of NF1 mediates the interaction with Fak56 and is required for the signaling activity and presynaptic localization of NF1. In presynapses, NF1 acts via the cAMP pathway, but independent of its GAP activity, to restrain synaptic growth. Thus, presynaptic FAK signaling may be disrupted, causing abnormal synaptic growth and transmission in the NF1 genetic disorder.
Collapse
|
35
|
Ueno K, Naganos S, Hirano Y, Horiuchi J, Saitoe M. Long-term enhancement of synaptic transmission between antennal lobe and mushroom body in cultured Drosophila brain. J Physiol 2012; 591:287-302. [PMID: 23027817 DOI: 10.1113/jphysiol.2012.242909] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.
Collapse
Affiliation(s)
- Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 1568506, Japan.
| | | | | | | | | |
Collapse
|
36
|
Ueda A, Wu CF. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. J Neurogenet 2012; 26:64-81. [PMID: 22380612 DOI: 10.3109/01677063.2011.652752] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Two classic learning mutants in Drosophila, rutabaga (rut) and dunce (dnc), are defective in cyclic adenosine monophosphate (cAMP) synthesis and degradation, respectively, exhibiting a variety of neuronal and behavioral defects. We ask how the opposing effects of these mutations on cAMP levels modify subsets of phenotypes, and whether any specific phenotypes could be ameliorated by biochemical counter balancing effects in dnc rut double mutants. Our study at larval neuromuscular junctions (NMJs) demonstrates that dnc mutations caused severe defects in nerve terminal morphology, characterized by unusually large synaptic boutons and aberrant innervation patterns. Interestingly, a counterbalancing effect led to rescue of the aberrant innervation patterns but the enlarged boutons in dnc rut double mutant remained as extreme as those in dnc. In contrast to dnc, rut mutations strongly affect synaptic transmission. Focal loose-patch recording data accumulated over 4 years suggest that synaptic currents in rut boutons were characterized by unusually large temporal dispersion and a seasonal variation in the amount of transmitter release, with diminished synaptic currents in summer months. Experiments with different rearing temperatures revealed that high temperature (29-30°C) decreased synaptic transmission in rut, but did not alter dnc and wild-type (WT). Importantly, the large temporal dispersion and abnormal temperature dependence of synaptic transmission, characteristic of rut, still persisted in dnc rut double mutants. To interpret these results in a proper perspective, we reviewed previously documented differential effects of dnc and rut mutations and their genetic interactions in double mutants on a variety of physiological and behavioral phenotypes. The cases of rescue in double mutants are associated with gradual developmental and maintenance processes whereas many behavioral and physiological manifestations on faster time scales could not be rescued. We discuss factors that could contribute to the effectiveness of counterbalancing interactions between dnc and rut mutations for phenotypic rescue.
Collapse
Affiliation(s)
- Atsushi Ueda
- Department of Biology, University of Iowa, IA 52242, USA.
| | | |
Collapse
|
37
|
Olsen DP, Keshishian H. Experimental methods for examining synaptic plasticity in Drosophila. Cold Spring Harb Protoc 2012; 2012:162-73. [PMID: 22301648 DOI: 10.1101/pdb.top067785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Drosophila neuromuscular junction (NMJ) ranks as one of the preeminent model systems for studying synaptic development, function, and plasticity. In this article, we review the experimental genetic methods that include the use of mutated or reengineered ion channels to manipulate the synaptic connections made by motor neurons onto larval body-wall muscles. We also provide a consideration of environmental and rearing conditions that phenocopy some of the genetic manipulations.
Collapse
|
38
|
Glutamate receptors in synaptic assembly and plasticity: case studies on fly NMJs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 970:3-28. [PMID: 22351049 DOI: 10.1007/978-3-7091-0932-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular and cellular mechanisms that control the composition and functionality of ionotropic glutamate receptors may be considered as most important "set screws" for adjusting excitatory transmission in the course of developmental and experience-dependent changes within neural networks. The Drosophila larval neuromuscular junction has emerged as one important invertebrate model system to study the formation, maintenance, and plasticity-related remodeling of glutamatergic synapses in vivo. By exploiting the unique genetic accessibility of this organism combined with diverse tools for manipulation and analysis including electrophysiology and state of the art imaging, considerable progress has been made to characterize the role of glutamate receptors during the orchestration of junctional development, synaptic activity, and synaptogenesis. Following an introduction to basic features of this model system, we will mainly focus on conceptually important findings such as the selective impact of glutamate receptor subtypes on the formation of new synapses, the coordination of presynaptic maturation and receptor subtype composition, the role of nonvesicularly released glutamate on the synaptic localization of receptors, or the homeostatic feedback of receptor functionality on presynaptic transmitter release.
Collapse
|
39
|
Schizophrenia susceptibility gene dysbindin regulates glutamatergic and dopaminergic functions via distinctive mechanisms in Drosophila. Proc Natl Acad Sci U S A 2011; 108:18831-6. [PMID: 22049342 DOI: 10.1073/pnas.1114569108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dysfunction of multiple neurotransmitter systems is a striking pathophysiological feature of many mental disorders, schizophrenia in particular, but delineating the underlying mechanisms has been challenging. Here we show that manipulation of a single schizophrenia susceptibility gene, dysbindin, is capable of regulating both glutamatergic and dopaminergic functions through two independent mechanisms, consequently leading to two categories of clinically relevant behavioral phenotypes. Dysbindin has been reported to affect glutamatergic and dopaminergic functions as well as a range of clinically relevant behaviors in vertebrates and invertebrates but has been thought to have a mainly neuronal origin. We find that reduced expression of Drosophila dysbindin (Ddysb) in presynaptic neurons significantly suppresses glutamatergic synaptic transmission and that this glutamatergic defect is responsible for impaired memory. However, only the reduced expression of Ddysb in glial cells is the cause of hyperdopaminergic activities that lead to abnormal locomotion and altered mating orientation. This effect is attributable to the altered expression of a dopamine metabolic enzyme, Ebony, in glial cells. Thus, Ddysb regulates glutamatergic transmission through its neuronal function and regulates dopamine metabolism by regulating Ebony expression in glial cells.
Collapse
|
40
|
Sandstrom DJ. Extracellular protons reduce quantal content and prolong synaptic currents at the Drosophila larval neuromuscular junction. J Neurogenet 2011; 25:104-14. [PMID: 21877902 DOI: 10.3109/01677063.2011.606577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fluctuations in extracellular pH occur in the nervous system in response to a number of physiological and pathological processes, such as ischemia, hypercapnea, and high-frequency activity. Using the Drosophila larval neuromuscular junction, the author has examined acute effects of low and high pH on excitability and synaptic transmission. Acidification rapidly and reversibly reduces the size of electrically evoked excitatory junctional currents (EJCs) in a concentration-dependent manner, with transmission nearly abolished at pH 5.0. Conversely, raising pH to 7.8 increases EJC amplitude significantly. Further elevation to pH 8.5 causes an initial increase in amplitude, followed by profound, long-lasting depression of the synapse. Amplitudes of spontaneous miniature EJCs (mEJCs) are modestly, but significantly reduced at pH 5.0. It is therefore the number of quanta released per action potential, rather than the size of individual quanta, that is most strongly affected. Decay times of both EJCs and mEJCs are dramatically lengthened at low pH, suggesting that glutamate remains in the synaptic cleft for much longer than normal. Presynaptic excitability is also reduced, as indicated by increased latency between nerve shock and EJC onset. The response to low pH was not altered by mutations in genes encoding Transient Receptor Potential, Mucolipin subfamily (TRPML) and Slowpoke ion channels, which had previously been implicated as possible targets of extracellular protons. The author concludes that extracellular protons have strong effects on the release of glutamate and the time course of synaptic currents. These phenotypes can be exploited to study the mechanisms of acid-mediated changes in neuronal function, and to pursue the way in which pH modulates synaptic function in normal and pathophysiological conditions.
Collapse
Affiliation(s)
- David J Sandstrom
- Laboratory of Molecular Biology, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| |
Collapse
|
41
|
Michels B, Chen YC, Saumweber T, Mishra D, Tanimoto H, Schmid B, Engmann O, Gerber B. Cellular site and molecular mode of synapsin action in associative learning. Learn Mem 2011; 18:332-44. [PMID: 21518740 DOI: 10.1101/lm.2101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Synapsin is an evolutionarily conserved, presynaptic vesicular phosphoprotein. Here, we ask where and how synapsin functions in associative behavioral plasticity. Upon loss or reduction of synapsin in a deletion mutant or via RNAi, respectively, Drosophila larvae are impaired in odor-sugar associative learning. Acute global expression of synapsin and local expression in only the mushroom body, a third-order "cortical" brain region, fully restores associative ability in the mutant. No rescue is found by synapsin expression in mushroom body input neurons or by expression excluding the mushroom bodies. On the molecular level, we find that a transgenically expressed synapsin with dysfunctional PKA-consensus sites cannot rescue the defect of the mutant in associative function, thus assigning synapsin as a behaviorally relevant effector of the AC-cAMP-PKA cascade. We therefore suggest that synapsin acts in associative memory trace formation in the mushroom bodies, as a downstream element of AC-cAMP-PKA signaling. These analyses provide a comprehensive chain of explanation from the molecular level to an associative behavioral change.
Collapse
Affiliation(s)
- Birgit Michels
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Guan Z, Buhl LK, Quinn WG, Littleton JT. Altered gene regulation and synaptic morphology in Drosophila learning and memory mutants. Learn Mem 2011; 18:191-206. [PMID: 21422168 DOI: 10.1101/lm.2027111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic studies in Drosophila have revealed two separable long-term memory pathways defined as anesthesia-resistant memory (ARM) and long-lasting long-term memory (LLTM). ARM is disrupted in radish (rsh) mutants, whereas LLTM requires CREB-dependent protein synthesis. Although the downstream effectors of ARM and LLTM are distinct, pathways leading to these forms of memory may share the cAMP cascade critical for associative learning. Dunce, which encodes a cAMP-specific phosphodiesterase, and rutabaga, which encodes an adenylyl cyclase, both disrupt short-term memory. Amnesiac encodes a pituitary adenylyl cyclase-activating peptide homolog and is required for middle-term memory. Here, we demonstrate that the Radish protein localizes to the cytoplasm and nucleus and is a PKA phosphorylation target in vitro. To characterize how these plasticity pathways may manifest at the synaptic level, we assayed synaptic connectivity and performed an expression analysis to detect altered transcriptional networks in rutabaga, dunce, amnesiac, and radish mutants. All four mutants disrupt specific aspects of synaptic connectivity at larval neuromuscular junctions (NMJs). Genome-wide DNA microarray analysis revealed ∼375 transcripts that are altered in these mutants, suggesting defects in multiple neuronal signaling pathways. In particular, the transcriptional target Lapsyn, which encodes a leucine-rich repeat cell adhesion protein, localizes to synapses and regulates synaptic growth. This analysis provides insights into the Radish-dependent ARM pathway and novel transcriptional targets that may contribute to memory processing in Drosophila.
Collapse
Affiliation(s)
- Zhuo Guan
- Department of Biology, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
43
|
Jang DJ, Lee JA, Chae YS, Kaang BK. State-dependent disruption of short-term facilitation due to overexpression of the apPDE4 supershort form in Aplysia. Mol Cells 2011; 31:175-80. [PMID: 21229325 PMCID: PMC3932685 DOI: 10.1007/s10059-011-0025-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/27/2010] [Accepted: 12/07/2010] [Indexed: 11/30/2022] Open
Abstract
Phosphodiesterases (PDEs) play important roles in synaptic plasticity by regulating cAMP signaling in various organisms. The supershort, short, and long forms of Aplysia PDE4 (apPDE4) have been cloned, and the long form has been shown to play a crucial role in 5- hydroxytryptamine (5-HT)-induced synaptic plasticity in Aplysia. To address the role of the supershort form in 5-HT-induced synaptic plasticity in Aplysia, we overexpressed the apPDE4 supershort form in Aplysia sensory neurons. Consequently, 5-HT-induced hyperexcitability and short-term facilitation in nondepressed synapses were blocked. However, the supershort form did not inhibit 5-HT-induced short-term facilitation in highly depressed synapses. These results show that the supershort form plays an important role in 5-HT-induced synaptic plasticity and disrupts it mainly by impairing cAMP signaling in Aplysia.
Collapse
Affiliation(s)
- Deok-Jin Jang
- National Creative Research Initiative Center for Memory, Departments of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
- Present address: Department of Applied Biology, College of Ecology and Environment, Kyungpook National University, Sangju 742-711, Korea
| | - Jin-A Lee
- Department of Biotechnology, College of Life Science and Nano Technology, Hannam University, Daejeon 305-811, Korea
| | - Yeon-Su Chae
- National Creative Research Initiative Center for Memory, Departments of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| | - Bong-Kiun Kaang
- National Creative Research Initiative Center for Memory, Departments of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
- Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul 151-747, Korea
| |
Collapse
|
44
|
Wang JW, Wu CF. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism. J Neurogenet 2011; 24:67-74. [PMID: 20429677 DOI: 10.3109/01677061003746341] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies have indicated that the Shaker potassium channel regulates sleep in Drosophila. The Drosophila quiver (qvr) gene encodes a novel potassium channel subunit that modulates the Shaker potassium channel. The Qvr peptide contains a signal sequence for extracellular localization and may regulate a unique feature of the Shaker I(A) current that confers special neuronal excitability patterns. Thus, studies of the Shaker channel properties in the qvr mutant background should provide an opportunity to uncover a new form of physiologic modulation of potassium channels. We have begun to investigate the impact of qvr protein on the Shaker channel properties and its implications in synaptic function in vivo. We studied synaptic transmission at the larval neuromuscular junction and characterized the transient potassium current I(A) in larval muscles. We identified two different functional states of I(A) in qvr larval muscles, as reflected by two distinct components, I(AF) and I(AS), differing in their kinetics of recovery from inactivation and sensitivity to a K(+) channel blocker. Correspondingly, qvr mutant larvae exhibit multiple synaptic discharges following individual nerve stimuli during repetitive activity.
Collapse
Affiliation(s)
- Jing W Wang
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa, USA.
| | | |
Collapse
|
45
|
Abstract
Synapse formation is tightly associated with neuronal excitability. We found striking synaptic overgrowth caused by Drosophila K(+)-channel mutations of the seizure and slowpoke genes, encoding Erg and Ca(2+)-activated large-conductance (BK) channels, respectively. These mutants display two distinct patterns of "satellite" budding from larval motor terminus synaptic boutons. Double-mutant analysis indicates that BK and Erg K(+) channels interact with separate sets of synaptic proteins to affect distinct growth steps. Post-synaptic L-type Ca(2+) channels, Dmca1D, and PSD-95-like scaffold protein, Discs large, are required for satellite budding induced by slowpoke and seizure mutations. Pre-synaptic cacophony Ca(2+) channels and the NCAM-like adhesion molecule, Fasciclin II, take part in a maturation step that is partially arrested by seizure mutations. Importantly, slowpoke and seizure satellites were both suppressed by rutabaga mutations that disrupt Ca(2+)/CaM-dependent adenylyl cyclase, demonstrating a convergence of K(+) channels of different functional categories in regulation of excitability-dependent Ca(2+) influx for triggering cAMP-mediated growth plasticity.
Collapse
|
46
|
Ye X, Carew TJ. Small G protein signaling in neuronal plasticity and memory formation: the specific role of ras family proteins. Neuron 2010; 68:340-61. [PMID: 21040840 PMCID: PMC3008420 DOI: 10.1016/j.neuron.2010.09.013] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2010] [Indexed: 01/04/2023]
Abstract
Small G proteins are an extensive family of proteins that bind and hydrolyze GTP. They are ubiquitous inside cells, regulating a wide range of cellular processes. Recently, many studies have examined the role of small G proteins, particularly the Ras family of G proteins, in memory formation. Once thought to be primarily involved in the transduction of a variety of extracellular signals during development, it is now clear that Ras family proteins also play critical roles in molecular processing underlying neuronal and behavioral plasticity. We here review a number of recent studies that explore how the signaling of Ras family proteins contributes to memory formation. Understanding these signaling processes is of fundamental importance both from a basic scientific perspective, with the goal of providing mechanistic insights into a critical aspect of cognitive behavior, and from a clinical perspective, with the goal of providing effective therapies for a range of disorders involving cognitive impairments.
Collapse
Affiliation(s)
- Xiaojing Ye
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
47
|
Jang DJ, Park SW, Lee JA, Lee C, Chae YS, Park H, Kim MJ, Choi SL, Lee N, Kim H, Kaang BK. N termini of apPDE4 isoforms are responsible for targeting the isoforms to different cellular membranes. Learn Mem 2010; 17:469-79. [PMID: 20813835 DOI: 10.1101/lm.1899410] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphodiesterases (PDEs) are known to play a key role in the compartmentalization of cAMP signaling; however, the molecular mechanisms underlying intracellular localization of different PDE isoforms are not understood. In this study, we have found that each of the supershort, short, and long forms of apPDE4 showed distinct localization in the cytoplasm, plasma membrane, and both plasma membrane and presynaptic terminals, respectively. The N-terminal 20 amino acids of the long form of apPDE4 were involved in presynaptic terminal targeting by binding to several lipids. In addition, the N terminus of the short form of apPDE4 bound to several lipids including phosphoinositols, thereby targeting the plasma membrane. Overexpression of the long and the short forms, but not the supershort form attenuated 5-HT-induced membrane hyperexcitability. Finally, the knockdown of apPDE4s in sensory neurons impaired both short-term and long-term facilitation. Thus, these results suggest that apPDE4s can participate in the regulation of cAMP signaling through specific subcellular localization by means of lipid binding activities.
Collapse
Affiliation(s)
- Deok-Jin Jang
- National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Gwanak-gu, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang B, Stewart B. Electrophysiological recording from Drosophila larval body-wall muscles. Cold Spring Harb Protoc 2010; 2010:pdb.prot5487. [PMID: 20810634 DOI: 10.1101/pdb.prot5487] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The Drosophila larval neuromuscular junction (NMJ) shares many structural and functional similarities to synapses in other animals, including humans. These include the basic feature of synaptic transmission, as well as the molecular mechanisms regulating the synaptic vesicle cycle. Because of its large size, easy accessibility, and the well-characterized genetics, the fly NMJ remains an excellent model system for dissecting the cellular and molecular mechanisms of synaptic transmission. This protocol describes the steps for performing intracellular recording from fly larval body-wall muscles and explains how to record and analyze spontaneous and evoked synaptic potentials. Methods used include larval dissection ("filleting"), identification of muscle fibers and their innervating nerves, the use of a micromanipulator and microelectrode in penetrating the muscle membrane, and nerve stimulation to evoke synaptic potentials.
Collapse
|
49
|
Equilibrative nucleoside transporter 2 regulates associative learning and synaptic function in Drosophila. J Neurosci 2010; 30:5047-57. [PMID: 20371825 DOI: 10.1523/jneurosci.6241-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nucleoside transporters are evolutionarily conserved proteins that are essential for normal cellular function. In the present study, we examined the role of equilibrative nucleoside transporter 2 (ent2) in Drosophila. Null mutants of ent2 are lethal during late larval/early pupal stages, indicating that ent2 is essential for normal development. Hypomorphic mutant alleles of ent2, however, are viable and exhibit reduced associative learning. We additionally used RNA interference to knock down ent2 expression in specific regions of the CNS and show that ent2 is required in the alpha/beta lobes of the mushroom bodies and the antennal lobes. To determine whether the observed behavioral defects are attributable to defects in synaptic transmission, we examined transmitter release at the larval neuromuscular junction (NMJ). Excitatory junction potentials were significantly elevated in ent2 mutants, whereas paired-pulse plasticity was reduced. We also observed an increase in stimulus dependent calcium influx in the presynaptic terminal. The defects observed in calcium influx and transmitter release probability at the NMJ were rescued by introducing an adenosine receptor mutant allele (AdoR(1)) into the ent2 mutant background. The results of the present study provide the first evidence of a role for ent2 function in Drosophila and suggest that the observed defects in associative learning and synaptic function may be attributable to changes in adenosine receptor activation.
Collapse
|
50
|
PI3 kinase signaling is involved in Abeta-induced memory loss in Drosophila. Proc Natl Acad Sci U S A 2010; 107:7060-5. [PMID: 20351282 DOI: 10.1073/pnas.0909314107] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple intracellular signals are altered in Alzheimer's disease brain tissues, including the PI3K/Akt pathway. However, the pathological relevance of such alterations is poorly understood. In vitro studies yield results that seem to be consistent with the conventional perception in which an up-regulation of the cell survival pathway, PI3K pathway, is protective in Alzheimer's disease pathogenesis. The current in vivo genetic approach, however, reveals that inhibition of the PI3K pathway leads to rescuing of the beta-amyloid peptide (Abeta)-induced memory loss in the Drosophila brain. We began our inquiry into the molecular basis of this memory loss by studying Abeta42-induced enhancement of long-term depression. We found that long-term depression is restored to a normal level through inhibition of PI3K activity. Abeta42-induced PI3K hyperactivity is directly confirmed by immunostaining of the PI3K phosphorylation targets, phospholipids. Such observations lead to the following demonstration that Abeta42-induced memory loss can be rescued through genetic silencing or pharmacological inhibition of PI3K functions. Our data suggest that Abeta42 stimulates PI3K, which in turn causes memory loss in association with an increase in accumulation of Abeta42 aggregates.
Collapse
|