1
|
Lauerer RJ, Lerche H. Voltage-gated calcium channels in genetic epilepsies. J Neurochem 2024; 168:3853-3871. [PMID: 37822150 PMCID: PMC11591408 DOI: 10.1111/jnc.15983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
Voltage-gated calcium channels (VGCC) are abundant in the central nervous system and serve a broad spectrum of functions, either directly in cellular excitability or indirectly to regulate Ca2+ homeostasis. Ca2+ ions act as one of the main connections in excitation-transcription coupling, muscle contraction and excitation-exocytosis coupling, including synaptic transmission. In recent years, many genes encoding VGCCs main α or additional auxiliary subunits have been associated with epilepsy. This review sums up the current state of knowledge on disease mechanisms and provides guidance on disease-specific therapies where applicable.
Collapse
Affiliation(s)
- Robert J. Lauerer
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity and University Hospital TuebingenTuebingenGermany
| |
Collapse
|
2
|
Bkaily G, Jacques D. Calcium Homeostasis, Transporters, and Blockers in Health and Diseases of the Cardiovascular System. Int J Mol Sci 2023; 24:ijms24108803. [PMID: 37240147 DOI: 10.3390/ijms24108803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcium is a highly positively charged ionic species. It regulates all cell types' functions and is an important second messenger that controls and triggers several mechanisms, including membrane stabilization, permeability, contraction, secretion, mitosis, intercellular communications, and in the activation of kinases and gene expression. Therefore, controlling calcium transport and its intracellular homeostasis in physiology leads to the healthy functioning of the biological system. However, abnormal extracellular and intracellular calcium homeostasis leads to cardiovascular, skeletal, immune, secretory diseases, and cancer. Therefore, the pharmacological control of calcium influx directly via calcium channels and exchangers and its outflow via calcium pumps and uptake by the ER/SR are crucial in treating calcium transport remodeling in pathology. Here, we mainly focused on selective calcium transporters and blockers in the cardiovascular system.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
3
|
Synthesis, Molecular Docking, and Preclinical Evaluation of a New Succinimide Derivative for Cardioprotective, Hepatoprotective and Lipid-Lowering Effects. Molecules 2022; 27:molecules27196199. [PMID: 36234730 PMCID: PMC9573045 DOI: 10.3390/molecules27196199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiac and hepatotoxicities are major concerns in the development of new drugs. Better alternatives to other treatments are being sought to protect these vital organs from the toxicities of these pharmaceuticals. In this regard, a preclinical study is designed to investigate the histopathological effects of a new succinimide derivative (Comp-1) on myocardial and liver tissues, and the biochemical effects on selected cardiac biomarkers, hepatic enzymes, and lipid profiles. For this, an initially lethal/toxic dose was determined, followed by a grouping of selected albino rats into five groups (each group had n = 6). The control group received daily oral saline for 8 days. The 5-FU (5-Fluorouracil) group received oral saline daily for 8 days, added with the administration of a single dose of 5-FU (150 mg/kg I.P.) on day 5 of the study. The atenolol group received oral atenolol (20 mg/kg) for 8 days and 5-FU (150 mg/kg I.P.) on day 5 of the protocol. Similarly, two groups of rats treated with test compound (Comp-1) were administered with 5 mg/kg I.P. and 10 mg/kg I.P. for 8 days, followed by 5-FU (150 mg/kg I.P.) on day 5. Toxicity induced by 5-FU was manifested by increases in the serum creatinine kinase myocardial band (CK-MB), troponin I (cTnI) and lactate dehydrogenase (LDH), lipid profile, and selected liver enzymes, including ALP (alkaline phosphatase), ALT (alanine transaminase), AST (aspartate aminotransferase), BT (bilirubin total), and BD (direct bilirubin). These biomarkers were highly significantly decreased after the administration of the mentioned doses of the test compound (5 mg/kg and 10 mg/kg). Similarly, histological examination revealed cardiac and hepatic tissue toxicity by 5-FU. However, those toxic effects were also significantly recovered/improved after the administration of Comp-1 at the said doses. This derivative showed dose-dependent effects and was most effective at a dose of 10 mg/kg body weight. Binding energy data computed via docking simulations revealed that our compound interacts toward the human beta2-adrenergic G protein-coupled receptor (S = −7.89 kcal/mol) with a slight stronger affinity than the calcium channel T-type (S = −7.07 kcal/mol). In conclusion, the histological and biochemical results showed that the test compound (Comp-1) had prominent cardioprotective, hepatoprotective, and lipolytic effects against 5-FU-induced toxicity in the subjected animal model.
Collapse
|
4
|
Abbasloo E, Abdollahi F, Saberi A, Esmaeili-Mahani S, Kaeidi A, Akhlaghinasab F, Sheibani V, Thomas TC, Kobeissy FH, Oryan S. Involvement of T-type calcium channels in the mechanism of low dose morphine-induced hyperalgesia in adult male rats. Neuropeptides 2021; 90:102185. [PMID: 34419803 DOI: 10.1016/j.npep.2021.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 08/09/2021] [Indexed: 11/23/2022]
Abstract
It has been shown that systemic and local administration of ultra-low dose morphine induced a hyperalgesic response via mu-opioid receptors. However, its exact mechanism(s) has not fully been clarified. It is documented that mu-opioid receptors functionally couple to T-type voltage dependent Ca+2 channels. Here, we investigated the role of T-type calcium channels, amiloride and mibefradil, on the induction of low-dose morphine hyperalgesia in male Wistar rats. The data showed that morphine (0.01 μg i.t. and 1 μg/kg i.p.) could elicit hyperalgesia as assessed by the tail-flick test. Administration of amiloride (5 and 10 μg i.t.) and mibefradil (2.5 and 5 μg i.t.) completely blocked low-dose morphine-induced hyperalgesia in spinal dorsal horn. Amiloride at doses of 1 and 5 mg/kg (i.p.) and mibefradil (9 mg/kg ip) 10 min before morphine (1 μg/kg i.p.) inhibited morphine-induced hyperalgesia. Our results indicate a role for T-type calcium channels in low dose morphine-induced hyperalgesia in rats.
Collapse
Affiliation(s)
- Elham Abbasloo
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Farzaneh Abdollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Arezoo Saberi
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ayat Kaeidi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Fereshteh Akhlaghinasab
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Theresa Currier Thomas
- College of Medicine-Phoenix, University of Arizona, Child Health, Phoenix, USA; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix Children's Hospital, Phoenix, USA
| | - Firas Hosni Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Shahrbanoo Oryan
- Departments of Biology, Science and Research Branch, Islamic Azad University. Tehran, Iran
| |
Collapse
|
5
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
6
|
Abstract
Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β-cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose-dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β-cell channels, with an eye toward explaining the ionic basis of glucose-induced insulin secretion. Our primary focus is on KATP and voltage-gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β-cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:1-21, 2021.
Collapse
Affiliation(s)
- Benjamin Thompson
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Targeting T-type/CaV3.2 channels for chronic pain. Transl Res 2021; 234:20-30. [PMID: 33422652 PMCID: PMC8217081 DOI: 10.1016/j.trsl.2021.01.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
T-type calcium channels regulate neuronal excitability and are important contributors of pain processing. CaV3.2 channels are the major isoform expressed in nonpeptidergic and peptidergic nociceptive neurons and are emerging as promising targets for pain treatment. Numerous studies have shown that CaV3.2 expression and/or activity are significantly increased in spinal dorsal horn and in dorsal root ganglia neurons in different inflammatory and neuropathic pain models. Pharmacological campaigns to inhibit the functional expression of CaV3.2 for treatment of pain have focused on the development of direct channel blockers, but none have produced lead candidates. Targeting the proteins that regulate the trafficking or transcription, and the ones that modify the channels via post-translational modifications are alternative means to regulate expression and function of CaV3.2 channels and hence to develop new drugs to control pain. Here we synthesize data supporting a role for CaV3.2 in numerous pain modalities and then discuss emerging opportunities for the indirect targeting of CaV3.2 channels.
Collapse
|
8
|
Zhou L, Zhang T, Shao W, Lu R, Wang L, Liu H, Jiang B, Li S, Zhuo H, Wang S, Li Q, Huang C, Lin D. Amiloride ameliorates muscle wasting in cancer cachexia through inhibiting tumor-derived exosome release. Skelet Muscle 2021; 11:17. [PMID: 34229732 PMCID: PMC8258996 DOI: 10.1186/s13395-021-00274-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Background Cancer cachexia (CAC) reduces patient survival and quality of life. Developments of efficient therapeutic strategies are required for the CAC treatments. This long-term process could be shortened by the drug-repositioning approach which exploits old drugs approved for non-cachexia disease. Amiloride, a diuretic drug, is clinically used for treatments of hypertension and edema due to heart failure. Here, we explored the effects of the amiloride treatment for ameliorating muscle wasting in murine models of cancer cachexia. Methods The CT26 and LLC tumor cells were subcutaneously injected into mice to induce colon cancer cachexia and lung cancer cachexia, respectively. Amiloride was intraperitoneally injected daily once tumors were formed. Cachexia features of the CT26 model and the LLC model were separately characterized by phenotypic, histopathologic and biochemical analyses. Plasma exosomes and muscle atrophy-related proteins were quantitatively analyzed. Integrative NMR-based metabolomic and transcriptomic analyses were conducted to identify significantly altered metabolic pathways and distinctly changed metabolism-related biological processes in gastrocnemius. Results The CT26 and LLC cachexia models displayed prominent cachexia features including decreases in body weight, skeletal muscle, adipose tissue, and muscle strength. The amiloride treatment in tumor-bearing mice distinctly alleviated muscle atrophy and relieved cachexia-related features without affecting tumor growth. Both the CT26 and LLC cachexia mice showed increased plasma exosome densities which were largely derived from tumors. Significantly, the amiloride treatment inhibited tumor-derived exosome release, which did not obviously affect exosome secretion from non-neoplastic tissues or induce observable systemic toxicities in normal healthy mice. Integrative-omics revealed significant metabolic impairments in cachectic gastrocnemius, including promoted muscular catabolism, inhibited muscular protein synthesis, blocked glycolysis, and impeded ketone body oxidation. The amiloride treatment evidently improved the metabolic impairments in cachectic gastrocnemius. Conclusions Amiloride ameliorates cachectic muscle wasting and alleviates cancer cachexia progression through inhibiting tumor-derived exosome release. Our results are beneficial to understanding the underlying molecular mechanisms, shedding light on the potentials of amiloride in cachexia therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-021-00274-5.
Collapse
Affiliation(s)
- Lin Zhou
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tong Zhang
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361000, China
| | - Ruohan Lu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lin Wang
- Department of Oncology, Institute of Gastrointestinal Oncology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, China
| | - Haisheng Liu
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Shiqin Li
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Huiqin Zhuo
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian, China
| | - Suheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinxi Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China.
| | - Donghai Lin
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China. .,High-field NMR Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
9
|
Lossow K, Hermans-Borgmeyer I, Meyerhof W, Behrens M. Segregated Expression of ENaC Subunits in Taste Cells. Chem Senses 2021; 45:235-248. [PMID: 32006019 DOI: 10.1093/chemse/bjaa004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Salt taste is one of the 5 basic taste qualities. Depending on the concentration, table salt is perceived either as appetitive or aversive, suggesting the contribution of several mechanisms to salt taste, distinguishable by their sensitivity to the epithelial sodium channel (ENaC) blocker amiloride. A taste-specific knockout of the α-subunit of the ENaC revealed the relevance of this polypeptide for low-salt transduction, whereas the response to other taste qualities remained normal. The fully functional ENaC is composed of α-, β-, and γ-subunits. In taste tissue, however, the precise constitution of the channel and the cell population responsible for detecting table salt remain uncertain. In order to examine the cells and subunits building the ENaC, we generated mice carrying modified alleles allowing the synthesis of green and red fluorescent proteins in cells expressing the α- and β-subunit, respectively. Fluorescence signals were detected in all types of taste papillae and in taste buds of the soft palate and naso-incisor duct. However, the lingual expression patterns of the reporters differed depending on tongue topography. Additionally, immunohistochemistry for the γ-subunit of the ENaC revealed a lack of overlap between all potential subunits. The data suggest that amiloride-sensitive recognition of table salt is unlikely to depend on the classical ENaCs formed by α-, β-, and γ-subunits and ask for a careful investigation of the channel composition.
Collapse
Affiliation(s)
- Kristina Lossow
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Unit, University Medical Center Hamburg-Eppendorf (ZMNH), Hamburg, Germany
| | - Wolfgang Meyerhof
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| | - Maik Behrens
- Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee, Nuthetal, Germany
| |
Collapse
|
10
|
Yoshiyama M, Kobayashi H, Takeda M, Araki I. Blockade of Acid-Sensing Ion Channels Increases Urinary Bladder Capacity With or Without Intravesical Irritation in Mice. Front Physiol 2020; 11:592867. [PMID: 33192609 PMCID: PMC7649782 DOI: 10.3389/fphys.2020.592867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
We conducted this study to examine whether acid-sensing ion channels (ASICs) are involved in the modulation of urinary bladder activity with or without intravesical irritation induced by acetic acid. All in vivo evaluations were conducted during continuous infusion cystometry in decerebrated unanesthetized female mice. During cystometry with a pH 6.3 saline infusion, an i.p. injection of 30 μmol/kg A-317567 (a potent, non-amiloride ASIC blocker) increased the intercontraction interval (ICI) by 30% (P < 0.001), whereas vehicle injection had no effect. An intravesical acetic acid (pH 3.0) infusion induced bladder hyperactivity, with reductions in ICI and maximal voiding pressure (MVP) by 79% (P < 0.0001) and 29% (P < 0.001), respectively. A-317567 (30 μmol/kg i.p.) alleviated hyperreflexia by increasing the acid-shortened ICI by 76% (P < 0.001). This dose produced no effect on MVP under either intravesical pH condition. Further analysis in comparison with vehicle showed that the increase in ICI (or bladder capacity) by the drug was not dependent on bladder compliance. Meanwhile, intravesical perfusion of A-317567 (100 μM) had no effect on bladder activity during pH 6.0 saline infusion cystometry, and drug perfusion at neither 100 μM nor 1 mM produced any effects on bladder hyperreflexia during pH 3.0 acetic acid infusion cystometry. A-317567 has been suggested to display extremely poor penetrability into the central nervous system and thus to be a peripherally active blocker. Taken together, our results suggest that blockade of ASIC signal transduction increases bladder capacity under normal intravesical pH conditions and alleviates bladder hyperreflexia induced by intravesical acidification and that the site responsible for this action is likely to be the dorsal root ganglia.
Collapse
Affiliation(s)
- Mitsuharu Yoshiyama
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Shintotsuka Hospital, Yokohama, Japan
| | - Hideki Kobayashi
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kobayashi Urology Clinic, Kai, Japan
| | - Masayuki Takeda
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Isao Araki
- Department of Urology, Graduate School of Medicine, University of Yamanashi, Chuo, Japan.,Kusatsu Public Health Center, Kusatsu, Japan
| |
Collapse
|
11
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
12
|
Does ENaC Work as Sodium Taste Receptor in Humans? Nutrients 2020; 12:nu12041195. [PMID: 32344597 PMCID: PMC7230849 DOI: 10.3390/nu12041195] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Taste reception is fundamental for the proper selection of food and beverages. Among the several chemicals recognized by the human taste system, sodium ions (Na+) are of particular relevance. Na+ represents the main extracellular cation and is a key factor in many physiological processes. Na+ elicits a specific sensation, called salty taste, and low-medium concentrations of table salt (NaCl, the common sodium-containing chemical we use to season foods) are perceived as pleasant and appetitive. How we detect this cation in foodstuffs is scarcely understood. In animal models, such as the mouse and the rat, the epithelial sodium channel (ENaC) has been proposed as a key protein for recognizing Na+ and for mediating preference responses to low-medium salt concentrations. Here, I will review our current understanding regarding the possible involvement of ENaC in the detection of food Na+ by the human taste system.
Collapse
|
13
|
Schmid C, Alampi I, Briggs J, Tarcza K, Stawicki TM. Mechanotransduction Activity Facilitates Hair Cell Toxicity Caused by the Heavy Metal Cadmium. Front Cell Neurosci 2020; 14:37. [PMID: 32153368 PMCID: PMC7044240 DOI: 10.3389/fncel.2020.00037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/05/2020] [Indexed: 11/13/2022] Open
Abstract
Hair cells are sensitive to many insults including environmental toxins such as heavy metals. We show here that cadmium can consistently kill hair cells of the zebrafish lateral line. Disrupting hair cell mechanotransduction genetically or pharmacologically significantly reduces the amount of hair cell death seen in response to cadmium, suggesting a role for mechanotransduction in this cell death process, possibly as a means for cadmium uptake into the cells. Likewise, when looking at multiple cilia-associated gene mutants that have previously been shown to be resistant to aminoglycoside-induced hair cell death, resistance to cadmium-induced hair cell death is only seen in those with mechanotransduction defects. In contrast to what was seen with mechanotransduction, significant protection was not consistently seen from other ions previously shown to compete for cadmium uptake into cells or tissue including zinc and copper. These results show that functional mechanotransduction activity is playing a significant role in cadmium-induced hair cell death.
Collapse
Affiliation(s)
- Caleigh Schmid
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Isabella Alampi
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | - Jay Briggs
- Department of Biological Structure, University of Washington, Seattle, WA, United States
| | - Kelly Tarcza
- Program in Neuroscience, Lafayette College, Easton, PA, United States
| | | |
Collapse
|
14
|
Zhang XH, Šarić T, Mehrjardi NZ, Hamad S, Morad M. Acid-Sensitive Ion Channels Are Expressed in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Dev 2019; 28:920-932. [PMID: 31119982 DOI: 10.1089/scd.2018.0234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are potential sources for cardiac regeneration and drug development. hiPSC-CMs express all the cardiac ion channels and the unique cardiac Ca2+-signaling phenotype. In this study, we tested for expression of acid sensing ion channels (ASICs) in spontaneously beating cardiomyocytes derived from three different hiPSC lines (IMR-90, iPSC-K3, and Ukki011-A). Rapid application of solutions buffered at pH 6.7, 6.0, or 5.0 triggered rapidly activating and slowly inactivating voltage-independent inward current that reversed at voltages positive to ENa, was suppressed by 5 μM amiloride and withdrawal of [Na+]o, like neuronal ASIC currents. ASIC currents were expressed at much lower percentages and densities in undifferentiated hiPSC and in dermal fibroblasts. ASIC1 mRNA and protein were measured in first 60 days but decreased in 100 days postdifferentiation hiPSC cultures. Hyperacidification (pH 5 and 6) also triggered large Ca2+ transients in intact hiPSC-CMs that were neither ruthenium red nor amiloride-sensitive, but were absent in whole cell-clamped hiPSC-CMs. Neither ASIC1 current nor its protein was detected in rat adult cardiomyocytes, but hyperacidification did activate smaller and slowly activating currents with drug sensitivity similar to TRPV channels. Considering ASIC expression in developing but not adult myocardium, a role in heart development is likely.
Collapse
Affiliation(s)
- Xiao-Hua Zhang
- 1Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston, South Carolina
| | - Tomo Šarić
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Narges Zare Mehrjardi
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Sarkawt Hamad
- 2Medical Faculty, Center for Physiology and Pathophysiology, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Martin Morad
- 1Cardiac Signaling Center of University of South Carolina, Medical University of South Carolina, Clemson University, Charleston, South Carolina
| |
Collapse
|
15
|
Nath A, Shope TR, Brebbia JS, Koch TR. Bowel symptoms are associated with hypovitaminosis D in individuals with medically complicated obesity. Nutr Res 2019; 63:70-75. [PMID: 30824399 DOI: 10.1016/j.nutres.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/25/2018] [Accepted: 12/04/2018] [Indexed: 12/23/2022]
Abstract
We reported that 30% of individuals with medically complicated obesity have bowel symptoms, suggesting irritable bowel syndrome, but this prevalence of bowel symptoms is not related to body mass index or diabetes mellitus. Hypovitaminosis D is common in individuals with obesity and type 2 diabetes mellitus and is associated with depressive symptoms. Because antidepressants improve global symptoms in individuals with bowel symptoms, we hypothesize that the high prevalence of bowel symptoms in medically complicated obesity is associated with hypovitaminosis D. This is a single-institution, retrospective cohort study performed in a large, urban community teaching hospital. Over 2 years, individuals considering bariatric surgery completed a Manning symptom questionnaire to quantify bowel symptoms. Serum 25-hydroxy vitamin D was ordered, and the results were recorded for all individuals. Among 271 subjects, 229 subjects (80% women, 20% men; 67% black, 31% white; age range: 23-73 years; body mass index range: 35-91 kg/m2) completed 25-hydroxy vitamin D testing. Sixty-seven subjects (29%) have 3 to 6 Manning bowel symptoms, suggesting irritable bowel syndrome; 84 (37%) have type 2 diabetes; and 180 (79%) had vitamin D insufficiency. There are significant negative associations between Manning bowel symptoms and vitamin D concentrations in subjects with obesity (P = .01) and with type 2 diabetes mellitus and obesity (P = .007). The results support our hypothesis that the high prevalence of bowel symptoms in people with medically complicated obesity is associated with hypovitaminosis D. A prospective study is required to evaluate vitamin D supplementation and relief of bowel symptoms in people with medically complicated obesity.
Collapse
Affiliation(s)
- Anand Nath
- Division of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC 20007
| | - Timothy R Shope
- Center for Advanced Laparoscopic General & Bariatric Surgery, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington, DC 20010
| | - John S Brebbia
- Center for Advanced Laparoscopic General & Bariatric Surgery, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington, DC 20010
| | - Timothy R Koch
- Center for Advanced Laparoscopic General & Bariatric Surgery, MedStar Washington Hospital Center and Georgetown University School of Medicine, Washington, DC 20010.
| |
Collapse
|
16
|
Fernandes LS, Dos Santos NAG, Emerick GL, Santos ACD. L- and T-type calcium channel blockers protect against the inhibitory effects of mipafox on neurite outgrowth and plasticity-related proteins in SH-SY5Y cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1086-1097. [PMID: 28862523 DOI: 10.1080/15287394.2017.1357359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Some organophosphorus compounds (OP), including the pesticide mipafox, produce late onset distal axonal degeneration, known as organophosphorus-induced delayed neuropathy (OPIDN). The underlying mechanism involves irreversible inhibition of neuropathy target esterase (NTE) activity, elevated intracellular calcium levels, increased activity of calcium-activated proteases and impaired neuritogenesis. Voltage-gated calcium channels (VGCC) appear to play a role in several neurologic disorders, including OPIDN. Therefore, this study aimed to examine and compare the neuroprotective effects of T-type (amiloride) and L-type (nimodipine) VGCC blockers induced by the inhibitory actions of mipafox on neurite outgrowth and axonal proteins of retinoic-acid-stimulated SH-SY5Y human neuroblastoma cells, a neuronal model widely employed to determine the neurotoxicity attributed to OP. Both nimodipine and amiloride significantly blocked augmentation of intracellular calcium levels and activity of calpains, as well as decreased neurite length, number of differentiated cells, and lowered concentrations of growth-associated protein 43 (GAP-43) and synapsin induced by mipafox. Only nimodipine inhibited reduction of synaptophysin levels produced by mipafox. These findings demonstrate a role for calcium and VGCC in the impairment of neuronal plasticity mediated by mipafox. Data also demonstrated the neuroprotective potential of T-type and L-type VGCC blockers to inhibit OP-mediated actions, which may be beneficial to counteract cases of pesticide poisoning.
Collapse
Affiliation(s)
- Laís Silva Fernandes
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Neife Aparecida G Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| | - Guilherme Luz Emerick
- b Instituto de Ciências da Saúde, Universidade Federal de Mato Grosso - ICS/UFMT/CUS , Sinop , MT , Brazil
| | - Antonio Cardozo Dos Santos
- a Departamento de Análises Clínicas , Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - FCFRP - USP , Ribeirão Preto , SP , Brazil
| |
Collapse
|
17
|
Amiloride, An Old Diuretic Drug, Is a Potential Therapeutic Agent for Multiple Myeloma. Clin Cancer Res 2017; 23:6602-6615. [DOI: 10.1158/1078-0432.ccr-17-0678] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/30/2017] [Accepted: 07/28/2017] [Indexed: 11/16/2022]
|
18
|
Bacterium-Derived Cell-Penetrating Peptides Deliver Gentamicin To Kill Intracellular Pathogens. Antimicrob Agents Chemother 2017; 61:AAC.02545-16. [PMID: 28096156 DOI: 10.1128/aac.02545-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022] Open
Abstract
Commonly used antimicrobials show poor cellular uptake and often have limited access to intracellular targets, resulting in low antimicrobial activity against intracellular pathogens. An efficient delivery system to transport these drugs to the intracellular site of action is needed. Cell-penetrating peptides (CPPs) mediate the internalization of biologically active molecules into the cytoplasm. Here, we characterized two CPPs, α1H and α2H, derived from the Yersinia enterocolitica YopM effector protein. These CPPs, as well as Tat (trans-activator of transcription) from HIV-1, were used to deliver the antibiotic gentamicin to target intracellular bacteria. The YopM-derived CPPs penetrated different endothelial and epithelial cells to the same extent as Tat. CPPs were covalently conjugated to gentamicin, and CPP-gentamicin conjugates were used to target infected cells to kill multiple intracellular Gram-negative pathogenic bacteria, including Escherichia coli K1, Salmonella enterica serovar Typhimurium, and Shigella flexneri Taken together, CPPs show great potential as delivery vehicles for antimicrobial agents and may contribute to the generation of new therapeutic tools to treat infectious diseases caused by intracellular pathogens.
Collapse
|
19
|
Eskiocak U, Ramesh V, Gill JG, Zhao Z, Yuan SW, Wang M, Vandergriff T, Shackleton M, Quintana E, Johnson TM, DeBerardinis RJ, Morrison SJ. Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. Nat Commun 2016; 7:12336. [PMID: 27545456 PMCID: PMC4996948 DOI: 10.1038/ncomms12336] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/23/2016] [Indexed: 12/28/2022] Open
Abstract
New therapies are required for melanoma. Here, we report that multiple cardiac glycosides, including digitoxin and digoxin, are significantly more toxic to human melanoma cells than normal human cells. This reflects on-target inhibition of the ATP1A1 Na(+)/K(+) pump, which is highly expressed by melanoma. MEK inhibitor and/or BRAF inhibitor additively or synergistically combined with digitoxin to induce cell death, inhibiting growth of patient-derived melanomas in NSG mice and synergistically extending survival. MEK inhibitor and digitoxin do not induce cell death in human melanocytes or haematopoietic cells in NSG mice. In melanoma, MEK inhibitor reduces ERK phosphorylation, while digitoxin disrupts ion gradients, altering plasma membrane and mitochondrial membrane potentials. MEK inhibitor and digitoxin together cause intracellular acidification, mitochondrial calcium dysregulation and ATP depletion in melanoma cells but not in normal cells. The disruption of ion homoeostasis in cancer cells can thus synergize with targeted agents to promote tumour regression in vivo.
Collapse
Affiliation(s)
- Ugur Eskiocak
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Vijayashree Ramesh
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Jennifer G. Gill
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhiyu Zhao
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Stacy W. Yuan
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Meng Wang
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
| | - Travis Vandergriff
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Mark Shackleton
- Cancer Development and Treatment Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
- Sir Peter MacCallum Department of Oncology and Department of Pathology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Elsa Quintana
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | - Timothy M. Johnson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | - Sean J. Morrison
- Department of Pediatrics, Children's Research Institute, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas Texas 75390, USA
| |
Collapse
|
20
|
Buchanan PJ, McCloskey KD. Ca V channels and cancer: canonical functions indicate benefits of repurposed drugs as cancer therapeutics. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:621-633. [PMID: 27342111 PMCID: PMC5045480 DOI: 10.1007/s00249-016-1144-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 01/19/2023]
Abstract
The importance of ion channels in the hallmarks of many cancers is increasingly recognised. This article reviews current knowledge of the expression of members of the voltage-gated calcium channel family (CaV) in cancer at the gene and protein level and discusses their potential functional roles. The ten members of the CaV channel family are classified according to expression of their pore-forming α-subunit; moreover, co-expression of accessory α2δ, β and γ confers a spectrum of biophysical characteristics including voltage dependence of activation and inactivation, current amplitude and activation/inactivation kinetics. CaV channels have traditionally been studied in excitable cells including neurones, smooth muscle, skeletal muscle and cardiac cells, and drugs targeting the channels are used in the treatment of hypertension and epilepsy. There is emerging evidence that several CaV channels are differentially expressed in cancer cells compared to their normal counterparts. Interestingly, a number of CaV channels also have non-canonical functions and are involved in transcriptional regulation of the expression of other proteins including potassium channels. Pharmacological studies show that CaV canonical function contributes to the fundamental biology of proliferation, cell-cycle progression and apoptosis. This raises the intriguing possibility that calcium channel blockers, approved for the treatment of other conditions, could be repurposed to treat particular cancers. Further research will reveal the full extent of both the canonical and non-canonical functions of CaV channels in cancer and whether calcium channel blockers are beneficial in cancer treatment.
Collapse
Affiliation(s)
- Paul J Buchanan
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.,National Institute of Cellular Biotechnology, School of Nursing and Human Science, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Karen D McCloskey
- Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7AE, UK.
| |
Collapse
|
21
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 764] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
22
|
Wang P, Ouyang H, Li Q, Hao L, Huang Y, Zeng W. Antinociceptive effect of intrathecal amiloride on neuropathic pain in rats. Neurosci Lett 2015. [PMID: 26225927 DOI: 10.1016/j.neulet.2015.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the antinociception of intrathecal amiloride and examine its effect on the neuropathic pain-induced activation of c-Fos and p-p38 MAPK in the rat spinal dorsal horn (SDH). Sprague-Dawley rats were chronically implanted with intrathecal catheters, and the ability of intrathecal amiloride to alleviate nociceptive behaviours in rats with neuropathic pain was tested. Immunohistochemical techniques were utilized to detect the expression of c-Fos and p-p38 in SDH in the control and amiloride (100μg) groups. Intrathecal amiloride produced dose- and time-dependent antinociception in rats. Additionally, immunohistochemical experiments showed that the expression of c-Fos and p-p38 dramatically decreased in the superficial laminae of the ipsilateral SDH in the 100-μg amiloride group (P<0.01), whereas, there was no statistical significance on the contralateral side, compared with the control group. Intrathecally administered amiloride develops dose- and time-dependent antinociceptive action in rats with neuropathic pain. It most likely reduces spinal neurons and microglia activation via inhibiting c-Fos and p-p38 MAPK in the SDH of rats.
Collapse
Affiliation(s)
- Peizong Wang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Handong Ouyang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Qiang Li
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Lei Hao
- Department of Gastrointestinal Surgery, 1st Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, People's Republic of China
| | - Yang Huang
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China
| | - Weian Zeng
- Department of Anesthesiology, Cancer Center, Sun Yat-Sen University, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, People's Republic of China.
| |
Collapse
|
23
|
Spinal antinociceptive action of amiloride and its interaction with tizanidine in the rat formalin test. Pain Res Manag 2015; 20:321-6. [PMID: 26357686 PMCID: PMC4676503 DOI: 10.1155/2015/902914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Amiloride has been reported to produce a wide variety of actions, thereby affecting several ionic channels and a multitude of receptors and enzymes. Intrathecal α2-adrenergic receptor agonists produce pronounced analgesia, and amiloride modulates α2-adrenergic receptor agonist binding and function, acting via the allosteric site on the α2A-adrenergic receptor. OBJECTIVES To investigate the antinociceptive interaction of intrathecal amiloride and the α2-adrenoceptor agonist tizanidine using a rat formalin test. METHODS Sprague-Dawley rats were chronically implanted with lumbar intrathecal catheters and were tested for paw flinching using formalin injection. Biphasic painful behaviour was recorded. Amiloride, tizanidine or an amiloride-tizanidine mixture was administered 10 min before formalin injection. To characterize any interactions, isobolographic analysis was performed. The effects of a pretreatment using intrathecally administered yohimbine was also tested. RESULTS Intrathecally administered amiloride (12.5 μg to 100 μg) and tizanidine (0.5 μg to 5 μg), given separately, produced a significant dose-related suppression of the biphasic responses in the formalin test. Isobolographic analysis revealed that the combination of intrathecal amiloride and tizanidine synergistically reduced phase I and II activities. Intrathecally administered yohimbine antagonized or attenuated the antinociceptive effect of amiloride, tizanidine and the amiloride-tizanidine mixture. Intrathecally administered amiloride synergistically interacts with tizanidine to reduce the nociceptive response in the formalin test, most likely by activating α2-adrenoceptors in the spinal cord. CONCLUSIONS Although intrathecal tizanidine produced pronounced analgesia, antinociceptive doses of intrathecal tizanidine also produced several side effects, including bradycardia and sedation. Amiloride produced antinociceptive action against the thermal nociceptive test without side effects in rats.
Collapse
|
24
|
Buta A, Maximyuk O, Kovalskyy D, Sukach V, Vovk M, Ievglevskyi O, Isaeva E, Isaev D, Savotchenko A, Krishtal O. Novel Potent Orthosteric Antagonist of ASIC1a Prevents NMDAR-Dependent LTP Induction. J Med Chem 2015; 58:4449-61. [PMID: 25974655 DOI: 10.1021/jm5017329] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid sensing ion channels 1a (ASIC1a) are of crucial importance in numerous physiological and pathological processes in the brain. Here we demonstrate that novel 2-oxo-2H-chromene-3-carboxamidine derivative 5b, designed with molecular modeling approach, inhibits ASIC1a currents with an apparent IC50 of 27 nM when measured at pH 6.7. Acidification to 5.0 decreases the inhibition efficacy by up to 3 orders of magnitude. The 5b molecule not only shifts pH dependence of ASIC1a activation but also inhibits its maximal evoked response. These findings suggest that compound 5b binds to pH sensor of ASIC1a acting as orthosteric noncompetitive antagonist. At 100 nM, compound 5b completely inhibits induction of long-term potentiation (LTP) in CA3-CA1 but not in MF-CA3 synapses. These findings support the knockout data indicating the crucial modulatory role of ASIC1a channels in the NMDAR-dependent LTP and introduce a novel type of ASIC1a antagonists.
Collapse
Affiliation(s)
- Andriy Buta
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,§State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Oleksandr Maximyuk
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,§State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Dmytro Kovalskyy
- ∥ChemBio Center, Taras Shevchenko University of Kyiv, 67 Chervonotkatska Str., 02094 Kyiv, Ukraine
| | - Volodymyr Sukach
- ‡Institute of Organic Chemistry of NAS Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine
| | - Mykhailo Vovk
- ‡Institute of Organic Chemistry of NAS Ukraine, 5 Murmanska Str., 02660 Kyiv, Ukraine
| | - Oleksandr Ievglevskyi
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Elena Isaeva
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Dmytro Isaev
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Alina Savotchenko
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| | - Oleg Krishtal
- †Bogomoletz Institute of Physiology of NAS Ukraine, 4 Bogomoletz Str., 01024 Kyiv, Ukraine.,§State Key Laboratory for Molecular and Cellular Biology, 4 Bogomoletz Str., 01024 Kyiv, Ukraine
| |
Collapse
|
25
|
Carbó Tano M, Vilarchao ME, Szczupak L. Graded boosting of synaptic signals by low-threshold voltage-activated calcium conductance. J Neurophysiol 2015; 114:332-40. [PMID: 25972583 DOI: 10.1152/jn.00170.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/07/2015] [Indexed: 11/22/2022] Open
Abstract
Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na(+)-dependent spikes, but express an LT-VACC that was sensitive to 250 μM Ni(2+) and 100 μM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca(2+) signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment.
Collapse
Affiliation(s)
- Martín Carbó Tano
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; and Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - María Eugenia Vilarchao
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; and Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Universitaria, Buenos Aires, Argentina
| | - Lidia Szczupak
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; and Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
26
|
Formenti A, Zocchi L. Error signals as powerful stimuli for the operant conditioning-like process of the fictive respiratory output in a brainstem-spinal cord preparation from rats. Behav Brain Res 2014; 272:8-15. [PMID: 24978097 DOI: 10.1016/j.bbr.2014.06.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/18/2022]
Abstract
Respiratory neuromuscular activity needs to adapt to physiologic and pathologic conditions. We studied the conditioning effects of sensory fiber (putative Ia and II type from neuromuscular spindles) stimulation on the fictive respiratory output to the diaphragm, recorded from C4 phrenic ventral root, of in-vitro brainstem-spinal cord preparations from rats. The respiratory burst frequency in these preparations decreased gradually (from 0.26±0.02 to 0.09±0.003 bursts(-1)±SEM) as the age of the donor rats increased from zero to 4 days. The frequency greatly increased when the pH of the bath was lowered, and was significantly reduced by amiloride. C4 low threshold, sensory fiber stimulation, mimicking a stretched muscle, induced a short-term facilitation of the phrenic output increasing burst amplitude and frequency. When the same stimulus was applied contingently on the motor bursts, in an operant conditioning paradigm (a 500ms pulse train with a delay of 700ms from the beginning of the burst) a strong and persistent (>1h) increase in burst frequency was observed (from 0.10±0.007 to 0.20±0.018 bursts(-1)). Conversely, with random stimulation burst frequency increased only slightly and declined again within minutes to control levels after stopping stimulation. A forward model is assumed to interpret the data, and the notion of error signal, i.e. the sensory fiber activation indicating an unexpected stretched muscle, is re-considered in terms of the reward/punishment value. The signal, gaining hedonic value, is reviewed as a powerful unconditioned stimulus suitable in establishing a long-term operant conditioning-like process.
Collapse
Affiliation(s)
- Alessandro Formenti
- DEPT-Department of Pathophysiology and Transplantation, University of Milan, Via Mangiagalli, 32, 20133 Milano, Italy.
| | - Luciano Zocchi
- DEPT-Department of Pathophysiology and Transplantation, University of Milan, Via Mangiagalli, 32, 20133 Milano, Italy
| |
Collapse
|
27
|
Brailoiu GC, Deliu E, Altmann JB, Chitravanshi V, Brailoiu E. Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats. J Comp Physiol B 2014; 184:753-61. [PMID: 24752669 DOI: 10.1007/s00360-014-0829-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 03/24/2014] [Accepted: 04/01/2014] [Indexed: 11/29/2022]
Abstract
Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca(2+) concentration by promoting Ca(2+) influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Jefferson School of Pharmacy, Philadelphia, PA, 19107, USA
| | | | | | | | | |
Collapse
|
28
|
Nowycky MC, Wu G, Ledeen RW. Glycobiology of ion transport in the nervous system. ADVANCES IN NEUROBIOLOGY 2014; 9:321-42. [PMID: 25151386 DOI: 10.1007/978-1-4939-1154-7_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nervous system is richly endowed with large transmembrane proteins that mediate ion transport, including gated ion channels as well as energy-consuming pumps and transporters. Transport proteins undergo N-linked glycosylation which can affect expression, location, stability, and function. The N-linked glycans of ion channels are large, contributing between 5 and 50 % of their molecular weight. Many contain a high density of negatively charged sialic acid residues which modulate voltage-dependent gating of ion channels. Changes in the size and chemical composition of glycans are responsible for developmental and cell-specific variability in the biophysical and functional properties of many ion channels. Glycolipids, principally gangliosides, exert considerable influence on some forms of ion transport, either through direct association with ion transport proteins or indirectly through association with proteins that activate transport through appropriate signaling. Examples of both pumps and ion channels have been revealed which depend on ganglioside regulation. While some of these processes are localized in the plasma membrane, ganglioside-regulated ion transport can also occur at various loci within the cell including the nucleus. This chapter will describe ion channel and ion pump structures with a focus on the functional effects of glycosylation on ion channel availability and function, and effects of alterations in glycosylation on nervous system function. It will also summarize highlights of the research on glycolipid/ganglioside-mediated regulation of ion transport.
Collapse
Affiliation(s)
- Martha C Nowycky
- Department of Pharmacology and Physiology, RBHS, New Jersey Medical School, The State University of New Jersey, 185 South Orange Ave., Newark, NJ, 07103, USA,
| | | | | |
Collapse
|
29
|
Murase S, Kato K, Taguchi T, Mizumura K. Glial cell line-derived neurotrophic factor sensitized the mechanical response of muscular thin-fibre afferents in rats. Eur J Pain 2013; 18:629-38. [PMID: 24174387 DOI: 10.1002/j.1532-2149.2013.00411.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The role of glial cell line-derived neurotrophic factor (GDNF) in pain and muscular nociceptor activities is not well understood. We examined pain-related behaviour and mechanical response of muscular thin-fibre afferents after intramuscular injection of GDNF in rats. METHODS GDNF and antagonist to transient receptor potential V1 or acid-sensing ion channels were injected into rat gastrocnemius muscle and muscular mechanical hyperalgesia was assessed with a Randall-Selitto analgesiometer. Activities of single C- (conduction velocity < 2.0 m/s) and Aδ-fibres (conduction velocity 2.0-12.0 m/s) were recorded from extensor digitorum longus muscle-nerve preparations in vitro. The changes in the responses to mechanical stimuli before and after GDNF injection were recorded. RESULTS Mechanical hyperalgesia was observed from 1 h to 1 day after GDNF (0.03 μM, 20 μL) injection. The decreased withdrawal threshold was temporarily reversed after intramuscular injection of amiloride (50 mM, 20 μL), but not capsazepine (50 μM, 20 μL). In single-fibre recordings, both phosphate buffered saline (PBS) and GDNF failed to induce any significant discharges. GDNF significantly enhanced the mechanical response when compared with the PBS group, but only in Aδ-fibre afferents. C-fibres were not affected. Significantly lowered threshold and increased response magnitude to mechanical stimuli were observed 30 or 60-120 min after injection. These times are compatible with the timing of the onset of the hyperalgesic effect of GDNF. CONCLUSIONS These results suggest that GDNF increased the response of muscular Aδ-fibre afferents to mechanical stimuli, resulting in muscular mechanical hyperalgesia.
Collapse
Affiliation(s)
- S Murase
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Kasugai, Japan; Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan
| | | | | | | |
Collapse
|
30
|
HARTZELL HCRISS, DUCHATELLE-GOURDON ISABELLE. Structure and Neural Modulation of Cardiac Calcium Channels. J Cardiovasc Electrophysiol 2013. [DOI: 10.1111/j.1540-8167.1992.tb01937.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Extracellular pH and neuronal depolarization serve as dynamic switches to rapidly mobilize trkA to the membrane of adult sensory neurons. J Neurosci 2013; 33:8202-15. [PMID: 23658159 DOI: 10.1523/jneurosci.4408-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Activation of the nerve growth factor (NGF) receptor trkA and tissue acidosis are critically linked to inflammation-associated nociceptor sensitization. This study explored how increased acidity is linked to sensory neuron sensitization to NGF. Adult Wistar rat primary sensory neurons grown at physiological pH 7.4, then either kept at pH 7.4 or challenged for 30 min in pH 6.5 medium, provided a model of acidosis. Nonpermeabilizing trkA immunofluorescence revealed a significant increase in trkA mobilization to the plasma membrane from intracellular stores in response to proton challenge. This was confirmed using a surface protein biotinylation assay and Brefeldin A disruption of the rough endoplasmic reticulum-Golgi-trans-Golgi network. Mobilization of trkA to the membrane at pH 6.5 was abolished in neurons treated with the acid-sensitive ion channel blocker, amiloride. While elevated levels of NGF-independent trkA phosphorylation occurred at pH 6.5 alone, the level of activation was significantly increased in response to NGF challenge. Exposure of sensory neurons to pH 6.5 medium also resulted in strong calcium (Ca(2+)) transients that were reversible upon reintroduction to physiological pH. The pH 6.5-induced mobilization of trkA to the membrane was Ca(2+) dependent, as BAPTA-AM Ca(2+) chelation abrogated the response. Interestingly, KCl-induced depolarization was sufficient to induce mobilization of trkA to the cell surface at pH 7.4, but did not augment the response to pH 6.5. In conclusion, increased mobilization of trkA to neuronal membranes in response to either acidosis or neuronal depolarization provides two novel mechanisms by which sensory neurons can rapidly sensitize to NGF and has important implications for inflammatory pain states.
Collapse
|
32
|
Iniguez J, Schutte SS, O'Dowd DK. Cav3-type α1T calcium channels mediate transient calcium currents that regulate repetitive firing in Drosophila antennal lobe PNs. J Neurophysiol 2013; 110:1490-6. [PMID: 23864373 DOI: 10.1152/jn.00368.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Projection neurons (PNs), located in the antennal lobe region of the insect brain, play a key role in processing olfactory information. To explore how activity is regulated at the level of single PNs within this central circuit we have recorded from these neurons in adult Drosophila melanogaster brains. Our previous study demonstrated that PNs express voltage-gated calcium currents with a transient and sustained component. We found that the sustained component is mediated by cac gene-encoded Cav2-type channels involved in regulating action potential-independent release of neurotransmitter at excitatory cholinergic synapses. The function of the transient calcium current and the gene encoding the underlying channels, however, were unknown. Here we report that the transient current blocked by prepulse inactivation is sensitive to amiloride, a vertebrate Cav3-type channel blocker. In addition PN-specific RNAi knockdown of α1T, the Drosophila Cav3-type gene, caused a dramatic reduction in the transient current without altering the sustained component. These data demonstrate that the α1T gene encodes voltage-gated calcium channels underlying the amiloride-sensitive transient current. Alterations in evoked firing and spontaneous burst firing in the α1T knockdowns demonstrate that the Cav3-type calcium channels are important in regulating excitability in adult PNs.
Collapse
Affiliation(s)
- Jorge Iniguez
- Department of Developmental and Cell Biology and Department of Anatomy and Neurobiology, University of California, Irvine, California
| | | | | |
Collapse
|
33
|
Weiss N, Black SAG, Bladen C, Chen L, Zamponi GW. Surface expression and function of Cav3.2 T-type calcium channels are controlled by asparagine-linked glycosylation. Pflugers Arch 2013; 465:1159-70. [DOI: 10.1007/s00424-013-1259-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 01/05/2023]
|
34
|
Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Jpn J Ophthalmol 2012; 57:120-5. [PMID: 23152156 DOI: 10.1007/s10384-012-0213-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Retinal ischemia in eyes with diabetic retinopathy and retinal vein occlusion leads to local tissue acidosis. Acid-sensing ion channels (ASICs) are expressed in photoreceptors and other neurons in the retina, and may play a role in acid-induced cell injury. The purpose of this study was to investigate the neuroprotective effects of amiloride, an ASIC blocker, on induced retinal ischemia in rats. METHODS Transient retinal ischemia was induced in male Long-Evans rats by the temporary ligation of the optic nerve. Just before the induction of ischemia, the experimental eyes underwent intravitreal injection of amiloride. On day 7, the retinal damage in eyes that underwent amiloride treatment (and in those that did not undergo the treatment) was evaluated by histology and electroretinogram (ERG). RESULTS Transient retinal ischemia caused retinal degeneration with thinning of the inner layer of the retina. The blockage of ASICs with amiloride significantly prevented retinal degeneration. ERG demonstrated that the reduction in a- and b-wave amplitudes induced by the transient retinal ischemia was significantly prevented by the application of amiloride. CONCLUSIONS The present study suggests that ASICs might, at least in part, play a pathophysiological role in ischemia-induced neurodegeneration. Blockage of ASICs may have a potential neuroprotective effect in ocular ischemic diseases.
Collapse
|
35
|
Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin. Hear Res 2012; 294:153-65. [PMID: 22967486 DOI: 10.1016/j.heares.2012.08.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 11/21/2022]
Abstract
Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death.
Collapse
|
36
|
Huda R, Pollema-Mays SL, Chang Z, Alheid GF, McCrimmon DR, Martina M. Acid-sensing ion channels contribute to chemosensitivity of breathing-related neurons of the nucleus of the solitary tract. J Physiol 2012; 590:4761-75. [PMID: 22890703 DOI: 10.1113/jphysiol.2012.232470] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellular mechanisms of central pH chemosensitivity remain largely unknown. The nucleus of the solitary tract (NTS) integrates peripheral afferents with central pathways controlling breathing; NTS neurons function as central chemosensors, but only limited information exists concerning the ionic mechanisms involved. Acid-sensing ion channels (ASICs) mediate chemosensitivity in nociceptive terminals, where pH values ∼6.5 are not uncommon in inflammation, but are also abundantly expressed throughout the brain where pHi s tightly regulated and their role is less clear. Here we test the hypothesis that ASICs are expressed in NTS neurons and contribute to intrinsic chemosensitivity and control of breathing. In electrophysiological recordings from acute rat NTS slices, ∼40% of NTS neurons responded to physiological acidification (pH 7.0) with a transient depolarization. This response was also present in dissociated neurons suggesting an intrinsic mechanism. In voltage clamp recordings in slices, a pH drop from 7.4 to 7.0 induced ASIC-like inward currents (blocked by 100 μM amiloride) in ∼40% of NTS neurons, while at pH ≤ 6.5 these currents were detected in all neurons tested; RT-PCR revealed expression of ASIC1 and, less abundantly, ASIC2 in the NTS. Anatomical analysis of dye-filled neurons showed that ASIC-dependent chemosensitive cells (cells responding to pH 7.0) cluster dorsally in the NTS. Using in vivo retrograde labelling from the ventral respiratory column, 90% (9/10) of the labelled neurons showed an ASIC-like response to pH 7.0, suggesting that ASIC currents contribute to control of breathing. Accordingly, amiloride injection into the NTS reduced phrenic nerve activity of anaesthetized rats with an elevated arterial P(CO(2)) .
Collapse
Affiliation(s)
- Rafiq Huda
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
37
|
Winlove CIP, Roberts A. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents. Eur J Neurosci 2012; 36:2926-40. [PMID: 22775205 DOI: 10.1111/j.1460-9568.2012.08208.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuron firing patterns underpin the detection and processing of stimuli, influence synaptic interactions, and contribute to the function of networks. To understand how intrinsic membrane properties determine firing patterns, we investigated the biophysical basis of single and repetitive firing in spinal neurons of hatchling Xenopus laevis tadpoles, a well-understood vertebrate model; experiments were conducted in situ. Primary sensory Rohon-Beard (RB) neurons fire singly in response to depolarising current, and dorsolateral (DL) interneurons fire repetitively. RB neurons exhibited a large tetrodotoxin-sensitive sodium current; in DL neurons, the sodium current density was significantly lower. High-voltage-activated calcium currents were similar in both neuron types. There was no evidence of persistent sodium currents, low-voltage-activated calcium currents, or hyperpolarisation-activated currents. In RB neurons, the potassium current was dominated by a tetraethylammonium-sensitive slow component (I(Ks) ); a fast component (I(Kf) ), sensitive to 4-aminopyridine, predominated in DL neurons. Sequential current-clamp and voltage-clamp recordings in individual neurons suggest that high densities of I(Ks) prevent repetitive firing; where I(Ks) is small, I(Kf) density determines the frequency of repetitive firing. Intermediate densities of I(Ks) and I(Kf) allow neurons to fire a few additional spikes on strong depolarisation; this property typifies a novel subset of RB neurons, and may activate escape responses. We discuss how this ensemble of currents and firing patterns underpins the operation of the Xenopus locomotor network, and suggest how simple mechanisms might underlie the similar firing patterns seen in the neurons of diverse species.
Collapse
|
38
|
Lopez-Charcas O, Rivera M, Gomora JC. Block of Human CaV3 Channels by the Diuretic Amiloride. Mol Pharmacol 2012; 82:658-67. [DOI: 10.1124/mol.112.078923] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Miwa H, Kondo T. T-type calcium channel as a new therapeutic target for tremor. THE CEREBELLUM 2012; 10:563-9. [PMID: 21479969 DOI: 10.1007/s12311-011-0277-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Voltage-gated calcium channels play an important role in many physiological and pathological processes. Accumulating studies suggest that the T-type calcium channel is a potential target for the treatment of various neurological disorders, such as epilepsy, insomnia, and neuropathic pain. Here, we highlight recent advances in our understanding of T-type calcium channel regulation and their implications for tremor disorders. Several T-type calcium channel blockers effectively suppressed experimental tremors that have been suggested to originate from either the cerebellum or basal ganglia. Among T-type calcium channel blockers that have been used clinically, the anti-tremor efficacy of zonisamide garnered our attention. Based on both basic and clinical studies, the possibility is emerging that T-type calcium channel blockers that transit into the central nervous system may have therapeutic potentials for tremor disorders.
Collapse
Affiliation(s)
- Hideto Miwa
- Department of Neurology, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8510, Japan.
| | | |
Collapse
|
40
|
Ryglewski S, Lance K, Levine RB, Duch C. Ca(v)2 channels mediate low and high voltage-activated calcium currents in Drosophila motoneurons. J Physiol 2011; 590:809-25. [PMID: 22183725 DOI: 10.1113/jphysiol.2011.222836] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Different blends of membrane currents underlie distinct functions of neurons in the brain. A major step towards understanding neuronal function, therefore, is to identify the genes that encode different ionic currents. This study combined in situ patch clamp recordings of somatodendritic calcium currents in an identified adult Drosophila motoneuron with targeted genetic manipulation. Voltage clamp recordings revealed transient low voltage-activated (LVA) currents with activation between –60 mV and –70 mV as well as high voltage-activated (HVA) current with an activation voltage around –30 mV. LVA could be fully inactivated by prepulses to –50 mV and was partially amiloride sensitive. Recordings from newly generated mutant flies demonstrated that DmαG (Ca(v)3 homolog) encoded the amiloride-sensitive portion of the transient LVA calcium current. We further demonstrated that the Ca(v)2 homolog, Dmca1A, mediated the amiloride-insensitive component of LVA current. This novel role of Ca(v)2 channels was substantiated by patch clamp recordings from conditional mutants, RNAi knock-downs, and following Dmca1A overexpression. In addition, we show that Dmca1A underlies the HVA somatodendritic calcium currents in vivo. Therefore, the Drosophila Ca(v)2 homolog, Dmca1A, underlies HVA and LVA somatodendritic calcium currents in the same neuron. Interestingly, DmαG is required for regulating LVA and HVA derived from Dmca1A in vivo. In summary, each vertebrate gene family for voltage-gated calcium channels is represented by a single gene in Drosophila, namely Dmca1D (Ca(v)1), Dmca1A (Ca(v)2) and DmαG (Ca(v)3), but the commonly held view that LVA calcium currents are usually mediated by Ca(v)3 rather than Ca(v)2 channels may require reconsideration.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | | | | |
Collapse
|
41
|
Ouyang H, Bai X, Huang W, Chen D, Dohi S, Zeng W. The antinociceptive activity of intrathecally administered amiloride and its interactions with morphine and clonidine in rats. THE JOURNAL OF PAIN 2011; 13:41-8. [PMID: 22154330 DOI: 10.1016/j.jpain.2011.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/23/2011] [Accepted: 09/27/2011] [Indexed: 10/14/2022]
Abstract
UNLABELLED In this study, we aimed to evaluate the antinociceptive interaction between intrathecally administered amiloride and morphine or clonidine. Using rats chronically implanted with lumbar intrathecal catheters, we examined the ability of intrathecal amiloride, morphine, clonidine, and mixtures of amiloride-morphine and amiloride-clonidine to alter tail-flick latency. To characterize any interactions, isobolographic analysis was performed. The effects of pretreatment with intrathecally administered naloxone or yohimbine were tested. Intrathecal administration of amiloride (25-150 μg), morphine (.25-10 μg), or clonidine (.5-10 μg) alone produced significant dose-dependent antinociception in the tail-flick test. The median effective dose (ED(50)) values for intrathecally administered amiloride, morphine, and clonidine were 120.5 μg, 5.0 μg, and 4.4 μg, respectively. Isobolographic analysis exhibited a synergistic interaction after coadministration of amiloride-morphine and amiloride-clonidine. Intrathecal pretreatment with naloxone (10 μg) completely blocked the antinociceptive effects of morphine and the amiloride-morphine mixture. Intrathecal pretreatment with yohimbine (20 μg) completely blocked the antinociceptive effect of clonidine and antagonized the effect of the amiloride-clonidine mixture. There was no motor dysfunction or significant change in blood pressure or heart rate after the intrathecal administration of amiloride, amiloride-morphine, and amiloride-clonidine. The synergistic effect observed after the coadministration of amiloride and morphine or clonidine suggests a functional interaction among calcium channels, μ-receptors and α(2)-receptors at the spinal cord level of the nociceptive processing system. PERSPECTIVE Although intrathecal morphine and clonidine produces pronounced analgesia, antinociceptive doses of intrathecal morphine and clonidine produce several side effects, including hypotension, bradycardia, sedation, and tolerance. This article presents antinociceptive synergistic interaction between amiloride and morphine, amiloride, and clonidine on thermal nociceptive tests in the rat.
Collapse
Affiliation(s)
- Handong Ouyang
- Department of Anesthesiology, State Key Laboratory of Oncology on Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
42
|
Todorovic SM, Jevtovic-Todorovic V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 2011; 163:484-95. [PMID: 21306582 DOI: 10.1111/j.1476-5381.2011.01256.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is well recognized that voltage-gated calcium (Ca(2+)) channels modulate the function of peripheral and central pain pathways by influencing fast synaptic transmission and neuronal excitability. In the past, attention focused on the modulation of different subtypes of high-voltage-activated-type Ca(2+) channels; more recently, the function of low-voltage-activated or transient (T)-type Ca(2+) channels (T-channels) in nociception has been well documented. Currently, available pain therapies remain insufficient for certain forms of pain associated with chronic disorders (e.g. neuropathic pain) and often have serious side effects. Hence, the identification of selective and potent inhibitors and modulators of neuronal T-channels may help greatly in the development of safer, more effective pain therapies. Here, we summarize the available information implicating peripheral and central T-channels in nociception. We also discuss possible future developments aimed at selective modulation of function of these channels, which are highly expressed in nociceptors.
Collapse
Affiliation(s)
- Slobodan M Todorovic
- Department of Anesthesiology and Neuroscience, University of Virginia School of Medicine, Charlottesville, 22908-0710, USA.
| | | |
Collapse
|
43
|
Li WG, Yu Y, Huang C, Cao H, Xu TL. Nonproton ligand sensing domain is required for paradoxical stimulation of acid-sensing ion channel 3 (ASIC3) channels by amiloride. J Biol Chem 2011; 286:42635-42646. [PMID: 21998313 DOI: 10.1074/jbc.m111.289058] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acid-sensing ion channels (ASICs), which belong to the epithelial sodium channel/degenerin family, are activated by extracellular protons and are inhibited by amiloride (AMI), an important pharmacological tool for studying all known members of epithelial sodium channel/degenerin. In this study, we reported that AMI paradoxically opened homomeric ASIC3 and heteromeric ASIC3 plus ASIC1b channels at neutral pH and synergistically enhanced channel activation induced by mild acidosis (pH 7.2 to 6.8). The characteristic profile of AMI stimulation of ASIC3 channels was reminiscent of the channel activation by the newly identified nonproton ligand, 2-guanidine-4-methylquinazoline. Using site-directed mutagenesis, we showed that ASIC3 activation by AMI, but not its inhibitory effect, was dependent on the integrity of the nonproton ligand sensing domain in ASIC3 channels. Moreover, the structure-activity relationship study demonstrated the differential requirement of the 5-amino group in AMI for the stimulation or inhibition effect, strengthening the different interactions within ASIC3 channels that confer the paradoxical actions of AMI. Furthermore, using covalent modification analyses, we provided strong evidence supporting the nonproton ligand sensing domain is required for the stimulation of ASIC3 channels by AMI. Finally, we showed that AMI causes pain-related behaviors in an ASIC3-dependent manner. These data reinforce the idea that ASICs can sense nonproton ligands in addition to protons. The results also indicate caution in the use of AMI for studying ASIC physiology and in the development of AMI-derived ASIC inhibitors for treating pain syndromes.
Collapse
Affiliation(s)
- Wei-Guang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Departments of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ye Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Department of Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Huang
- Departments of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hui Cao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Departments of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tian-Le Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031; Departments of Biochemistry and Molecular Cell Biology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
44
|
Santos-Torres J, Ślimak MA, Auer S, Ibañez-Tallon I. Cross-reactivity of acid-sensing ion channel and Na⁺-H⁺ exchanger antagonists with nicotinic acetylcholine receptors. J Physiol 2011; 589:5109-23. [PMID: 21911609 DOI: 10.1113/jphysiol.2011.213272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely distributed throughout the mammalian central and peripheral nervous systems, where they contribute to neuronal excitability and synaptic communication. It has been reported that nAChRs are modulated by BK channels and that BK channels, in turn, are inhibited by acid-sensing ion channels (ASICs). Here we investigate the possible functional interaction between these channels in medial habenula (MHb) neurones. We report that selective antagonists of large-conductance calcium-activated potassium channels and ASIC1a channels, paxilline and psalmotoxin 1, respectively, did not induce detectable changes in nicotine-evoked currents. In contrast, the non-selective ASIC and Na(+)-H(+) exchanger (NHE1) antagonists, amiloride and its analogues, suppressed nicotine-evoked responses in MHb neurones of wild-type and ASIC2 null mice, excluding a possible involvement of ASIC2 in the nAChR inhibition by amiloride. Zoniporide, a more selective inhibitor of NHE1, reversibly inhibited α3β4-, α7- and α4-containing (*) nAChRs in Xenopus oocytes and in brain slices, as well as in PS120 cells deficient in NHE1 and virally transduced with nAChRs, suggesting a generalized effect of zoniporide in most neuronal nAChR subtypes. Independently from nAChR antagonism, zoniporide profoundly blocked synaptic transmission onto MHb neurones without affecting glutamatergic and GABA receptors. Taken together, these results indicate that amiloride and zoniporide, which are clinically used to treat hypertension and cardiovascular disease, have an inhibitory effect on neuronal nAChRs when used experimentally at high doses. The possible cross-reactivity of these compounds with nAChRs in vivo will require further investigation.
Collapse
Affiliation(s)
- Julio Santos-Torres
- Molecular Neurobiology Group, Department of Neuroscience, Max-Delbrück-Centrum, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Choe W, Messinger RB, Leach E, Eckle VS, Obradovic A, Salajegheh R, Jevtovic-Todorovic V, Todorovic SM. TTA-P2 is a potent and selective blocker of T-type calcium channels in rat sensory neurons and a novel antinociceptive agent. Mol Pharmacol 2011; 80:900-10. [PMID: 21821734 DOI: 10.1124/mol.111.073205] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several agents that are preferential T-type calcium (T-channel) blockers have shown promise as being effective in alleviating acute and chronic pain, suggesting an urgent need to identify even more selective and potent T-channel antagonists. We used small, acutely dissociated dorsal root ganglion (DRG) cells of adult rats to study the in vitro effects of 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), a derivative of 4-aminomethyl-4-fluoropiperdine, on T currents, as well as other currents known to modulate pain transmission. We found that TTA-P2 potently and reversibly blocked DRG T currents with an IC(50) of 100 nM and stabilized channel in the inactive state, whereas high-voltage-activated calcium and sodium currents were 100- to 1000-fold less sensitive to channel blocking effects. In in vivo studies, we found that intraperitoneal injections of 5 or 7.5 mg/kg TTA-P2 reduced pain responses in mice in phases 1 and 2 of the formalin test. Furthermore, TTA-P2, at 10 mg/kg i.p., selectively and completely reversed thermal hyperalgesia in diabetic rats treated with streptozocin but had no effect on the nociceptive response of healthy animals. The antihyperalgesic effects of TTA-P2 in diabetic rats were completely abolished by administration of oligonucleotide antisense for Ca(V)3.2 isoform of T channels. Thus, TTA-P2 is not only the most potent and selective blocker of T channels in sensory neurons yet described, but it also demonstrates the potential for the pharmacological effectiveness of this approach in addressing altered nociceptive responses in animal models of both inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Wonjoo Choe
- Department of Anesthesiology, InJe University Ilsan Paik Hospital and College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Breunig E, Kludt E, Czesnik D, Schild D. The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels. J Biol Chem 2011; 286:28041-8. [PMID: 21646359 DOI: 10.1074/jbc.m111.233890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many olfactory receptor neurons use a cAMP-dependent transduction mechanism to transduce odorants into depolarizations. This signaling cascade is characterized by a sequence of two currents: a cation current through cyclic nucleotide-gated channels followed by a chloride current through calcium-activated chloride channels. To date, it is not possible to interfere with these generator channels under physiological conditions with potent and specific blockers. In this study we identified the styryl dye FM1-43 as a potent blocker of native olfactory cyclic nucleotide-gated channels. Furthermore, we characterized this substance to stain olfactory receptor neurons that are endowed with cAMP-dependent transduction. This allows optical differentiation and pharmacological interference with olfactory receptor neurons at the level of the signal transduction.
Collapse
Affiliation(s)
- Esther Breunig
- Department of Neurophysiology and Cellular Biophysics, University of Göttingen,37073 Göttingen, Germany
| | | | | | | |
Collapse
|
47
|
Winlove CIP, Roberts A. Pharmacology of currents underlying the different firing patterns of spinal sensory neurons and interneurons identified in vivo using multivariate analysis. J Neurophysiol 2011; 105:2487-500. [PMID: 21346204 DOI: 10.1152/jn.00779.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The operation of neuronal networks depends on the firing patterns of the network's neurons. When sustained current is injected, some neurons in the central nervous system fire a single action potential and others fire repetitively. For example, in Xenopus laevis tadpoles, primary-sensory Rohon-Beard (RB) neurons fired a single action potential in response to 300-ms rheobase current injections, whereas dorsolateral (DL) interneurons fired repetitively at 10-20 Hz. To investigate the basis for these differences in vivo, we examined drug-induced changes in the firing patterns of Xenopus spinal neurons using whole cell current-clamp recordings. Neuron types were initially separated through cluster analysis, and we compared results produced using different clustering algorithms. We used these results to develop a predictive function to classify subsequently recorded neurons. The potassium channel blocker tetraethylammonium (TEA) converted single-firing RB neurons to low-frequency repetitive firing but reduced the firing frequency of repetitive-firing DL interneurons. Firing frequency in DL interneurons was also reduced by the potassium channel blockers 4-aminopyridine (4-AP), catechol, and margatoxin; 4-AP had the greatest effect. The calcium channel blockers amiloride and nimodipine had few effects on firing in either neuron type but reduced action potential duration in DL interneurons. Muscarine, which blocks M-currents, did not affect RB neurons but reduced firing frequency in DL interneurons. These results suggest that potassium currents may control neuron firing patterns: a TEA-sensitive current prevents repetitive firing in RB neurons, whereas a 4-AP-sensitive current underlies repetitive firing in DL interneurons. The cluster and discriminant analysis described could help to classify neurons in other systems.
Collapse
Affiliation(s)
- Crawford I P Winlove
- Neurobiology, School of Biological Sciences, Woodland Road, Bristol BS8 2UG, United Kingdom.
| | | |
Collapse
|
48
|
Effects of T-type calcium channel blockers on a parkinsonian tremor model in rats. Pharmacol Biochem Behav 2011; 97:656-9. [DOI: 10.1016/j.pbb.2010.11.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/19/2022]
|
49
|
Rossini GP, Bigiani A. Palytoxin action on the Na(+),K(+)-ATPase and the disruption of ion equilibria in biological systems. Toxicon 2010; 57:429-39. [PMID: 20932855 DOI: 10.1016/j.toxicon.2010.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/03/2010] [Accepted: 09/24/2010] [Indexed: 11/29/2022]
Abstract
Palytoxin-group toxins (PlTX) exert their potent biological activity by altering mechanisms of ion homeostasis in excitable and non-excitable tissues. This review will describe major aspects that led to the relatively early identification of the Na(+),K(+)-ATPase as the molecular target and receptor of the toxin in sensitive systems. The importance of this pump in the normal functioning of animal cells has driven extensive investigative efforts. The recognized molecular mechanism of action of PlTX involves its binding to the extracellular portion of alpha subunit of this plasma membrane protein, which converts an enzyme carrying ions against their concentration gradients at the expense of chemical energy (ATP) into a non-selective cation channel, allowing passive flow of ions following their concentration gradients. More recent findings have indicated that PlTX would interfere with the normal strict coupling between inner and outer gates of the pump controlling the ion access to the Na(+),K(+)-ATPase, allowing the gates to be simultaneously open. The ability of PlTX to make internal portions of the Na(+),K(+)-ATPase accessible to relatively large molecules has been exploited to characterize the structure-function relationship of the pump, leading to a better understanding of its ion translocation pathway. Thus, forty years from the isolation of this potent marine biotoxin, a considerable understanding of its mode of action and of its potential as a research tool have been achieved and are the basis for promising future advancement in the characterization of biological systems and their alteration by PlTX.
Collapse
Affiliation(s)
- Gian Paolo Rossini
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41125 Modena, Italy.
| | | |
Collapse
|
50
|
Vassilevski AA, Fedorova IM, Maleeva EE, Korolkova YV, Efimova SS, Samsonova OV, Schagina LV, Feofanov AV, Magazanik LG, Grishin EV. Novel class of spider toxin: active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide. J Biol Chem 2010; 285:32293-302. [PMID: 20657014 DOI: 10.1074/jbc.m110.104265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Venom of the yellow sac spider Cheiracanthium punctorium (Miturgidae) was found unique in terms of molecular composition. Its principal toxic component CpTx 1 (15.1 kDa) was purified, and its full amino acid sequence (134 residues) was established by protein chemistry and mass spectrometry techniques. CpTx 1 represents a novel class of spider toxin with modular architecture. It consists of two different yet homologous domains (modules) each containing a putative inhibitor cystine knot motif, characteristic of the widespread single domain spider neurotoxins. Venom gland cDNA sequencing provided precursor protein (prepropeptide) structures of three CpTx 1 isoforms (a-c) that differ by single residue substitutions. The toxin possesses potent insecticidal (paralytic and lethal), cytotoxic, and membrane-damaging activities. In both fly and frog neuromuscular preparations, it causes stable and irreversible depolarization of muscle fibers leading to contracture. This effect appears to be receptor-independent and is inhibited by high concentrations of divalent cations. CpTx 1 lyses cell membranes, as visualized by confocal microscopy, and destabilizes artificial membranes in a manner reminiscent of other membrane-active peptides by causing numerous defects of variable conductance and leading to bilayer rupture. The newly discovered class of modular polypeptides enhances our knowledge of the toxin universe.
Collapse
Affiliation(s)
- Alexander A Vassilevski
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997
| | | | | | | | | | | | | | | | | | | |
Collapse
|