1
|
Feng H, Liang L, Deng W, Gao J, Li X, Guan F. Sialyl Lewis X decorated integrin α3 on small extracellular vesicles promotes metastasis of bladder cancer via enhancing vascular permeability. Angiogenesis 2024:10.1007/s10456-024-09947-3. [PMID: 39222273 DOI: 10.1007/s10456-024-09947-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.
Collapse
Affiliation(s)
- Hui Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Liang Liang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wenli Deng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Jiaojiao Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, 710069, People's Republic of China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an, 710069, People's Republic of China.
| |
Collapse
|
2
|
Marciel MP, Haldar B, Hwang J, Bhalerao N, Bellis SL. Role of tumor cell sialylation in pancreatic cancer progression. Adv Cancer Res 2022; 157:123-155. [PMID: 36725107 PMCID: PMC11342334 DOI: 10.1016/bs.acr.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies and is currently the third leading cause of cancer death. The aggressiveness of PDAC stems from late diagnosis, early metastasis, and poor efficacy of current chemotherapies. Thus, there is an urgent need for effective biomarkers for early detection of PDAC and development of new therapeutic strategies. It has long been known that cellular glycosylation is dysregulated in pancreatic cancer cells, however, tumor-associated glycans and their cognate glycosylating enzymes have received insufficient attention as potential clinical targets. Aberrant glycosylation affects a broad range of pathways that underpin tumor initiation, metastatic progression, and resistance to cancer treatment. One of the prevalent alterations in the cancer glycome is an enrichment in a select group of sialylated glycans including sialylated, branched N-glycans, sialyl Lewis antigens, and sialylated forms of truncated O-glycans such as the sialyl Tn antigen. These modifications affect the activity of numerous cell surface receptors, which collectively impart malignant characteristics typified by enhanced cell proliferation, migration, invasion and apoptosis-resistance. Additionally, sialic acids on tumor cells engage inhibitory Siglec receptors on immune cells to dampen anti-tumor immunity, further promoting cancer progression. The goal of this review is to summarize the predominant changes in sialylation occurring in pancreatic cancer, the biological functions of sialylated glycoproteins in cancer pathogenesis, and the emerging strategies for targeting sialoglycans and Siglec receptors in cancer therapeutics.
Collapse
Affiliation(s)
- Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barnita Haldar
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
3
|
Saad AA. Targeting cancer-associated glycans as a therapeutic strategy in leukemia. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2049901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ashraf Abdullah Saad
- Unit of Pediatric Hematologic Oncology and BMT, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
4
|
Kar SS, Nanda NP, Ravichandiran V, Swain SP. Silane promoted glycosylation and its applications for synthesis of sugar compounds and active pharmaceutical ingredients (APIs). NEW J CHEM 2022. [DOI: 10.1039/d2nj04192h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Silane promoted glycosylation and its applications for preparation of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Sidhartha Sankar Kar
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - Nrusingha Prasad Nanda
- Department of Pharmaceutical Chemistry, Institute of Pharmacy & Technology, Salipur, Cuttack, 754202, Odisha, India
| | - V. Ravichandiran
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| | - Sharada Prasanna Swain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, 168, Maniktala Main Road, Kolkata, 700054, India
| |
Collapse
|
5
|
Chen X, Wang L, Wu Y, Zhang H, Dong W, Yu X, Huang C, Li Y, Wang S, Zhang J. Caveolin-1 knockout mice have altered serum N-glycan profile and sialyltransferase tissue expression. J Physiol Biochem 2021; 78:73-83. [PMID: 34462883 DOI: 10.1007/s13105-021-00840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Caveolin-1 (Cav-1) is a constitutive protein within caveolar membranes. Previous studies from our group and others indicated that Cav-1 could mediate N-glycosylation, α2,6-sialylation, and fucosylation in mouse hepatocarcinoma cells in vitro. However, little is known about the effect of Cav-1 expression on glycosylation modifications in vivo. In this study, the N-glycan profiles in serum from Cav-1-/- mice were investigated by lectin microarray and mass spectrometric analysis approaches. The results showed that levels of multi-antennary branched, α2,6-sialylated, and galactosylated N-glycans increased, while high-mannose typed and fucosylated N-glycans decreased in the serum of Cav-1-/- mice, compared with that of wild-type mice. Furthermore, the real-time quantitative PCR analysis indicated that α2,6-sialyltransferase gene expression decreased significantly in Cav-1-/- mouse organ tissues, but α2,3- and α2,8-sialyltransferase did not. Of them, both mRNA and protein expression levels of the β-galactoside α2,6-sialyltransferase 1 (ST6Gal-I) had dramatically reduced in Cav-1-/- mice organ tissues, which was consistent with the α2,6-sialyl Gal/GalNAc level reduced significantly in tissues instead of serum from Cav-1-/- mice. These results provide for the first time the N-glycans profile of Cav-1-/- mice serum, which will facilitate understanding the function of Cav-1 from the perspective of glycosylation.
Collapse
Affiliation(s)
- Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, Liaoning, China
| | - Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, Liaoning, China
| | - Yinshuang Wu
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Hongshuo Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Weijie Dong
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiao Yu
- Department of Pathology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuncui Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of The Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 124221, Liaoning, China.
| |
Collapse
|
6
|
Foda AAM, Alamer HA, Ikram N, Helali HA, Fayad FS, Hussian SW, Abdelwahab K, Akl T, Emarah Z, Ramez AM. Expression of CD10 and CD15 in colorectal mucinous and signet ring adenocarcinomas and its relation to clinicopathological features and prognosis. Cancer Biomark 2021; 33:143-150. [PMID: 34487022 DOI: 10.3233/cbm-210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND CD10 and CD15 expression has been reported in several tumors. Whether CD10 and CD15 have a role in colorectal mucinous and signet ring adenocarcinoma (MSA) tumorigenesis is not yet known. OBJECTIVE We aimed to investigate the role of CD10 and CD15 expression in mucinous colorectal adenoma-carcinoma sequence (ACS) and determine if there is any clinical and prognostic significance associated with their expression. METHODS Seventy-five cases of colorectal MSA, and 9 cases of adenoma samples were collected. Manual TMA blocks were constructed and immunohistochemistry for CD10 and CD15 was done. RESULTS Compared to adenomas, CD15 expression was significantly higher in MSA (p= 0.002), in contrast to CD10 expression. CD15 positivity was significantly associated with microsatellite stable (MSS) tumors (p= 0.018). The association between CD10 positivity and fungating tumor growth showed marginal significance. Unlike CD10, CD15 positivity showed significant association with overall survival of colorectal MSA patients. CONCLUSIONS CD15 expression seems to have a role in mucinous colorectal ACS, with significant impact on the survival of MSA patients. Further studies are suggested to identify any genetic alterations that may underlie a potential association with disease progression.
Collapse
Affiliation(s)
- Abd AlRahman Mohammad Foda
- Department of Pathology, Mansoura University, Mansoura, Egypt.,Batterjee Medical College for Sciences and Technology, Jeddah, Saudi Arabia
| | | | - Nadeem Ikram
- Batterjee Medical College for Sciences and Technology, Jeddah, Saudi Arabia
| | | | - Fayza Sami Fayad
- Batterjee Medical College for Sciences and Technology, Jeddah, Saudi Arabia
| | | | | | - Tamer Akl
- Department of Medical Oncology, Mansoura University, Mansoura, Egypt
| | - Ziad Emarah
- Department of Medical Oncology, Mansoura University, Mansoura, Egypt
| | - Ahmed M Ramez
- Department of Medical Oncology, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Cariello M, Piccinin E, Zerlotin R, Piglionica M, Peres C, Divella C, Signorile A, Villani G, Ingravallo G, Sabbà C, Moschetta A. Adhesion of Platelets to Colon Cancer Cells Is Necessary to Promote Tumor Development in Xenograft, Genetic and Inflammation Models. Cancers (Basel) 2021; 13:cancers13164243. [PMID: 34439397 PMCID: PMC8394609 DOI: 10.3390/cancers13164243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Platelets are small, anucleate, metabolically active cells and they represent an important linkage between tissue damage and inflammatory response. Several studies focused on the central role of platelets in inflammation and tumor development through their direct interaction with other cell types. Mice lacking the vascular adhesion molecules P-selectin exhibited a reduction in tumor metastases. We demonstrated that P-selectin-ablated platelets reduced tumor growth in a xenograft adenocarcinoma model. Furthermore, the lack of P-selectin decreased colon cancer progression in genetic mouse models and in chemically-induced colitis colorectal carcinogenesis. Our results suggest that platelets-cancer cells crosstalk via P-selectin is fundamental for tumor development. Abstract Platelets represent the linkage between tissue damage and inflammatory response with a putative role in tumorigenesis. Given the importance of the microenvironment in colon cancer development, we elucidated the eventual role of platelets-cancer cells crosstalk in in vivo colon cancer models. To evaluate the involvement of platelets in intestinal tumorigenesis, we first analyzed if the ablation of β-integrin P-selectin that drives platelets-cell adhesion, would contribute to platelets-colon cancer cell interaction and drive cancer progression. In a xenograft tumor model, we observed that when tumors are inoculated with platelets, the ablation of P-selectin significantly reduced tumor growth compared to control platelets. Furthermore, in genetic models, as well as in chronic colitis-associated colorectal carcinogenesis, P-selectin ablated mice displayed a significant reduction in tumor number and size compared to control mice. Taken together, our data highlights the importance of platelets in the tumor microenvironment for intestinal tumorigenesis. These results support the hypothesis that a strategy aimed to inhibit platelets adhesion to tumor cells are able to block tumor growth and could represent a novel therapeutic approach to colon cancer treatment.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Elena Piccinin
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Roberta Zerlotin
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Marilidia Piglionica
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Claudia Peres
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy;
| | - Chiara Divella
- Nephrology, Dialysis, and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 71024 Bari, Italy;
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, “Aldo Moro” University of Bari, 70124 Bari, Italy; (A.S.); (G.V.)
| | - Giuseppe Ingravallo
- Pathology Section, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70124 Bari, Italy; (M.C.); (E.P.); (R.Z.); (M.P.); (C.S.)
- INBB, National Institute for Biostructures and Biosystems, 00136 Rome, Italy;
- Correspondence: ; Tel.: +39-0805593262; Fax: +39-0805478126
| |
Collapse
|
8
|
Chen F, Han Y, Kang Y. Bone marrow niches in the regulation of bone metastasis. Br J Cancer 2021; 124:1912-1920. [PMID: 33758331 PMCID: PMC8184962 DOI: 10.1038/s41416-021-01329-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/06/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
The bone marrow has been widely recognised to host a unique microenvironment that facilitates tumour colonisation. Bone metastasis frequently occurs in the late stages of malignant diseases such as breast, prostate and lung cancers. The biology of bone metastasis is determined by tumour-cell-intrinsic traits as well as their interaction with the microenvironment. The bone marrow is a dynamic organ in which various stages of haematopoiesis, osteogenesis, osteolysis and different kinds of immune response are precisely regulated. These different cellular components constitute specialised tissue microenvironments-niches-that play critical roles in controlling tumour cell colonisation, including initial seeding, dormancy and outgrowth. In this review, we will dissect the dynamic nature of the interactions between tumour cells and bone niches. By targeting certain steps of tumour progression and crosstalk with the bone niches, the development of potential therapeutic approaches for the clinical treatment of bone metastasis might be feasible.
Collapse
Affiliation(s)
- Fenfang Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yujiao Han
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
9
|
Smith BAH, Bertozzi CR. The clinical impact of glycobiology: targeting selectins, Siglecs and mammalian glycans. Nat Rev Drug Discov 2021; 20:217-243. [PMID: 33462432 PMCID: PMC7812346 DOI: 10.1038/s41573-020-00093-1] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/31/2023]
Abstract
Carbohydrates - namely glycans - decorate every cell in the human body and most secreted proteins. Advances in genomics, glycoproteomics and tools from chemical biology have made glycobiology more tractable and understandable. Dysregulated glycosylation plays a major role in disease processes from immune evasion to cognition, sparking research that aims to target glycans for therapeutic benefit. The field is now poised for a boom in drug development. As a harbinger of this activity, glycobiology has already produced several drugs that have improved human health or are currently being translated to the clinic. Focusing on three areas - selectins, Siglecs and glycan-targeted antibodies - this Review aims to tell the stories behind therapies inspired by glycans and to outline how the lessons learned from these approaches are paving the way for future glycobiology-focused therapeutics.
Collapse
Affiliation(s)
- Benjamin A H Smith
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA
| | - Carolyn R Bertozzi
- Department of Chemical & Systems Biology and ChEM-H, Stanford School of Medicine, Stanford, CA, USA.
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Venkatakrishnan V, Dieckmann R, Loke I, Tjondro HC, Chatterjee S, Bylund J, Thaysen-Andersen M, Karlsson NG, Karlsson-Bengtsson A. Glycan analysis of human neutrophil granules implicates a maturation-dependent glycosylation machinery. J Biol Chem 2020; 295:12648-12660. [PMID: 32665399 DOI: 10.1074/jbc.ra120.014011] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Protein glycosylation is essential to trafficking and immune functions of human neutrophils. During granulopoiesis in the bone marrow, distinct neutrophil granules are successively formed. Distinct receptors and effector proteins, many of which are glycosylated, are targeted to each type of granule according to their time of expression, a process called "targeting by timing." Therefore, these granules are time capsules reflecting different times of maturation that can be used to understand the glycosylation process during granulopoiesis. Herein, neutrophil subcellular granules were fractionated by Percoll density gradient centrifugation, and N- and O-glycans present in each compartment were analyzed by LC-MS. We found abundant paucimannosidic N-glycans and lack of O-glycans in the early-formed azurophil granules, whereas the later-formed specific and gelatinase granules and secretory vesicles contained complex N- and O-glycans with remarkably elongated N-acetyllactosamine repeats with Lewis epitopes. Immunoblotting and histochemical analysis confirmed the expression of Lewis X and sialyl-Lewis X in the intracellular granules and on the cell surface, respectively. Many glycans identified are unique to neutrophils, and their complexity increased progressively from azurophil granules to specific granules and then to gelatinase granules, suggesting temporal changes in the glycosylation machinery indicative of "glycosylation by timing" during granulopoiesis. In summary, this comprehensive neutrophil granule glycome map, the first of its kind, highlights novel granule-specific glycosylation features and is a crucial first step toward a better understanding of the mechanisms regulating protein glycosylation during neutrophil granulopoiesis and a more detailed understanding of neutrophil biology and function.
Collapse
Affiliation(s)
- Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Régis Dieckmann
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Cordlife Group Limited, Singapore
| | - Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | | | - Johan Bylund
- Department of Oral Microbiology and Immunology, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Niclas G Karlsson
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Karlsson-Bengtsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
11
|
Jan HM, Chen YC, Yang TC, Ong LL, Chang CC, Muthusamy S, Abera AB, Wu MS, Gervay-Hague J, Mong KKT, Lin CH. Cholesteryl α-D-glucoside 6-acyltransferase enhances the adhesion of Helicobacter pylori to gastric epithelium. Commun Biol 2020; 3:120. [PMID: 32170208 PMCID: PMC7069968 DOI: 10.1038/s42003-020-0855-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/20/2020] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori, the most common etiologic agent of gastric diseases including gastric cancer, is auxotrophic for cholesterol and has to hijack it from gastric epithelia. Upon uptake, the bacteria convert cholesterol to cholesteryl 6′-O-acyl-α-D-glucopyranoside (CAG) to promote lipid raft clustering in the host cell membranes. However, how CAG appears in the host to exert the pathogenesis still remains ambiguous. Herein we identified hp0499 to be the gene of cholesteryl α-D-glucopyranoside acyltransferase (CGAT). Together with cholesteryl glucosyltransferase (catalyzing the prior step), CGAT is secreted via outer membrane vesicles to the host cells for direct synthesis of CAG. This significantly enhances lipid rafts clustering, gathers adhesion molecules (including Lewis antigens and integrins α5, β1), and promotes more bacterial adhesion. Furthermore, the clinically used drug amiodarone was shown as a potent inhibitor of CGAT to effectively reduce the bacterial adhesion, indicating that CGAT is a potential target of therapeutic intervention. Jan et al. identify cholesteryl α-D- glucopyranoside acyltransferase as a key enzyme in Helicobacter pylori’s synthesis of cholesteryl 6’-O-acyl-α-D-glucopyranoside, which promotes bacterial adhesion. This study provides insights into the H. pylori-induced pathogenesis and therapeutic strategies against it.
Collapse
Affiliation(s)
- Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Yi-Chi Chen
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsai-Chen Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Lih-Lih Ong
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan.,Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, Taipei, 11529, Taiwan
| | - Chia-Chen Chang
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan
| | - Sasikala Muthusamy
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Andualem Bahiru Abera
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.,Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica and National Chung-Hsing University, Taipei, 11529, Taiwan.,Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, 40227, Taiwan
| | - Ming-Shiang Wu
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, 10002, Taiwan
| | | | - Kwok-Kong Tony Mong
- Department of Applied Chemistry, National Chiao Tung University, Hsin-Chu, 30010, Taiwan.
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academic Road Section 2, Nan-Kang, Taipei, 11529, Taiwan. .,Department of Chemistry and Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
12
|
Induction of specific adaptive immune responses by immunization with newly designed artificial glycosphingolipids. Sci Rep 2019; 9:18803. [PMID: 31827147 PMCID: PMC6906409 DOI: 10.1038/s41598-019-55088-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022] Open
Abstract
We previously found that artificial glycosphingolipids (artGSLs) containing very-long-chain fatty acids behave as strong immunogens in mice and promote the production of antibodies recognizing the oligosaccharide portion of artGSLs as the epitope. Here, we report that the oligosaccharide structure of artGSLs influences these immunogenic properties. We evaluated the antibody-inducing activity of artGSLs with different oligosaccharide structures in mice and found strong IgG-inducing activity only with an artGSL containing a core-fucosylated tetraoligosaccharide (Manβ1,4GlcNAcβ1,4[Fucα1,6]GlcNAc). To characterize the immunogenic properties of this artGSL, we analyzed various derivatives and found that the non-reducing terminal mannose structure was critical for the antibody-inducing activity. These artGSLs also exhibited IgG-inducing activity dependent on co-administration of lipid A adjuvant, but no cytokine-inducing activity similar to α-galactosylceramide was detected. Furthermore, repetitive immunization with the artGSL promoted the production of antibodies against a core-fucosylated α-fetoprotein isoform (AFP-L3) known as a hepatocellular carcinoma–specific antigen. These results indicate that the newly designed artGSLs specifically induce adaptive immune responses and promote antibody production by B cells, which can be utilized to develop anti-glycoconjugate antibodies and cancer vaccines targeting tumor-associated carbohydrate antigens.
Collapse
|
13
|
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation. Q Rev Biophys 2019; 52:e10. [PMID: 31709962 DOI: 10.1017/s0033583519000088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
Collapse
|
14
|
Su Z, Huang P, Ye X, Huang S, Li W, Yan Y, Xu K, Wang J, Chen R. Ropivacaine via nuclear factor kappa B signalling modulates CD62E expression and diminishes tumour cell arrest. J Anesth 2019; 33:685-693. [PMID: 31642986 DOI: 10.1007/s00540-019-02699-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The issue whether anaesthesia has an impact on the prognosis of carcinoma has been widely discussed and remains debated. Ropivacaine has been widely used in perioperative period as a long acting local anesthetic. An early event during recurrence or metastasis of carcinoma is the adhesion of circulating tumour cells (CTCs) to endothelial cells (ECs) through binding adhesion molecules that are up-regulated on inflamed endothelium during the perioperative period or other periods. This study was to explore the impact of ropivacaine on the adhesion of tumour cells, providing evidences of its influence on the prognosis of carcinoma. MATERIALS AND METHODS Human umbilical vein endothelial cells (HUVECs) were pre-treated with ropivacaine (10-7-10-5 M; 30 min) prior to treatment with tumour necrosis factor alpha (TNFα) (10 ng ml-1; 1, 4 and 8 h). Intercellular adhesion molecule-1 (ICAM-1), endothelial-selectin (CD62E) and vascular cell adhesion molecule-1 (VCAM-1) mRNA levels were detected via quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). To clarify the underlying action mechanism, p65, p-p65, IκBα, p-IκBα, IKKα/β and p-IKKα/β protein levels were evaluated via western blotting. Cell viability and tumour cell adhesion assays were also assessed. RESULTS The clinically usage concentration of ropivacaine (10-6 M) produced a significant decrease in CD62E expression compared with that produced by TNFα only (p < 0.001). Moreover, adhesion assays showed that ropivacaine effectively inhibited the adhesion of hepatoma cells (p < 0.01), human colon cancer cells (p < 0.01) and human leukemic monocyte (p < 0.01). Western blot results showed that pre-treatment with ropivacaine inhibited the phosphorylation of p65 (p < 0.05), IκBα (p < 0.001) and IKKα/β (p < 0.01). CONCLUSIONS Ropivacaine decreased the adhesion of tumour cells. Ropivacaine modulated CD62E expression by inhibiting the activation of NF-κB. These results might provide new insight into the issue whether anaesthesia has an impact on the prognosis of carcinoma.
Collapse
Affiliation(s)
- Zegeng Su
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, 510120, Guangzhou, People's Republic of China.,Department of Anesthesiology, Jieyang People's Hospital, Jieyang, People's Republic of China
| | - Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xijiu Ye
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, 510120, Guangzhou, People's Republic of China
| | - Shuaibin Huang
- Department of Neurosurgery, Shantou Central Hospital, Shantou, People's Republic of China
| | - Weixing Li
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, 510120, Guangzhou, People's Republic of China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Kang Xu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ruixia Chen
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 West Yan Jiang Road, 510120, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Esposito M, Mondal N, Greco TM, Wei Y, Spadazzi C, Lin SC, Zheng H, Cheung C, Magnani JL, Lin SH, Cristea IM, Sackstein R, Kang Y. Bone vascular niche E-selectin induces mesenchymal-epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nat Cell Biol 2019; 21:627-639. [PMID: 30988423 PMCID: PMC6556210 DOI: 10.1038/s41556-019-0309-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Abstract
How disseminated tumor cells (DTCs) engage specific stromal components in distant organs for survival and outgrowth is a critical but poorly understood step of the metastatic cascade. Previous studies have demonstrated the importance of the epithelial-mesenchymal transition (EMT) in promoting the cancer stem cell properties needed for metastasis initiation, while the reverse process of mesenchymal-epithelial transition (MET) is required for metastatic outgrowth. Here we report that this paradoxical requirement for simultaneous induction of both MET and cancer stem cell traits in DTCs is provided by bone vascular niche E-selectin, whose direct binding to cancer cells promotes bone metastasis by inducing MET and activating Wnt signaling. E-selectin binding activity mediated by α1–3 Fucosyltransferases Fut3/Fut6 and Glg1 are instrumental to the formation of bone metastasis. These findings provide unique insights into the functional role of E-selectin as a component of the vascular niche critical for metastatic colonization in bone.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nandini Mondal
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori IRCCS, Meldola, Italy
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hanqiu Zheng
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Corey Cheung
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Robert Sackstein
- Department of Dermatology and Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Abstract
Tumor-associated gangliosides play important roles in regulation of signal transduction induced by growth-factor receptors including EGFR, FGFR, HGF and PDGFR in a specific microdomain called glycosynapse in the cancer cell membranes, and in interaction with glycan recognition molecules involved in cell adhesion and immune regulation including selectins and siglecs. As the genes involved in the synthesis and degradation of tumor-associated gangliosides were identified, biological functions became clearer from the experimental results employing forced overexpression and/or knockdown/knockout of the genes. Studies on the regulatory mechanisms for their expression also achieved great advancements. Epigenetic silencing of glycan-related genes is a dominant mechanism in glycan alteration at early stages of carcinogenesis. Development of hypoxia resistance involving activation of a transcription factor HIF, and acquisition of cancer stem cell-like characteristics through epithelial-mesenchymal transition are important mechanisms for glycan modulations in the later stages of cancer progression. In the initial stages of studies, the gangliosides which specifically appear in cancers attracted attention under the name of tumor-associated gangliosides. However, it became apparent that not only the cancer-associated gangliosides but also the normal gangliosides present in nonmalignant cells and tissues perform important biological functions, and some of them tend to disappear in cancer cells resulting in the loss of the physiological functions, and this sometimes facilitates progression of cancers.
Collapse
|
17
|
Jaillet C, Morelle W, Slomianny MC, Paget V, Tarlet G, Buard V, Selbonne S, Caffin F, Rannou E, Martinez P, François A, Foulquier F, Allain F, Milliat F, Guipaud O. Radiation-induced changes in the glycome of endothelial cells with functional consequences. Sci Rep 2017; 7:5290. [PMID: 28706280 PMCID: PMC5509684 DOI: 10.1038/s41598-017-05563-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/27/2022] Open
Abstract
As it is altered by ionizing radiation, the vascular network is considered as a prime target in limiting normal tissue damage and improving tumor control in radiation therapy. Irradiation activates endothelial cells which then participate in the recruitment of circulating cells, especially by overexpressing cell adhesion molecules, but also by other as yet unknown mechanisms. Since protein glycosylation is an important determinant of cell adhesion, we hypothesized that radiation could alter the glycosylation pattern of endothelial cells and thereby impact adhesion of circulating cells. Herein, we show that ionizing radiation increases high mannose-type N-glycans and decreases glycosaminoglycans. These changes stimulate interactions measured under flow conditions between irradiated endothelial cells and monocytes. Targeted transcriptomic approaches in vitro in endothelial cells and in vivo in a radiation enteropathy mouse model confirm that genes involved in N- and O-glycosylation are modulated by radiation, and in silico analyses give insight into the mechanism by which radiation modifies glycosylation. The endothelium glycome may therefore be considered as a key therapeutic target for modulating the chronic inflammatory response observed in healthy tissues or for participating in tumor control by radiation therapy.
Collapse
Affiliation(s)
- Cyprien Jaillet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Willy Morelle
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Marie-Christine Slomianny
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Sonia Selbonne
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Fanny Caffin
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Emilie Rannou
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.,Department of Molecular, Cell and Developmental Biology, UCLA, CA 90095-7239, Los Angeles, USA
| | - Pierre Martinez
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France.,GSK - GlaxoSmithKline, 1300, Wavre, Belgium
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - François Foulquier
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabrice Allain
- University of Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, 59000, Lille, France
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PRP-HOM, SRBE, L3R, 92260, Fontenay-aux-Roses, France.
| |
Collapse
|
18
|
Pastuch-Gawolek G, Plesniak M, Komor R, Byczek-Wyrostek A, Erfurt K, Szeja W. Synthesis and preliminary biological assay of uridine glycoconjugate derivatives containing amide and/or 1,2,3-triazole linkers. Bioorg Chem 2017; 72:80-88. [DOI: 10.1016/j.bioorg.2017.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 11/16/2022]
|
19
|
Combined administration of anisodamine and neostigmine rescued acute lethal crush syndrome through α7nAChR-dependent JAK2-STAT3 signaling. Sci Rep 2016; 6:37709. [PMID: 27874086 PMCID: PMC5118690 DOI: 10.1038/srep37709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Previously we showed that Ani (anisodamine)/Neo (neostigmine) combination produced anti-shock effect via activating α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we aim to investigate the therapeutic effect and underlying mechanisms of Ani/Neo combination in acute lethal crush syndrome (CS). In rat and rabbit CS models, Ani/Neo combination increased the 24 h survival rates, improved hemodynamics and decreased the levels of creatine kinase, MB isoenzyme of creatine kinase, blood urea nitrogen, creatinine, K+ in serum. It also decreased the levels of H2O2, myeloperoxidase (MPO) and nitric oxide (NO) in serum and compressed muscle in rat CS model. In wild-type (WT) mice with CS, Ani/Neo combination increased 24 h survival rate and decreased the levels of H2O2, MPO, NO, TNFα, IL-6 and IL-10 in compressed muscle. These effects were attenuated by α7nAChR knockout (KO). Moreover, Ani/Neo combination prevented the decrease of phosphorylation of Janus kinase 2 (JAK2) and phosphorylation of signal transducer and activator of transcription 3 (STAT3) induced by CS. These effects of Ani/Neo in CS mice were cancelled by methyllycaconitine (α7nAChR antagonist) and α7nAChR KO. Collectively, our results demonstrate that Ani/Neo combination could produce therapeutic effects in CS. The underlying mechanism involves the activation of α7nAChR-dependent JAK2-STAT3 signaling pathway.
Collapse
|
20
|
Complement MASP-1 enhances adhesion between endothelial cells and neutrophils by up-regulating E-selectin expression. Mol Immunol 2016; 75:38-47. [PMID: 27219453 DOI: 10.1016/j.molimm.2016.05.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2016] [Accepted: 05/07/2016] [Indexed: 12/31/2022]
Abstract
The complement system and neutrophil granulocytes are indispensable in the immune response against extracellular pathogens such as bacteria and fungi. Endothelial cells also participate in antimicrobial immunity largely by regulating the homing of leukocytes through their cytokine production and their pattern of cell surface adhesion molecules. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), a complement lectin pathway enzyme, is able to activate endothelial cells by cleaving protease activated receptors, which leads to cytokine production and enables neutrophil chemotaxis. Therefore, we aimed to investigate how recombinant MASP-1 (rMASP-1) can modify the pattern of P-selectin, E-selectin, ICAM-1, ICAM-2, and VCAM-1 adhesion molecules in human umbilical vein endothelial cells (HUVEC), and whether these changes can enhance the adherence between endothelial cells and neutrophil granulocyte model cells (differentiated PLB-985). We found that HUVECs activated by rMASP-1 decreased the expression of ICAM-2 and increased that of E-selectin, whereas ICAM-1, VCAM-1 and P-selectin expression remained unchanged. Furthermore, these changes resulted in increased adherence between differentiated PLB-985 cells and endothelial cells. Our finding suggests that complement MASP-1 can increase adhesion between neutrophils and endothelial cells in a direct fashion. This is in agreement with our previous finding that MASP-1 increases the production of pro-inflammatory cytokines (such as IL-6 and IL-8) and chemotaxis, and may thereby boost neutrophil functions. This newly described cooperation between complement lectin pathway and neutrophils via endothelial cells may be an effective tool to enhance the antimicrobial immune response.
Collapse
|
21
|
Wang H, Zhang C, Yang Q, Feng J, Chen H, Gu Z, Zhang H, Chen W, Chen YQ. Production of GDP- l-fucose from exogenous fucose through the salvage pathway in Mortierella alpina. RSC Adv 2016. [DOI: 10.1039/c6ra06031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This study is the first to report a comprehensive characterization of GDP-l-fucose pyrophosphorylase (GFPP) in a fungus.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Chen Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Qin Yang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Jinghan Feng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
| |
Collapse
|
22
|
Preston RC, Jakob RP, Binder FPC, Sager CP, Ernst B, Maier T. E-selectin ligand complexes adopt an extended high-affinity conformation. J Mol Cell Biol 2015; 8:62-72. [PMID: 26117840 PMCID: PMC4710209 DOI: 10.1093/jmcb/mjv046] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
E-selectin is a cell-adhesion molecule of the vascular endothelium that promotes essential leukocyte rolling in the early inflammatory response by binding to glycoproteins containing the tetrasaccharide sialyl Lewis(x) (sLe(x)). Efficient leukocyte recruitment under vascular flow conditions depends on an increased lifetime of E-selectin/ligand complexes under tensile force in a so-called catch-bond binding mode. Co-crystal structures of a representative fragment of the extracellular E-selectin region with sLe(x) and a glycomimetic antagonist thereof reveal an extended E-selectin conformation, which is identified as a high-affinity binding state of E-selectin by molecular dynamics simulations. Small-angle X-ray scattering experiments demonstrate a direct link between ligand binding and E-selectin conformational transition under static conditions in solution. This permits tracing a series of concerted structural changes connecting ligand binding to conformational stretching as the structural basis of E-selectin catch-bond-mediated leukocyte recruitment. The detailed molecular view of the binding site paves the way for the design of a new generation of selectin antagonists. This is of special interest, since their therapeutic potential was recently demonstrated with the pan-selectin antagonists GMI-1070 (Rivipansel).
Collapse
Affiliation(s)
- Roland C Preston
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Florian P C Binder
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:473-510. [PMID: 25621663 DOI: 10.1146/annurev-pathol-012414-040438] [Citation(s) in RCA: 574] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.
Collapse
|
24
|
The role of endothelial cell adhesion molecules in the development of atherosclerosis. Cardiovasc Pathol 2015; 1:17-28. [PMID: 25990035 DOI: 10.1016/1054-8807(92)90005-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/1991] [Accepted: 07/17/1991] [Indexed: 01/10/2023] Open
Abstract
The vascular endothelium serves as a dynamic interface between circulating blood elements and the interstitial tissues. As such, it communicates to cells within the vessel wall as well as to the surrounding tissue, sensing its environment and responding accordingly. The vasculature must maintain a delicate balance when initiating a functional response by producing both proinflammatory and antiinflammatory mediators, vasoconstrictors and vasodilators, growth stimulators and inhibitors, and prothrombogenic and antithrombogenic factors. Any response to injurious agents could lead to pathology. Confounding this complex interplay is the fact that the very response to injury that may have developed to undo the damage may itself be even more deleterious. One response to injury by the endothelium is the new or increased expression of surface receptors for immune elements. In atherosclerosis, the adhesion of monocytes (and T cells) to the endothelium is a key event triggered by some form of insult. Subsequent events include monocytic infiltration of the vessel wall, alterations in lipid metabolism, and the activation of these cells into foam cells. The presence of large numbers of foam cells in the intima may produce a high concentration of cytokines and growth factors within a localized area, extracellular matrix perturbations, smooth muscle cell proliferation, and ultimately platelet aggregation at the site of stenosis. Endothelial cells themselves will not only elaborate factors after the initial injury to the vessel wall but also in response to the factors produced by foam cells within the plaque. These endothelial cell factors include MCP-1, a chemoattractant for monocytes (179,180), IL-1 (63,64), IL-6 (interleukin-6) (65-67), IL-8 (interleukin 8) (181), and PDGF, a potent smooth muscle mitogen (4,72) (Fig. 3). Endothelial cells will propagate an inflammatory response long after the initial insult to the arterial vessel. A chronic cycle of endothelial cell activation and leukocyte infiltration is constitutively activated. Thus, all of the cellular elements of the vessel wall, as well as the atherosclerotic plaque itself, elaborate cytokines and growth factors that amplify and propagate the pathological process.
Collapse
|
25
|
Therapeutic adenoviral gene transfer of a glycosyltransferase for prevention of peritoneal dissemination and metastasis of gastric cancer. Cancer Gene Ther 2014; 21:427-33. [PMID: 25213663 DOI: 10.1038/cgt.2014.46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/08/2022]
Abstract
Increased expression of sialyl Lewis(x/a) carbohydrates, ligands for E-selectin, correlates with clinically advanced stages and metastasis of gastric and colon cancers. In contrast, Sd(a) carbohydrate is abundantly detected in the normal gastrointestinal mucosa but dramatically reduced or lost in cancer tissues. A glycosyltransferase, β1,4N-acetylgalactosaminyltransferase 2 (B4GALNT2) that catalyzes Sd(a) carbohydrate synthesis, is silenced in cancer. In the present study, we aimed at reducing the expression of sialyl Lewis(x/a) of cancer cells in vivo by forced expression of B4GALNT2 and Sd(a), thereby preventing dissemination/metastasis, especially metastasis triggered by surgical maneuvers. We used a fiber-modified adenovirus (Ad) vector that contained a chimeric construct with a serotype 5 shaft and a serotype 3 knob. Using this Ad5/3 vector, we successfully introduced the B4GALNT2 gene into a human gastric cancer cell line KATO III in vitro and confirmed replacement of sialyl Lewis(x) to Sd(a) with a decrease in E-selectin-dependent adhesion. Administration of Ad5/3-B4GALNT2 vectors into the peritoneal cavity of mice after inoculation of KATO III cells with laparotomy significantly reduced the incidence of metastasis. Our results indicate that the transfer of a single gene encoding B4GALNT2 modified carbohydrate chains of cancer cells in vivo and decreased tumor dissemination and metastasis.
Collapse
|
26
|
Rachel H, Chang-Chun L. Recent advances toward the development of inhibitors to attenuate tumor metastasis via the interruption of lectin-ligand interactions. Adv Carbohydr Chem Biochem 2014; 69:125-207. [PMID: 24274369 DOI: 10.1016/b978-0-12-408093-5.00005-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aberrant glycosylation is a well-recognized phenomenon that occurs on the surface of tumor cells, and the overexpression of a number of ligands (such as TF, sialyl Tn, and sialyl Lewis X) has been correlated to a worse prognosis for the patient. These unique carbohydrate structures play an integral role in cell-cell communication and have also been associated with more metastatic cancer phenotypes, which can result from binding to lectins present on cell surfaces. The most well studied metastasis-associated lectins are the galectins and selectins, which have been correlated to adhesion, neoangiogenesis, and immune-cell evasion processes. In order to slow the rate of metastatic lesion formation, a number of approaches have been successfully developed which involve interfering with the tumor lectin-substrate binding event. Through the generation of inhibitors, or by attenuating lectin and/or carbohydrate expression, promising results have been observed both in vitro and in vivo. This article briefly summarizes the involvement of lectins in the metastatic process and also describes different approaches used to prevent these undesirable carbohydrate-lectin binding events, which should ultimately lead to improvement in current cancer therapies.
Collapse
Affiliation(s)
- Hevey Rachel
- Alberta Glycomics Centre, Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
27
|
|
28
|
Kim HJ, McLean D, Pyee J, Kim J, Park H. Extract from Acanthopanax senticosus prevents LPS-induced monocytic cell adhesion via suppression of LFA-1 and Mac-1. Can J Physiol Pharmacol 2014; 92:278-84. [DOI: 10.1139/cjpp-2013-0392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A crude extract from Acanthopanax senticosus (AS) has drawn increased attention because of its potentially beneficial activities, including anti-fatigue, anti-stress, anti-gastric-ulcer, and immunoenhancing effects. We previously reported that AS crude extract exerts anti-inflammatory activity through blockade of monocytic adhesion to endothelial cells. However, the underlying mechanisms remained unknown, and so this study was designed to investigate the pathways involved. It was confirmed that AS extract inhibited lipopolysaccharide (LPS)-induced adhesion of monocytes to endothelial cells, and we found that whole extract was superior to eleutheroside E, a principal functional component of AS. A series of PCR experiments revealed that AS extract inhibited LPS-induced expression of genes encoding lymphocyte function-associated antigen-1 (LFA-1) and macrophage-1 antigen (Mac-1) in THP-1 cells. Consistently, protein levels and cell surface expression of LFA-1 and Mac-1 were noticeably reduced upon treatment with AS extract. This inhibitory effect was mediated by the suppression of LPS-induced degradation of IκB-α, a known inhibitor of nuclear factor-κB (NF-κB). In conclusion, AS extract exerts anti-inflammatory activity via the suppression of LFA-1 and Mac-1, lending itself as a potential therapeutic galenical for the prevention and treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Hyun Jeong Kim
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea
| | - Danielle McLean
- Cardiovascular Research Institute, University of Vermont, 208 South Park Drive, Colchester, VT 05446, USA
| | - Jaeho Pyee
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, 52 Hyochangwon-gil, Yongsan-gu, Seoul 140-742, Korea
| | - Heonyong Park
- Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, 126, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701, Korea
| |
Collapse
|
29
|
Lu D, Hu Y, He X, Sollogoub M, Zhang Y. Total synthesis of a sialyl Lewis(x) derivative for the diagnosis of cancer. Carbohydr Res 2013; 383:89-96. [PMID: 24333940 DOI: 10.1016/j.carres.2013.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/14/2013] [Accepted: 11/16/2013] [Indexed: 01/01/2023]
Abstract
The total synthesis of aminoethyl glycoside of sialyl Lewis(x) (sLe(x)) is described. A galactose donor was condensed with a diol of glucosamine to afford regioselectively a β1,4 linked disaccharide, which was further stereoselectively fucosylated to provide a protected Lewis(x) trisaccharide. After chemical modification, the trisaccharide was sialylated to give regio- and stereoselectively an azidoethyl glycoside of sLe(x). Finally, deprotection and azide reduction afforded the target compound. This compound will be coupled with protein and then be used to conduct further preclinical studies for the diagnosis of cancer.
Collapse
Affiliation(s)
- Dan Lu
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China
| | - Matthieu Sollogoub
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 7201, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France; ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, China.
| |
Collapse
|
30
|
Human multipotent adult progenitor cells transcriptionally regulate fucosyltransferase VII. Cytotherapy 2013; 16:566-75. [PMID: 24176542 DOI: 10.1016/j.jcyt.2013.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/09/2013] [Accepted: 08/09/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND AIMS Targeted recruitment of leukocytes to sites of inflammation is a crucial event in normal host defense against pathogens, and attachment to and rolling on activated endothelial cells is a prerequisite first step for eventual leukocyte extravasation into sites of inflammation. These key events are mediated by interactions between glycosylated ligands expressed on leukocytes and selectins expressed on activated endothelium. Cell surface expression of selectin ligands on leukocytes is regulated by the rate-limiting enzyme fucosyltransferase VII (Fut7), and in its absence extravasation of leukocytes is severely inhibited. Multipotent adult progenitor cells (MAPCs) are an adherent cell population isolated from adult bone marrow. Intravenous administration of MAPCs provided functional improvement in multiple pre-clinical models of injury or disease, but the mechanisms by which these outcomes were achieved remain poorly understood. METHODS In vitro cell analysis studies including fluorescence-activated cell sorting, messenger RNA analysis, T-cell proliferation assays and endothelial cell binding assays were performed. RESULTS The in vitro cell analysis studies characterized the ability of MAPCs to secrete factors that transcriptionally attenuate expression of Fut7 in T cells, blocking the terminal fucosylation event in the biosynthesis of selectin ligands and reducing T-cell binding to endothelial cells. CONCLUSIONS This study presents the first example of a distinct regulatory mechanism involving transcriptional down-regulation of Fut7 by MAPCs that could modulate the trafficking behavior of T cells in vivo.
Collapse
|
31
|
Wang S, Cuesta-Seijo JA, Lafont D, Palcic MM, Vidal S. Design of glycosyltransferase inhibitors: pyridine as a pyrophosphate surrogate. Chemistry 2013; 19:15346-57. [PMID: 24108680 DOI: 10.1002/chem.201301871] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/25/2013] [Indexed: 12/12/2022]
Abstract
A series of ten glycosyltransferase inhibitors has been designed and synthesized by using pyridine as a pyrophosphate surrogate. The series was prepared by conjugation of carbohydrate, pyridine, and nucleoside building blocks by using a combination of glycosylation, the Staudinger-Vilarrasa amide-bond formation, and azide-alkyne click chemistry. The compounds were evaluated as inhibitors of five metal-dependent galactosyltransferases. Crystallographic analyses of three inhibitors complexed in the active site of one of the enzymes confirmed that the pyridine moiety chelates the Mn(2+) ion causing a slight displacement (2 Å) from its original position. The carbohydrate head group occupies a different position than in the natural uridine diphosphate (UDP)-Gal substrate with little interaction with the enzyme.
Collapse
Affiliation(s)
- Shuai Wang
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, Laboratoire de Chimie Organique 2, Glycochimie, UMR 5246, CNRS and Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 6922 Villeurbanne (France), Fax: (+33) 472-448-109
| | | | | | | | | |
Collapse
|
32
|
Roh-Johnson M, Bravo-Cordero JJ, Patsialou A, Sharma VP, Guo P, Liu H, Hodgson L, Condeelis J. Macrophage contact induces RhoA GTPase signaling to trigger tumor cell intravasation. Oncogene 2013; 33:4203-12. [PMID: 24056963 PMCID: PMC3962803 DOI: 10.1038/onc.2013.377] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/16/2013] [Indexed: 12/23/2022]
Abstract
Most cancer patients die as a result of metastasis, thus it is important to understand the molecular mechanisms of dissemination, including intra- and extravasation. Although the mechanisms of extravasation have been vastly studied in vitro and in vivo, the process of intravasation is still unclear. Furthermore, how cells in the tumor microenvironment facilitate tumor cell intravasation is still unknown. Using high-resolution imaging, we found that macrophages enhance tumor cell intravasation upon physical contact. Macrophage and tumor cell contact induce RhoA activity in tumor cells, triggering the formation of actin-rich degradative protrusions called invadopodia, enabling tumor cells to degrade and break through matrix barriers during tumor cell transendothelial migration. Interestingly, we show that macrophage-induced invadopodium formation and tumor cell intravasation also occur in patient-derived tumor cells and in vivo models, revealing a conserved mechanism of tumor cell intravasation. Our results illustrate a novel heterotypic cell contact mediated signaling role for RhoA, as well as yield mechanistic insight into the ability of cells within the tumor microenvironment to facilitate steps of the metastatic cascade.
Collapse
Affiliation(s)
- M Roh-Johnson
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - J J Bravo-Cordero
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - A Patsialou
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - V P Sharma
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - P Guo
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - H Liu
- The Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - L Hodgson
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| | - J Condeelis
- 1] Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA [2] Gruss-Lipper Biophotonics Center, Bronx, NY, USA
| |
Collapse
|
33
|
Jang TJ, Park JB, Lee JI. The Expression of CD10 and CD15 Is Progressively Increased during Colorectal Cancer Development. KOREAN JOURNAL OF PATHOLOGY 2013; 47:340-7. [PMID: 24009629 PMCID: PMC3759633 DOI: 10.4132/koreanjpathol.2013.47.4.340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/10/2013] [Accepted: 07/12/2013] [Indexed: 12/14/2022]
Abstract
Background The aim of this study was to examine the expression of CD10 and CD15 in tumor cells, stromal cells and infiltrating inflammatory cells during colorectal carcinoma (CRC) development and to investigate their expression levels between the tumor center and invasive front and compare them to clinicopathological parameters in invasive CRC. Methods We performed immunohistochemical staining for CD10, CD15, and E-cadherin in 42 cases of CRC, 49 of tubular adenoma, 15 of hyperplastic polyp, and 17 of non-neoplastic colon. Results CD10 was expressed in tumor cells (tCD10), stromal cells (sCD10) and infiltrating inflammatory cells (iCD10), and CD15 was expressed in tumor cells (tCD15) and infiltrating inflammatory cells (iCD15). Their expressions were progressively increased during CRC development and the iCD10 expression level was significantly correlated with the iCD15 expression level in invasive CRC. Invasive front revealed a higher expression level of iCD10 and iCD15 than the tumor center. Moreover, the iCD15 expression level of invasive front was significantly correlated with the degree of tumor budding and tCD15 in whole tissue sections was closely associated with tumor depth. Conclusions The present study suggests that the expression of CD10 and CD15 is associated with the development and progression of CRC.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, Korea
| | | | | |
Collapse
|
34
|
Abstract
Tumor cells exhibit striking changes in cell surface glycosylation as a consequence of dysregulated glycosyltransferases and glycosidases. In particular, an increase in the expression of certain sialylated glycans is a prominent feature of many transformed cells. Altered sialylation has long been associated with metastatic cell behaviors including invasion and enhanced cell survival; however, there is limited information regarding the molecular details of how distinct sialylated structures or sialylated carrier proteins regulate cell signaling to control responses such as adhesion/migration or resistance to specific apoptotic pathways. The goal of this review is to highlight selected examples of sialylated glycans for which there is some knowledge of molecular mechanisms linking aberrant sialylation to critical processes involved in metastasis.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 982A 1918 University Boulevard, Birmingham, AL 35294-0005, USA
| | | | | |
Collapse
|
35
|
Egger J, Weckerle C, Cutting B, Schwardt O, Rabbani S, Lemme K, Ernst B. Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J Am Chem Soc 2013; 135:9820-8. [PMID: 23742188 DOI: 10.1021/ja4029582] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectins, a family of C-type lectins, play a key role in inflammatory diseases (e.g., asthma and arthritis). However, the only millimolar affinity of sialyl Lewis(x) (sLe(x)), which is the common tetrasaccharide epitope of all physiological selectin ligands, has been a major obstacle to the development of selectin antagonists for therapeutic applications. In a fragment-based approach guided by NMR, ligands binding to a second site in close proximity to a sLe(x) mimic were identified. A library of antagonists obtained by connecting the sLe(x) mimic to the best second-site ligand via triazole linkers of different lengths was evaluated by surface plasmon resonance. Detailed analysis of the five most promising candidates revealed antagonists with K(D) values ranging from 30 to 89 nM. In contrast to carbohydrate-lectin complexes with typical half-lives (t(1/2)) in the range of one second or even less, these fragment-based selectin antagonists show t1/2 of several minutes. They exhibit a promising starting point for the development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jonas Egger
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
36
|
Monzavi-Karbassi B, Pashov A, Kieber-Emmons T. Tumor-Associated Glycans and Immune Surveillance. Vaccines (Basel) 2013; 1:174-203. [PMID: 26343966 PMCID: PMC4515579 DOI: 10.3390/vaccines1020174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 04/18/2013] [Accepted: 06/06/2013] [Indexed: 02/06/2023] Open
Abstract
Changes in cell surface glycosylation are a hallmark of the transition from normal to inflamed and neoplastic tissue. Tumor-associated carbohydrate antigens (TACAs) challenge our understanding of immune tolerance, while functioning as immune targets that bridge innate immune surveillance and adaptive antitumor immunity in clinical applications. T-cells, being a part of the adaptive immune response, are the most popular component of the immune system considered for targeting tumor cells. However, for TACAs, T-cells take a back seat to antibodies and natural killer cells as first-line innate defense mechanisms. Here, we briefly highlight the rationale associated with the relative importance of the immune surveillance machinery that might be applicable for developing therapeutics.
Collapse
Affiliation(s)
- Behjatolah Monzavi-Karbassi
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Anastas Pashov
- Stephan Angeloff Institute of Microbiology, BAS, Sofia 1113, Bulgaria
| | - Thomas Kieber-Emmons
- Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
37
|
Mondal N, Buffone A, Neelamegham S. Distinct glycosyltransferases synthesize E-selectin ligands in human vs. mouse leukocytes. Cell Adh Migr 2013; 7:288-92. [PMID: 23590904 PMCID: PMC3711995 DOI: 10.4161/cam.24714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The binding of selectins to carbohydrate epitopes expressed on leukocytes is the first step in a multi-step cell adhesion cascade that controls the rate of leukocyte recruitment at sites of inflammation. The glycans that function as selectin-ligands are post-translationally synthesized by the serial action of Golgi resident enzymes called glycosyltransferases (glycoTs). Whereas much of our current knowledge regarding the role of glycoTs in constructing selectin-ligands comes from reconstituted biochemical investigations or murine models, tools to assess the impact of these enzymes on the human ligands are relatively underdeveloped. This is significant since the selectin-ligands, particularly those that bind E-selectin, vary between different leukocyte cell populations and they are also different in humans compared with mice. To address this shortcoming, a recent study by Buffone et al. (2013) outlines a systematic strategy to knockdown upto three glycoTs simultaneously in human leukocytes. The results suggest that the fucosyltransferases (FUTs) regulating selectin-ligand synthesis may be species-specific. In particular, they demonstrate that FUT9 plays a significant role during human, but not mouse, leukocyte-endothelial interactions. Overall, this article discusses the relative roles of the FUTs during human L-, E-, and P-selectin-ligand biosynthesis, and the potential that the knockdown strategy outlined here may assess the role of other glycoTs in human leukocytes also.
Collapse
Affiliation(s)
- Nandini Mondal
- Chemical and Biological Engineering and The NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
38
|
Gustafsson A, Holgersson J. A new generation of carbohydrate-based therapeutics: recombinant mucin-type fusion proteins as versatile inhibitors of protein-carbohydrate interactions. Expert Opin Drug Discov 2013; 1:161-78. [PMID: 23495799 DOI: 10.1517/17460441.1.2.161] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Cell surface carbohydrates are essential for a multitude of biomedically important interactions that take place at the cell surface. Carbohydrate-binding proteins are, therefore, significant targets for the development of carbohydrate-based inhibitors. Due to their multivalent character, monovalent low-molecular-weight sugar homologues or analogues are usually poor inhibitors of these interactions. Recent advances in organic and chemoenzymatic synthesis of carbohydrates will undoubtedly increase the pace by which new multivalent carbohydrate-based drugs are developed. Knowledge gained on the glycosyltransferases that are involved in glycan biosynthesis can be used to engineer host cells for recombinant production of proteins with tailored glycan substitution. In particular, recombinant mucin-type proteins can serve as natural scaffolds for multivalent presentation of therapeutic carbohydrate determinants.
Collapse
Affiliation(s)
- Anki Gustafsson
- Karolinska Institute, Karolinska University Hospital, Division of Clinical Immunology, F-79, S-141 86 Stockholm, Sweden.
| | | |
Collapse
|
39
|
Scott DW, Patel RP. Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 2013; 23:622-33. [PMID: 23445551 DOI: 10.1093/glycob/cwt014] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation is a major contributing element to a host of diseases with the interaction between leukocytes and the endothelium being key in this process. Much is understood about the nature of the adhesion molecule proteins expressed on any given leukocyte and endothelial cell that modulates adhesive interactions. Although it is appreciated that these proteins are heavily glycosylated, relatively little is known about the roles of these posttranslational modifications and whether they are regulated, and if so how during inflammation. Herein, we suggest that a paucity in this understanding is one major reason for the lack of successful therapies to date for modulating leukocyte-endothelial interactions in human inflammatory disease and discuss developing paradigms of (i) how endothelial adhesion molecule glycosylation (with a focus on N-glycosylation) maybe a critical element in understanding endothelial heterogeneity between different vascular beds and species, (ii) how adhesion molecule N-glycosylation may be under distinct, and as yet, unknown modes of regulation during inflammatory stress to affect the inflammatory response in a vascular bed- and disease-specific manner (analogous to a "zip code" for inflammation) and finally (iii) to underscore the concept that a fuller appreciation of the role of adhesion molecule glycoforms is needed to provide foundations for disease and tissue-specific targeting of inflammation.
Collapse
Affiliation(s)
- David W Scott
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, 901 19th St. South, BMRII 532, Birmingham, AL 35294, USA
| | | |
Collapse
|
40
|
Chaze T, Slomianny MC, Milliat F, Tarlet G, Lefebvre-Darroman T, Gourmelon P, Bey E, Benderitter M, Michalski JC, Guipaud O. Alteration of the serum N-glycome of mice locally exposed to high doses of ionizing radiation. Mol Cell Proteomics 2012; 12:283-301. [PMID: 23146835 DOI: 10.1074/mcp.m111.014639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Exposure of the skin to ionizing radiation leads to characteristic reactions that will often turn into a pathophysiological process called the cutaneous radiation syndrome. The study of this disorder is crucial to finding diagnostic and prognostic bioindicators of local radiation exposure or radiation effects. It is known that irradiation alters the serum proteome content and potentially post-translationally modifies serum proteins. In this study, we investigated whether localized irradiation of the skin alters the serum glycome. Two-dimensional differential in-gel electrophoresis of serum proteins from a man and from mice exposed to ionizing radiation showed that potential post-translational modification changes occurred following irradiation. Using a large-scale quantitative mass-spectrometry-based glycomic approach, we performed a global analysis of glycan structures of serum proteins from non-irradiated and locally irradiated mice exposed to high doses of γ-rays (20, 40, and 80 Gy). Non-supervised descriptive statistical analyses (principal component analysis) using quantitative glycan structure data allowed us to discriminate between uninjured/slightly injured animals and animals that developed severe lesions. Decisional statistics showed that several glycan families were down-regulated whereas others increased, and that particular structures were statistically significantly changed in the serum of locally irradiated mice. The observed increases in multiantennary N-glycans and in outer branch fucosylation and sialylation were associated with the up-regulation of genes involved in glycosylation in the liver, which is the main producer of serum proteins, and with an increase in the key proinflammatory serum cytokines IL-1β, IL-6, and TNFα, which can regulate the expression of glycosylation genes. Our results suggest for the first time a role of serum protein glycosylation in response to irradiation. These protein-associated glycan structure changes might signal radiation exposure or effects.
Collapse
Affiliation(s)
- Thibault Chaze
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), DRPH, SRBE, LRTE, 92260 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yu H, Zhu M, Qin Y, Zhong Y, Yan H, Wang Q, Bian H, Li Z. Analysis of glycan-related genes expression and glycan profiles in mice with liver fibrosis. J Proteome Res 2012; 11:5277-85. [PMID: 23043565 DOI: 10.1021/pr300484j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein glycosylation plays an important role in the pathogenesis and progression of various liver diseases. However, little is known about the precise alterations in protein glycosylation or the potential correlation between glycan-related genes expression and glycan profiles in liver fibrosis. The aim of the study was to investigate potential associations between glycan-related genes expression and glycan profiles to evaluate liver fibrosis in a mouse model. Analyses of glycan-related genes expression and glycan profiles were performed using oligonucleotide microarrays and lectin microarrays, respectively. Real-time PCR and Western blot were used to confirm any altered glycan-related genes expression levels and protein levels. Moreover, altered glycan patterns on the surface of hepatocytes were verified by lectin histochemistry. These results revealed that the mRNA levels of 10 glycan-related genes were significantly altered in fibrotic liver. Furthermore, we observed an increase in multivalent sialic acid, poly-LacNAc, sialyl-T-antigen, Fucoseα-1,3/6GlcNAc, and GalNAcα1-3Gal in fibrotic liver specimens, whereas GlcNAc oligomers was decreased in fibrotic liver. Our findings indicated that the synthetic pathway of "Tn antigen → T antigen (core-1) → sialyl-T antigen" was activated for O-glycan during the process of liver fibrosis.
Collapse
Affiliation(s)
- HanJie Yu
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Sialic acid cyclization of human Th homing receptor glycan associated with recurrent exacerbations of atopic dermatitis. J Dermatol Sci 2012; 68:187-93. [PMID: 23088960 DOI: 10.1016/j.jdermsci.2012.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/16/2012] [Accepted: 09/18/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND The molecular pathogenesis underlying recurrent exacerbations of atopic dermatitis (AD) is unclear. Some peripheral CCR4(+) and CCR7(+) helper memory T cells express the specific homing receptor, sialyl 6-sulfo Lewis X (G152 glycan). This glycan loses receptor activity via cyclization of its sialic acid moiety, thus becoming cyclic sialyl 6-sulfo Lewis X (G159 glycan). These findings suggest that the disordered expression of G152 and G159 glycans may be associated with recurrent exacerbations of AD. OBJECTIVE To assess the possible association of G152 and G159 glycans, which are expressed on peripheral helper T (Th) cells, with frequency of exacerbations. METHODS The percentage of glycan-expressing cells among peripheral blood CD4(+)CD45RO(+) lymphocytes was determined by flow cytometry. The association of glycans with the frequency of exacerbations determined by recurrence scores as well as with current disease activity was statistically tested. RESULTS Current disease activity was significantly associated with CCR4(+)CCR7(-) memory Th cells expressing CSLEX-1 glycan, the conventional skin-trafficking receptor without sialic-acid-cyclization activity. In contrast, the frequency of exacerbations was positively and negatively associated with CCR4(+)CCR7(+) memory Th cells expressing G152 and G159 glycans, respectively. Receiver operating characteristics analyses indicated that the ratio of the G152(+)/G159(+) cell percentages discriminated patients with highly recurrent AD with the best accuracy. CONCLUSION Flow cytometric determination of G159 and G152 glycans on peripheral helper memory T cells may be clinically useful for identifying patients with highly recurrent AD. Disordered sialic acid cyclization of G152 glycan may underlie highly recurrent AD, which may provide a novel therapeutic approach.
Collapse
|
43
|
Peters T. A matter of order: how E-selectin makes sweet contacts. Chembiochem 2012; 13:2325-6. [PMID: 23011897 DOI: 10.1002/cbic.201200551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Indexed: 11/09/2022]
Abstract
An entropy exclusive: Sialyl Lewis(x) can be thought of as a "preorganized water oligomer". Recent research in the Ernst laboratory shows that the recognition of sialyl Lewis(x) by E-selectin is exclusively entropy driven. This finding has implications for the design of carbohydrate-based drugs in general.
Collapse
Affiliation(s)
- Thomas Peters
- Institute of Chemistry, Center for Structural and Cell Biology in Medicine (CSCM), University of Luebeck, Ratzeburger Alle 160, 23562 Luebeck, Germany.
| |
Collapse
|
44
|
The Increased Expression of HLA-DR and ICAM-1 Molecules by Human Bronchial Epithelial Cells, Induced by Activated Mononuclear Cells, is Downregulated by Nedocromil Sodium. Mediators Inflamm 2012; 3:S7-S13. [PMID: 18475607 PMCID: PMC2365596 DOI: 10.1155/s0962935194000682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To test the hypothesis that mononuclear cell products could increase the expression of HLA-DR and ICAM-1 molecules in bronchial epithelial cells (BECs), subconfluent cultures of human BECs, obtained from surgically resected bronchi, were incubated with PHA-activated blood mononuclear cell conditioned media (BCM-CM) or recombinant IFN-gamma. The presence of HLA-DR and ICAM-1 molecules on BECs was then evaluated by specific antibody staining and flow-cytometry analysis. The addition to BEC cultures of different concentrations of PHA-stimulated BMC-CM, or of IFN-gamma induced a dosedependent increase of HIA-DR and ICAM-1 expression, while no effect was observed with unstimulated BMC-CM. The ability of nedocromil sodium and, as control, of dexamethasone, to prevent the upregulation of HLA-DR and ICAM-1 expression on BECs was then tested. Increasing concentrations (10(-7) to 10(-4) M) of nedocromil significandy inhibited HLA-DR and ICAM-1 expression by BECs in a dose-dependent fashion. A similarly dose-dependent inhibitory effect was also observed with dexamethasone, which, however, was less active than nedocromil on HL-ADR expression and more active on ICAM-1 expression. Finally, nedocromil and dexamethasone showed a significant synergistic effect on the expression of both cell surface molecules at the lowest concentrations tested.
Collapse
|
45
|
Titz A, Marra A, Cutting B, Smieško M, Papandreou G, Dondoni A, Ernst B. Conformational Constraints: Nature Does It Best with Sialyl Lewisx. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200744] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Kuzmanov U, Smith CR, Batruch I, Soosaipillai A, Diamandis A, Diamandis EP. Separation of kallikrein 6 glycoprotein subpopulations in biological fluids by anion-exchange chromatography coupled to ELISA and identification by mass spectrometry. Proteomics 2012; 12:799-809. [PMID: 22539431 DOI: 10.1002/pmic.201100371] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Kallikrein 6 (KLK6) has been shown to be aberrantly glycosylated in ovarian cancer. Here, we report a novel HPLC anion exchange method, coupled to a KLK6-specific ELISA, capable of differentiating KLK6 glycoform subgroups in biological fluids. Biological fluids were fractionated using anion exchange and resulting fractions were analyzed for KLK6 content by ELISA producing a four-peak elution profile. Using this assay, the KLK6 elution profile and distribution across peaks of a set (n = 7) of ovarian cancer patient matched serum and ascites fluid samples was found to be different than the profile of serum and cerebrospinal fluid (CSF) of normal individuals (n = 7). Glycosylation patterns of recombinant KLK6 (rKLK6) were characterized using tandem mass spectrometry (MS/MS), and found to consist of a highly heterogeneous KLK6 population. This protein was found to contain all of the four diagnostic KLK6 peaks present in the previously assayed biological fluids. The rKLK6 glycoform composition of each peak was assessed by lectin affinity and MS/MS based glycopeptide quantification by product ion monitoring. The combined results showed an increase in terminal alpha 2-6 linked sialic acid in the N-glycans found on KLK6 from ovarian cancer serum and ascites, as opposed to CSF and serum of normal individuals.
Collapse
Affiliation(s)
- Uros Kuzmanov
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Yoshimoto K, Tajima H, Ohta T, Okamoto K, Sakai S, Kinoshita J, Furukawa H, Makino I, Hayashi H, Nakamura K, Oyama K, Inokuchi M, Nakagawara H, Itoh H, Fujita H, Takamura H, Ninomiya I, Kitagawa H, Fushida S, Fujimura T, Wakayama T, Iseki S, Shimizu K. Increased E-selectin in hepatic ischemia-reperfusion injury mediates liver metastasis of pancreatic cancer. Oncol Rep 2012; 28:791-6. [PMID: 22766603 PMCID: PMC3583556 DOI: 10.3892/or.2012.1896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/04/2012] [Indexed: 11/30/2022] Open
Abstract
Several recent studies have reported that selectins are produced during ischemia-reperfusion injury, and that selectin ligands play an important role in cell binding to the endothelium and in liver metastasis. Portal clamping during pancreaticoduodenectomy with vessel resection for pancreatic head cancer causes hepatic ischemia-reperfusion injury, which might promote liver metastasis. We investigated the liver colonization of pancreatic cancer cells under hepatic ischemia-reperfusion and examined the involvement of E-selectin and its ligands. A human pancreatic cancer cell line (Capan-1) was injected into the spleen of mice after hepatic ischemia-reperfusion (I/R group). In addition, to investigate the effect of an anti-E-selectin antibody on liver colonization in the IR group, mice received an intraperitoneal injection of the anti-E-selectin antibody following hepatic ischemia-reperfusion and tumor inoculation (IR+Ab group). Four weeks later, mice were sacrificed and the number of tumor nodules on the liver was compared to mice without hepatic ischemia-reperfusion (control group). The incidence of liver metastasis in the I/R group was significantly higher (16 of 20, 80%) than that in the control group (6 of 20, 30%) (P<0.01). Moreover, mice in the I/R group had significantly more tumor nodules compared to those in the control group (median, 9.9 vs. 2.7 nodules) (P<0.01). In the I/R+Ab group, only 2 of 5 (40%) mice developed liver metastases. RT-PCR and southern blotting of the liver extracts showed that the expression of IL-1 and E-selectin mRNA after hepatic ischemia-reperfusion was significantly higher than the basal levels. Hepatic ischemia-reperfusion increases liver metastases and E-selectin expression in pancreatic cancer. These results suggest that E-selectin produced due to hepatic ischemia-reperfusion is involved in liver metastasis.
Collapse
Affiliation(s)
- Katsuhiro Yoshimoto
- Department of Gastroenterologic Surgery, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Binder FPC, Lemme K, Preston RC, Ernst B. Sialyl-Lewisx - ein “präorganisiertes Wasseroligomer”? Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Binder FPC, Lemme K, Preston RC, Ernst B. Sialyl Lewis(x): a "pre-organized water oligomer"? Angew Chem Int Ed Engl 2012; 51:7327-31. [PMID: 22782926 DOI: 10.1002/anie.201202555] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Indexed: 01/18/2023]
Abstract
Organized and released: Sialyl Lewis(x) (sLe(x)) represents a "pre-organized water oligomer", that is, a surrogate for clustered water molecules attached to a scaffold. The impetus for sLe(x) binding to E-selectin is shown to be the high degree of pre-organization allowing an array of directed hydrogen bonds, and the entropic benefit of the release of water molecules from the large binding interface to bulk water (see picture).
Collapse
Affiliation(s)
- Florian P C Binder
- Institute of Molecular Pharmacy, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
50
|
Jubeli E, Moine L, Nicolas V, Barratt G. Preparation of E-selectin-targeting nanoparticles and preliminary in vitro evaluation. Int J Pharm 2012; 426:291-301. [DOI: 10.1016/j.ijpharm.2012.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 01/04/2023]
|