1
|
Nikseresht M, Shahrebabaki AM, Mohammad-Sadeghipour M, Hajizadeh MR, Zarei S, Hosseiniara R, Mortazavi M, Vatankhah H, Sayadi AR, Mahmoodi M. Comparison of serum levels of IL-10 and IL-11 and mRNA expression of IL-10, IL-11, COX-2, BCL6, and ZEB Family in peripheral blood mononuclear cells (PBMC) of women with polycystic ovary syndrome and healthy individuals. J Reprod Immunol 2024; 164:104281. [PMID: 38941927 DOI: 10.1016/j.jri.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND The roles of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 genes in the potential correlation between polycystic ovary syndrome (PCOS), inflammation, and cancer remain controversial. AIMS This study aimed to compare serum levels of IL-10 and IL-11 and gene expression of IL-10, IL-11, COX-2, BCL6, ZEB1, and ZEB2 in PBMCs of women with PCOS and healthy controls. METHODS A case-control study included 40 women with PCOS as the case group and 40 healthy women as controls. Group matching for age and BMI was performed. Serum levels of IL-10 and IL-11 were assessed using ELISA, while gene expression was measured using real-time PCR. Parameters were compared between groups, and correlations among gene expression and serum levels were explored. RESULTS In comparison to healthy women, women with PCOS exhibited a significant decrease in the expression of COX-2 and IL-10 genes (p<0.001), alongside a significant increase in ZEB2 gene expression (p<0.001). There were no significant differences observed in the expression of IL-11, BCL6, and ZEB1 genes. Furthermore, the serum level of IL-10 was significantly lower in women with PCOS compared to the control group (p<0.001), while no significant difference was found in IL-11 levels. Additionally, no significant correlations were identified between gene expression and serum levels. CONCLUSION In women with PCOS, reduced IL-10 gene expression may indicate inflammation and serve as a diagnostic biomarker. However, conflicting findings on COX-2 expression complicate understanding. Elevated ZEB2 expression in PCOS women may lead to infertility, epithelial-mesenchymal transition, and aggressive phenotypes.
Collapse
Affiliation(s)
- Mahsa Nikseresht
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amin Morshedi Shahrebabaki
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Reza Hajizadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Hosseiniara
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mortazavi
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hajar Vatankhah
- Department of Obstetrics and Gynecology, School of Medicine, Nicknafs Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ahmad Reza Sayadi
- Department of Psychiatric Nursing, School of Nursing and Midwifery, Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
2
|
Hong HG, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Wang X, Zhou J, Leal TP, Otim I, Legason ID, Nabalende H, Dhudha H, Mumia M, Baker FS, Okusolubo T, Ayers LW, Bhatia K, Goedert JJ, Woo J, Manning M, Cole N, Luo W, Hicks B, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hutchinson A, Yeager M, Adeyemo AA, Thein SL, Rotimi CN, Chanock SJ, Prokunina-Olsson L, Mbulaiteye SM. Sickle cell allele HBB-rs334(T) is associated with decreased risk of childhood Burkitt lymphoma in East Africa. Am J Hematol 2024; 99:113-123. [PMID: 38009642 PMCID: PMC10872868 DOI: 10.1002/ajh.27149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.
Collapse
Affiliation(s)
- Hyokyoung G. Hong
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H. Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Jiefu Zhou
- Department of Statistics and Probability, Michigan State University, MI, USA
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Francine S. Baker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Temiloluwa Okusolubo
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Joshua Woo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adebowale A. Adeyemo
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Charles N. Rotimi
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
3
|
Bugbee E, Wang AA, Gommerman JL. Under the influence: environmental factors as modulators of neuroinflammation through the IL-10/IL-10R axis. Front Immunol 2023; 14:1188750. [PMID: 37600781 PMCID: PMC10435745 DOI: 10.3389/fimmu.2023.1188750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
The IL-10/IL-10 receptor (IL-10R) axis plays an important role in attenuating neuroinflammation in animal models of Multiple Sclerosis (MS) and increased IL-10 has been associated with a positive response to MS disease modifying therapy. Because environmental factors play an important role in MS susceptibility and disease course, identification of environmental factors that impact the IL-10/IL-10R axis has therapeutic potential. In this review, we provide historical and updated perspectives of how IL-10R signaling impacts neuroinflammation, discuss environmental factors and intestinal microbes with known impacts on the IL-10/IL-10R axis, and provide a hypothetical model for how B cells, via their production of IL-10, may be important in conveying environmental "information" to the inflamed central nervous system.
Collapse
|
4
|
Kapoor D, Shukla D. Neutrophil Extracellular Traps and Their Possible Implications in Ocular Herpes Infection. Pathogens 2023; 12:209. [PMID: 36839481 PMCID: PMC9958879 DOI: 10.3390/pathogens12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are net-like structures released from neutrophils. NETs predominantly contain cell-free deoxyribonucleic acid (DNA) decorated with histones and neutrophil granule proteins. Numerous extrinsic and intrinsic stimuli can induce the formation of NETs such as pathogens, cytokines, immune complexes, microcrystals, antibodies, and other physiological stimuli. The mechanism of NETosis induction can either be ROS-dependent or independent based on the catalase producing activity of the pathogen. NADPH is the source of ROS production, which in turn depends on the upregulation of Ca2+ production in the cytoplasm. ROS-independent induction of NETosis is regulated through toll-like receptors (TLRs). Besides capturing and eliminating pathogens, NETs also aggravate the inflammatory response and thus act as a double-edged sword. Currently, there are growing reports of NETosis induction during bacterial and fungal ocular infections leading to different pathologies, but there is no direct report suggesting its role during herpes simplex virus (HSV) infection. There are innumerable independent reports showing that the major effectors of NETosis are also directly affected by HSV infection, and thus, there is a strong possibility that HSV interacts with these facilitators that can either result in virally mediated modulation of NETosis or NETosis-mediated suppression of ocular HSV infection. This review focuses on the mechanism of NETs formation during different ocular pathologies, with its prime focus on highlighting their potential implications during HSV ocular infections and acting as prospective targets for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, 1905 W. Taylor St., Chicago, IL 60612, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Functional Implications of Epstein-Barr Virus Lytic Genes in Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235780. [PMID: 36497262 PMCID: PMC9740547 DOI: 10.3390/cancers14235780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of tumors of both lymphoid and epithelial origin. Similar to other herpesviruses, EBV displays a bipartite life cycle consisting of latent and lytic phases. Current dogma indicates that the latent genes are key drivers in the pathogenesis of EBV-associated cancers, while the lytic genes are primarily responsible for viral transmission. In recent years, evidence has emerged to show that the EBV lytic phase also plays an important role in EBV tumorigenesis, and the expression of EBV lytic genes is frequently detected in tumor tissues and cell lines. The advent of next generation sequencing has allowed the comprehensive profiling of EBV gene expression, and this has revealed the consistent expression of several lytic genes across various types of EBV-associated cancers. In this review, we provide an overview of the functional implications of EBV lytic gene expression to the oncogenic process and discuss possible avenues for future investigations.
Collapse
|
6
|
Evaluation of Anticoagulant and inflammatory effects of Tanacetum parthenium (L.) in a randomized controlled clinical trial. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Schönrich G, Abdelaziz MO, Raftery MJ. Epstein-Barr virus, interleukin-10 and multiple sclerosis: A ménage à trois. Front Immunol 2022; 13:1028972. [PMID: 36275700 PMCID: PMC9585213 DOI: 10.3389/fimmu.2022.1028972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease that is characterized by inflammation and demyelination of nerve cells. There is strong evidence that Epstein-Barr virus (EBV), a human herpesvirus infecting B cells, greatly increases the risk of subsequent MS. Intriguingly, EBV not only induces human interleukin-10 but also encodes a homologue of this molecule, which is a key anti-inflammatory cytokine of the immune system. Although EBV-encoded IL-10 (ebvIL-10) has a high amino acid identity with its cellular counterpart (cIL-10), it shows more restricted and partially weaker functionality. We propose that both EBV-induced cIL-10 and ebvIL-10 act in a temporally and functionally coordinated manner helping the pathogen to establish latency in B cells and, at the same time, to balance the function of antiviral T cells. As a result, the EBV load persisting in the immune system is kept at a constant but individually different level (set point). During this immunological tug of war between virus and host, however, MS can be induced as collateral damage if the set point is too high. Here, we discuss a possible role of ebvIL-10 and EBV-induced cIL-10 in EBV-driven pathogenesis of MS.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,*Correspondence: Günther Schönrich,
| | - Mohammed O. Abdelaziz
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Martin J. Raftery
- Institute of Virology, Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany,Department of Hematology, Oncology and Tumor Immunology (CCM), Charité– Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
8
|
Ricciardi A, Hassan SA, Kamenyeva O, Bennuru S, Andersen J, Nutman TB. A filarial parasite-encoded human IL-10 receptor antagonist reveals a novel strategy to modulate host responses. PNAS NEXUS 2022; 1:pgac184. [PMID: 36246151 PMCID: PMC9552326 DOI: 10.1093/pnasnexus/pgac184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/31/2022] [Indexed: 02/05/2023]
Abstract
Interleukin (IL)-10 is the primary cytokine driving the modulation of the host response in filarial infections. We performed binding assays with Brugia malayi antigen extracts and human IL-10R1. Bm5539 was the top-binding hit. We identified a short sequence, termed truncated Bm5339, that has structural similarities to the human IL-10 functional dimer. Sequence comparisons revealed that other filarial parasites possess Bm5539 orthologues. Using recombinant Bm5539 in a modified Luciferase Immunoprecipitation System assay, we confirmed that both the truncated and full-length forms of the protein can bind to human IL-10R1. Truncated Bm5539 could inhibit human IL-10-driven phosphorylation of STAT3, thereby demonstrating that Bm5539 acts as an IL-10 antagonist, most likely through competitive binding to the receptor. We provide a structural basis for these observations using computational modeling and simulations. This parasite-encoded cytokine receptor antagonist provides an additional lens through which parasite-induced modulation of the host immune response can be examined.
Collapse
Affiliation(s)
- Alessandra Ricciardi
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Olena Kamenyeva
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - John Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| | | |
Collapse
|
9
|
Farzanehpour M, Fard AM, Ghaleh HE. A brief overview of the Epstein Barr virus and its association with Burkitt's lymphoma. ROMANIAN JOURNAL OF MILITARY MEDICINE 2022. [DOI: 10.55453/rjmm.2022.125.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Epstein Barr virus (EBV) is known as an oncovirus and associates with several human malignancies such as Burkitt's lymphoma, other non-Hodgkin lymphomas, nasopharyngeal carcinoma, Hodgkin's disease, gastric adenocarcinoma, etc. in Burkitt's lymphoma, and the key event is the translocation of MYC gene, that increase of cell survival and aberrant expression of MYC gene. The biology of EBV and its function in the development of Burkitt's lymphoma are discussed in this review
Collapse
|
10
|
Wen Y, Xu H, Han J, Jin R, Chen H. How Does Epstein–Barr Virus Interact With Other Microbiomes in EBV-Driven Cancers? Front Cell Infect Microbiol 2022; 12:852066. [PMID: 35281433 PMCID: PMC8904896 DOI: 10.3389/fcimb.2022.852066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal microbiome refers to a large spectrum of microorganisms which mainly consists of viruses and bacteria, as well as some other components such as protozoa and fungi. Epstein–Barr virus (EBV) is considered as a common component of the human commensal microbiome due to its spread worldwide in about 95% of the adult population. As the first oncogenic virus recognized in human, numerous studies have reported the involvement of other components of the commensal microbiome in the increasing incidence of EBV-driven cancers. Additionally, recent advances have also defined the involvement of host–microbiota interactions in the regulation of the host immune system in EBV-driven cancers as well as other circumstances. The regulation of the host immune system by the commensal microbiome coinfects with EBV could be the implications for how we understand the persistence and reactivation of EBV, as well as the progression of EBV-associated cancers, since majority of the EBV persist as asymptomatic carrier. In this review, we attempt to summarize the possible mechanisms for EBV latency, reactivation, and EBV-driven tumorigenesis, as well as casting light on the role of other components of the microbiome in EBV infection and reactivation. Besides, whether novel microbiome targeting strategies could be applied for curing of EBV-driven cancer is discussed as well.
Collapse
Affiliation(s)
| | | | | | - Runming Jin
- *Correspondence: Hongbo Chen, ; Runming Jin,
| | - Hongbo Chen
- *Correspondence: Hongbo Chen, ; Runming Jin,
| |
Collapse
|
11
|
Thakur M, Evans B, Schindewolf M, Baumgartner I, Döring Y. Neutrophil Extracellular Traps Affecting Cardiovascular Health in Infectious and Inflammatory Diseases. Cells 2021; 10:1689. [PMID: 34359859 PMCID: PMC8305819 DOI: 10.3390/cells10071689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are web-like structures of decondensed extracellular chromatin fibers and neutrophil granule proteins released by neutrophils. NETs participate in host immune defense by entrapping pathogens. They are pro-inflammatory in function, and they act as an initiator of vascular coagulopathies by providing a platform for the attachment of various coagulatory proteins. NETs are diverse in their ability to alter physiological and pathological processes including infection and inflammation. In this review, we will summarize recent findings on the role of NETs in bacterial/viral infections associated with vascular inflammation, thrombosis, atherosclerosis and autoimmune disorders. Understanding the complex role of NETs in bridging infection and chronic inflammation as well as discussing important questions related to their contribution to pathologies outlined above may pave the way for future research on therapeutic targeting of NETs applicable to specific infections and inflammatory disorders.
Collapse
Affiliation(s)
- Manovriti Thakur
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Bryce Evans
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Marc Schindewolf
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Iris Baumgartner
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
| | - Yvonne Döring
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, CH-3010 Bern, Switzerland; (M.T.); (B.E.); (M.S.); (I.B.)
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich (LMU), 80336 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
12
|
Looi CK, Hii LW, Chung FFL, Mai CW, Lim WM, Leong CO. Roles of Inflammasomes in Epstein-Barr Virus-Associated Nasopharyngeal Cancer. Cancers (Basel) 2021; 13:1786. [PMID: 33918087 PMCID: PMC8069343 DOI: 10.3390/cancers13081786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is recognised as one of the causative agents in most nasopharyngeal carcinoma (NPC) cases. Expression of EBV viral antigens can induce host's antiviral immune response by activating the inflammasomes to produce pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and IL-18. These cytokines are known to be detrimental to a wide range of virus-infected cells, in which they can activate an inflammatory cell death program, called pyroptosis. However, aberrant inflammasome activation and production of its downstream cytokines lead to chronic inflammation that may contribute to various diseases, including NPC. In this review, we summarise the roles of inflammasomes during viral infection, how EBV evades inflammasome-mediated immune response, and progress into tumourigenesis. The contrasting roles of inflammasomes in cancer, as well as the current therapeutic approaches used in targeting inflammasomes, are also discussed in this review. While the inflammasomes appear to have dual roles in carcinogenesis, there are still many questions that remain unanswered. In particular, the exact molecular mechanism responsible for the regulation of the inflammasomes during carcinogenesis of EBV-associated NPC has not been explored thoroughly. Furthermore, the current practical application of inflammasome inhibitors is limited to specific tumour types, hence, further studies are warranted to discover the potential of targeting the inflammasomes for the treatment of NPC.
Collapse
Affiliation(s)
- Chin King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia; (C.K.L.); (L.-W.H.)
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE), International Agency for Research on Cancer World Health Organisation, CEDEX 08 Lyon, France;
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei-Meng Lim
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur 57000, Malaysia; (C.-W.M.); (W.-M.L.)
- School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
13
|
Jog NR, James JA. Epstein Barr Virus and Autoimmune Responses in Systemic Lupus Erythematosus. Front Immunol 2021; 11:623944. [PMID: 33613559 PMCID: PMC7886683 DOI: 10.3389/fimmu.2020.623944] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disease. Infections or infectious reactivation are potential triggers for initiation of autoimmunity and for SLE flares. Epstein-Barr virus (EBV) is gamma herpes virus that has been associated with several autoimmune diseases such as SLE, multiple sclerosis, Sjogren’s syndrome, and systemic sclerosis. In this review, we will discuss the recent advances regarding how EBV may contribute to immune dysregulation, and how these mechanisms may relate to SLE disease progression.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Medicine, Pathology, Microbiology & Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
14
|
The BHLF1 Locus of Epstein-Barr Virus Contributes to Viral Latency and B-Cell Immortalization. J Virol 2020; 94:JVI.01215-20. [PMID: 32581094 DOI: 10.1128/jvi.01215-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1 - virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1 - viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.
Collapse
|
15
|
Yiu SPT, Dorothea M, Hui KF, Chiang AKS. Lytic Induction Therapy against Epstein-Barr Virus-Associated Malignancies: Past, Present, and Future. Cancers (Basel) 2020; 12:cancers12082142. [PMID: 32748879 PMCID: PMC7465660 DOI: 10.3390/cancers12082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) lytic induction therapy is an emerging virus-targeted therapeutic approach that exploits the presence of EBV in tumor cells to confer specific killing effects against EBV-associated malignancies. Efforts have been made in the past years to uncover the mechanisms of EBV latent-lytic switch and discover different classes of chemical compounds that can reactivate the EBV lytic cycle. Despite the growing list of compounds showing potential to be used in the lytic induction therapy, only a few are being tested in clinical trials, with varying degrees of success. This review will summarize the current knowledge on EBV lytic reactivation, the major hurdles of translating the lytic induction therapy into clinical settings, and highlight some potential strategies in the future development of this therapy for EBV-related lymphoid and epithelial malignancies.
Collapse
|
16
|
Saraiva M, Vieira P, O'Garra A. Biology and therapeutic potential of interleukin-10. J Exp Med 2020; 217:jem.20190418. [PMID: 31611251 PMCID: PMC7037253 DOI: 10.1084/jem.20190418] [Citation(s) in RCA: 473] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022] Open
Abstract
The authors review the molecular mechanisms regulating IL-10 production and response and describe classic and novel functions of IL-10 in immune and non-immune cells. They further discuss the therapeutic potential of IL-10 in different diseases and the outstanding questions underlying an effective application of IL-10 in clinical settings. The cytokine IL-10 is a key anti-inflammatory mediator ensuring protection of a host from over-exuberant responses to pathogens and microbiota, while playing important roles in other settings as sterile wound healing, autoimmunity, cancer, and homeostasis. Here we discuss our current understanding of the regulation of IL-10 production and of the molecular pathways associated with IL-10 responses. In addition to IL-10’s classic inhibitory effects on myeloid cells, we also describe the nonclassic roles attributed to this pleiotropic cytokine, including how IL-10 regulates basic processes of neural and adipose cells and how it promotes CD8 T cell activation, as well as epithelial repair. We further discuss its therapeutic potential in the context of different diseases and the outstanding questions that may help develop an effective application of IL-10 in diverse clinical settings.
Collapse
Affiliation(s)
- Margarida Saraiva
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Paulo Vieira
- Department of Immunology, Unité Lymphopoièse, Institut Pasteur, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France.,Institut National de la Santé et de la Recherche Médicale U1223, Paris, France
| | - Anne O'Garra
- Laboratory of Immunoregulation and Infection, The Francis Crick Institute, London, UK.,National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
17
|
Epstein-Barr Virus (EBV) Tegument Protein BGLF2 Suppresses Type I Interferon Signaling To Promote EBV Reactivation. J Virol 2020; 94:JVI.00258-20. [PMID: 32213613 DOI: 10.1128/jvi.00258-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 03/14/2020] [Indexed: 12/27/2022] Open
Abstract
Interferon alpha (IFN-α) and IFN-β are type I IFNs that are induced by virus infection and are important in the host's innate antiviral response. EBV infection activates multiple cell signaling pathways, resulting in the production of type I IFN which inhibits EBV infection and virus-induced B-cell transformation. We reported previously that EBV tegument protein BGLF2 activates p38 and enhances EBV reactivation. To further understand the role of BGLF2 in EBV infection, we used mass spectrometry to identify cellular proteins that interact with BGLF2. We found that BGLF2 binds to Tyk2 and confirmed this interaction by coimmunoprecipitation. BGLF2 blocked type I IFN-induced Tyk2, STAT1, and STAT3 phosphorylation and the expression of IFN-stimulated genes (ISGs) IRF1, IRF7, and MxA. In contrast, BGLF2 did not inhibit STAT1 phosphorylation induced by IFN-γ. Deletion of the carboxyl-terminal 66 amino acids of BGLF2 reduced the ability of the protein to repress type I IFN signaling. Treatment of gastric carcinoma and Raji cells with IFN-α blocked BZLF1 expression and EBV reactivation; however, expression of BGLF2 reduced the ability of IFN-α to inhibit BZLF1 expression and enhanced EBV reactivation. In summary, EBV BGLF2 interacts with Tyk2, inhibiting Tyk2, STAT1, and STAT3 phosphorylation and impairs type I IFN signaling; BGLF2 also counteracts the ability of IFN-α to suppress EBV reactivation.IMPORTANCE Type I interferons are important for controlling virus infection. We have found that the Epstein-Barr virus (EBV) BGLF2 tegument protein binds to a protein in the type I interferon signaling pathway Tyk2 and inhibits the expression of genes induced by type I interferons. Treatment of EBV-infected cells with type I interferon inhibits reactivation of the virus, while expression of EBV BGLF2 reduces the ability of type I interferon to inhibit virus reactivation. Thus, a tegument protein delivered to cells during virus infection inhibits the host's antiviral response and promotes virus reactivation of latently infected cells. Therefore, EBV BGLF2 might protect virus-infected cells from the type I interferon response in cells undergoing lytic virus replication.
Collapse
|
18
|
Jog NR, Young KA, Munroe ME, Harmon MT, Guthridge JM, Kelly JA, Kamen DL, Gilkeson GS, Weisman MH, Karp DR, Gaffney PM, Harley JB, Wallace DJ, Norris JM, James JA. Association of Epstein-Barr virus serological reactivation with transitioning to systemic lupus erythematosus in at-risk individuals. Ann Rheum Dis 2019; 78:1235-1241. [PMID: 31217170 PMCID: PMC6692217 DOI: 10.1136/annrheumdis-2019-215361] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/06/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a systemic autoimmune disease with unknown aetiology. Epstein-Barr virus (EBV) is an environmental factor associated with SLE. EBV maintains latency in B cells with frequent reactivation measured by antibodies against viral capsid antigen (VCA) and early antigen (EA). In this study, we determined whether EBV reactivation and single nucleotide polymorphisms (SNPs) in EBV-associated host genes are associated with SLE transition. METHODS SLE patient relatives (n=436) who did not have SLE at baseline were recontacted after 6.3 (±3.9) years and evaluated for interim transitioning to SLE (≥4 cumulative American College of Rheumatology criteria); 56 (13%) transitioned to SLE prior to the follow-up visit. At both visits, detailed demographic, environmental, clinical information and blood samples were obtained. Antibodies against viral antigens were measured by ELISA. SNPs in IL10, CR2, TNFAIP3 and CD40 genes were typed by ImmunoChip. Generalised estimating equations were used to test associations between viral antibody levels and transitioning to SLE. RESULTS Mean baseline VCA IgG (4.879±1.797 vs 3.866±1.795, p=0.0003) and EA IgG (1.192±1.113 vs 0.7774±0.8484, p=0.0236) levels were higher in transitioned compared with autoantibody negative non-transitioned relatives. Increased VCA IgG and EA IgG were associated with transitioning to SLE (OR 1.28 95% CI 1.07 to 1.53, p=0.007, OR 1.43 95% CI 1.06 to 1.93, p=0.02, respectively). Significant interactions were observed between CD40 variant rs48100485 and VCA IgG levels and IL10 variant rs3024493 and VCA IgA levels in transitioning to SLE. CONCLUSION Heightened serologic reactivation of EBV increases the probability of transitioning to SLE in unaffected SLE relatives.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Melissa E Munroe
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Michael T Harmon
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jennifer A Kelly
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Diane L Kamen
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary S Gilkeson
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Michael H Weisman
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David R Karp
- Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- US Department of Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Daniel J Wallace
- Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jill M Norris
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Colorado School of Public Health, Aurora, Colorado, USA
| | - Judith A James
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
19
|
Holder KA, Grant MD. Human cytomegalovirus IL-10 augments NK cell cytotoxicity. J Leukoc Biol 2019; 106:447-454. [PMID: 30964577 DOI: 10.1002/jlb.2ab0418-158rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/02/2023] Open
Abstract
Human cytomegalovirus (HCMV) persistently infects most of the adult population with periods of productive and latent infection differentially orchestrated by multiple HCMV-encoded gene products. One HCMV gene (UL111a) encodes cmvIL-10, a virokine homologous to human IL (hIL)-10. Although the effects of cmvIL-10 on most human lymphocyte subsets have been extensively studied, its impact on NK cell function was unreported prior to this study. We investigated effects of short-term cmvIL-10 exposure on human NK cells and found it substantially enhanced NK cell cytotoxicity through natural cytotoxicity receptors NKp30 and NKp46 as well as through C-type lectin-like receptors NKG2C and NKG2D. Antibody-dependent cell-mediated cytotoxicity triggered through CD16 also increased significantly with short-term cmvIL-10 exposure. These effects of cmvIL-10 on NK cell cytotoxicity were rapid, dose dependent, neutralized by polyclonal anti-cmvIL-10 or monoclonal anti-IL-10 receptor (IL-10R) antibodies and independent of increased perforin synthesis or up-regulation of activating receptors. A low percentage (0.5-5.4%; n = 12) of NK cells expressed IL-10R and the impact of cmvIL-10 on NK cells degranulation following CD16 stimulation directly correlated with this percentage (P = 0.0218). Short-term exposure of human NK cells to cmvIL-10 did not introduce phenotypic changes reminiscent of NK adaptation to HCMV infection in vivo. Determining how expression of a viral protein that activates NK cells contributes to their function in vivo will increase understanding of HCMV infection and NK cell biology.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
20
|
Jog NR, Chakravarty EF, Guthridge JM, James JA. Epstein Barr Virus Interleukin 10 Suppresses Anti-inflammatory Phenotype in Human Monocytes. Front Immunol 2018; 9:2198. [PMID: 30356670 PMCID: PMC6189329 DOI: 10.3389/fimmu.2018.02198] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023] Open
Abstract
Epstein Barr virus (EBV) is a gamma herpes virus associated with certain malignancies and autoimmune diseases. EBV maintains latency in B cells with occasional reactivation, in part by overcoming the host immune response with viral homologs of several human proteins. EBV interleukin 10 (vIL-10), a lytic phase protein, is a homolog of human IL-10 (hIL-10). The effect of vIL-10 on human monocytes, which are one of the first immune cells to respond to infection, is not known. To understand the role of vIL-10, monocytes from peripheral blood mononuclear cells were stimulated with hIL-10 or vIL-10. Human IL-10 stimulated STAT3 phosphorylation, which is required for suppression of inflammatory responses. However, vIL-10 induced significantly lower phosphorylation of STAT3 compared to hIL-10, and was less efficient in downregulating inflammatory genes. vIL-10 significantly reduced the expression of scavenger receptor CD163 on monocytes, suggesting inhibition of M2 polarization. Furthermore, uptake of apoptotic cells was reduced in vIL-10-stimulated monocytes compared to hIL-10-stimulated monocytes. A neutralizing antibody to IL-10R1 inhibited STAT3 phosphorylation induced by either hIL-10 or vIL-10, suggesting that vIL-10 signals through IL-10R1. Interestingly, vIL-10 suppressed hIL-10-induced STAT3 phosphorylation and inhibited upregulation of suppressors of inflammatory response by hIL-10. We further show that vIL-10 levels were significantly higher in plasma samples from systemic lupus erythematosus (SLE) patients compared to matched unaffected controls. vIL-10 levels did not correlate with hIL-10 levels, but were associated with levels of IgA antibodies to EBV viral capsid antigen, which is an indirect measure of viral reactivation. We propose that the suppression of hIL-10- induced anti-inflammatory genes by vIL-10, together with an increase in inflammatory gene expression, may overcome the anti-inflammatory effects of hIL-10 and exacerbate autoimmune responses in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Neelakshi R Jog
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Eliza F Chakravarty
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States.,Departments of Medicine and Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| |
Collapse
|
21
|
Li CW, Jheng BR, Chen BS. Investigating genetic-and-epigenetic networks, and the cellular mechanisms occurring in Epstein-Barr virus-infected human B lymphocytes via big data mining and genome-wide two-sided NGS data identification. PLoS One 2018; 13:e0202537. [PMID: 30133498 PMCID: PMC6105016 DOI: 10.1371/journal.pone.0202537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is prevalent in all human populations. EBV mainly infects human B lymphocytes and epithelial cells, and is therefore associated with their various malignancies. To unravel the cellular mechanisms during the infection, we constructed interspecies networks to investigate the molecular cross-talk mechanisms between human B cells and EBV at the first (0-24 hours) and second (8-72 hours) stages of EBV infection. We first constructed a candidate genome-wide interspecies genetic-and-epigenetic network (the candidate GIGEN) by big database mining. We then pruned false positives in the candidate GIGEN to obtain the real GIGENs at the first and second infection stages in the lytic phase by their corresponding next-generation sequencing data through dynamic interaction models, the system identification approach, and the system order detection method. The real GIGENs are very complex and comprise protein-protein interaction networks, gene/microRNA (miRNA)/long non-coding RNA regulation networks, and host-virus cross-talk networks. To understand the molecular cross-talk mechanisms underlying EBV infection, we extracted the core GIGENs including host-virus core networks and host-virus core pathways from the real GIGENs using the principal network projection method. According to the results, we found that the activities of epigenetics-associated human proteins or genes were initially inhibited by viral proteins and miRNAs, and human immune responses were then dysregulated by epigenetic modification. We suggested that EBV exploits viral proteins and miRNAs, such as EBNA1, BPLF1, BALF3, BVRF1 and miR-BART14, to develop its defensive mechanism to defeat multiple immune attacks by the human immune system, promotes virion production, and facilitates the transportation of viral particles by activating the human genes NRP1 and CLIC5. Ultimately, we propose a therapeutic intervention comprising thymoquinone, valpromide, and zebularine to act as inhibitors of EBV-associated malignancies.
Collapse
Affiliation(s)
- Cheng-Wei Li
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
22
|
Ni G, Wang T, Yang L, Wang Y, Liu X, Wei MQ. Combining anaerobic bacterial oncolysis with vaccination that blocks interleukin-10 signaling may achieve better outcomes for late stage cancer management. Hum Vaccin Immunother 2017; 12:599-606. [PMID: 26367244 DOI: 10.1080/21645515.2015.1089008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Late stage solid tumors cause significant cancer mortality rates worldwide and effective therapy remains a big challenge. Cancer therapeutic vaccines elicit tumor specific T cells that kill tumor cells yet often fail to result in tumor destruction because of the limited T cell response and the local immune-suppressive environment. Blocking interleukin 10 (IL-10) signaling at the time of therapeutic vaccination elicits much stronger T cell responses than vaccination without IL-10 blocking. Anaerobic oncolytic bacteria target hypoxic regions of the late stage tumor tissues which not only stops tumor growth but also provides a pro-inflammatory environment that may increase the effectiveness of a therapeutic vaccine by recruiting more effector T cells to tumor site. In this review, we argue that combining both bacterial and vaccine therapies may improve the efficiency of late stage cancer management.
Collapse
Affiliation(s)
- Guoying Ni
- a School of Medical Science and Griffith Health Institute, Griffith University , Gold Coast , QLD , Australia.,d Tangshan Supervision Institute of Health , Tangshan , China
| | - Tianfang Wang
- c Genecology Research Center, University of the Sunshine Coast , Maroochydore DC , QLD , Australia
| | - Lin Yang
- f Department of Surgical Oncology , Tangshan Gongren Hospital , Tangshan , Hebei , China
| | - Yuejian Wang
- e Cancer Research Institute, Foshan First People's Hospital , Foshan, Guangdong , China
| | - Xiaosong Liu
- b Inflammation and Healing Research Cluster, University of the Sunshine Coast , Maroochydore DC , QLD , Australia.,e Cancer Research Institute, Foshan First People's Hospital , Foshan, Guangdong , China
| | - Ming Q Wei
- a School of Medical Science and Griffith Health Institute, Griffith University , Gold Coast , QLD , Australia
| |
Collapse
|
23
|
Foreman HCC, Armstrong J, Santana AL, Krug LT, Reich NC. The replication and transcription activator of murine gammaherpesvirus 68 cooperatively enhances cytokine-activated, STAT3-mediated gene expression. J Biol Chem 2017; 292:16257-16266. [PMID: 28821622 DOI: 10.1074/jbc.m117.786970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Gammaherpesviruses (γHVs) have a dynamic strategy for lifelong persistence, involving productive infection, latency, and intermittent reactivation. In latency reservoirs, such as B lymphocytes, γHVs exist as viral episomes and express few viral genes. Although the ability of γHV to reactivate from latency and re-enter the lytic phase is challenging to investigate and control, it is known that the γHV replication and transcription activator (RTA) can promote lytic reactivation. In this study, we provide first evidence that RTA of murine γΗV68 (MHV68) selectively binds and enhances the activity of tyrosine-phosphorylated host STAT3. STAT3 is a transcription factor classically activated by specific tyrosine 705 phosphorylation (pTyr705-STAT3) in response to cytokine stimulation. pTyr705-STAT3 forms a dimer that avidly binds a consensus target site in the promoters of regulated genes, and our results indicate that RTA cooperatively enhances the ability of pTyr705-STAT3 to induce expression of a STAT3-responsive reporter gene. As indicated by coimmunoprecipitation, in latently infected B cells that are stimulated to reactivate MHV68, RTA bound specifically to endogenous pTyr705-STAT3. An in vitro binding assay confirmed that RTA selectively recognizes pTyr705-STAT3 and indicated that the C-terminal transactivation domain of RTA was required for enhancing STAT3-directed gene expression. The cooperation of these transcription factors may influence both viral and host genes. During MHV68 de novo infection, pTyr705-STAT3 promoted the temporal expression of ORF59, a viral replication protein. Our results demonstrate that MHV68 RTA specifically recognizes and recruits activated pTyr705-STAT3 during the lytic phase of infection.
Collapse
Affiliation(s)
- Hui-Chen Chang Foreman
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Julie Armstrong
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Alexis L Santana
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Laurie T Krug
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| | - Nancy C Reich
- From the Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794
| |
Collapse
|
24
|
Lotze MT. Transplantation and Adoptive Cellular Therapy of Cancer: The Role of T-Cell Growth Factors. Cell Transplant 2017. [DOI: 10.1177/096368979300200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to transfer cultured lymphocytes required the availability and the understanding of the use of the T-cell growth factors IL-2, IL-4, IL-7, and IL-12. Application of these cytokines in vitro and in vivo has allowed the modern development of adoptive transfer of tumor reactive lymphocytes to the modern immunotherapy of patients with cancer. In a randomized prospective study of IL-2 administration compared with IL-2 and lymphokine-activated killer (LAK) cells, no increase in response rate was observed. In a total of 90 patients randomized to receive LAK and IL-2 and 91 patients randomized to receive IL-2 alone, there were a total of 24 responses in patients receiving cells and IL-2 and 16 responses in those receiving IL-2 alone (no significant difference). There was some suggestion that complete responses were observed more often in melanoma patients treated with LAK and IL-2. The most interesting aspect of this study is the prolonged duration of responses, lasting for many months or years. Unfortunately, given the large numbers of variables that were examined, it became very difficult to demonstrate a clear-cut association between clinical outcome (response) and any variable that was routinely measured. Significant antitumor responses have been observed greater than expected with IL-2 alone, with the administration of tumor-infiltrating lymphocytes to patients with melanoma. We currently use hollow fiber devices (Cellco, Germantown, MD) to expand cells up through the many doublings required to generate approximately 1-2 × 1011 cells over a period of 6 wk in culture. In a recent review of the results in patients with melanoma treated on such regimens in combination with high-dose IL-2, an approximately 20-50% response rate has been observed. The factors associated with response are still unclear. Although we initially felt that it was associated with specific lysis, subsequent studies from our group suggest that the relevant factor is specific cytokine (INF-γ, GM-CSF, TNF) production upon tumor stimulation. Additional studies will need to be done to clarify these issues.
Collapse
Affiliation(s)
- Michael T. Lotze
- Department of Surgery, University of Pittsburgh Medical Center and the Pittsburgh Cancer Institute, Pittsburgh, PA 15261, USA
| |
Collapse
|
25
|
Holz CL, Nelli RK, Wilson ME, Zarski LM, Azab W, Baumgardner R, Osterrieder N, Pease A, Zhang L, Hession S, Goehring LS, Hussey SB, Soboll Hussey G. Viral genes and cellular markers associated with neurological complications during herpesvirus infections. J Gen Virol 2017. [PMID: 28631601 DOI: 10.1099/jgv.0.000773] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite the importance of neurological disorders associated with herpesviruses, the mechanism by which these viruses influence the central nervous system (CNS) has not been definitively established. Owing to the limitations of studying neuropathogenicity of human herpesviruses in their natural host, many aspects of their pathogenicity and immune response are studied in animal models. Here, we present an important model system that enables studying neuropathogenicity of herpesviruses in the natural host. Equine herpesvirus type 1 (EHV-1) is an alphaherpesvirus that causes a devastating neurological disease (EHV-1 myeloencephalopathy; EHM) in horses. Like other alphaherpesviruses, our understanding of virus neuropathogenicity in the natural host beyond the essential role of viraemia is limited. In particular, information on the role of different viral proteins for virus transfer to the spinal cord endothelium in vivo is lacking. In this study, the contribution of two viral proteins, DNA polymerase (ORF30) and glycoprotein D (gD), to the pathogenicity of EHM was addressed. Furthermore, different cellular immune markers, including alpha-interferon (IFN-α), gamma-interferon (IFN-γ), interleukin-10 (IL-10) and interleukin-1 beta (IL-1β), were identified to play a role during the course of the disease.
Collapse
Affiliation(s)
- Carine L Holz
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Rahul K Nelli
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - M Eilidh Wilson
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Lila M Zarski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Walid Azab
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Rachel Baumgardner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Nikolaus Osterrieder
- Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | - Anthony Pease
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Liangliang Zhang
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Sarah Hession
- Center for Statistical Training and Consulting, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Lutz S Goehring
- Equine Hospital - Division of Medicine and Reproduction, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Stephen B Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Gisela Soboll Hussey
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Kumar S, Shukla R, Ranjan P, Kumar A. Interleukin-10: A Compelling Therapeutic Target in Patients With Irritable Bowel Syndrome. Clin Ther 2017; 39:632-643. [PMID: 28237672 DOI: 10.1016/j.clinthera.2017.01.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE Pro- and antiinflammatory cytokines are important modulators of the immune response and play a major role in conditions of intestinal inflammation, such as irritable bowel syndrome (IBS). Cytokine production is regulated genetically, and imbalances in cytokine secretion may affect disease susceptibility and clinical outcomes of various conditions. There is a rapidly growing body of evidence to support an etiologic role for gastrointestinal infection and the associated immune activation in the development of postinfectious IBS. Other factors such as psychological stress, anxiety, and depression may likely be involved in the altered profiles of pro- and antiinflammatory cytokines that lead to chronic IBS. METHODS We searched the literature using PubMed, MEDLINE, and Google Scholar with related key terms and prepared this review article on that basis. FINDINGS Interleukin (IL)-10 is a regulatory cytokine that inhibits both antigen presentation and the release of proinflammatory cytokines. Therefore, it is proposed as a potent antiinflammatory biological therapy for IBS. IMPLICATIONS Recently, a strong interest in the therapeutic potential of IL-10 for IBS has developed. The diverse roles of IL-10 in IBS are reviewed here. We conducted an in-depth review on IL-10 and IBS to address this question. Future studies of IL-10 may provide new insights into IBS therapy.
Collapse
Affiliation(s)
- Sunil Kumar
- Faculty of Biotechnology, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Barabanki, India.
| | - Ratnakar Shukla
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Prabhat Ranjan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, India.
| |
Collapse
|
27
|
Godkin A, Smith KA. Chronic infections with viruses or parasites: breaking bad to make good. Immunology 2017; 150:389-396. [PMID: 28009488 PMCID: PMC5343343 DOI: 10.1111/imm.12703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic forms of life have been continually invaded by microbes and larger multicellular parasites, such as helminths. Over a billion years ago bacterial endosymbionts permanently colonized eukaryotic cells leading to recognized organelles with a distinct genetic lineage, such as mitochondria and chloroplasts. Colonization of our skin and mucosal surfaces with bacterial commensals is now known to be important for host health. However, the contribution of chronic virus and parasitic infections to immune homeostasis is being increasingly questioned. Persistent infection does not necessarily equate to exhibiting a chronic illness: healthy hosts (e.g. humans) have chronic viral and parasitic infections with no evidence of disease. Indeed, there are now examples of complex interactions between these microbes and hosts that seem to confer an advantage to the host at a particular time, suggesting that the relationship has progressed along an axis from parasitic to commensal to one of a mutualistic symbiosis. This concept is explored using examples from viruses and parasites, considering how the relationships may be not only detrimental but also beneficial to the human host.
Collapse
Affiliation(s)
- Andrew Godkin
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| | - Katherine A Smith
- Division of Infection and Immunity, Cardiff University, Cardiff, Glamorgan, UK
| |
Collapse
|
28
|
Eldin C, Mélenotte C, Mediannikov O, Ghigo E, Million M, Edouard S, Mege JL, Maurin M, Raoult D. From Q Fever to Coxiella burnetii Infection: a Paradigm Change. Clin Microbiol Rev 2017; 30:115-190. [PMID: 27856520 PMCID: PMC5217791 DOI: 10.1128/cmr.00045-16] [Citation(s) in RCA: 558] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coxiella burnetii is the agent of Q fever, or "query fever," a zoonosis first described in Australia in 1937. Since this first description, knowledge about this pathogen and its associated infections has increased dramatically. We review here all the progress made over the last 20 years on this topic. C. burnetii is classically a strict intracellular, Gram-negative bacterium. However, a major step in the characterization of this pathogen was achieved by the establishment of its axenic culture. C. burnetii infects a wide range of animals, from arthropods to humans. The genetic determinants of virulence are now better known, thanks to the achievement of determining the genome sequences of several strains of this species and comparative genomic analyses. Q fever can be found worldwide, but the epidemiological features of this disease vary according to the geographic area considered, including situations where it is endemic or hyperendemic, and the occurrence of large epidemic outbreaks. In recent years, a major breakthrough in the understanding of the natural history of human infection with C. burnetii was the breaking of the old dichotomy between "acute" and "chronic" Q fever. The clinical presentation of C. burnetii infection depends on both the virulence of the infecting C. burnetii strain and specific risks factors in the infected patient. Moreover, no persistent infection can exist without a focus of infection. This paradigm change should allow better diagnosis and management of primary infection and long-term complications in patients with C. burnetii infection.
Collapse
Affiliation(s)
- Carole Eldin
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Cléa Mélenotte
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Oleg Mediannikov
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Eric Ghigo
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Matthieu Million
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Sophie Edouard
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Jean-Louis Mege
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| | - Max Maurin
- Institut de Biologie et de Pathologie, CHU de Grenoble, Grenoble, France
| | - Didier Raoult
- URMITE, UMR CNRS 7278, IRD 198, INSERM U1095, Faculté de Médecine, Marseille, France
| |
Collapse
|
29
|
Dennehy JJ. Evolutionary ecology of virus emergence. Ann N Y Acad Sci 2016; 1389:124-146. [PMID: 28036113 PMCID: PMC7167663 DOI: 10.1111/nyas.13304] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/24/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
Abstract
The cross-species transmission of viruses into new host populations, termed virus emergence, is a significant issue in public health, agriculture, wildlife management, and related fields. Virus emergence requires overlap between host populations, alterations in virus genetics to permit infection of new hosts, and adaptation to novel hosts such that between-host transmission is sustainable, all of which are the purview of the fields of ecology and evolution. A firm understanding of the ecology of viruses and how they evolve is required for understanding how and why viruses emerge. In this paper, I address the evolutionary mechanisms of virus emergence and how they relate to virus ecology. I argue that, while virus acquisition of the ability to infect new hosts is not difficult, limited evolutionary trajectories to sustained virus between-host transmission and the combined effects of mutational meltdown, bottlenecking, demographic stochasticity, density dependence, and genetic erosion in ecological sinks limit most emergence events to dead-end spillover infections. Despite the relative rarity of pandemic emerging viruses, the potential of viruses to search evolutionary space and find means to spread epidemically and the consequences of pandemic viruses that do emerge necessitate sustained attention to virus research, surveillance, prophylaxis, and treatment.
Collapse
Affiliation(s)
- John J Dennehy
- Biology Department, Queens College of the City University of New York, Queens, New York and The Graduate Center of the City University of New York, New York, New York
| |
Collapse
|
30
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
31
|
Moser J, van Ark J, van Dijk MC, Greiner DL, Shultz LD, van Goor H, Hillebrands JL. Distinct Differences on Neointima Formation in Immunodeficient and Humanized Mice after Carotid or Femoral Arterial Injury. Sci Rep 2016; 6:35387. [PMID: 27759053 PMCID: PMC5069488 DOI: 10.1038/srep35387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/28/2016] [Indexed: 11/13/2022] Open
Abstract
Percutaneous coronary intervention is widely adopted to treat patients with coronary artery disease. However, restenosis remains an unsolved clinical problem after vascular interventions. The role of the systemic and local immune response in the development of restenosis is not fully understood. Hence, the aim of the current study was to investigate the role of the human immune system on subsequent neointima formation elicited by vascular injury in a humanized mouse model. Immunodeficient NOD.Cg-PrkdcscidIL2rgtm1Wjl(NSG) mice were reconstituted with human (h)PBMCs immediately after both carotid wire and femoral cuff injury were induced in order to identify how differences in the severity of injury influenced endothelial regeneration, neointima formation, and homing of human inflammatory and progenitor cells. In contrast to non-reconstituted mice, hPBMC reconstitution reduced neointima formation after femoral cuff injury whereas hPBMCs promoted neointima formation after carotid wire injury 4 weeks after induction of injury. Neointimal endothelium and smooth muscle cells in the injured arteries were of mouse origin. Our results indicate that the immune system may differentially respond to arterial injury depending on the severity of injury, which may also be influenced by the intrinsic properties of the arteries themselves, resulting in either minimal or aggravated neointima formation.
Collapse
Affiliation(s)
- Jill Moser
- Department of Pathology and Medical Biology-Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joris van Ark
- Department of Pathology and Medical Biology-Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Dale L Greiner
- Diabetes Center of Excellence, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Harry van Goor
- Department of Pathology and Medical Biology-Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology-Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol 2016; 7:366. [PMID: 27698656 PMCID: PMC5027205 DOI: 10.3389/fimmu.2016.00366] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
33
|
Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells. J Physiol Biochem 2016; 72:421-34. [PMID: 27139422 DOI: 10.1007/s13105-016-0490-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.
Collapse
|
34
|
Cush SS, Reynoso GV, Kamenyeva O, Bennink JR, Yewdell JW, Hickman HD. Locally Produced IL-10 Limits Cutaneous Vaccinia Virus Spread. PLoS Pathog 2016; 12:e1005493. [PMID: 26991092 PMCID: PMC4798720 DOI: 10.1371/journal.ppat.1005493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/15/2016] [Indexed: 12/29/2022] Open
Abstract
Skin infection with the poxvirus vaccinia (VV) elicits a powerful, inflammatory cellular response that clears virus infection in a coordinated, spatially organized manner. Given the high concentration of pro-inflammatory effectors at areas of viral infection, it is unclear how tissue pathology is limited while virus-infected cells are being eliminated. To better understand the spatial dynamics of the anti-inflammatory response to a cutaneous viral infection, we first screened cytokine mRNA expression levels after epicutaneous (ec.) VV infection and found a large increase the anti-inflammatory cytokine IL-10. Ex vivo analyses revealed that T cells in the skin were the primary IL-10-producing cells. To understand the distribution of IL-10-producing T cells in vivo, we performed multiphoton intravital microscopy (MPM) of VV-infected mice, assessing the location and dynamic behavior of IL-10 producing cells. Although virus-specific T cells were distributed throughout areas of the inflamed skin lacking overt virus-infection, IL-10+ cells closely associated with large keratinocytic foci of virus replication where they exhibited similar motility patterns to bulk antigen-specific CD8+ T cells. Paradoxically, neutralizing secreted IL-10 in vivo with an anti-IL-10 antibody increased viral lesion size and viral replication. Additional analyses demonstrated that IL-10 antibody administration decreased recruitment of CCR2+ inflammatory monocytes, which were important for reducing viral burden in the infected skin. Based upon these findings, we conclude that spatially concentrated IL-10 production limits cutaneous viral replication and dissemination, likely through modulation of the innate immune repertoire at the site of viral growth.
Collapse
Affiliation(s)
- Stephanie S. Cush
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Glennys V. Reynoso
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Viruses have evolved numerous mechanisms to evade the immune response, including proteins that target the function of cytokines. This article provides an overview of the different strategies used by viruses to block the induction of cytokines and immune signals triggered by cytokines. Examples of virus evasion proteins are presented, such as intracellular proteins that block signal transduction and immune activation mechanisms, secreted proteins that mimic cytokines, or viral decoy receptors that inhibit the binding of cytokines to their cognate receptors. Virus-encoded proteins that target cytokines play a major role in immune modulation, and their contributions to viral pathogenesis, promoting virus replication or preventing immunopathology, are discussed.
Collapse
|
36
|
Ben-Haj-Ayed A, Moussa A, Ghedira R, Gabbouj S, Miled S, Bouzid N, Tebra-Mrad S, Bouaouina N, Chouchane L, Zakhama A, Hassen E. Prognostic value of indoleamine 2,3-dioxygenase activity and expression in nasopharyngeal carcinoma. Immunol Lett 2015; 169:23-32. [PMID: 26608400 DOI: 10.1016/j.imlet.2015.11.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/15/2015] [Accepted: 11/15/2015] [Indexed: 12/11/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) is an enzyme with an immunosuppressive effect whose function is diverted by tumor cells to counteract immune cell functions, inducing immune escape of tumor cells. The aim of this study was to investigate the clinical significance of IDO in nasopharyngeal carcinoma (NPC). Compared to controls, NPC patients' plasma IDO activity was significantly higher, especially among patients with metastatic cancer (p=0.005). The immunohistochemical analysis revealed that high IDO expression was observed in 74% of NPC tissues and the epithelial IDO expression was inversely correlated to T-cell infiltration. Kaplan-Meier survival analysis showed that whatever the localization, intratumoral or stromal, patients with a high IDO expression and low T-cell infiltration have significantly lower survival rates. Moreover, in multivariate analysis, intratumoral and stromal IDO expression were found to be independent prognostic factors for disease-free survival (p=0.016; HR: 3.52) and overall survival (p=0.015; HR: 4.76) respectively. Our findings provide evidence that IDO is involved in tumor immune evasion of NPC, suggesting that it could be a relevant therapeutic target for NPC.
Collapse
Affiliation(s)
- Ahlem Ben-Haj-Ayed
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Faculty of Sciences, Carthage University, Bizerte, Tunisia
| | - Adnène Moussa
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Anatomy and pathologic cytology, Fattouma Bourguiba University Hospital, Tunisia
| | - Randa Ghedira
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Faculty of Sciences, Carthage University, Bizerte, Tunisia
| | - Sallouha Gabbouj
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia
| | - Souad Miled
- Department of Anatomy and pathologic cytology, Fattouma Bourguiba University Hospital, Tunisia
| | - Nadia Bouzid
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Cancerology and Radiotherapy, Farhat Hached University Hospital, Tunisia
| | - Sameh Tebra-Mrad
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Cancerology and Radiotherapy, Farhat Hached University Hospital, Tunisia
| | - Noureddine Bouaouina
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Cancerology and Radiotherapy, Farhat Hached University Hospital, Tunisia
| | - Lotfi Chouchane
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Qatar
| | - Abdelfattah Zakhama
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; Department of Anatomy and pathologic cytology, Fattouma Bourguiba University Hospital, Tunisia
| | - Elham Hassen
- Laboratory of Molecular Immuno-Oncology, Monastir University, Tunisia; High Institute of Biotechnology of Monastir, Monastir University, Tunisia.
| |
Collapse
|
37
|
Piazzon MC, Wentzel AS, Tijhaar EJ, Rakus KŁ, Vanderplasschen A, Wiegertjes GF, Forlenza M. Cyprinid Herpesvirus 3 Il10 Inhibits Inflammatory Activities of Carp Macrophages and Promotes Proliferation of Igm+ B Cells and Memory T Cells in a Manner Similar to Carp Il10. THE JOURNAL OF IMMUNOLOGY 2015; 195:3694-704. [PMID: 26371255 DOI: 10.4049/jimmunol.1500926] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of a lethal disease of carp and encodes for an Il10 homolog (ORF134). Our previous studies with a recombinant ORF134-deleted strain and the derived revertant strain suggested that cyprinid herpesvirus 3 Il10 (CyHV-3 Il10 [cyhv3Il10]) is not essential for viral replication in vitro, or virulence in vivo. In apparent contrast, cyhv3Il10 is one of the most abundant proteins of the CyHV-3 secretome and is structurally very similar to carp Il10 and also human IL10. To date, studies addressing the biological activity of cyhv3Il10 on cells of its natural host have not been performed. To address the apparent contradiction between the presence of a structurally conserved Il10 homolog in the genome of CyHV-3 and the lack of a clear phenotype in vivo using recombinant cyhv3Il10-deleted viruses, we used an in vitro approach to investigate in detail whether cyhv3Il10 exerts any biological activity on carp cells. In this study, we provide direct evidence that cyhv3Il10 is biologically active and, similarly to carp Il10, signals via a conserved Stat3 pathway modulating immune cells of its natural host, carp. In vitro, cyhv3Il10 deactivates phagocytes with a prominent effect on macrophages, while also promoting proliferation of Igm(+) B cells and memory T cells. Collectively, this study demonstrates a clear biological activity of cyhv3Il10 on cells of its natural host and indicates that cyhv3Il10 is a true viral ortholog of carp Il10. Furthermore, to our knowledge, this is the first report on biological activities of a nonmammalian viral Il10 homolog.
Collapse
Affiliation(s)
- M Carla Piazzon
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Annelieke S Wentzel
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Edwin J Tijhaar
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Krzysztof Ł Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals and Health, Faculty of Veterinary Medicine, University of Liege, 4000 Liege, Belgium
| | - Geert F Wiegertjes
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| | - Maria Forlenza
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, 6708WD Wageningen, the Netherlands; and
| |
Collapse
|
38
|
Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol 2000 2015; 69:28-45. [DOI: 10.1111/prd.12085] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2014] [Indexed: 12/13/2022]
|
39
|
Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog 2015; 11:e1004906. [PMID: 26067064 PMCID: PMC4465838 DOI: 10.1371/journal.ppat.1004906] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms. Epstein-Barr virus (EBV) is carried by most humans. It can cause several types of cancer. In healthy infected people, EBV persists for life in a "latent" state in white blood cells called B cells. For infected persons to remain healthy, it is crucial that they harbor CD8-positive "killer" T cells that recognize and destroy precancerous EBV-infected cells. However, this protection is imperfect, because the virus is not eliminated from the body, and the danger of EBV-associated cancer remains. How does the virus counteract CD8+ T cell control? Here we study the effects of latent membrane protein 2A (LMP2A), which is an important viral molecule because it is present in several types of EBV-associated cancers, and in latently infected cells in healthy people. We show that LMP2A counteracts the recognition of EBV-infected B cells by antiviral killer cells. We found a number of mechanisms that are relevant to this effect. Notably, LMP2A disturbs expression of molecules on B cells that interact with NKG2D, a molecule on the surface of CD8+ T cells that aids their activation. In this way, LMP2A weakens important immune responses against EBV. Similar mechanisms may operate in different types of LMP2A-expressing cancers caused by EBV.
Collapse
|
40
|
Sunarto A, McColl KA. Expression of immune-related genes of common carp during cyprinid herpesvirus 3 infection. DISEASES OF AQUATIC ORGANISMS 2015; 113:127-135. [PMID: 25751855 DOI: 10.3354/dao02824] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fish herpesviruses and their hosts may have coevolved for 400 to 450 million yr. During this coexistence, the hosts have equipped themselves with an elaborate immune system to defend themselves from invading viruses, whereas the viruses have developed strategies to evade host immunity, including the expression of cytokine genes that have been captured from the host. Taking advantage of our experimental model for cyprinid herpesvirus 3 (CyHV-3) persistence in carp, we studied the gene expression of host and virus immune-related genes in each stage of infection: acute, persistent and reactivation phases. IFNγ-1, IFNγ-2, IL-12 and IL-10 host genes, and the CyHV-3 vIL-10 gene (khvIL-10) were highly significantly up-regulated in different phases of CyHV-3 infection. Similarly, host IL-1β was up-regulated in the acute phase of CyHV-3 infection. There was no significant difference in the expression of host TNFα-1 and MHC-II genes during all phases of CyHV-3 infection. Based on the expression profile of carp immune-related genes in each stage of CyHV-3 infection, we propose a possible interaction between carp IL-12, carp IL-10 and khvIL-10 during the course of viral infection. To our knowledge, this is the first report on the expression of cytokine genes during all phases (acute, persistent and reactivation) of CyHV-3 infection.
Collapse
Affiliation(s)
- Agus Sunarto
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, VIC 3220, Australia
| | | |
Collapse
|
41
|
Epstein-Barr virus LMP2A suppresses MHC class II expression by regulating the B-cell transcription factors E47 and PU.1. Blood 2015; 125:2228-38. [PMID: 25631773 DOI: 10.1182/blood-2014-08-594689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/25/2015] [Indexed: 02/07/2023] Open
Abstract
Oncogenic Epstein-Barr virus (EBV) uses various approaches to escape host immune responses and persist in B cells. Such persistent infections may provide the opportunity for this virus to initiate tumor formation. Using EBV-immortalized lymphoblastoid cell lines (LCLs) as a model, we found that the expression of major histocompatibility complex (MHC) class II and CD74 in B cells is repressed after EBV infection. Class II transactivator (CIITA) is the master regulator of MHC class II-related genes. As expected, CIITA was downregulated in LCLs. We showed that downregulation of CIITA is caused by EBV latent membrane protein 2A (LMP2A) and driven by the CIITA-PIII promoter. Furthermore, we demonstrated that LMP2A-mediated E47 and PU.1 reduction resulted in CIITA suppression. Mechanistically, the LMP2A immunoreceptor tyrosine-based activation motif was critical for the repression of E47 and PU.1 promoter activity via Syk, Src, and the phosphatidylinositol 3-kinase/Akt pathway. Elimination of LMP2A in LCLs using a shLMP2A approach showed that the expression levels of E47, PU.1, CIITA, MHC class II, and CD74 are reversed. These data indicated that the LMP2A may reduce MHC class II expression through interference with the E47/PU.1-CIITA pathway. Finally, we demonstrated that MHC class II may be detected in tonsils and EBV-negative Hodgkin disease but not in EBV-associated posttransplant lymphoproliferative disease and Hodgkin disease.
Collapse
|
42
|
Han L, Sun L, Zhao Z, Chao Y, Sun Z, Li H, Luo B. Sequence variation of Epstein-Barr virus (EBV) BCRF1 in lymphomas in non-endemic areas of nasopharyngeal carcinoma. Arch Virol 2014; 160:441-5. [PMID: 25373543 DOI: 10.1007/s00705-014-2279-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/31/2014] [Indexed: 11/29/2022]
Abstract
To characterize the sequence variation and the potential implication of the Epstein-Barr virus (EBV) oncogene in lymphoma, BamHI-C fragment rightward reading frame 1 (BCRF1) was sequenced in different types of EBV-positive lymphoma in northern China, and polymorphisms were compared with previous variation data from other malignancies. The dominate subtype of BCRF1 in EBV-positive lymphoma was the B95-8 prototype, and a mutation in the signal peptide was more strongly associated with Hodgkin's lymphoma. The high conservation of BCRF1 in EBV-positive lymphoma suggests its important role in maintaining the basic biological activity and immunosuppressive functions of the virus.
Collapse
Affiliation(s)
- Lu Han
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Niller HH, Szenthe K, Minarovits J. Epstein-Barr virus-host cell interactions: an epigenetic dialog? Front Genet 2014; 5:367. [PMID: 25400657 PMCID: PMC4212275 DOI: 10.3389/fgene.2014.00367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022] Open
Abstract
Here, we wish to highlight the genetic exchange and epigenetic interactions between Epstein–Barr virus (EBV) and its host. EBV is associated with diverse lymphoid and epithelial malignancies. Their molecular pathogenesis is accompanied by epigenetic alterations which are distinct for each of them. While lymphoblastoid cell lines derived from B cells transformed by EBV in vitro are characterized by a massive demethylation and euchromatinization of the viral and cellular genomes, the primarily malignant lymphoid tumor Burkitt’s lymphoma and the epithelial tumors nasopharyngeal carcinoma and EBV-associated gastric carcinoma are characterized by hypermethylation of a multitude of cellular tumor suppressor gene loci and of the viral genomes. In some cases, the viral latency and oncoproteins including the latent membrane proteins LMP1 and LMP2A and several nuclear antigens affect the level of cellular DNA methyltransferases or interact with the histone modifying machinery. Specific molecular mechanisms of the epigenetic dialog between virus and host cell remain to be elucidated.
Collapse
Affiliation(s)
- Hans H Niller
- Institute of Medical Microbiology and Hygiene, University of Regensburg , Regensburg, Germany
| | - Kalman Szenthe
- RT-Europe Nonprofit Research Ltd, Mosonmagyaróvár , Hungary
| | - Janos Minarovits
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged , Szeged, Hungary
| |
Collapse
|
44
|
Lindquester GJ, Greer KA, Stewart JP, Sample JT. Epstein-Barr virus IL-10 gene expression by a recombinant murine gammaherpesvirus in vivo enhances acute pathogenicity but does not affect latency or reactivation. HERPESVIRIDAE 2014; 5:1. [PMID: 25324959 PMCID: PMC4199788 DOI: 10.1186/2042-4280-5-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/21/2014] [Indexed: 11/10/2022]
Abstract
Background Many viral genes affect cytokine function within infected hosts, with interleukin 10 (IL-10) as a commonly targeted mediator. Epstein-Barr virus (EBV) encodes an IL-10 homologue (vIL-10) expressed during productive (lytic) infection and induces expression of cellular IL-10 (cIL-10) during latency. This study explored the role of vIL-10 in a murine gammaherpesvirus (MHV) model of viral infection. Methods The EBV vIL-10 gene was inserted into MHV-76, a strain which lacks the ability to induce cIL-10, by recombination in transfected mouse cells. Mice were infected intranasally with the recombinant, vIL-10-containing MHV-76 or control virus strains and assayed at various days post infection for lung virus titer, spleen cell number, percentage of latently infected spleen cells and ability to reactivate virus from spleen cells. Results Recombinant murine gammaherpesvirus expressing EBV vIL-10 rose to significantly higher titers in lungs and promoted an increase in spleen cell number in infected mice in comparison to MHV strains lacking the vIL-10 gene. However, vIL-10 expression did not alter the quantity of latent virus in the spleen or its ability to reactivate. Conclusions In this mouse model of gammaherpesvirus infection, EBV vIL-10 appears to influence acute-phase pathogenicity. Given that EBV and MHV wild-type strains contain other genes that induce cIL-10 expression in latency (e.g. LMP-1 and M2, respectively), vIL-10 may have evolved to serve the specific role in acute infection of enlarging the permissive host cell population, perhaps to facilitate initial survival and dissemination of viral-infected cells.
Collapse
Affiliation(s)
| | | | - James P Stewart
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, UK
| | - Jeffery T Sample
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA ; Current Address: Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
45
|
Shimakage M. Significant role of macrophages in human cancers associated with Epstein-Barr virus (Review). Oncol Rep 2014; 32:1763-71. [PMID: 25224510 DOI: 10.3892/or.2014.3475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/21/2014] [Indexed: 11/05/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous pathogen that was first identified as a human cancer virus. Many human cancers are associated with EBV, and we demonstrated that EBV infects macrophages. Macrophages infected with EBV show a close correlation with many human cancers, and thus more attention must be given to the role of macrophages infiltrating into cancer tissues associated with EBV. In this review, I discuss the role of macrophages in the process of EBV-associated oncogenesis with regard to interleukin-10.
Collapse
Affiliation(s)
- Misuzu Shimakage
- Department of Pediatrics, National Hospital Organization, Wakayama National Hospital, Wakayama 644-0044, Japan
| |
Collapse
|
46
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
47
|
The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Curr Top Microbiol Immunol 2014; 380:191-212. [PMID: 25004819 DOI: 10.1007/978-3-662-43492-5_9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Assembly of the cell surface IL-10 receptor complex is the first step in initiating IL-10 signaling pathways that regulate intestinal inflammation, viral persistence and even tumor surveillance. The discovery of IL-10 homologs in the genomes of herpes viruses suggests IL-10 signaling pathways can be manipulated at the level of the receptor complex. This chapter will describe our current molecular understanding of IL-10 receptor assembly based on crystal structures and biochemical analyses of cellular and viral IL-10 receptor complexes.
Collapse
|
48
|
Ouyang P, Rakus K, van Beurden SJ, Westphal AH, Davison AJ, Gatherer D, Vanderplasschen AF. IL-10 encoded by viruses: a remarkable example of independent acquisition of a cellular gene by viruses and its subsequent evolution in the viral genome. J Gen Virol 2013; 95:245-262. [PMID: 24225498 DOI: 10.1099/vir.0.058966-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many viruses have evolved strategies to deregulate the host immune system. These strategies include mechanisms to subvert or recruit the host cytokine network. IL-10 is a pleiotropic cytokine that has both immunostimulatory and immunosuppressive properties. However, its key features relate mainly to its capacity to exert potent immunosuppressive effects. Several viruses have been shown to upregulate the expression of cellular IL-10 (cIL-10) with, in some cases, enhancement of infection by suppression of immune functions. Other viruses encode functional orthologues of cIL-10, called viral IL-10s (vIL-10s). The present review is devoted to these virokines. To date, vIL-10 orthologues have been reported for 12 members of the family Herpesviridae, two members of the family Alloherpesviridae and seven members of the family Poxviridae. Study of vIL-10s demonstrated several interesting aspects on the origin and the evolution of these viral genes, e.g. the existence of multiple (potentially up to nine) independent gene acquisition events at different times during evolution, viral gene acquisition resulting from recombination with cellular genomic DNA or cDNA derived from cellular mRNA and the evolution of cellular sequence in the viral genome to restrict the biological activities of the viral orthologues to those beneficial for the virus life cycle. Here, various aspects of the vIL-10s described to date are reviewed, including their genetic organization, protein structure, origin, evolution, biological properties and potential in applied research.
Collapse
Affiliation(s)
- Ping Ouyang
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Steven J van Beurden
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Adrie H Westphal
- Laboratory of Biochemistry, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen UR, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Derek Gatherer
- Division of Biomedical & Life Sciences, Lancaster University, Lancaster LA1 4YQ, UK.,MRC-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, UK
| | - Alain F Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
49
|
Zhang K, Chen W, Zhang Y, Ge Y, Ju S, Yang P, Tan Y, Ge Z, Cao Z, Zhao Y, Wu H, Ju S. An anti-human CD13 monoclonal antibody that suppresses the suppressive function of Treg cells. Monoclon Antib Immunodiagn Immunother 2013; 32:16-20. [PMID: 23600500 DOI: 10.1089/mab.2012.0078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD13 (CD13/aminopeptidase N, APN, or CD13/APN) is a widely expressed type II membrane-bound metalloprotease. It is often overexpressed on cancer cells and expressed on CD4(+)CD25(hi) Treg cell subpopulation with higher suppressive ability. It has been determined to be a promising target in cancer diagnosis and therapy. In this study, a functional anti-human CD13 monoclonal antibody, MAb 9E4, was obtained and the specificity of this MAb was verified by flow cytometry. This MAb effectively recognized the CD13 molecule expressed on a series of malignant cell lines. Furthermore, we demonstrated that MAb 9E4 suppresses the suppressive function of Treg cells. This functional anti-human CD13 MAb provides a valuable tool for further study targeting the CD13 positive Treg cells.
Collapse
Affiliation(s)
- Kai Zhang
- General Surgery Department, The Second Affiliated Hospital, Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Priya R, Dhanwani R, Patro IK, Rao PVL, Parida MM. Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1:A226V mutation. INFECTION GENETICS AND EVOLUTION 2013; 20:396-406. [PMID: 24126361 DOI: 10.1016/j.meegid.2013.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 02/01/2023]
Abstract
Chikungunya virus (CHIKV) has received global attention due to the series of large-scale outbreaks in different parts of the world including Africa, Indian Ocean Islands, India and South-East Asia. The appearance of many unusual severe manifestations including neurological disorders was reported in post resurgence epidemics with implication of novel East Central South African (ECSA) genotype with E1:A226V mutation. The molecular mechanism of CHIKV neuropathogenesis is not yet understood and very little is known about the host-pathogen interactions. In the present study replication kinetics and innate immune response of ECSA genotype of CHIKV with and without A226V mutation were determined in mouse neuroblastoma cell line (N2a). The 226V mutant strain was more replication competent in N2a cells with a peak titer of 10(8)PFU/ml compared to 10(6)PFU/ml for A226 virus. Besides, the 226V mutant virus showed relatively less induction of antiviral genes i.e. IFN-β, OAS-3, MX-2, ISG-15 and Toll like receptors 3 and 7 as compared to non mutant strain (A226). Further pretreatment of N2a cells either with Poly I: C, IFN-β or TNF-α resulted in inhibition of CHIKV replication hence confirming the role of TLR mediated innate immune response in CHIKV pathogenesis. Differential regulation of TLRs and associated down stream antiviral genes might have attributed for increased pathogenesis of the 226V mutant novel ECSA genotype of CHIKV during the recent epidemics.
Collapse
Affiliation(s)
- Raj Priya
- Division of Virology, Defence Research & Development Establishment, Gwalior 474002, India
| | | | | | | | | |
Collapse
|