1
|
Lalzad A, Wong F, Schneider M. Neuroinflammation in the Rat Brain After Exposure to Diagnostic Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:961-968. [PMID: 38685265 DOI: 10.1016/j.ultrasmedbio.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 02/11/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To date there have been no studies exploring the potential for neuroinflammation as an intracranial bio-effect associated with diagnostic ultrasound during neonatal cranial scans in a mammalian in vivo model. The study described here was aimed at investigating the effects of B-mode and Doppler mode ultrasound on inflammation in the rat brain. METHODS Twelve Wistar rats (7-9 wk old) were divided into a control group and an ultrasound-exposed group (n = 6/group). A craniotomy was performed, followed by 10 min of B-mode and spectral Doppler interrogation of the middle cerebral artery. The control group was subjected to sham treatment, with the transducer held stationary over the craniotomy site, but the ultrasound machine switched off. Animals were euthanized 48 h after exposure, and the brains formalin fixed for immunohistochemical analysis using allograft inflammatory factor 1 (IBA-1) and glial fibrillary acidic protein (GFAP) as markers of microglia and astrocytes, respectively. The numbers of IBA-1- and GFAP-immunoreactive cells were manually counted and expressed as areal density (cells/mm2). Results were analyzed using Student's unpaired t-test and one-way repeated-measures analysis of variance. RESULTS The ultrasound-exposed brain exhibited significant increases in IBA-1 and GFAP immunoreactive cell density in all regions of B-mode and Doppler mode exposure compared with the control group (p < 0.001). CONCLUSION Ten minutes of B-mode and Doppler mode ultrasound may induce neuroinflammatory changes in the rat brain. This suggests that exposure of brain tissue to current diagnostic ultrasound intensities may not be completely without risk.
Collapse
Affiliation(s)
- Assema Lalzad
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia; Department of Medical Imaging, Cabrini Hospital, Malvern, Victoria, Australia
| | - Flora Wong
- Monash Newborn, Monash Medical Centre, Clayton, Victoria, Australia; The Ritchie Centre, Hudson's Institute of Medical Research, Melbourne, Victoria; Department of Pediatrics, Monash University, Clayton, Victoria, Australia
| | - Michal Schneider
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Grunert M, Dorn C, Dopazo A, Sánchez-Cabo F, Vázquez J, Rickert-Sperling S, Lara-Pezzi E. Technologies to Study Genetics and Molecular Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:435-458. [PMID: 38884724 DOI: 10.1007/978-3-031-44087-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Over the last few decades, the study of congenital heart disease (CHD) has benefited from various model systems and the development of molecular biological techniques enabling the analysis of single gene as well as global effects. In this chapter, we first describe different models including CHD patients and their families, animal models ranging from invertebrates to mammals, and various cell culture systems. Moreover, techniques to experimentally manipulate these models are discussed. Second, we introduce cardiac phenotyping technologies comprising the analysis of mouse and cell culture models, live imaging of cardiogenesis, and histological methods for fixed hearts. Finally, the most important and latest molecular biotechniques are described. These include genotyping technologies, different applications of next-generation sequencing, and the analysis of transcriptome, epigenome, proteome, and metabolome. In summary, the models and technologies presented in this chapter are essential to study the function and development of the heart and to understand the molecular pathways underlying CHD.
Collapse
Affiliation(s)
- Marcel Grunert
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DiNAQOR AG, Schlieren, Switzerland
| | - Cornelia Dorn
- Cardiovascular Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jésus Vázquez
- Proteomics Unit, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | - Enrique Lara-Pezzi
- Myocardial Homeostasis and Cardiac Injury Programme, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
3
|
Wu G, Cheng H, Guo H, Li Z, Li D, Xie Z. Tea polyphenol EGCG ameliorates obesity-related complications by regulating lipidomic pathway in leptin receptor knockout rats. J Nutr Biochem 2023; 118:109349. [PMID: 37085056 DOI: 10.1016/j.jnutbio.2023.109349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Tea polyphenol EGCG has been widely recognized for antiobesity effects. However, the molecular mechanism of lipidomic pathway related to lipid-lowering effect of EGCG is still not well understood. The aim of this study was to investigate the effects and mechanism of EGCG activated hepatic lipidomic pathways on ameliorating obesity-related complications by using newly developed leptin receptor knockout (Lepr KO) rats. Results showed that EGCG supplementation (100 mg/kg body weight) significantly decreased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG) levels both in the serum and liver, and significantly improved glucose intolerance. In addition, EGCG alleviated fatty liver development and restored the normal liver function in Lepr KO rats. Liver lipidomic analysis revealed that EGCG dramatically changes overall composition of lipid classes. Notably, EGCG significantly decreased an array of triglycerides (TGs) and diglycerides (DGs) levels. While EGCG increased 31 glycerophospholipid species and 1 sphingolipid species levels, such as phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylserines (PSs) and phosphatidylinositols (PIs) levels in the liver of Lepr KO rats. Moreover, 14 diversely regulated lipid species were identified as potential lipid biomarkers. Mechanistic analysis revealed that EGCG significantly activated the SIRT6/AMPK/SREBP1/FAS pathway to decrease DGs and TGs levels and upregulated glycerophospholipids synthesis pathways to increase glycerophospholipid level in the liver of Lepr KO rats. These findings suggested that the regulation of glycerolipids and glycerophospholipid homeostasis might be the key pathways for EGCG in ameliorating obesity-related complications in Lepr KO rats.
Collapse
Affiliation(s)
- Guohuo Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huijun Cheng
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China
| | - Huimin Guo
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Zhuang Li
- Center for Biotechnology, Anhui Agricultural University, Anhui 230036, PR China
| | - Daxiang Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences & Technology, Anhui Agricultural University, Hefei, Anhui 230036, PR China; College of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, PR China.
| |
Collapse
|
4
|
Bryda EC, Men H, Stone BJ. Rat Embryonic Stem Cell Transgenesis. Methods Mol Biol 2023; 2631:355-370. [PMID: 36995677 DOI: 10.1007/978-1-0716-2990-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The availability of reliable germline competent rat embryonic stem cell (ESC) lines that can be genetically manipulated provides an important tool for generating new rat models. Here we describe the process for culturing rat ESCs, microinjecting the ESCs into rat blastocysts, and transferring the embryos to surrogate dams by either surgical or non-surgical embryo transfer techniques to produce chimeric animals with the potential to pass on the genetic modification to their offspring.
Collapse
Affiliation(s)
- Elizabeth C Bryda
- University of Missouri, Rat Resource and Research Center, Columbia, MO, USA.
| | - Hongsheng Men
- University of Missouri, Rat Resource and Research Center, Columbia, MO, USA
| | | |
Collapse
|
5
|
Study on Tissue Homogenization Buffer Composition for Brain Mass Spectrometry-Based Proteomics. Biomedicines 2022; 10:biomedicines10102466. [PMID: 36289728 PMCID: PMC9598821 DOI: 10.3390/biomedicines10102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Mass spectrometry-based proteomics aims to study the proteome both qualitatively and quantitatively. A key step in proteomic analysis is sample preparation, which is crucial for reliable results. We investigated the effect of the composition of the homogenization buffer used to extract proteins from brain tissue on the yield of protein extraction and the number and type of extracted proteins. Three different types of buffers were compared—detergent-based buffer (DB), chaotropic agent-based buffer (CAB) and buffer without detergent and chaotropic agent (DFB). Based on label-free quantitative protein analysis, detergent buffer was identified as the most suitable for global proteomic profiling of brain tissue. It allows the most efficient extraction of membrane proteins, synaptic and synaptic membrane proteins along with ribosomal, mitochondrial and myelin sheath proteins, which are of particular interest in the field of neurodegenerative disorders research.
Collapse
|
6
|
Pan M, Zhao C, Xu Z, Yang Y, Teng T, Lin J, Huang H. Radiopaque Chitosan Ducts Fabricated by Extrusion-Based 3D Printing to Promote Healing After Pancreaticoenterostomy. Front Bioeng Biotechnol 2021; 9:686207. [PMID: 34150738 PMCID: PMC8212045 DOI: 10.3389/fbioe.2021.686207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/13/2021] [Indexed: 01/08/2023] Open
Abstract
Long-term placement of non-degradable silicone rubber pancreatic duct stents in the body is likely to cause inflammation and injury. Therefore, it is necessary to develop degradable and biocompatible stents to replace silicone rubber tubes as pancreatic duct stents. The purpose of our research was to verify the feasibility and biological safety of extrusion-based 3D printed radiopaque chitosan (CS) ducts for pancreaticojejunostomy. Chitosan-barium sulfate (CS-Ba) ducts with different molecular weights (low-, medium-, and high-molecular weight CS-Ba: LCS-Ba, MCS-Ba, and HCS-Ba, respectively) were soaked in vitro in simulated pancreatic juice (SPJ) (pH 8.0) with or without pancreatin for 16 weeks. Changes in their weight, water absorption rate and mechanical properties were tested regularly. The biocompatibility, degradation and radiopaque performance were verified by in vivo and in vitro experiments. The results showed that CS-Ba ducts prepared by this method had regular compact structures and good molding effects. In addition, the lower the molecular weight of the CS-Ba ducts was, the faster the degradation rate was. Extrusion-based 3D-printed CS-Ba ducts have mechanical properties that match those of soft tissue, good biocompatibility and radioopacity. In vitro studies have also shown that CS-Ba ducts can promote the growth of fibroblasts. These stents have great potential for use in pancreatic duct stent applications in the future.
Collapse
Affiliation(s)
- Maoen Pan
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Chaoqian Zhao
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zeya Xu
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yuanyuan Yang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tianhong Teng
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Heguang Huang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
7
|
Serneels L, T'Syen D, Perez-Benito L, Theys T, Holt MG, De Strooper B. Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer's disease. Mol Neurodegener 2020; 15:60. [PMID: 33076948 PMCID: PMC7574558 DOI: 10.1186/s13024-020-00399-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 12/31/2022] Open
Abstract
Background Three amino acid differences between rodent and human APP affect medically important features, including β-secretase cleavage of APP and Aβ peptide aggregation (De Strooper et al., EMBO J 14:4932-38, 1995; Ueno et al., Biochemistry 53:7523-30, 2014; Bush, 2003, Trends Neurosci 26:207–14). Most rodent models for Alzheimer’s disease (AD) are, therefore, based on the human APP sequence, expressed from artificial mini-genes randomly inserted in the rodent genome. While these models mimic rather well various biochemical aspects of the disease, such as Aβ-aggregation, they are also prone to overexpression artifacts and to complex phenotypical alterations, due to genes affected in or close to the insertion site(s) of the mini-genes (Sasaguri et al., EMBO J 36:2473-87, 2017; Goodwin et al., Genome Res 29:494-505, 2019). Knock-in strategies which introduce clinical mutants in a humanized endogenous rodent APP sequence (Saito et al., Nat Neurosci 17:661-3, 2014) represent useful improvements, but need to be compared with appropriate humanized wildtype (WT) mice. Methods Computational modelling of the human β-CTF bound to BACE1 was used to study the differential processing of rodent and human APP. We humanized the three pivotal residues we identified G676R, F681Y and R684H (labeled according to the human APP770 isoform) in the mouse and rat genomes using a CRISPR-Cas9 approach. These new models, termed mouse and rat Apphu/hu, express APP from the endogenous promotor. We also introduced the early-onset familial Alzheimer’s disease (FAD) mutation M139T into the endogenous Rat Psen1 gene. Results We show that introducing these three amino acid substitutions into the rodent sequence lowers the affinity of the APP substrate for BACE1 cleavage. The effect on β-secretase processing was confirmed as both humanized rodent models produce three times more (human) Aβ compared to the original WT strain. These models represent suitable controls, or starting points, for studying the effect of transgenes or knock-in mutations on APP processing (Saito et al., Nat Neurosci 17:661-3, 2014). We introduced the early-onset familial Alzheimer’s disease (FAD) mutation M139T into the endogenous Rat Psen1 gene and provide an initial characterization of Aβ processing in this novel rat AD model. Conclusion The different humanized APP models (rat and mouse) expressing human Aβ and PSEN1 M139T are valuable controls to study APP processing in vivo allowing the use of a human Aβ ELISA which is more sensitive than the equivalent system for rodents. These animals will be made available to the research community.
Collapse
Affiliation(s)
- Lutgarde Serneels
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Dries T'Syen
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Laura Perez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Matthew G Holt
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium.,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- Centre for Brain and Disease Research, Flanders Institute for Biotechnology (VIB), Leuven, Belgium. .,Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven, Belgium. .,UK Dementia Research Institute at UCL, University College London, London, UK.
| |
Collapse
|
8
|
Liao JY, Fan C, Huang YZ, Pei KJC. Distribution of residual agricultural pesticides and their impact assessment on the survival of an endangered species. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121871. [PMID: 31879098 DOI: 10.1016/j.jhazmat.2019.121871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to assess the distribution of spent pesticides in an agro-farming area and to evaluate their impact on the ecological risk for an endangered species combing the health risk assessment concept with the modelling algorithm proposed by European Food Safety Authority (EFSA). An agricultural area in western Taiwan was chosen to investigate the ecological risk on Prionailurus bengalensis. Their ecological stability was evaluated in the context of the residuals' distribution of the spent pesticides in the investigated area. The pesticide residues accumulated and correlated highly to the adverse health impact on the leopard cat. In the present study, 67 pesticides were detected from 79 collected soil samples. The hazard index (HI) was found related to land use patterns and the HI values in Yuanli and Zhuolan were significantly higher than those in the other areas, increasing poisoning probability of the leopard cat. The locations of agro-chemical utilization were highly overlapped with leopard cats' activity zone, supporting the hypothesis that pesticide residues posed a potential threat to the leopard cats' health. The proposed risk assessment framework was capable of estimating the risk caused by pesticide residues and no similar study has been reported before.
Collapse
Affiliation(s)
- Jing-Yu Liao
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da-An District, Taipei, 10617, Taiwan
| | - Chihhao Fan
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da-An District, Taipei, 10617, Taiwan.
| | - Ya-Zhen Huang
- Department of Bioenvironmental Systems Engineering, College of Bioresources and Agriculture, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Da-An District, Taipei, 10617, Taiwan
| | - Kurtis Jai-Chyi Pei
- Institute of Wildlife Conservation, College of Veterinary Medicine, National Pingtung University of Science & Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
| |
Collapse
|
9
|
Medical Management and Diagnostic Approaches. THE LABORATORY RAT 2020. [PMCID: PMC7153319 DOI: 10.1016/b978-0-12-814338-4.00011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This chapter reviews the basic principles of medical management of rat colonies and diagnostic approaches to detect infectious diseases of rats. As is the case with all other species, rats are susceptible to a variety of injuries and diseases that can cause distress, morbidity, or mortality. Any facility that houses rats must develop monitoring programs designed to rapidly identify health-related problems so they can be communicated to appropriate veterinary or animal care personnel to be resolved. These programs generally consist of multiple components, some of which are directed toward individual animals and others that assess the health status of rat populations as a whole. Topics include individual animal monitoring and care, signs of illness and distress, colony health management, components of microbiological monitoring programs, including agents commonly targeted and sentinel programs, quarantine, biological material screening, diagnostic testing methodologies, including culture, serology, molecular diagnostic and histopathology, test profiles and interpretation, management of disease outbreaks, and treatment and prevention strategies for infectious agents.
Collapse
|
10
|
Wang D, Wang Y, Liu H, Tong C, Ying Q, Sachinidis A, Li L, Peng L. Laminin promotes differentiation of rat embryonic stem cells into cardiomyocytes by activating the integrin/FAK/PI3K p85 pathway. J Cell Mol Med 2019; 23:3629-3640. [PMID: 30907509 PMCID: PMC6484303 DOI: 10.1111/jcmm.14264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/27/2022] Open
Abstract
The generation of germline competent rat embryonic stem cells (rESCs) allows the study of their lineage commitment. Here, we developed a highly efficient system for rESC-derived cardiomyocytes, and even the formation of three-dimensional (3D)-like cell clusters with cTNT and α-Actinin. We have validated that laminin can interact with membrane integrin to promote the phosphorylation of both phosphatidylinositol 3-kinase (PI3K) p85 and the focal adhesion kinase (FAK). In parallel, GATA4 was up-regulated. Upon inhibiting the integrin, laminin loses the effect on cardiomyocyte differentiation, accompanied with a down-regulation of phosphorylation level of PI3K p85 and FAK. Meanwhile, the expression of Gata4 was inhibited as well. Taken together, laminin is a crucial component in the differentiation of rESCs into cardiomyocytes through increasing their proliferation via interacting with integrin pathway. These results provide new insights into the pathways mediated by extracellular laminin involved in the fate of rESC-derived cardiomyocytes.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Chang Tong
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qilong Ying
- Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research at USC, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Behavioral Compensations and Neuronal Remodeling in a Rodent Model of Chronic Intervertebral Disc Degeneration. Sci Rep 2019; 9:3759. [PMID: 30842475 PMCID: PMC6403208 DOI: 10.1038/s41598-019-39657-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Low back pain is associated with degeneration of the intervertebral disc, but specific mechanisms of pain generation in this pathology remain unknown. Sensory afferent nerve fiber growth into the intervertebral disc after injury-induced inflammation may contribute to discogenic pain. We describe a clinically relevant behavioral phenotype in a rodent model of chronic intervertebral disc degeneration which provides a means to map sensory neuron changes to a single affected lumbar intervertebral disc. Unilateral disc puncture of one lumbar intervertebral disc revealed a bilateral behavioral phenotype characterized by gait changes and decreased activity. Moreover, neurons extracted from the dorsal root ganglia in animals with intervertebral disc injury demonstrated altered TRPV1 activation in vitro independent of exogenous NGF administration. Finally, neuronal nuclear hypertrophy and elevated expression of p75NTR provide evidence of active adaptation of innervating sensory neurons in chronic intervertebral disc degeneration. Therefore, this model and findings provide the template for future studies to establish specific mechanisms of nociceptive pain in chronic intervertebral disc degeneration.
Collapse
|
12
|
Mulla W, Gillis R, Murninkas M, Klapper-Goldstein H, Gabay H, Mor M, Elyagon S, Liel-Cohen N, Bernus O, Etzion Y. Unanesthetized Rodents Demonstrate Insensitivity of QT Interval and Ventricular Refractory Period to Pacing Cycle Length. Front Physiol 2018; 9:897. [PMID: 30050462 PMCID: PMC6050393 DOI: 10.3389/fphys.2018.00897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/21/2018] [Indexed: 12/29/2022] Open
Abstract
Aim: The cardiac electrophysiology of mice and rats has been analyzed extensively, often in the context of pathological manipulations. However, the effects of beating rate on the basic electrical properties of the rodent heart remain unclear. Due to technical challenges, reported electrophysiological studies in rodents are mainly from ex vivo preparations or under deep anesthesia, conditions that might be quite far from the normal physiological state. The aim of the current study was to characterize the ventricular rate-adaptation properties of unanesthetized rats and mice. Methods: An implanted device was chronically implanted in rodents for atrial or ventricular pacing studies. Following recovery from surgery, QT interval was evaluated in rodents exposed to atrial pacing at various frequencies. In addition, the frequency dependence of ventricular refractoriness was tested by conventional ventricular programmed stimulation protocols. Results: Our findings indicate total absence of conventional rate-adaptation properties for both QT interval and ventricular refractoriness. Using monophasic action potential recordings in isolated mice hearts we could confirm the previously reported shortening of the action potential duration at fast pacing rates. However, we found that this mild shortening did not result in similar decrease of ventricular refractory period. Conclusion: Our findings indicate that unanesthetized rodents exhibit flat QT interval and ventricular refractory period rate-dependence. This data argue against empirical use of QT interval correction methods in rodent studies. Our new methodology allowing atrial and ventricular pacing of unanesthetized freely moving rodents may facilitate more appropriate utility of these important animal models in the context of cardiac electrophysiology studies.
Collapse
Affiliation(s)
- Wesam Mulla
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Roni Gillis
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michael Murninkas
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadar Klapper-Goldstein
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hovav Gabay
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Mor
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sigal Elyagon
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noah Liel-Cohen
- Cardiology Department, Soroka University Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Olivier Bernus
- L'Institut de Rythmologie et Modélisation Cardiaque, l'Institut Hospitalo-Universitaire, Fondation Bordeaux Université, Bordeaux, France
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
13
|
Najafi F, Taghavi Ghadikolai M, Naddaf SR, Hasanpour H, Mobedi I, Mowlavi G. Trichosomoides crassicauda Infection in Laboratory Rats with Histopathological Description in the Bladder Tissue. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2017. [DOI: 10.29252/jommid.5.1.2.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
14
|
Al-Otoum F, Al-Ghouti MA, Ahmed TA, Abu-Dieyeh M, Ali M. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar. CHEMOSPHERE 2016; 164:649-656. [PMID: 27635648 DOI: 10.1016/j.chemosphere.2016.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 05/09/2023]
Abstract
The occurrence of chlorine dioxide (ClO2) disinfection by-products (DBPs) in drinking water, namely, chlorite, chlorate, and trihalomethanes (THMs), was investigated. Two-hundred-ninety-four drinking water samples were collected from seven desalination plants (DPs), four reservoirs (R), and eight mosques (M) distributed within various locations in southern and northern Qatar. The ClO2 concentration levels ranged from 0.38 to <0.02 mg L-1, with mean values of 0.17, 0.12, and 0.04 mg L-1 for the DPs, Rs, and Ms, respectively. The chlorite levels varied from 13 μg L-1 to 440 μg L-1, with median values varying from 13 to 230 μg L-1, 77-320 μg L-1, and 85-440 μg L-1 for the DPs, Rs, and Ms, respectively. The chlorate levels varied from 11 μg L-1 to 280 μg L-1, with mean values varying from 36 to 280 μg L-1, 11-200 μg L-1, and 11-150 μg L-1 in the DPs, Rs, and Ms, respectively. The average concentration of THMs was 5 μg L-1, and the maximum value reached 77 μg L-1 However, all of the DBP concentrations fell within the range of the regulatory limits set by GSO 149/2009, the World Health Organization (WHO), and Kahramaa (KM).
Collapse
Affiliation(s)
- Fatima Al-Otoum
- Supreme Council of Health, Public Health Department, P.O. Box: 42, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar.
| | - Talaat A Ahmed
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammed Abu-Dieyeh
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, State of Qatar, Doha, P.O. Box: 2713, Qatar
| | - Mohammed Ali
- Supreme Council of Health, Public Health Department, P.O. Box: 42, Doha, Qatar
| |
Collapse
|
15
|
Hanson MM, Liu F, Dai S, Kearns A, Qin X, Bryda EC. Rapid conditional targeted ablation model for hemolytic anemia in the rat. Physiol Genomics 2016; 48:626-32. [PMID: 27368711 DOI: 10.1152/physiolgenomics.00026.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/27/2016] [Indexed: 01/14/2023] Open
Abstract
Effective methods for cell ablation are important tools for examining the anatomical, functional, and behavioral consequences of selective loss of specific cell types in animal models. We have developed an ablation system based on creating genetically modified animals that express human CD59 (hCD59), a membrane receptor, and administering intermedilysin (ILY), a toxin produced by Streptococcus intermedius, which binds specifically to hCD59 to induce cell lysis. As proof-of-concept in the rat, we generated an anemia model, SD-Tg(CD59-HBA1)Bryd, which expresses hCD59 on erythrocytes. Hemolysis is a common complication of inherited or acquired blood disorders, which can result in cardiovascular compromise and death. A rat model that can replicate hemolysis through specific ablation of erythrocytes would allow further study of disease and novel treatments. In vitro, complete lysis of erythrocytes expressing hCD59 was observed at and above 250 pM ILY, while no lysis was observed in wild-type erythrocytes at any ILY concentration (8-1,000 pM). In vivo, ILY intravenous injection (100 ng/g body wt) dramatically reduced the hematocrit within 10 min, with a mean hematocrit reduction of 43% compared with 1.4% in the saline control group. Rats injected with ILY at 500 ng/g intraperitoneally developed gross signs of anemia. Histopathology confirmed anemia and revealed hepatic necrosis, with microthrombi present. These studies validate the hCD59-ILY cell ablation technology in the rat and provide the scientific community with a new rapid conditional targeted ablation model for hemolytic anemia and hemolysis-associated sequelae.
Collapse
Affiliation(s)
- Marina M Hanson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Fengming Liu
- Department of Neuroscience, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Shen Dai
- Department of Neuroscience, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Alison Kearns
- Department of Neuroscience, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Xuebin Qin
- Department of Neuroscience, Temple University, School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth C Bryda
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri; Rat Resource and Research Center, University of Missouri, Columbia, Missouri; and
| |
Collapse
|
16
|
Okuno M, Muneta T, Koga H, Ozeki N, Nakagawa Y, Tsuji K, Yoshiya S, Sekiya I. Meniscus regeneration by syngeneic, minor mismatched, and major mismatched transplantation of synovial mesenchymal stem cells in a rat model. J Orthop Res 2014; 32:928-36. [PMID: 24644154 DOI: 10.1002/jor.22614] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/24/2014] [Indexed: 02/04/2023]
Abstract
We compared the effect of syngeneic and allogeneic transplantation of synovial mesenchymal stem cells (MSCs) for meniscus regeneration in a rat model. Synovium was harvested from the knee joints of three strains of rats. The anterior half of the medial meniscus in both knees of F344 rats was removed and 5 million synovial MSCs derived from F344 (syngeneic transplantation), Lewis (minor mismatched transplantation), and ACI (major mismatched transplantation) were injected into the knee of the F344 rats. At 4 weeks, the area of the regenerated meniscus in the F344 group was significantly larger than that in the ACI group. Histological score was significantly better in the F344 and Lewis groups than in the ACI group at 8 weeks. DiI labeled cells could be observed in the knee joint in the F344 group, but were hardly detected in the ACI group at 1 week. The number of macrophages and CD8 T cells at synovium around the meniscus defect was significantly lower in the F344 group than in the ACI group at 1 week. Syngeneic and minor mismatched transplantation of synovial MSCs promoted meniscus regeneration better than major mismatched transplantation in a rat meniscectmized model.
Collapse
Affiliation(s)
- Makiko Okuno
- Department of Joint Surgery and Sports Medicine, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan; Department of Orthopaedic Surgery, Hyogo College of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Petrasek T, Prokopova I, Bahnik S, Schonig K, Berger S, Vales K, Tews B, Schwab ME, Bartsch D, Stuchlik A. Nogo-A downregulation impairs place avoidance in the Carousel maze but not spatial memory in the Morris water maze. Neurobiol Learn Mem 2014; 107:42-9. [DOI: 10.1016/j.nlm.2013.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022]
|
18
|
Jurcevic S, Olsson B, Klinga-Levan K. Validation of suitable endogenous control genes for quantitative PCR analysis of microRNA gene expression in a rat model of endometrial cancer. Cancer Cell Int 2013; 13:45. [PMID: 23680393 PMCID: PMC3665477 DOI: 10.1186/1475-2867-13-45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs are small RNA molecules that negatively regulate gene expression by translational inhibition or mRNA cleavage. The discovery that abnormal expression of particular miRNAs contributes to human disease, including cancer, has spurred growing interest in analysing expression profiles of these molecules. Quantitative polymerase chain reaction is frequently used for quantification of miRNA expression due to its sensitivity and specificity. To minimize experimental error in this system an appropriate endogenous control gene must be chosen. An ideal endogenous control gene should be expressed at a constant level across all samples and its expression stability should be unaffected by the experimental procedure. RESULTS The expression and validation of candidate control genes (4.5S RNA(H) A, Y1, 4.5S RNA(H) B, snoRNA, U87 and U6) was examined in 21 rat cell lines to establish the most suitable endogenous control for miRNA analysis in a rat model of cancer. The stability of these genes was analysed using geNorm and NormFinder algorithms. U87 and snoRNA were identified as the most stable control genes, while Y1 was least stable. CONCLUSION This study identified the control gene that is most suitable for normalizing the miRNA expression data in rat. That reference gene will be useful when miRNAs expression are analyzed in order to find new miRNA markers for endometrial cancer in rat.
Collapse
Affiliation(s)
- Sanja Jurcevic
- Systems Biology Research Centre, Tumor Biology, School of Life Sciences, Skovde, Sweden.
| | | | | |
Collapse
|
19
|
Synthetic microRNA-mediated downregulation of Nogo-A in transgenic rats reveals its role as regulator of synaptic plasticity and cognitive function. Proc Natl Acad Sci U S A 2013; 110:6583-8. [PMID: 23576723 DOI: 10.1073/pnas.1217665110] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have generated a transgenic rat model using RNAi and used it to study the role of the membrane protein Nogo-A in synaptic plasticity and cognition. The membrane protein Nogo-A is expressed in CNS oligodendrocytes and subpopulations of neurons, and it is known to suppress neurite growth and regeneration. The constitutively expressed polymerase II-driven transgene was composed of a microRNA-targeting Nogo-A placed into an intron preceding the coding sequence for EGFP, thus quantitatively labeling cells according to intracellular microRNA expression. The transgenic microRNA in vivo efficiently reduced the concentration of Nogo-A mRNA and protein preferentially in neurons. The resulting significant increase in long-term potentiation in both hippocampus and motor cortex indicates a repressor function of Nogo-A in synaptic plasticity. The transgenic rats exhibited prominent schizophrenia-like behavioral phenotypes, such as perseveration, disrupted prepulse inhibition, and strong withdrawal from social interactions. This fast and efficient microRNA-mediated knockdown provides a way to silence gene expression in vivo in transgenic rats and shows a role of Nogo-A in regulating higher cognitive brain functions.
Collapse
|
20
|
Men H, Bryda EC. Derivation of a germline competent transgenic Fischer 344 embryonic stem cell line. PLoS One 2013; 8:e56518. [PMID: 23437152 PMCID: PMC3577902 DOI: 10.1371/journal.pone.0056518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/12/2013] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cell-based gene manipulation is an effective method for the generation of mutant animal models in mice and rats. Availability of germline-competent ES cell lines from inbred rat strains would allow for creation of new genetically modified models in the desired genetic background. Fischer344 (F344) males carrying an enhanced green fluorescence protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. After establishment of ES cell lines, rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing was conducted in selected ES cell lines. One male ES cell line, F344-Tg.EC4011, was further evaluated for germline competence by injection into Dark Agouti (DA) X Sprague Dawley (SD) blastocysts. Resulting chimeric animals were bred with wild-type SD mates and germline transmissibility of the ES cell line was confirmed by identification of pups carrying the ES cell line-derived EGFP transgene. This is the first report of a germline competent F344 ES cell line. The availability of a new germline competent ES cell line with a stable fluorescence reporter from an inbred transgenic rat strain provides an important new resource for genetic manipulations to create new rat models.
Collapse
Affiliation(s)
- Hongsheng Men
- Rat Resource and Research Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| | - Elizabeth C. Bryda
- Rat Resource and Research Center, Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
21
|
Merkl C, Saalfrank A, Riesen N, Kühn R, Pertek A, Eser S, Hardt MS, Kind A, Saur D, Wurst W, Iglesias A, Schnieke A. Efficient generation of rat induced pluripotent stem cells using a non-viral inducible vector. PLoS One 2013; 8:e55170. [PMID: 23383095 PMCID: PMC3561372 DOI: 10.1371/journal.pone.0055170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/19/2012] [Indexed: 11/26/2022] Open
Abstract
Current methods of generating rat induced pluripotent stem cells are based on viral transduction of pluripotency inducing genes (Oct4, Sox2, c-myc and Klf4) into somatic cells. These activate endogenous pluripotency genes and reprogram the identity of the cell to an undifferentiated state. Epigenetic silencing of exogenous genes has to occur to allow normal iPS cell differentiation. To gain more control over the expression of exogenous reprogramming factors, we used a novel doxycycline-inducible plasmid vector encoding Oct4, Sox2, c-Myc and Klf4. To ensure efficient and controlled generation of iPS cells by plasmid transfection we equipped the reprogramming vector with a bacteriophage φC31 attB site and used a φC31 integrase expression vector to enhance vector integration. A series of doxycycline-independent rat iPS cell lines were established. These were characterized by immunocytochemical detection of Oct4, SSEA1 and SSEA4, alkaline phosphatase staining, methylation analysis of the endogenous Oct4 promoter and RT-PCR analysis of endogenous rat pluripotency genes. We also determined the number of vector integrations and the extent to which reprogramming factor gene expression was controlled. Protocols were developed to generate embryoid bodies and rat iPS cells demonstrated as pluripotent by generating derivatives of all three embryonic germ layers in vitro, and teratoma formation in vivo. All data suggest that our rat iPS cells, generated by plasmid based reprogramming, are similar to rat ES cells. Methods of DNA transfection, protein transduction and feeder-free monolayer culture of rat iPS cells were established to enable future applications.
Collapse
Affiliation(s)
- Claudia Merkl
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Anja Saalfrank
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Nathalie Riesen
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Ralf Kühn
- Institute for Developmental Genetics, Helmholtz Center Munich, Munich, Germany
- Technische Universität München, Munich, Germany
| | - Anna Pertek
- Institute for Developmental Genetics, Helmholtz Center Munich, Munich, Germany
| | - Stefan Eser
- Klinikum Rechts der Isar II, Technische Universität München, Munich, Germany
| | | | - Alexander Kind
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
| | - Dieter Saur
- Klinikum Rechts der Isar II, Technische Universität München, Munich, Germany
| | - Wolfgang Wurst
- Institute for Developmental Genetics, Helmholtz Center Munich, Munich, Germany
- Technische Universität München, Munich, Germany
- Deutsches Zentrum für neurodegenerative Erkrankungen e.V., Munich, Germany
| | - Antonio Iglesias
- Small Molecule Research - Discovery Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basle, Switzerland
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
22
|
Castro FCB, Magre A, Cherpinski R, Zelante PM, Neves LMG, Esquisatto MAM, Mendonça FAS, Santos GMT. Effects of microcurrent application alone or in combination with topical Hypericum perforatum L. and Arnica montana L. on surgically induced wound healing in Wistar rats. HOMEOPATHY 2012; 101:147-53. [PMID: 22818231 DOI: 10.1016/j.homp.2012.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 01/09/2023]
Abstract
OBJECTIVES This study evaluated the wound healing activity of microcurrent application alone or in combination with topical Hypericum perforatum L. and Arnica montana L. on skin surgical incision surgically induced on the back of Wistar rats. DESIGN The animals were randomly divided into six groups: (1) no intervention (control group); (2) microcurrent application (10 μA/2 min); (3) topical application of gel containing H. perforatum; (4) topical application of H. perforatum gel and microcurrent (10 μA/2 min); (5) topical application of gel containing A. montana; (6) topical application of A. montana gel and microcurrent (10 μA/2 min). Tissue samples were obtained on the 2nd, 6th and 10th days after injury and submitted to structural and morphometric analysis. RESULTS AND CONCLUSION Differences in wound healing were observed between treatments when compared to the control group. Microcurrent application alone or combined with H. perforatum gel or A. montana gel exerted significant effects on wound healing in this experimental model in all of the study parameters (P<0.05) when compared to the control group with positive effects seen regarding newly formed tissue, number of newly formed blood vessels and percentage of mature collagen fibers. The morphometric data confirmed the structural findings. In conclusion, application of H. perforatum or A. montana was effective on experimental wound healing when compared to control, but significant differences in the parameters studied were only observed when these treatments were combined with microcurrent application.
Collapse
|
23
|
Men H, Bauer BA, Bryda EC. Germline transmission of a novel rat embryonic stem cell line derived from transgenic rats. Stem Cells Dev 2012; 21:2606-12. [PMID: 22455749 PMCID: PMC3438845 DOI: 10.1089/scd.2012.0040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/25/2012] [Indexed: 01/30/2023] Open
Abstract
Germline-competent rat embryonic stem (ES) cell lines are important resources for the creation of mutant rat models using ES-cell-based gene targeting technology. The ability to isolate germline-competent ES cell lines from any rat strain, including genetically modified strains, would allow for more sophisticated genetic manipulations without extensive breeding. Sprague Dawley (SD) males carrying an enhanced green fluorescent protein (EGFP) transgene were used as the founder animals for the derivation of ES cell lines. A number of ES cell lines were established and subjected to rigorous quality control testing that included assessment of pluripotency factor expression, karyotype analysis, and pathogen/sterility testing. Two male ES cell lines, SD-Tg.EC1/Rrrc and SD-Tg.EC8/Rrrc, were injected into blastocysts recovered from a cross of Dark Agouti (DA) males with SD females. Resulting chimeric animals were bred with wild-type SD mates to verify the germline transmissibility of the ES cell lines by identifying pups carrying the ES cell line-derived EGFP transgene. While both ES cell lines gave rise to chimeric animals, only SD-Tg.EC1 was germline competent. This confirms the feasibility of deriving germline-competent ES cell lines from transgenic rat strains and provides a novel ES cell line with a stable green fluorescent protein (GFP) reporter for future genetic manipulations to create new rat models.
Collapse
Affiliation(s)
- Hongsheng Men
- Department of Veterinary Pathobiology, Rat Resource and Research Center, University of Missouri, Columbia, Missouri 65201, USA
| | | | | |
Collapse
|
24
|
McCulloch PF. Animal models for investigating the central control of the Mammalian diving response. Front Physiol 2012; 3:169. [PMID: 22661956 PMCID: PMC3362090 DOI: 10.3389/fphys.2012.00169] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/09/2012] [Indexed: 11/13/2022] Open
Abstract
Pioneering studies by Per Scholander indicated that the diving response consists of reflexly induced apnea, bradycardia and an alteration of blood flow that maintains perfusion of the heart and brain. More recently field physiological studies have shown that many marine animals can adjust cardiorespiratory aspects of their diving response depending upon the behavioral situation. This could suggest that the very labile heart rate during diving is under direct cortical control. However, the final control of autonomic nervous system functioning resides within the brainstem and not the cortex. Many physiologists regard the brain as a "black box" where important neuronal functioning occurs, but the complexity of such functioning leaves systematic investigation a daunting task. As a consequence the central control of the diving response has been under-investigated. Thus, to further advance the field of diving physiology by understanding its central neuronal control, it would be first necessary to understand the reflex circuitry that exists within the brainstem of diving animals. To do this will require an appropriate animal model. In this review, two animals, the muskrat and rat, will be offered as animal models to investigate the central aspects of the diving response. Firstly, although these rodents are not marine animals, natural histories indicate that both animals can and do exploit aquatic environments. Secondly, physiological recordings during natural and simulated diving indicate that both animals possess the same basic physiological responses to underwater submersion that occur in marine animals. Thirdly, the size and ease of housing of both animals makes them attractive laboratory research animals. Finally, the enormous amount of scientific literature regarding rodent brainstem autonomic control mechanisms, and the availability of brain atlases, makes these animals ideal choices to study the central control of the mammalian diving response.
Collapse
|
25
|
Moore AM, Borschel GH, Santosa KB, Flagg ER, Tong AY, Kasukurthi R, Newton P, Yan Y, Hunter DA, Johnson PJ, Mackinnon SE. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration. J Neurosci Methods 2012; 204:19-27. [DOI: 10.1016/j.jneumeth.2011.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
26
|
Specific antibody responses of primary cells from different cell sources are able to predict immunotoxicity in vitro. Toxicol In Vitro 2011; 25:1966-73. [DOI: 10.1016/j.tiv.2011.06.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/27/2011] [Accepted: 06/29/2011] [Indexed: 11/18/2022]
|
27
|
Jing BB, Li YX, Zhang H, Ren ST, Wang M, Li YP, Zang WJ, Wang B. Antithrombotic activity of Z4A5, a new platelet glycoprotein IIb/IIIa receptor antagonist evaluated in a rabbit arteriovenous shunt thrombosis model. Thromb Res 2011; 128:463-9. [PMID: 21924458 DOI: 10.1016/j.thromres.2011.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/05/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The antithrombotic effect of the glycopreotein IIb/IIIa (GP IIb/IIIa) receptor antagonist Z4A5, exert alone or combination with heparin, and/or aspirin, was examined in a rabbit arteriovenous shunt thrombosis model. MATERIALS AND METHODS Thrombosis was induced by the insertion of a silk thread (thrombogenic substrate) into an extracorporeal shunt. Before and after drug administration (0, 5, and 15 min), ex vivo adenosine diphosphate (ADP)-induced platelet aggregation and coagulation parameters (prothrombin time (PT) and activated partial thromboplastin time (APTT)) were determined in platelet-rich plasma (PRP) and platelet poor-plasma (PPP), respectively. RESULTS Our data demonstrated that, compared to the control, Z4A5 decreased the thrombus weight (31-65%) in a dose-dependent manner and inhibited ADP-induced platelet aggregation (47-98%) 5 min after Z4A5 administration (25-100 mg/kg). However, PT and APTT remained stable, even at the highest dose (100 mg/kg). Heparin (100 U/kg) and aspirin (15 mg/kg) also significantly reduced thrombus mass, but this effect was accompanied by an increase of APTT by heparin. Furthermore, the combination of heparin (100 U/kg) and a low dose of Z4A5 (25 mg/kg) failed to produce an additional benefit beyond that provided by heparin or Z4A5 alone, whereas Z4A5 (25 mg/kg) plus aspirin (15 mg/kg) potentiated the antithrombotic effects of both compounds without further increasing the values of coagulation. CONCLUSIONS Our results indicate that Z4A5 is an effective antithrombotic agent with no significant effects on values of coagulation. Furthermore, Z4A5 can potentiate these antithrombotic effects when prescribed with aspirin.
Collapse
Affiliation(s)
- Bo-Bin Jing
- School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Falck E, Hedberg C, Klinga-Levan K, Behboudi A. SKY analysis revealed recurrent numerical and structural chromosome changes in BDII rat endometrial carcinomas. Cancer Cell Int 2011; 11:20. [PMID: 21708004 PMCID: PMC3146395 DOI: 10.1186/1475-2867-11-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 06/27/2011] [Indexed: 11/24/2022] Open
Abstract
Background Genomic alterations are common features of cancer cells, and some of these changes are proven to be neoplastic-specific. Such alterations may serve as valuable tools for diagnosis and classification of tumors, prediction of clinical outcome, disease monitoring, and choice of therapy as well as for providing clues to the location of crucial cancer-related genes. Endometrial carcinoma (EC) is the most frequently diagnosed malignancy of the female genital tract, ranking fourth among all invasive tumors affecting women. Cytogenetic studies of human ECs have not produced very conclusive data, since many of these studies are based on karyotyping of limited number of cases and no really specific karyotypic changes have yet been identified. As the majority of the genes are conserved among mammals, the use of inbred animal model systems may serve as a tool for identification of underlying genes and pathways involved in tumorigenesis in humans. In the present work we used spectral karyotyping (SKY) to identify cancer-related aberrations in a well-characterized experimental model for spontaneous endometrial carcinoma in the BDII rat tumor model. Results Analysis of 21 experimental ECs revealed specific nonrandom numerical and structural chromosomal changes. The most recurrent numerical alterations were gains in rat chromosome 4 (RNO4) and losses in RNO15. The most commonly structural changes were mainly in form of chromosomal translocations and were detected in RNO3, RNO6, RNO10, RNO11, RNO12, and RNO20. Unbalanced chromosomal translocations involving RNO3p was the most commonly observed structural changes in this material followed by RNO11p and RNO10 translocations. Conclusion The non-random nature of these events, as documented by their high frequencies of incidence, is suggesting for dynamic selection of these changes during experimental EC tumorigenesis and therefore for their potential contribution into development of this malignancy. Comparative molecular analysis of the identified genetic changes in this tumor model with those reported in the human ECs may provide new insights into underlying genetic changes involved in EC development and tumorigenesis.
Collapse
Affiliation(s)
- Eva Falck
- Systems Biology Research Centre, School of Life Sciences, University of Skövde, SE-54128 Skövde, Sweden.
| | | | | | | |
Collapse
|
29
|
de Gaspi FODG, Foglio MA, de Carvalho JE, Santos GMT, Testa M, Passarini JR, de Moraes CP, Esquisatto MAM, Mendonça JS, Mendonça FAS. Effects of the Topical Application of Hydroalcoholic Leaf Extract of Oncidium flexuosum Sims. (Orchidaceae) and Microcurrent on the Healing of Wounds Surgically Induced in Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2011:950347. [PMID: 21716707 PMCID: PMC3118730 DOI: 10.1155/2011/950347] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 03/30/2011] [Indexed: 11/28/2022]
Abstract
This study evaluated the wound healing activity of hydroalcoholic leaf extract of Oncidium flexuosum Sims. (Orchidaceae), an important native plant of Brazil, combined or not with microcurrent stimulation. Wistar rats were randomly divided into four groups of nine animals: control (C), topical application of the extract (OF), treated with a microcurrent (10 μA/2 min) (MC), and topical application of the extract plus microcurrent (OF + MC). Tissue samples were obtained 2, 6, and 10 days after injury and submitted to structural and morphometric analysis. The simultaneous application of OF + MC was found to be highly effective in terms of the parameters analyzed (P < .05), with positive effects on the area of newly formed tissue, number of fibroblasts, number of newly formed blood vessels, and epithelial thickness. Morphometric data confirmed the structural findings. The O. flexuosum leaf extract contains active compounds that speed the healing process, especially when applied simultaneously with microcurrent stimulation.
Collapse
Affiliation(s)
- Fernanda Oliveira de G. de Gaspi
- Núcleo de Ciências da Saúde do Centro Universitário Hermínio Ometto (UNIARARAS), Av. Dr. Maximiliano Baruto, 500, Araras, CEP: 13607-339, SP, Brazil
- Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas, SP, Brazil
- Departamento de Clínica Médica, Faculdade de Ciências Médicas da Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Mary Ann Foglio
- Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas, SP, Brazil
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas (CPQBA), UNICAMP, Campinas, SP, Brazil
- Departamento de Clínica Médica, Faculdade de Ciências Médicas da Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gláucia Maria T. Santos
- Programa de Pós Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto (UNIARARAS), Araras, SP, Brazil
| | - Milene Testa
- Núcleo de Ciências da Saúde do Centro Universitário Hermínio Ometto (UNIARARAS), Av. Dr. Maximiliano Baruto, 500, Araras, CEP: 13607-339, SP, Brazil
| | - José Roberto Passarini
- Núcleo de Ciências da Saúde do Centro Universitário Hermínio Ometto (UNIARARAS), Av. Dr. Maximiliano Baruto, 500, Araras, CEP: 13607-339, SP, Brazil
| | - Cristiano Pedroso de Moraes
- Núcleo de Ciências da Saúde do Centro Universitário Hermínio Ometto (UNIARARAS), Av. Dr. Maximiliano Baruto, 500, Araras, CEP: 13607-339, SP, Brazil
| | - Marcelo A. Marreto Esquisatto
- Programa de Pós Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto (UNIARARAS), Araras, SP, Brazil
| | - Josué S. Mendonça
- Programa de Pós Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto (UNIARARAS), Araras, SP, Brazil
- Hospital São Lucas, Diadema, São Paulo, SP, Brazil
| | - Fernanda A. Sampaio Mendonça
- Programa de Pós Graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto (UNIARARAS), Araras, SP, Brazil
| |
Collapse
|
30
|
Kawamata M, Ochiya T. Gene-manipulated embryonic stem cells for rat transgenesis. Cell Mol Life Sci 2011; 68:1911-5. [PMID: 21437643 PMCID: PMC11115010 DOI: 10.1007/s00018-011-0669-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/03/2011] [Accepted: 03/10/2011] [Indexed: 12/29/2022]
Abstract
Embryonic stem cells (ESCs) are derived from blastocysts and are capable of differentiating into whole tissues and organs. Transplantation of ESCs into recipient blastocysts leads to the generation of germline-competent chimeras in mice. Transgenic, knockin, and knockout gene manipulations are available in mouse ESCs, enabling the production of genetically modified animals. Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. However, in contrast to mouse ESCs, rat ESCs were not established until 2008 because of the difficulty of maintaining pluripotency. Although the use of signaling inhibitors has allowed the generation of rat ESCs, the production of genetically modified rats has been difficult due to problems in rat ESCs after gene introduction. In this review, we will focus on some well-documented examples of gene manipulation in rat ESCs.
Collapse
Affiliation(s)
- Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
31
|
Sperling SR. Systems biology approaches to heart development and congenital heart disease. Cardiovasc Res 2011; 91:269-78. [DOI: 10.1093/cvr/cvr126] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
32
|
Abstract
Mouse embryonic stem (ES) cells are defined by their capacity to self-renew and their ability to differentiate into all adult tissues including the germ line. Along with efficient clonal propagation, these properties have made them an unparalleled tool for manipulation of the mouse genome. Traditionally, mouse ES (mES) cells have been isolated and cultured in complex, poorly defined conditions that only permit efficient derivation from the 129 mouse strain; genuine ES cells have not been isolated from another species in these conditions. Recently, use of small molecule inhibitors of glycogen synthase kinase 3 (Gsk3) and the Fgf-MAPK signaling cascade has permitted efficient derivation of ES cells from all tested mouse strains. Subsequently, the first verified ES cells were established from a non-mouse species, Rattus norvegicus. Here, we summarize the advances in our understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells and highlight the new opportunities presented for transgenic modeling on diverse genetic backgrounds. We also comment on the implications of this work for our understanding of pluripotent stem cells across mammalian species.
Collapse
Affiliation(s)
- Kathryn Blair
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Jason Wray
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
33
|
Demers SP, Desmarais JA, Vincent P, Smith LC. Rat blastocyst-derived stem cells are precursors of embryonic and extraembryonic lineages. Biol Reprod 2011; 84:1128-38. [PMID: 21325692 DOI: 10.1095/biolreprod.109.082792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Despite recent advances in the derivation of rat embryonic stem cells, clear comprehension of the timing and mechanisms underlying rat early embryo lineage selection is lacking. We have previously shown the in vivo contribution of rat embryonic stem-like cells exclusively to developing extraembryonic tissues. To elucidate possible mechanisms governing the in vitro and in vivo behaviors of these rat blastocyst-derived stem cells, we evaluated their developmental capacity by using several approaches. Molecular marker analysis demonstrated the expression profile of genes characterizing not only pluripotency but also extraembryonic endoderm and trophoblast. In vitro differentiation through embryoid body formation showed in vitro pluripotent capacity through differentiation into derivatives of all three embryonic germ layers. Following either blastocyst injection, diploid or tetraploid aggregation, and embryo transfer, these rat blastocyst-derived stem cells also demonstrated in vivo multipotency through contribution to multiple developmentally distinct extraembryonic lineages. Features of phenotypic heterogeneity were revealed following examination of cell line morphology and culture behavior, as well as quantitative analysis of marker expression in discrete undifferentiated and differentiated populations of cells by flow cytometry. We demonstrate for the first time that stem cells derived from the rat blastocyst have the ability to contribute to the embryonic and extraembryonic lineages. Together, these results provide a valuable new model for rat stem cell biology and for the elucidation of early lineage selection in the embryo.
Collapse
Affiliation(s)
- Simon-Pierre Demers
- Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Production of p53 gene knockout rats by homologous recombination in embryonic stem cells. Nature 2010; 467:211-3. [PMID: 20703227 PMCID: PMC2937076 DOI: 10.1038/nature09368] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/26/2010] [Indexed: 01/10/2023]
Abstract
The use of homologous recombination to modify genes in embryonic stem (ES) cells provides a powerful means to elucidate gene function and create disease models1. Application of this technology to engineer genes in rats has previously been impossible in the absence of germline competent ES cells in this species. We have recently established authentic rat ES cells2, 3. Here we report the generation of the first gene knockout rats using the ES cell-based gene targeting technology. We designed a targeting vector to disrupt the tumor suppressor gene p53 (also known as Tp53) in rat ES cells via homologous recombination. p53 gene-targeted rat ES cells can be routinely generated. Furthermore, the p53 gene-targeted mutation in the rat ES cell genome can transmit through the germline via ES cell-rat chimeras to create p53 gene knockout rats. The rat is the most widely used animal model other than humans in biological research4–7. The establishment of gene targeting technology in rat ES cells, in combination with advances in genomics and the vast amount of research data on physiology and pharmacology in this species, now provides a powerful new platform for the study of human disease.
Collapse
|
35
|
Abstract
The importance of genetic laboratory models, such as mice and rats, becomes evident when there is a poor understanding of the nature of human disease. Many rat models for human disease, created over the years by phenotype-driven strategies, now provide a foundation for the identification of their genetic determinants. These models are especially valuable with the emerging need for validation of genes found in genome-wide association studies for complex diseases. The manipulation of the rat genome using engineered zinc-finger nucleases now introduces a key technology for manipulating the rat genome, which is broadly applicable. The ability to generate knockout rat models using zinc-finger nuclease technology will now enable its full emergence as an exceptional physiological and genetic research model.
Collapse
|
36
|
Létienne R, Leparq-Panissié A, Calmettes Y, Nadal-Wollbold F, Perez M, Le Grand B. Antithrombotic activity of F 16618, a new PAR1 antagonist evaluated in extracorporeal arterio-venous shunt in the rat. Biochem Pharmacol 2010; 79:1616-21. [DOI: 10.1016/j.bcp.2010.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
|
37
|
Homberg J, Nijman IJ, Kuijpers S, Cuppen E. Identification of genetic modifiers of behavioral phenotypes in serotonin transporter knockout rats. BMC Genet 2010; 11:37. [PMID: 20459657 PMCID: PMC2874760 DOI: 10.1186/1471-2156-11-37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 05/07/2010] [Indexed: 11/23/2022] Open
Abstract
Background Genetic variation in the regulatory region of the human serotonin transporter gene (SLC6A4) has been shown to affect brain functionality and personality. However, large heterogeneity in its biological effects is observed, which is at least partially due to genetic modifiers. To gain insight into serotonin transporter (SERT)-specific genetic modifiers, we studied an intercross between the Wistar SERT-/- rat and the behaviorally and genetically divergent Brown Norway rat, and performed a QTL analysis. Results In a cohort of >150 intercross SERT-/- and control (SERT+/+) rats we characterized 12 traits that were previously associated with SERT deficiency, including activity, exploratory pattern, cocaine-induced locomotor activity, and abdominal and subcutaneous fat. Using 325 genetic markers, 10 SERT-/--specific quantitative trait loci (QTLs) for parameters related to activity and exploratory pattern (Chr.1,9,11,14), and cocaine-induced anxiety and locomotor activity (Chr.5,8) were identified. No significant QTLs were found for fat parameters. Using in silico approaches we explored potential causal genes within modifier QTL regions and found interesting candidates, amongst others, the 5-HT1D receptor (Chr. 5), dopamine D2 receptor (Chr. 8), cannabinoid receptor 2 (Chr. 5), and genes involved in fetal development and plasticity (across chromosomes). Conclusions We anticipate that the SERT-/--specific QTLs may lead to the identification of new modulators of serotonergic signaling, which may be targets for pharmacogenetic and therapeutic approaches.
Collapse
Affiliation(s)
- Judith Homberg
- Hubrecht Institute & University Medical Center Utrecht, Uppsalalaan 8, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
38
|
Interference RNA for in vivo Knock-down of gene expression or genome-wide screening using shRNA. Methods Mol Biol 2010; 597:189-209. [PMID: 20013235 DOI: 10.1007/978-1-60327-389-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
With the lack of tools available to manipulate the rat genome, alternative technologies have been investigated to generate loss-of-function rat models by gene invalidation. The recent demonstration that RNA interference (RNAi)-mediated gene silencing occurs in rodents has opened new opportunities for rat functional genetics. In this chapter, we provide some practical guidelines for RNAi working in rat, based on the recent design and development of mice and rat Knock down models.
Collapse
|
39
|
Sheng Y, Lin CC, Yue J, Sukhwani M, Shuttleworth JJ, Chu T, Orwig KE. Generation and characterization of a Tet-On (rtTA-M2) transgenic rat. BMC DEVELOPMENTAL BIOLOGY 2010; 10:17. [PMID: 20158911 PMCID: PMC2834583 DOI: 10.1186/1471-213x-10-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/16/2010] [Indexed: 01/09/2023]
Abstract
Background The tetracycline-inducible gene regulation system is a powerful tool that allows temporal and dose-dependent regulation of target transgene expression in vitro and in vivo. Several tetracycline-inducible transgenic mouse models have been described with ubiquitous or tissue-specific expression of tetracycline-transactivator (tTA), reverse tetracycline-transactivator (rtTA) or Tet repressor (TetR). Here we describe a Tet-On transgenic rat that ubiquitously expresses rtTA-M2 driven by the murine ROSA 26 promoter. Results The homozygous rat line (ROSA-rtTA-M2) generated by lentiviral vector injection, has a single integration site and was derived from the offspring of a genetic mosaic founder with multiple transgene integrations. The rtTA-M2 transgene integrated into an intron of a putative gene on chromosome 2 and does not appear to affect the tissue-specificity or expression of that gene. Fibroblasts from the ROSA-rtTA-M2 rats were transduced with a TetO7/CMV-EGFP lentivirus and exhibited doxycycline dose-dependent expression of the EGFP reporter transgene, in vitro. In addition, doxycycline-inducible EGFP expression was observed, in vivo, when the TetO7/CMV-EGFP lentivirus was injected into testis, kidney and muscle tissues of ROSA-rtTA-M2 rats. Conclusions This conditional expression rat model may have application for transgenic overexpression or knockdown studies of gene function in development, disease and gene therapy.
Collapse
Affiliation(s)
- Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Rat models have been used to investigate physiological and pathophysiological mechanisms for decades. With the availability of the rat genome and other online resources, tools to identify rat models that mimic human disease are an important step in translational research. Despite the large number of papers published each year using rat models, integrating this information remains a problem. Resources for the rat genome are continuing to grow rapidly, while resources providing access to rat phenotype data are just emerging. An overview of rat models of disease, tools to characterize strain by phenotype and genotype, and steps being taken to integrate rat physiological data is presented in this article. Integrating functional and physiological data with the rat genome will build a solid research platform to facilitate innovative studies to unravel the mechanisms resulting in disease.
Collapse
Affiliation(s)
- Melinda R Dwinell
- Human & Molecular Genetics Center at Medical College of Wisconsin, USA.
| |
Collapse
|
41
|
Abstract
The rat evokes fear and disgust in a large percentage of people around the world. Yet, other people are fascinated by this amazing creature that is raised as a pet, has an important place in several religions, and is a prominent model for biomedical research. This book focuses on a variety of methodologies that can be used in this remarkable model. This chapter sets the stage by providing a perspective on why the rat remains an important model in biomedical research.
Collapse
Affiliation(s)
- Howard J Jacob
- Human & Molecular Genetics Center, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
42
|
YOKOYAMA KK, MURATA T, PAN J, NAKADE K, KISHIKAWA S, UGAI H, KIMURA M, KUJIME Y, HIROSE M, MASUZAKI S, YAMASAKI T, KURIHARA C, OKUBO M, NAKANO Y, KUSA Y, YOSHIKAWA A, INABE K, UENO K, OBATA Y. Genetic Materials at the Gene Engineering Division, RIKEN BioResource Center. Exp Anim 2010; 59:115-24. [DOI: 10.1538/expanim.59.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Kazunari K. YOKOYAMA
- Gene Engineering Division, RIKEN BioResource Center
- Center of Excellence for Environmental Medicine, Graduate Institute of Medicine, Kaohsiung Medical University
- Department of Molecular Preventive Medicine, Graduate School of Medicine, The University of Tokyo
| | | | - Jianzhi PAN
- Gene Engineering Division, RIKEN BioResource Center
- Institute of Veterinary and Animal Husbandry, Zhejiang Academy of Agriculture Sciences
| | - Koji NAKADE
- Gene Engineering Division, RIKEN BioResource Center
| | | | - Hideyo UGAI
- Gene Engineering Division, RIKEN BioResource Center
- Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham
| | - Makoto KIMURA
- Gene Engineering Division, RIKEN BioResource Center
- Imamoto Cellular Dynamics Laboratory, RIKEN Advanced Science Institute
| | | | | | | | | | | | - Masato OKUBO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuri NAKANO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuka KUSA
- Gene Engineering Division, RIKEN BioResource Center
| | | | - Kumiko INABE
- Gene Engineering Division, RIKEN BioResource Center
| | - Kazuko UENO
- Gene Engineering Division, RIKEN BioResource Center
| | - Yuichi OBATA
- Gene Engineering Division, RIKEN BioResource Center
- RIKEN BioResource Center
| |
Collapse
|
43
|
Mendonça FAS, Passarini Junior JR, Esquisatto MAM, Mendonça JS, Franchini CC, Santos GMTD. Effects of the application of Aloe vera (L.) and microcurrent on the healing of wounds surgically induced in Wistar rats. Acta Cir Bras 2009; 24:150-5. [PMID: 19377785 DOI: 10.1590/s0102-86502009000200013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 01/14/2009] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To investigate the effects of topical application of an Aloe vera gel combined or not with microcurrent application on the healing of skin wounds surgically induced in Wistar rats. METHODS The animals were randomly divided into the following groups: control group, animals topically treated with Aloe vera, animals treated with a microcurrent, and animals receiving topical application of Aloe vera combined with microcurrent application. RESULTS The results indicated differences in wound healing between the various treatments when compared to the control group. Tissue hyperplasia was lower in the control group compared to the other treated groups. Accelerated wound healing was observed in the group treated with Aloe vera compared to control. Animals submitted to microcurrent application only and the group treated with microcurrent plus Aloe vera presented an earlier onset of the proliferative phase compared to the control group and animals treated with Aloe vera gel alone. Morphometric data confirmed the structural findings. CONCLUSION Simultaneous application of Aloe vera gel and microcurrent is an excellent choice for the treatment of open wounds thus indicating a synergistic action of these two applications.
Collapse
|
44
|
Degaki TL, Demasi MAA, Sogayar MC. Overexpression of Nrp/b (nuclear restrict protein in brain) suppresses the malignant phenotype in the C6/ST1 glioma cell line. J Steroid Biochem Mol Biol 2009; 117:107-16. [PMID: 19682578 DOI: 10.1016/j.jsbmb.2009.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 12/13/2022]
Abstract
Upon searching for glucocorticoid-regulated cDNA sequences associated with the transformed to normal phenotypic reversion of C6/ST1 rat glioma cells, we identified Nrp/b (nuclear restrict protein in brain) as a novel rat gene. Here we report on the identification and functional characterization of the complete sequence encoding the rat NRP/B protein. The cloned cDNA presented a 1767 nucleotides open-reading frame encoding a 589 amino acids residues sequence containing a BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain in its N-terminal region and kelch motifs in its C-terminal region. Sequence analysis indicates that the rat Nrp/b displays a high level of identity with the equivalent gene orthologs from other organisms. Among rat tissues, Nrp/b expression is more pronounced in brain tissue. We show that overexpression of the Nrp/b cDNA in C6/ST1 cells suppresses anchorage independence in vitro and tumorigenicity in vivo, altering their malignant nature towards a more benign phenotype. Therefore, Nrp/b may be postulated as a novel tumor suppressor gene, with possible relevance for glioblastoma therapy.
Collapse
Affiliation(s)
- Theri Leica Degaki
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
45
|
Korenova M, Stozicka Z. Improved behavioral response as a valid biomarker for drug screening program in transgenic rodent models of tauopathies. Cell Mol Neurobiol 2009; 29:937-44. [PMID: 19283467 DOI: 10.1007/s10571-009-9378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/24/2009] [Indexed: 11/25/2022]
Abstract
Neurodegenerative tauopathies are defined as a group of dementia and movement disorders characterized by prominent filamentous tau inclusions and degeneration located within certain brain regions. Their common sign is a presence of proteinaceous aggregates composed of hyperphosphorylated and truncated tau proteins. The molecular mechanisms of the disease still remain unresolved, therefore transgenic organisms displaying tau-related neurodegenerative cascade have been created to allow decoding of individual pathways involved in human pathological conditions. Moreover, use of transgenic model organisms enables the application of potential therapeutic approaches. The expression of mutated or misfolded tau as a transgene in vivo leads to significant alteration of neurobehavioral features of experimental animal, therefore detailed classification of behavioral phenotype become one of the first crucial analyses, while it functionally correlates with central nervous system impairment. Currently, two major types of behavioral impairment have been described in transgenic rodent models of tauopathies, (1) progressive motor impairment associated with muscular weakness and premature death and (2) age-related impairment of cognitive functions attended with unaffected motor status. Up to the present, only transgenic models displaying motor impairment were successfully applied into the drug trials targeting misfolded tau protein, despite their behavioral inconsistence with clinical profile of progressive human tauopathy. The aim of this study was, therefore, to summarize the pros and cons of used transgenic rodent models mimicking human tauopathies in connection with development of therapeutic strategies.
Collapse
Affiliation(s)
- Miroslava Korenova
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, Bratislava 845 10, Slovak Republic.
| | | |
Collapse
|
46
|
Bugos O, Bhide M, Zilka N. Beyond the rat models of human neurodegenerative disorders. Cell Mol Neurobiol 2009; 29:859-69. [PMID: 19263215 DOI: 10.1007/s10571-009-9367-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/11/2009] [Indexed: 12/30/2022]
Abstract
The rat is a model of choice in biomedical research for over a century. Currently, the rat presents the best "functionally" characterized mammalian model system. Despite this fact, the transgenic rats have lagged behind the transgenic mice as an experimental model of human neurodegenerative disorders. The number of transgenic rat models recapitulating key pathological hallmarks of Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, or human tauopathies is still limited. The reason is that the transgenic rats remain more difficult to produce than transgenic mice. The gene targeting technology is not yet established in rats due to the lack of truly totipotent embryonic stem cells and cloning technology. This extremely powerful technique has given the mouse a clear advantage over the rat in generation of new transgenic models. Despite these limitations, transgenic rats have greatly expanded the range of potential experimental approaches. The large size of rats permits intrathecal administration of drugs, stem cell transplantation, serial sampling of the cerebrospinal fluid, microsurgical techniques, in vivo nerve recordings, and neuroimaging procedures. Moreover, the rat is routinely employed to demonstrate therapeutic efficacy and to assess toxicity of novel therapeutic compounds in drug development. Here we suggest that the rat constitutes a slightly underestimated but perspective animal model well-suited for understanding the mechanisms and pathways underlying the human neurodegenerative disorders.
Collapse
Affiliation(s)
- Ondrej Bugos
- Institute of Neuroimmunology, Slovak Academy of Sciences, AD Centre, 845 10 Bratislava, Slovak Republic
| | | | | |
Collapse
|
47
|
Létienne R, Leparq-Panissié A, Bocquet A, Calmettes Y, Culié C, Le Grand B. PAR1 antagonist mediated antithrombotic activity in extracorporeal arterio-venous shunt in the rat. Thromb Res 2009; 125:257-61. [PMID: 19476974 DOI: 10.1016/j.thromres.2009.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/04/2009] [Accepted: 05/05/2009] [Indexed: 12/20/2022]
Affiliation(s)
- Robert Létienne
- Centre de Recherche Pierre Fabre, 17 Av. Jean Moulin, 81106 Castres Cedex, France.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
As a disease model, the laboratory rat has contributed enormously to neuroscience research over the years. It has also been a popular animal model for Alzheimer's disease but its popularity has diminished during the last decade, as techniques for genetic manipulation in rats have lagged behind that of mice. In recent years, the rat has been making a comeback as an Alzheimer's disease model and the appearance of increasing numbers of transgenic rats will be a welcome and valuable complement to the existing mouse models. This review summarizes the contributions and current status of the rat as an animal model of Alzheimer's disease.
Collapse
|
49
|
Konopka W, Duniec K, Klejman A, Wawrzyniak M, Owczarek D, Gawrys L, Maleszewski M, Mallet J, Kaczmarek L. Tet system in the brain: Transgenic rats and lentiviral vectors approach. Genesis 2009; 47:274-80. [DOI: 10.1002/dvg.20487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Marano JE, Sun D, Zama AM, Young W, Uzumcu M. Orthotopic transplantation of neonatal GFP rat ovary as experimental model to study ovarian development and toxicology. Reprod Toxicol 2008; 26:191-6. [PMID: 18848623 DOI: 10.1016/j.reprotox.2008.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 08/25/2008] [Accepted: 09/09/2008] [Indexed: 11/27/2022]
Abstract
The rat is one of the most commonly used experimental animal species in biomedical research. The availability of new research tools in rats could therefore provide considerable advances in the areas where this mammal is extensively used. We report the development of a new green fluorescent protein (GFP) rat strain suitable for organ transplantation and the birth of GFP rats following orthotopic transplantation of neonatal ovaries from this newly developed GFP rat strain to a wild-type Fischer 344 (F344) strain. A new GFP rat strain was developed by backcrossing eGFP Sprague-Dawley (SD-Tg(CAG-EGFP)Cz-004Osb) to wild-type F344 for eight generations. Whole ovaries from postnatal day (PND) 8 or PND 21 GFP rats were transplanted orthotopically to bilaterally ovariectomized wild-type adult females (n=6). All recipients were mated, and three of the five resulting litters contained GFP pups. In the PND 8 group, all recipients cycled regularly and the ovarian morphology appeared normal when collected at 9 months post-transplantation. In the PND 21 group, 60% of the recipients displayed regular estrous cycles at 9 months post-transplantation, but showed reduced ovarian size. This new strain and neonatal orthotopic transplantation could be useful for many biomedical fields including transplantation, development, and reproductive toxicology.
Collapse
Affiliation(s)
- Jason E Marano
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 84 Lipman Drive, New Brunswick, NJ 08901-8525, USA
| | | | | | | | | |
Collapse
|