1
|
Debnath A, Rajakumar B. Exploring the Intricate Mechanism and Kinetics of the Reaction between C2-Criegee Intermediates (CH 3CHOO) and Acetaldehyde: A Study Using Cavity Ring-Down Spectroscopy and Computational Methods. J Phys Chem A 2025. [PMID: 40114427 DOI: 10.1021/acs.jpca.5c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Temperature-dependent kinetics for the reaction of C2-Criegee intermediates (CH3CHOO) with acetaldehyde (CH3CHO) was studied at 268-313 K and 50 Torr using cavity ring-down spectroscopy with single-wavelength (360 nm) probing. The measured rate coefficients are expected to have contributions from both the anti- and syn-conformers of CH3CHOO. Negative T dependence was observed for the title reaction, and the corresponding Arrhenius equation is k3(T = 268 - 313 K) = (1.34 ± 0.07) × 10-13 × exp{(1.71 ± 0.03) kcal mol-1/RT}. The room temperature rate coefficients measured at 50 and 100 Torr are (2.43 ± 0.17) × 10-12 and (2.56 ± 0.20) × 10-12 cm3 molecule-1 s-1, respectively. Theoretical calculations were performed at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311G(d,p) level of theory to obtain the high-pressure limit rate coefficients for the reaction of anti- and syn-CH3CHOO with CH3CHO. The high-pressure limit rate coefficient for syn-CH3CHOO is approximately 3 orders of magnitude smaller than that of the anti-conformer, the latter being closely aligned with the experimental value. The rate coefficients for anti-CH3CHOO + CH3CHO at 50 Torr using the master equation solver (MESMER) are in agreement with the experimental values in the studied temperature range. MESMER also predicted CH3COOH to be the major product for both anti- and syn-CH3CHOO reactions by comparing the rate coefficients for the product formation pathways. A dramatic dependence of the pressure on stabilization of the SOZs was also observed for both conformers at different pressures.
Collapse
Affiliation(s)
- Amit Debnath
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Sapkota R, Nguyen T, Marshall P. The Atmospheric Chemistry of Fluoroacetonitrile and the Characterization of the Major Product, Cyanoformyl Fluoride. Molecules 2025; 30:478. [PMID: 39942583 PMCID: PMC11820647 DOI: 10.3390/molecules30030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Fluorinated nitriles have been proposed as low-global-warming-potential substitutes for industrial applications such as plasma etching and as dielectric materials in high-voltage equipment. FT-IR spectroscopy was used to measure the radiative efficiency of CH2FCN and its reactivity towards Cl and OH radicals, and to determine products from the Cl reaction. Relative rate experiments yielded rate constants for Cl and OH reactions of (2.1 ± 0.3) × 10-14 and (7.0 ± 1.0) × 10-14 cm3 molecule-1 s-1, respectively. The estimated atmospheric lifetime of CH2FCN with respect to radical attack was estimated to be 0.45 years, which, combined with the radiative efficiency of 0.042 W m-2 ppb-1, implies a 100-year global warming potential of 20. FCOCN was observed as the only organic product of the Cl-atom reaction in air, consistent with a dominant role for H-abstraction. Absolute infrared cross-sections for FCOCN were determined, to assist future experiments where this molecule may be formed. Quantum calculations at the CBS-APNO//B2PLYP-D3/cc-pVTZ level indicate similar energy barriers to addition and abstraction for OH radical attack, but the looser transition state and greater opportunity for tunneling also favor abstraction in this case.
Collapse
Affiliation(s)
- Ramesh Sapkota
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA;
| | - Trang Nguyen
- Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, USA;
| | - Paul Marshall
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle #305070, Denton, TX 76203, USA
| |
Collapse
|
3
|
Wu H, Li X, Wang C, Ye Z. Inverse calculation of vessel emission source intensity based on optimized Gaussian puff model and particle swarm optimization algorithm. MARINE POLLUTION BULLETIN 2024; 209:117117. [PMID: 39406068 DOI: 10.1016/j.marpolbul.2024.117117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 11/28/2024]
Abstract
Maritime transportation has significantly contributed to global economic development but is also a major source of air pollution. This study aims to provide an inverse calculation framework of vessel emission source intensity for emission monitoring. This research enhanced the traditional Gaussian diffusion model by specific characteristics of ship emissions and various influencing factors identified through simulation experiments. An inverse model is developed using pattern search and particle swarm optimization (PSO) algorithms to estimate marine exhaust source strengths. Results indicate that the PSO algorithm is the most accurate and efficient, especially with an iteration step size of 0.1 s. Practical application using data from 86 monitored ships revealed that 76 had fuel sulfur content exceeding the 0.1 % threshold, achieving an accuracy rate of 88.37 %. These findings are crucial for improving the understanding of marine exhaust dispersion and advancing remote monitoring technologies, contributing to better environmental management of maritime transport emissions.
Collapse
Affiliation(s)
- Hao Wu
- School of Network &Communication Engineering, Jinling Institute of Technology, China; School of Transportation, Southeast University, China
| | - Xueyao Li
- School of Economics and Management, Southeast University, China
| | - Chao Wang
- School of Network &Communication Engineering, Jinling Institute of Technology, China; Hubei Key Laboratory of Inland Shipping Technology, Wuhan University of Technology, China.
| | - Zhirui Ye
- School of Network &Communication Engineering, Jinling Institute of Technology, China; School of Transportation, Southeast University, China
| |
Collapse
|
4
|
Vejerano EP, Ahn J, Scott GI. Aerosolized algal bloom toxins are not inert. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1113-1128. [PMID: 39169920 PMCID: PMC11331395 DOI: 10.1039/d4ea00078a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Harmful algal blooms (HABs) are projected to become increasingly prevalent, extending over longer periods and wider geographic regions due to the warming surface ocean water and other environmental factors, including but not limited to nutrient concentrations and runoff for marine and freshwater environments. Incidents of respiratory distress linked to the inhalation of marine aerosols containing HAB toxins have been documented, though the risk is typically associated with the original toxins. However, aerosolized toxins in micrometer and submicrometer particles are vulnerable to atmospheric processing. This processing can potentially degrade HAB toxins and produce byproducts with varying potencies compared to the parent toxins. The inhalation of aerosolized HAB toxins, especially in conjunction with co-morbid factors such as exposure to air pollutants from increased commercial activities in ports, may represent a significant exposure pathway for a considerable portion of the global population. Understanding the chemistry behind the transformation of these toxins can enhance public protection by improving the existing HAB alert systems.
Collapse
Affiliation(s)
- Eric P Vejerano
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences USA +1-803-777-6360
| | - Jeonghyeon Ahn
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| | - Geoffrey I Scott
- Center for Oceans and Human Health on Climate Change Interactions, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina Columbia 29208 USA
| |
Collapse
|
5
|
Mitev GB, Tennyson J, Yurchenko SN. Predissociation dynamics of the hydroxyl radical (OH) based on a five-state spectroscopic model. J Chem Phys 2024; 160:144110. [PMID: 38597309 DOI: 10.1063/5.0198241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Multi-reference configuration interaction potential energy curves (PECs) and spin-orbit couplings for the X 2Π, A 2Σ+, 1 2Σ-, 1 4Σ-, and 1 4Π states of OH are computed and refined against empirical energy levels and transitions to produce a spectroscopic model. Predissociation lifetimes are determined by discretizing continuum states in the variational method nuclear motion calculation by restricting the calculation to a finite range of internuclear separations. Varying this range gives a series of avoided crossings between quasi-bound states associated with the A 2Σ+ and continuum states, from which predissociation lifetimes are extracted. 424 quasi-bound A 2Σ+ state rovibronic energy levels are analyzed, and 374 predissociation lifetimes are produced, offering good coverage of the predissociation region. Agreement with measured lifetimes is satisfactory, and a majority of computed results were within experimental uncertainty. A previously unreported A 2Σ+ state predissociation channel that goes via X 2Π is identified in the calculations. A Python package, binSLT, produced to calculate predissociation lifetimes, associated line broadening parameters, and lifetime uncertainties is made available. The PECs and other curves from this work will be used to produce a rovibronic ExoMol line list and temperature-dependent photodissociation cross sections for the hydroxyl radical.
Collapse
Affiliation(s)
- Georgi B Mitev
- Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| | - Sergei N Yurchenko
- Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Arathala P, Musah RA. Theoretical Insights into the Gas-Phase Oxidation of 3-Methyl-2-butene-1-thiol by the OH Radical: Thermochemical and Kinetic Analysis. J Phys Chem A 2024; 128:2136-2149. [PMID: 38466809 PMCID: PMC10961829 DOI: 10.1021/acs.jpca.3c07775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
3-Methyl-2-butene-1-thiol ((CH3)2C═CH-CH2-SH; MBT) is a recently identified volatile organosulfur compound emitted from Cannabis sativa and is purported to contribute to its skunky odor. To understand its environmental fate, hydroxyl radical (•OH)-mediated oxidation of MBT was conducted using high-level quantum chemical and theoretical kinetic calculations. Three stable conformers were identified for the title molecule. Abstraction and addition pathways are possible for the MBT + OH radical reaction, and thus, potential energy surfaces involving H-abstraction and •OH addition were computed at the CCSD(T)/aug-cc-pV(T+d)Z//M06-2X/aug-cc-pV(T+d)Z level of theory. The barrier height for the addition of the OH radical to a C atom of the alkene moiety, leading to the formation of a C-centered MBT-OH radical, was computed to be -4.1 kcal mol-1 below the energy of the starting MBT + OH radical-separated reactants. This reaction was found to be dominant compared to other site-specific H-abstraction and addition paths. The kinetics of all the site-specific abstraction and addition reactions associated with the most stable MBT + OH radical reaction were assessed using the MESMER kinetic code between 200 and 320 K. Further, we considered the contributions from two other conformers of MBT to the overall reaction of MBT + OH radical. The estimated global rate coefficient for the oxidation of MBT with respect to its reactions with the OH radical was found to be 6.1 × 10-11 cm3 molecule-1 s-1 at 298 K and 1 atm pressure. The thermodynamic parameters and atmospheric implications of the MBT + OH reaction are discussed.
Collapse
Affiliation(s)
- Parandaman Arathala
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| | - Rabi A. Musah
- Department of Chemistry, University at Albany−State University of New
York, 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
7
|
Debnath A, Rajakumar B. Experimental and theoretical study of Criegee intermediate (CH 2OO) reactions with n-butyraldehyde and isobutyraldehyde: kinetics, implications and atmospheric fate. Phys Chem Chem Phys 2024; 26:6872-6884. [PMID: 38332729 DOI: 10.1039/d3cp05482a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The reactions of the simplest Criegee intermediate (CH2OO) with n-butyraldehyde (nBD) and isobutyraldehyde (iBD) were studied at 253-318 K and (50 ± 2) torr, using Cavity Ring-down spectroscopy (CRDS). The rate coefficients obtained at room temperature were (2.63 ± 0.14) × 10-12 and (2.20 ± 0.21) × 10-12 cm3 molecule-1 s-1 for nBD and iBD, respectively. Both the reactions show negative temperature-dependency, following equations, knBD(T = 253-318 K) = (11.51 ± 4.33) × 10-14 × exp{(918.1 ± 107.2)/T} and kiBD(T = 253-318 K) = (6.23 ± 2.29) × 10-14 × exp{(1051.4 ± 105.2)/T} cm3 molecule-1 s-1. High-pressure limit rate coefficients were determined from theoretical calculations at the CCSD(T)-F12/cc-pVTZ-F12//B3LYP/6-311+G(2df, 2p) level of theory, with <40% deviation from the experimental results at room temperature and above. The kinetic simulations were performed using a master equation solver to predict the temperature-dependency of the rate coefficients at the experimental pressure, as well as to predict the contribution of individual pathways. The major products predicted from the theoretical calculations were formaldehyde and formic acid, along with butyric acid from nBD and isobutyric acid from iBD reactions.
Collapse
Affiliation(s)
- Amit Debnath
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
8
|
Shiroudi A, Czub J, Altarawneh M. Chemical Investigation on the Mechanism and Kinetics of the Atmospheric Degradation Reaction of Trichlorofluoroethene by OH⋅ and Its Subsequent Fate in the Presence of O 2 /NOx. Chemphyschem 2024; 25:e202300665. [PMID: 37983906 DOI: 10.1002/cphc.202300665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The M06-2X/6-311++G(d,p) level of theory was used to examine the degradation of Trichlorofluoroethene (TCFE) initiated by OH⋅ radicals. Additionally, the coupled-cluster single-double with triple perturbative [CCSD(T)] method was employed to refine the single-point energies using the complete basis set extrapolation approach. The results indicated that OH-addition is the dominant pathway. OH⋅ adds to both the C1 and C2 carbons, resulting in the formation of the C(OH)Cl2 -⋅CClF and ⋅CCl2 -C(OH)ClF species. The associated barrier heights were determined to be 1.11 and -0.99 kcal mol-1 , respectively. Furthermore, the energetic and thermodynamic parameters show that pathway 1 exhibits greater exothermicity and exergonicity compared to pathway 2, with differences of 8.11 and 8.21 kcal mol-1 , correspondingly. The primary pathway involves OH addition to the C2 position, with a rate constant of 6.2×10-13 cm3 molecule-1 sec-1 at 298 K. This analysis served to estimate the atmospheric lifetime, along with the photochemical ozone creation potential (POCP) and ozone depletion potential (ODP). It yielded an atmospheric lifetime of 8.49 days, an ODP of 4.8×10-4 , and a POCP value of 2.99, respectively. Radiative forcing efficiencies were also estimated at the M06-2X/6-311++G(d,p) level. Global warming potentials (GWPs) were calculated for 20, 100, and 500 years, resulting in values of 9.61, 2.61, and 0.74, respectively. TCFE is not expected to make a significant contribution to the radiative forcing of climate change. The results obtained from the time-dependent density functional theory (TDDFT) indicated that TCFE and its energized adducts are unable to photolysis under sunlight in the UV and visible spectrum. Secondary reactions involve the [TCFE-OH-O2 ]⋅ peroxy radical, leading subsequently to the [TCFE-OH-O]⋅ alkoxy radical. It was found that the alkoxy radical resulting from the peroxy radical can lead to the formation of phosgene (COCl2 ) and carbonyl chloride fluoride (CClFO), with phosgene being the primary product.
Collapse
Affiliation(s)
- Abolfazl Shiroudi
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Jacek Czub
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk, 80-233, Poland
- BioTechMed Center, Gdańsk University of Technology, Gdańsk, 80-233, Poland
| | - Mohammednoor Altarawneh
- United Arab Emirates University, Department of Chemical and Petroleum Engineering, Sheikh Khalifa bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
9
|
Huo Y, An Z, Li M, Jiang J, Zhou Y, Xie J, Zhang J, He M. Atmospheric fate of typical liquid crystal monomers in the tropospheric gas, liquid, and granular phases. J Environ Sci (China) 2024; 136:348-360. [PMID: 37923444 DOI: 10.1016/j.jes.2022.12.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/25/2022] [Accepted: 12/25/2022] [Indexed: 11/07/2023]
Abstract
Mineral aerosol particles significantly impact environmental risk prediction of liquid crystal monomers (LCMs). In this work, we investigated the reaction mechanisms and kinetics of three typical LCMs (4-cyano-3,5-difluorophenyl 4-ethylbenzoate (CEB-2F), 4-cyano-3-fluorophenyl 4-ethylbenzoate (CEB-F), and 4-cyanophenyl 4-ethylbenzoate (CEB)) with ozone (O3) in the atmospheric gas, liquid, and particle phases employing density functional theory (DFT). Here, O3 is prone to add to the benzene ring without F atom(s) in the selected LCMs. The ozonolysis products are aldehydes, carboxylic acids, epoxides, and unsaturated hydrocarbons containing aromatic rings. Those products undergo secondary ozonolysis to generate small molecular compounds such as glyoxal, which is beneficial for generating secondary organic aerosol (SOA). Titanium dioxide (TiO2), an essential component of mineral aerosol particles, has good adsorption properties for LCMs; however, it slightly reduces the reactivity with O3. At 298 K, the reaction rate constant of the selected LCMs reacting with O3 in the gas and atmospheric liquid phases is (2.74‒5.53) × 10-24 cm3/(mol·sec) and 5.58 × 10-3‒39.1 L/(mol·sec), while CEB-2F reacting with O3 on (TiO2)6 cluster is 1.84 × 10-24 cm3/(mol·sec). The existence of TiO2 clusters increases the persistence and long-distance transportability of LCMs, which enlarges the contaminated area of LCMs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Zexiu An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jianguo Zhang
- Jinan Environmental Research Academy, Jinan 250000, China.
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
10
|
Zhang Z, Sangion A, Wang S, Gouin T, Brown T, Arnot JA, Li L. Chemical Space Covered by Applicability Domains of Quantitative Structure-Property Relationships and Semiempirical Relationships in Chemical Assessments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38263624 PMCID: PMC10882972 DOI: 10.1021/acs.est.3c05643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
A significant number of chemicals registered in national and regional chemical inventories require assessments of their potential "hazard" concerns posed to humans and ecological receptors. This warrants knowledge of their partitioning and reactivity properties, which are often predicted by quantitative structure-property relationships (QSPRs) and other semiempirical relationships. It is imperative to evaluate the applicability domain (AD) of these tools to ensure their suitability for assessment purpose. Here, we investigate the extent to which the ADs of commonly used QSPRs and semiempirical relationships cover seven partitioning and reactivity properties of a chemical "space" comprising 81,000+ organic chemicals registered in regulatory and academic chemical inventories. Our findings show that around or more than half of the chemicals studied are covered by at least one of the commonly used QSPRs. The investigated QSPRs demonstrate adequate AD coverage for organochlorides and organobromines but limited AD coverage for chemicals containing fluorine and phosphorus. These QSPRs exhibit limited AD coverage for atmospheric reactivity, biodegradation, and octanol-air partitioning, particularly for ionizable organic chemicals compared to nonionizable ones, challenging assessments of environmental persistence, bioaccumulation capability, and long-range transport potential. We also find that a predictive tool's AD coverage of chemicals depends on how the AD is defined, for example, by the distance of a predicted chemical from the centroid of the training chemicals or by the presence or absence of structural features.
Collapse
Affiliation(s)
- Zhizhen Zhang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | | | - Shenghong Wang
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Todd Gouin
- TG Environmental Research, Sharnbrook, Bedford MK44 1PL, U.K
| | - Trevor Brown
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
| | - Jon A Arnot
- ARC Arnot Research & Consulting, Toronto, Ontario M4M 1W4, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Li Li
- School of Public Health, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
11
|
Chen Y, Wang W, Li J, Zhou L, Shi B, Fan C, Wang K, Zhang H, Li H, Ge M. Kinetic and mechanism of the reaction between Cl and several mono-methyl branched alkanes. J Environ Sci (China) 2024; 135:474-482. [PMID: 37778819 DOI: 10.1016/j.jes.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/08/2022] [Accepted: 08/05/2022] [Indexed: 10/03/2023]
Abstract
Branched alkanes are ubiquitous in the troposphere and play an important role in the chemical processes. In this work, the rate constants and products for the reaction of Cl atoms with 3-methylhexane and 2-methylheptane were measured at room temperature (298 ± 0.2 K) and atmospheric pressure using a conventional relative rate method. The rate constants of 3-methylhexane and 2-methylheptane in units of cm3/(mol·sec) are (3.09 ± 0.31) × 10-10 and (3.67 ± 0.40) × 10-10, respectively. Furthermore, the corresponding atmospheric lifetime of the studied branched alkanes with Cl was 6.92-89.90 hours and 5.82-75.69 hours, respectively. The estimated atmospheric lifetimes indicated that the reaction with Cl atoms could be the most important atmospheric degradation pathway for 3-methylhexane and 2-methylheptane. Primary gas-phase products of the reactions were identified and quantified, and particle-phase products were also obtained. The atmosphere oxidation mechanism of Cl atoms with 3-methylhexane and 2-methylheptane is proposed. The SOA yields of 3-methylhexane and 2-methylheptane from the reaction of Cl atoms were determined to be 7.96% ± 0.89% and 13.35% ± 1.50% respectively. Overall, the results reveal that the primary loss process of branched alkanes is the reaction with Cl atoms, which impacts its degradation on a regional scale.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junling Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Li Zhou
- National Engineering Research Center for Flue Gas Desulfurization, Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bo Shi
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Kar B, Rajakumar B. Cl atoms-initiated degradation of 1-Chlorobutane and 2-Chlorobutane: Kinetics, product analysis and atmospheric implications. CHEMOSPHERE 2023; 339:139664. [PMID: 37506889 DOI: 10.1016/j.chemosphere.2023.139664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
The relative rate method was employed to investigate the kinetics of the Cl-initiated reactions of 1-chlorobutane (1-CB) and 2-chlorobutane (2-CB) over 263-363 K, and the measured rate coefficients at room temperature are (1.04 ± 0.24) × 10-10 and (5.84 ± 0.27) × 10-11 cm3 molecule-1 s-1, respectively. The Arrhenius equations for the title reactions were derived to be k1-CB + Cl (T = 263-363 K) = (2.77 ± 0.72) × 10-11 exp [(422 ± 79)/T] and k2-CB + Cl (T = 263-363 K) = (1.40 ± 0.32) × 10-11 exp [(415 ± 70)/T] cm3 molecule-1 s-1, respectively. The products were analysed qualitatively using gas chromatography-mass spectrometry (GC-MS), and the reaction mechanism was proposed for the reactions. The rate coefficients for the title reactions were calculated computationally over the temperature range of 200-400 K using canonical variational transition state theory with appropriate tunnelling corrections at CCSD(T)/6-311++G(2d,2p)//BHandHLYP/6-311++G(2d,2p) level of theory to complement our experimentally measured kinetic parameters. The experimental and theoretical data obtained were used to evaluate the impact of the studied molecules in the troposphere.
Collapse
Affiliation(s)
- Bishnupriya Kar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India; Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
13
|
Madugula PPP, Balla R. Laser induced fluorescence and computational studies on the tropospheric photooxidation reactions of methyl secondary butyl ether initiated by OH radicals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99748-99761. [PMID: 37615909 DOI: 10.1007/s11356-023-29053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
The kinetics of the reaction of methyl secondary butyl ether with OH radicals was investigated experimentally using the pulsed laser photolysis-laser induced fluorescence technique (PLP-LIF) over temperatures ranging from 268 to 363 K. The rate coefficient value at 298 K was measured to be (1.09 ± 0.02) × 10-11 cm3 molecule-1 s-1 and the deduced Arrhenius expression is [Formula: see text]= (2.21 ± 0.29) × 10-12 exp ((471.71 ± 38.50)/T) cm3 molecule-1 s-1. To complement the experimental data, the kinetic study of the title reaction was performed computationally at CCSD(T)/cc-pVTZ//M06-2X/6-311 + G(d,p) level of theory with the incorporation of tunnelling correction from 200 to 400 K. The end products formed were qualitatively analyzed by using gas chromatography equipped with mass spectrometry (GC-MS) as detection technique and the mechanism for degradation was proposed. Thermochemical parameters were evaluated to determine the feasibility of individual reaction pathways. Atmospheric implications were evaluated and discussed in this manuscript.
Collapse
Affiliation(s)
| | - Rajakumar Balla
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
- Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
14
|
Balsini SS, Shiroudi A, Hatamjafari F, Zahedi E, Pourshamsian K, Oliaey AR. Understanding the kinetics and atmospheric degradation mechanism of chlorotrifluoroethylene (CF 2CFCl) initiated by OH radicals. Phys Chem Chem Phys 2023; 25:13630-13644. [PMID: 37144555 DOI: 10.1039/d3cp00161j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The atmospheric degradation of chlorotrifluoroethylene (CTFE) by OH˙ was investigated using density functional theory (DFT). The potential energy surfaces were also defined in terms of single-point energies derived from the linked cluster CCSD(T) theory. With an energy barrier of -2.62 to -0.99 kcal mol-1 using the M06-2x method, the negative temperature dependence was determined. The OH˙ attack on Cα and Cβ atoms (labeled pathways R1 and R2, respectively) shows that reaction R2 is 4.22 and 4.42 kcal mol-1, respectively, more exothermic and exergonic than reaction R1. The main pathway should be the addition of OH˙ to the β-carbon, resulting in ˙CClF-CF2OH species. At 298 K, the calculated rate constant was 9.87 × 10-13 cm3 molecule-1 s-1. The TST and RRKM calculations of rate constants and branching ratios were performed at P = 1 bar and in the fall-off pressure regime over the temperature range of 250-400 K. The formation of HF and ˙CClF-CFO species via the 1,2-HF loss process is the most predominant pathway both kinetically and thermodynamically. With increasing temperature and decreasing pressure, the regioselectivity of unimolecular processes of energized adducts [CTFE-OH]˙ gradually decreases. Pressures greater than 10-4 bar are often adequate for assuring saturation of the estimated unimolecular rates when compared to the RRKM rates (in high-pressure limit). Subsequent reactions involve the addition of O2 to the [CTFE-OH]˙ adducts at the α-position of the OH group. The [CTFE-OH-O2]˙ peroxy radical primarily reacts with NO and then directly decomposes into NO2 and oxy radicals. "Carbonic chloride fluoride", "carbonyl fluoride", and "2,2-difluoro-2-hydroxyacetyl fluoride" are predicted to be stable products in an oxidative atmosphere.
Collapse
Affiliation(s)
- Saber Safari Balsini
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Abolfazl Shiroudi
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
- Department of Physical Chemistry, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland.
| | - Farhad Hatamjafari
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ehsan Zahedi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Khalil Pourshamsian
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| | - Ahmad Reza Oliaey
- Department of Chemistry, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
| |
Collapse
|
15
|
Huo Y, Li M, Jiang J, Zhou Y, Ma Y, Xie J, He M. The aomogeneous and heterogeneous oxidation of organophosphate esters (OPEs) in the atmosphere: Take diphenyl phosphate (DPhP) as an example. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121395. [PMID: 36871750 DOI: 10.1016/j.envpol.2023.121395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Organophosphate esters (OPEs) are widely detected in the atmosphere. However, the atmospheric oxidative degradation mechanism of OPEs has not been closely examined. This work took density functional theory (DFT) to investigate the tropospheric ozonolysis of organophosphates, represented by diphenyl phosphate (DPhP), including adsorption mechanisms on the surface of titanium dioxide (TiO2) mineral aerosols and oxidation reaction of hydroxyl groups (·OH) after photolysis. Besides, the reaction mechanism, reaction kinetics, adsorption mechanism, and ecotoxicity evaluation of the transformation products were also studied. At 298 K, the total reaction rate constants kO3, kOH, kTiO2-O3, and kTiO2-OH are 5.72 × 10-15 cm3 molecule-1 s-1, 1.68 × 10-13 cm3 molecule-1 s-1, 1.91 × 10-23 cm3 molecule-1 s-1, and 2.30 × 10-10 cm3 molecule-1 s-1. The atmospheric lifetime of DPhP ozonolysis in the near-surface troposphere is 4 min, much lower than that of hydroxyl radicals (·OH). Besides, the lower the altitude is, the stronger the oxidation is. The TiO2 clusters carry DPhP promoting ·OH oxidation but inhibiting ozonolysis of DPhP. Finally, the main transformation products of this process are glyoxal, malealdehyde, aromatic aldehydes, etc., which are still ecotoxic. The findings shed new light on the atmospheric governance of OPEs.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yuhui Ma
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ju Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Joy F, Rajakumar B. Photo-oxidation reaction of tert-butyl chloride with OH radicals and Cl atoms in the troposphere and its implications. Phys Chem Chem Phys 2023; 25:7901-7916. [PMID: 36861338 DOI: 10.1039/d2cp03503k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In the present work, the temperature-dependent kinetics for the reaction of tert-butyl chloride (TBC) with OH radicals and Cl atoms were determined experimentally between 268 and 363 K, and theoretically between 200 and 400 K. Pulsed laser photolysis-laser induced fluorescence (PLP-LIF) and relative rate (RR) methods were used to obtain the rate coefficients for the reaction of TBC with OH radicals and Cl atoms, respectively. The Arrhenius equations and were obtained for both reactions based on the experimentally measured rate coefficients. The theoretical rate coefficients were determined at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-31+G(d,p) level for the reaction of TBC with OH radicals and at the CCSD(T)/cc-pVDZ//MP2/6-311+G(d,p) level for the reaction with Cl atoms with incorporated tunnelling corrections. The product analysis of both reactions in the presence of oxygen (O2) was carried out, and a degradation pathway for TBC was proposed. The potential implications of these reactions in the atmosphere were discussed using the obtained kinetic parameters.
Collapse
Affiliation(s)
- Fredy Joy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India. .,Centre for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
17
|
Dash MR, Mishra SS. Mechanistic and kinetic approach on methyl isocyanate (CH 3NCO) with OH and Cl. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2124933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
18
|
Sun Y, Liu L, Li M, Xu F, Yu W. Theoretical evidence for the formation of perfluorocarboxylic acids form atmospheric oxidation degradation of fluorotelomer acrylates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:55092-55104. [PMID: 35312922 DOI: 10.1007/s11356-022-19788-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The atmospheric oxidation degradation of fluorotelomer acrylates (FTAcs) has been proposed as a potential source of perfluorocarboxylic acids (PFCAs) in remote locations. In this paper, detailed reactions of the main oxidant OH radicals with 4:2 FTAc in the atmosphere have been investigated by using density functional theory (DFT) calculation. All possible pathways involved in the oxidation process were presented and discussed. Based on the mechanism, transition state theory (TST) was used to predict the rate constants of the key elementary steps including the initial reactions of OH radical with n:2 FTAcs and the subsequent reactions of the main intermediates. Studies show that the reaction processes of OH radical addition to C = C bond are dominant and the fluorotelomer glyoxylate and formaldehyde are the major products. At 296 K, the calculated overall rate constant of 4:2 FTAc with OH radical is 1.19 × 10-11 cm3 molecule-1 s-1 with an atmospheric lifetime of 23.3 h. In the atmosphere, fluorotelomer glyoxylate will continue to be oxidized, which will lead to the formation of PFCAs ultimately. In addition, atmospheric reactions of more carbons FTAc (CnF2n+1CH2CH2OC(O)CH = CH2, n = 6, 8, 10) are also discussed in the presence of O2/NOx.
Collapse
Affiliation(s)
- Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
| | - Lin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ming Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, People's Republic of China
| | - Wanni Yu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, People's Republic of China
| |
Collapse
|
19
|
Bunkan AJC, Reijrink NG, Mikoviny T, Müller M, Nielsen CJ, Zhu L, Wisthaler A. Atmospheric Chemistry of N-Methylmethanimine (CH 3N═CH 2): A Theoretical and Experimental Study. J Phys Chem A 2022; 126:3247-3264. [PMID: 35544412 PMCID: PMC9150125 DOI: 10.1021/acs.jpca.2c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The OH-initiated
photo-oxidation of N-methylmethanimine,
CH3N=CH2, was investigated in the 200
m3 EUPHORE atmospheric simulation chamber and in a 240
L stainless steel photochemical reactor employing time-resolved online
FTIR and high-resolution PTR-ToF-MS instrumentation and in theoretical
calculations based on quantum chemistry results and master equation
modeling of the pivotal reaction steps. The quantum chemistry calculations
forecast the OH reaction to primarily proceed via H-abstraction from
the =CH2 group and π-system C-addition, whereas
H-abstraction from the −CH3 group is a minor route
and forecast that N-addition can be disregarded under atmospheric
conditions. Theoretical studies of CH3N=CH2 photolysis and the CH3N=CH2 + O3 reaction show that these removal processes are too slow to
be important in the troposphere. A detailed mechanism for OH-initiated
atmospheric degradation of CH3N=CH2 was
obtained as part of the theoretical study. The photo-oxidation experiments,
obstructed in part by the CH3N=CH2 monomer–trimer
equilibrium, surface reactions, and particle formation, find CH2=NCHO and CH3N=CHOH/CH2=NCH2OH as the major primary products in a ratio
18:82 ± 3 (3σ-limit). Alignment of the theoretical results
to the experimental product distribution results in a rate coefficient,
showing a minor pressure dependency under tropospheric conditions
and that can be parametrized k(T) = 5.70 × 10–14 × (T/298 K)3.18 × exp(1245 K/T) cm3 molecule–1 s–1 with k298 = 3.7 × 10–12 cm3 molecule–1 s–1. The atmospheric
fate of CH3N=CH2 is discussed, and it
is concluded that, on a global scale, hydrolysis in the atmospheric
aqueous phase to give CH3NH2 + CH2O will constitute a dominant loss process. N2O will not
be formed in the atmospheric gas phase degradation, and there are
no indications of nitrosamines and nitramines formed as primary products.
Collapse
Affiliation(s)
- Arne Joakim C Bunkan
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Nina G Reijrink
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Tomáš Mikoviny
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Markus Müller
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Claus J Nielsen
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Liang Zhu
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway
| | - Armin Wisthaler
- Section of Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033-Blindern, 0315 Oslo, Norway.,Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Pongpiachan S. Discrimination of the geographical origins of rice based on polycyclic aromatic hydrocarbons. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1619-1632. [PMID: 34287730 DOI: 10.1007/s10653-021-01039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Over the past few decades, several techniques have been applied to identify the geographical origins of rice products. In this study, the chemical characterization of polycyclic aromatic hydrocarbons (PAHs) was carefully conducted by analysing PAHs in rice samples collected from private sector planting areas located in Bali and Yogyakarta, Indonesia (i.e. ID; n = 20), west sides of Malaysia (i.e. MY; n = 20), Mandalay, Legend, Myingyan, Myanmar (i.e. MM; n = 20), northern parts of Lao PDR (i.e. LA; n = 20), central parts of Cambodia (i.e. KH; n = 20), northern parts of Vietnam (i.e. VN; n = 20), and Thailand (i.e. TH; n = 22). Percentage contributions show the exceedingly high abundance of 5-6 ring PAH congeners in rice samples collected from Indonesia, Malaysia, Thailand, Myanmar, Cambodia and Vietnam. Lao PDR rice samples were overwhelmed by 4-ring PAH congeners with the percentage contribution of 46% followed by 5-6 ring PAHs (33%) and 3-ring PAHs (21%). In addition, hierarchical cluster analysis and principal component analysis can successfully categorize some rice samples based on its geographical origins.
Collapse
Affiliation(s)
- Siwatt Pongpiachan
- NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA), 148 Moo 3, Sereethai Road, Klong-Chan, Bangkapi, 10240, Bangkok, Thailand.
| |
Collapse
|
21
|
Wang K, Wang W, Fan C, Li J, Lei T, Zhang W, Shi B, Chen Y, Liu M, Lian C, Wang Z, Ge M. Reactions of C 12-C 14 n-Alkylcyclohexanes with Cl Atoms: Kinetics and Secondary Organic Aerosol Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4859-4870. [PMID: 35319183 DOI: 10.1021/acs.est.1c08958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Long-chain alkanes are a type of intermediate volatility organic compound (IVOC) in the atmosphere and a potential source of secondary organic aerosols (SOAs). C12-C14 n-alkylcyclohexanes are important compositions of IVOCs, with considerable concentrations and emission rates. The reaction rate constants and SOA formation of the reactions of C12-C14 n-alkylcyclohexanes with Cl atoms were investigated in the present study. The reaction rate constants of the long-chain alkanes obtained via the relative-rate method at 298 ± 0.2 K (in units of ×10-10 cm3 molecule-1 s-1) were as follows: khexylcyclohexane = 5.11 ± 0.28, kheptylcyclohexane = 5.56 ± 0.30, and koctylcyclohexane = 5.74 ± 0.31. The gas-phase products of the reactions were identified as mainly small molecules of aldehydes, ketones, and acids. The particle-phase products were mostly monomers and oligomers, but there were still trimers even under high-NOx conditions. Moreover, under high-NOx conditions (urban atmosphere), the SOA yields of hexylcyclohexane are higher than that under low-NOx conditions (remote atmosphere), indicating that more attention should be given to the SOA formation of Cl-initiated n-alkylcyclohexane oxidations in polluted regions. This research can further clarify the oxidation processes and SOA formation of n-alkylcyclohexanes in the atmosphere.
Collapse
Affiliation(s)
- Ke Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Cici Fan
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junling Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Chinese Research Academy of Environmental Sciences, Beijing 100012, P. R. China
| | - Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wenyu Zhang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo Shi
- Hebei Normal University, Shijiazhuang 050010, P. R. China
| | - Yan Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Mingyuan Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chaofan Lian
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong SAR 999077, P. R. China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
Huo Y, An Z, Li M, Sun J, Jiang J, Zhou Y, He M. The reaction laws and toxicity effects of phthalate acid esters (PAEs) ozonation degradation on the troposphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118692. [PMID: 34921942 DOI: 10.1016/j.envpol.2021.118692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Low-molecular-weight (LMW) phthalate acid esters (PAEs) tend to enter the atmosphere, flying for several kilometers, so it is easy to endanger human health. This work is the first to use quantum chemistry calculations (Gaussian 16 program) and computational toxicology (ECOSAR, TEST, and Toxtree software) to comprehensively study the ozonolysis mechanism of six LMW PAEs (dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), diisopropyl phthalate (DIP), dibutyl phthalate (DBP), and diisobutyl phthalate (DIBP)) in the atmosphere and the toxicity of DMP (take DMP as an example) in the conversion process. The results show that the electron-donating effect of the ortho position of the LMW PAEs has the most obvious influence on the ozonolysis. We summarized the ozonation reaction law of LMW PAEs at the optimal reaction site. At 298 K, the law of initial ozonolysis total rate constant of the LMW PAEs is kDIP > kDPP > kDIBP > kDMP > kDEP > kDBP, and the range is 9.56 × 10-25 cm3 molecule-1 s-1 - 1.47 × 10-22 cm3 molecule-1 s-1. According to the results of toxicity assessment, the toxicity of products is lower than DMP for aquatic organisms after ozonolysis. But those products have mutagenicity, developmental toxicity, non-genotoxicity, carcinogenicity, and corrosiveness to the skin. The proposed ozonolysis mechanism promotes our understanding of the environmental risks of PAEs and provides new ideas for studying the degradation of PAEs in the tropospheric gas phase.
Collapse
Affiliation(s)
- Yanru Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Zexiu An
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Mingxue Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jianfei Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai, 264005, PR China
| | - Jinchan Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yuxin Zhou
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
23
|
Kuzhanthaivelan S, Jabeen F, Rajakumar B. Temperature dependent kinetics for the reaction between OH radicals and (E)- and (Z)- CHF = CHCl: A dual-level computational study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Sun Y, Liu L, Li M, Chen X, Xu F. Theoretical investigation on the mechanisms and kinetics of OH/NO 3-initiated atmospheric oxidation of vanillin and vanillic acid. CHEMOSPHERE 2022; 288:132544. [PMID: 34648789 DOI: 10.1016/j.chemosphere.2021.132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Vanillin and vanillic acid are two kinds of lignin pyrolysis products that are generated by biomass combustion. The gas-phase oxidation mechanisms of vanillin and vanillic acid initiated by OH/NO3 radicals were investigated by using density functional theory (DFT) at M06-2X/6-311+G(3df,2p)//M06-2X/6-311+G(d,p) level. The initial reactions of vanillin and vanillic acid with OH/NO3 radicals can be divided into two patterns: OH/NO3 addition and H-atom abstraction. For vanillin reacted with OH radical, the OH addition mainly occurs at C2-position to produce highly chemically activated intermediate (IM2). The oxidation products 3,4-dihydroxy benzaldehyde, malealdehyde, methyl hydrogen oxalate, methylenemalonaldehyde, carbonyl and carbonyl compounds are formed by the subsequent reactions of IM2. H-atom abstracting from aldehyde group occurs more easily than from the other positions. In addition, vanillin reacting with NO3 radicals principally proceeds via NO3-addition at C1 sites and H-atom abstracting from OH group (C1) to generate HNO3. The primary reaction mechanisms of vanillic acid with OH/NO3 radicals were similar to vanillin. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was performed to calculate the rate constants of the significant elementary reactions. The total rate constants for OH-initiated oxidation of vanillin and vanillic acid are 5.72 × 10-12 and 5.40 × 10-12 cm3 molecule-1 s-1 at 298 K and 1 atm. The atmospheric lifetimes were predicted to be 48.56 h and 51.44 h, respectively. As a supplement, the kinetic calculations of NO3 radicals with two reactants were also discussed. This work investigates the atmospheric oxidation processes of vanillin and vanillic acid, and hopes to provide useful information for further experimental research.
Collapse
Affiliation(s)
- Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ming Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoxiao Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
25
|
Sapkota R, Marshall P. Gas-Phase Chemistry of 1,1,2,3,3,4,4-Heptafluorobut-1-ene Initiated by Chlorine Atoms. Molecules 2022; 27:647. [PMID: 35163912 PMCID: PMC8839731 DOI: 10.3390/molecules27030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 11/16/2022] Open
Abstract
The possibility of mitigating climate change by switching to materials with low global warming potentials motivates a study of the spectroscopic and kinetic properties of a fluorinated olefin. The relative rate method was used to determine the rate constant for the reaction of heptafluorobut-1-ene (CF2=CFCF2CF2H) with chlorine atoms in air. A mercury UV lamp was used to generate atomic chlorine, which initiated chemistry monitored by FTIR spectroscopy. Ethane was used as the reference compound for kinetic studies. Oxidation of heptafluorobut-1-ene initiated by a chlorine atom creates carbonyl difluoride (CF2=O) and 2,2,3,3 tetrafluoropropanoyl fluoride (O=CFCF2CF2H) as the major products. Anharmonic frequency calculations allowing for several low-energy conformations of 1,1,2,3,3,4,4 heptafluorobut-1-ene and 2,2,3,3 tetrafluoropropanoyl fluoride, based on density functional theory, are in good accord with measurements. The global warming potentials of these two molecules were calculated from the measured IR spectra and estimated atmospheric lifetimes and found to be small, less than 1.
Collapse
Affiliation(s)
- Ramesh Sapkota
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203, USA;
| | - Paul Marshall
- Center for Advanced Scientific Computing and Modeling, University of North Texas, 1155 Union Circle, #305070, Denton, TX 76203, USA
| |
Collapse
|
26
|
Ding Z, Wang X, Yi Y, Huo X, Wang W, Zhang Q. Understanding the atmospheric fate of triphenylene: The oxidation mechanism initiated by OH radicals. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Wu X, Hou Q, Huang J, Chai J, Zhang F. Exploring the OH-initiated reactions of styrene in the atmosphere and the role of van der Waals complex. CHEMOSPHERE 2021; 282:131004. [PMID: 34082313 DOI: 10.1016/j.chemosphere.2021.131004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Reacting with OH provides a major sink for styrene in the atmosphere, with three possible pathways including OH-addition, H-abstraction and addition-dissociation reactions. However, the total rate coefficients of styrene + OH were measured as 1.2-6.2 × 10-11 cm3 molecule-1 s-1 under atmospheric conditions, varying by a maximum factor of 5. On the other hand, only one theoretical work reported this rate coefficient as 19.1 × 10-11 cm3 molecule-1 s-1, which exhibits up to 16 times that measured in laboratory studies. In the present study, the reaction kinetics of styrene + OH was extensively studied with high-level quantum chemical methods combined with RRKM/master equation simulations. In particular, we carried out theoretical treatments for the formation of pre-reaction Van der Waals complexes of styrene + OH, and examined their influence on the reaction kinetics. The total rate coefficient for styrene + OH is calculated to be 1.7 × 10-11 cm3 molecule-1 s-1 at 300 K, 1 atm. The main products are addβ (88.2%), add5 (6.9%), addα (1.9%) and add3 (1.7%). Using our computed rate coefficient and the global atmospheric hydroxyl radical concentration (2 × 106 radicals per cm3), the lifetime of styrene in the atmosphere is estimated at 8.0 h. The degradation of styrene might be negligible for the formation of ozone in the atmosphere based upon the photochemical ozone creation potentials calculation. The computed product yields indicate that addβ via subsequent reactions could significantly produce formaldehyde and benzaldehyde that were observed in previous experimental studies on styrene oxidation, and contribute to the formation of secondary organic aerosols.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, PR China
| | - Qifeng Hou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiabin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jiajue Chai
- Institute at Brown for Environment and Society, And Department of Earth, Environmental and Planetary Sciences, Brown University, 182 Hope St., Providence, RI, 02912, USA
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
28
|
Kumar A, Mondal K, Rajakumar B. A Combined Experimental and Theoretical Study to Determine the Kinetics of 2-Ethoxy Ethanol with OH Radical in the Gas Phase. J Phys Chem A 2021; 125:8869-8881. [PMID: 34587445 DOI: 10.1021/acs.jpca.1c06590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactivity of 2-ethoxy ethanol with OH radicals was experimentally measured in the temperature range of 278-363 K using the pulsed laser photolysis-laser-induced fluorescence (PLP-LIF) technique. The rate coefficient at room temperature was measured to be (1.14 ± 0.03) × 10-11 cm3 molecule-1 s-1, and the Arrhenius expression was derived to be kexpt278-363K = (1.61 ± 0.35) × 10-13 exp{(1256 ± 236)/T} cm3 molecule-1 s-1. Computational calculations were performed to compute the kinetics of the titled reaction in the temperature range of 200-400 K using advanced methods incorporated with tunneling correction at the CCSD(T)/aug-cc-pVTZ//M06-2X/6-31+G(d,p) level of theory. The Arrhenius expression derived from the computationally calculated rate coefficients is ktheo200-400K = (1.59 ± 0.35) × 10-13exp{(1389 ± 62)/T} cm3 molecule-1 s-1. The feasibility of each reaction pathway was also determined using the calculated thermochemical parameters. Atmospheric implication parameters such as cumulative atmospheric lifetime and photochemical ozone creation potential were calculated and are discussed in this paper.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| | - Koushik Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai600036, India.,Center for Atmospheric and Climate Sciences, Indian Institute of Technology Madras, Chennai600036, India
| |
Collapse
|
29
|
Theoretical investigations on the OH radical mediated kinetics of cis- and trans-CH3CF=CHF and CH3CH=CF2 over temperature range of 200-400K. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Hynniewta S, Lily M, Chandra AK. Computational investigations on kinetics of reaction between t-butanol and OH radical and ozone formation potential. J Mol Graph Model 2021; 108:108002. [PMID: 34391199 DOI: 10.1016/j.jmgm.2021.108002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
The kinetics of the gas-phase atmospheric reaction of t-butanol with OH radicals is computationally studied using the CCSD(T)/aug-cc-pVTZ//M06-2X/6-311++G(d,p) level of calculation. The rate coefficients are evaluated for a wide temperature range of 250-1200 K and the calculated rate coefficient value of 0.83×10-12cm3molecule-1s-1 at 298K is in close agreement with experimental results. The H-abstraction from the -CH3 group is predicted to be the main reaction channel. A weak negative temperature dependence of rate coefficient is observed in 250-300 K. The study also highlighted the possibility of re-generation of OH radicals at higher temperature. The ozone formation potential of t-butanol in the troposphere has also been estimated and discussed.
Collapse
Affiliation(s)
- Shemphang Hynniewta
- Department of Chemistry, North-Eastern Hill University, Shillong, 793 022, India
| | - Makroni Lily
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China
| | - Asit K Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong, 793 022, India.
| |
Collapse
|
31
|
Ren Y, El Baramoussi EM, Daële V, Mellouki A. Atmospheric chemistry of ketones: Reaction of OH radicals with 2-methyl-3-pentanone, 3-methyl-2-pentanone and 4-methyl-2-pentanone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146249. [PMID: 34030329 DOI: 10.1016/j.scitotenv.2021.146249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/22/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
This work reports new kinetic and mechanistic information on the atmospheric chemistry of ketones. Both absolute and relative rate methods were used to determine the rate constants for OH reactions with 2-methyl-3-pentanone (2M3P), 3-methyl-2-pentanone (3M2P) and 4-methyl-2-pentanone (4M2P), three widely used compounds in the industry. This work constitutes the first temperature dependence study of the reactions of OH with 2M3P and 3M2P. The following rate constants values are recommended at 298 K (in 10-12 cm3 molecule-1 s-1): kOH+2M3P = 3.49 ± 0.5; kOH+3M2P = 6.02 ± 0.14 and kOH+4M2P = 11.02 ± 0.42. The following Arrhenius expressions (in units of cm3 molecule-1 s-1) adequately describe the measured rate constants for OH reactions with 2M3P and 3M2P in the temperature range 263-373 K: k2M3P = (2.33 ± 0.06) × 10-12 exp((127.4 ± 18.6)/T) and k3M2P = (1.05 ± 0.14) × 10-12 exp((537 ± 41)/T). Products studies from the reactions of OH with the investigated ketones were conducted in a 7.3 m3 simulation chamber using PTR-ToF-MS, UHPLC-MS and GC-MS. A series of short chain carbonyl compounds including formaldehyde, acetone, acetaldehyde, 2-butanone and 2-methypropanal were observed as products. Combining the yields of carbonyls measured with those estimated from the SAR method, we propose various mechanistic degradation schemes of the investigated ketones initiated by reaction with OH radicals.
Collapse
Affiliation(s)
- Yangang Ren
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
| | - El Mehdi El Baramoussi
- Earth Sciences Department, Scientific Institute, Mohammed V- University, Rabat 10106, Morocco
| | - Véronique Daële
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France
| | - Abdelwahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021), Observatoire des Sciences de l'Univers en région Centre (OSUC), 1C Avenue de la Recherche Scientifique, 45071 Orléans Cedex 2, France; Environment Research Institute, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
32
|
Brune WH, McFarland PJ, Bruning E, Waugh S, MacGorman D, Miller DO, Jenkins JM, Ren X, Mao J, Peischl J. Extreme oxidant amounts produced by lightning in storm clouds. Science 2021; 372:711-715. [PMID: 33927054 DOI: 10.1126/science.abg0492] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/02/2022]
Abstract
Lightning increases the atmosphere's ability to cleanse itself by producing nitric oxide (NO), leading to atmospheric chemistry that forms ozone (O3) and the atmosphere's primary oxidant, the hydroxyl radical (OH). Our analysis of a 2012 airborne study of deep convection and chemistry demonstrates that lightning also directly generates the oxidants OH and the hydroperoxyl radical (HO2). Extreme amounts of OH and HO2 were discovered and linked to visible flashes occurring in front of the aircraft and to subvisible discharges in electrified anvil regions. This enhanced OH and HO2 is orders of magnitude greater than any previous atmospheric observation. Lightning-generated OH in all storms happening at the same time globally can be responsible for a highly uncertain, but substantial, 2 to 16% of global atmospheric OH oxidation.
Collapse
Affiliation(s)
- W H Brune
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA.
| | - P J McFarland
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - E Bruning
- Department of Geosciences, Texas Tech University, Lubbock, TX, USA
| | - S Waugh
- National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, Norman, OK, USA
| | - D MacGorman
- National Severe Storms Laboratory, National Oceanic and Atmospheric Administration, Norman, OK, USA.,Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK, USA.,School of Meteorology, University of Oklahoma, Norman, OK, USA
| | - D O Miller
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - J M Jenkins
- Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, USA
| | - X Ren
- Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA.,Air Resources Laboratory, National Oceanic and Atmospheric Administration, College Park, MD, USA
| | - J Mao
- Department of Chemistry and Biochemistry and Geophysical Institute, University of Alaska, Fairbanks, Fairbanks, AK, USA
| | - J Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.,NOAA Chemical Sciences Laboratory, Boulder, CO, USA
| |
Collapse
|
33
|
Abdel-Rahman MA, Shibl MF, El-Nahas AM, Abdel-Azeim S, El-demerdash SH, Al-Hashimi N. Mechanistic insights of the degradation of an O-anisidine carcinogenic pollutant initiated by OH radical attack: theoretical investigations. NEW J CHEM 2021. [DOI: 10.1039/d0nj06248k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
O-Anisidine (O-AND) is one of the amino organic compounds that harm human health, and is considered as a carcinogenic chemical.
Collapse
Affiliation(s)
| | - Mohamed F. Shibl
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| | - Ahmed M. El-Nahas
- Chemistry Department
- Faculty of Science
- Menoufia University
- Shebin El-Kom 32512
- Egypt
| | - Safwat Abdel-Azeim
- Center for Integrative Petroleum Research (CIPR)
- College of Petroleum Engineering and Geosciences
- King Fahd University of Petroleum and Minerals (KFUPM)
- Dhahran 31261
- Saudi Arabia
| | | | - Nessreen Al-Hashimi
- Department of Chemistry and Earth Sciences
- College of Arts and Sciences
- Qatar University
- Doha
- Qatar
| |
Collapse
|
34
|
Ding Z, Yi Y, Wang W, Zhang Q. Atmospheric degradation of chrysene initiated by OH radical: A quantum chemical investigation. CHEMOSPHERE 2021; 263:128267. [PMID: 33297211 DOI: 10.1016/j.chemosphere.2020.128267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/27/2020] [Accepted: 09/02/2020] [Indexed: 06/12/2023]
Abstract
Chrysene, a four-ring polycyclic aromatic hydrocarbon (PAH), is recalcitrant to biodegradation and persistent in the environment due to its low water solubility. Here, we investigated the atmospheric degradation process of chrysene initiated by OH radical in the presence of O2 and NOX using quantum chemical calculations. The reaction mechanisms were elucidated by density functional theory (DFT) at M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level, and the kinetics calculations were conducted with Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The results show that the oxidation products of atmospheric chrysene are oxygenated PAHs (OPAHs) and nitro-PAHs (NPAHs), including nitro-chrysene, hydroxychrysene, hydroxychrysenone, 11-benzo[a]fluorenone and dialdehydes. Most of the products have deleterious effects on the environment and human beings due to their acute toxicity, carcinogenicity and mutagenicity. The overall rate constant for the reaction of chrysene with OH radical is 4.48 × 10-11 cm3 molecule-1 s-1 and the atmospheric lifetime of chrysene determined by OH radical is 6.4 h. The present work provided a comprehensive understanding on the degradation mechanisms and kinetics of chrysene, which could help to clarify its atmospheric fate and environmental risks.
Collapse
Affiliation(s)
- Zhezheng Ding
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yayi Yi
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
35
|
Mai TVT, Nguyen HT, Huynh LK. Ab initio kinetic mechanism of OH-initiated atmospheric oxidation of pyrrole. CHEMOSPHERE 2021; 263:127850. [PMID: 32818845 DOI: 10.1016/j.chemosphere.2020.127850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The comprehensive kinetic mechanism of the OH-initiated gas-phase oxidation of pyrrole is first theoretically reported in a broad range of conditions (T = 200-2000 K &P = 1-7600 Torr). On the potential energy surface constructed at the M06-2X/aug-cc-pVTZ level, the temperature- and pressure-dependent behaviors of the title reaction were characterized using the stochastic Rice-Ramsperger-Kassel-Marcus based Master Equation (RRKM-ME) rate model. The corrections of the hindered internal rotation and quantum tunneling treatments were included. The calculated results reveal the competition between the two distinct pathways: OH-addition and direct H-abstraction. The former channels are found favorable at low-temperature and high-pressure range (e.g., T < 900 K and P = 760 Torr) where non-Arrhenius and positive pressure-dependent behaviors of the rate constants are noticeably observed, while the latter predominate at temperatures higher than 900 K at atmospheric pressure and no pressure dependence on the rate constant is found. The predicted global rate constants are in excellent agreement with laboratory values; thus, the derived kinetic parameters are recommended for modeling/simulation of N-heterocycle-related applications in atmospheric and even in combustion conditions. Besides, pyrrole should not be considered as a persistent organic pollutant owing to its short atmospheric lifetime (∼1 h) towards OH radicals. The secondary mechanisms of the subsequent reactions of two OH-pyrrole adducts (namely, I1 and I2) with two abundant species, O2/NO, which are relevant to the atmospheric degradation process, were also investigated. It is also revealed by TD-DFT calculations that two OH-pyrrole adducts (I1 &I2), nine intermediates, Ii (i = 3-11) and four products (P1, P2, P3 and P6) can undergo photodissociation under the sunlight.
Collapse
Affiliation(s)
- Tam V-T Mai
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam; University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh, Viet Nam.
| | - Hieu T Nguyen
- Molecular Science and Nano-Materials Lab, Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Viet Nam.
| | - Lam K Huynh
- Vietnam National University, Ho Chi Minh, Viet Nam; International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
36
|
Jabeen F, Kumar A, Rajakumar B. Kinetics, thermochemistry and atmospheric implications for the reaction of OH radicals with CH3CF = CF2 (HFO-1243yc). Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Ding Z, Yi Y, Wang W, Zhang Q. Atmospheric oxidation of indene initiated by OH radical in the presence of O 2 and NO: A mechanistic and kinetic study. CHEMOSPHERE 2020; 259:127331. [PMID: 32650175 DOI: 10.1016/j.chemosphere.2020.127331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
The atmospheric degradation of polycyclic aromatic hydrocarbons (PAHs) can generate organic pollutants that contribute to the formation of secondary organic aerosols (SOAs) and exacerbate their carcinogenicity. Indene is an example of styrene-like bicyclic hydrocarbons that are not fully aromatic. The OH-initiated atmospheric oxidation of indene in the presence of O2 and NO was investigated using quantum chemical methods at M06-2X/6-311++G(3df,2p)//M06-2X/6-311+G(d,p) level. The oxidation products are oxygenated polycyclic aromatic hydrocarbons (OPAHs) containing hydroxyindene, indenone, dialdehydes and 2-(formylmethyl)benzaldehyde. Calculation results showed that 7-indene radical, which is the precursor of various PAHs, has a high production ratio that is 35.29% in the initial reaction, indicating that the OH-initiated oxidation increase the environmental risks of indene in the atmosphere. The rate constants for the crucial elementary reactions were calculated based on Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The overall rate constant of the initial reaction is calculated to be 1.04 × 10-10 cm3 molecule-1 s-1 and the atmospheric lifetime of indene is determined as 2.74 h. This work provides a comprehensive understanding on the oxidation mechanisms of indene and the findings could help to clarify the fate of indene in the atmosphere.
Collapse
Affiliation(s)
- Zhezheng Ding
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Yayi Yi
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
38
|
Seif A, Domingo LR, Mazarei E, Zahedi E, Ahmadi TS. Atmospheric Oxidation Reactions of Methyl Salicylate as Green Leaf Volatiles by OH Radical: Theoretical Kinetics and Mechanism. ChemistrySelect 2020. [DOI: 10.1002/slct.202003286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmad Seif
- Department of Chemistry Central Tehran Branch Islamic Azad University Tehran Iran
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot Valencia Spain
| | - Luis Ramon Domingo
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot Valencia Spain
| | - Elham Mazarei
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot Valencia Spain
| | - Ehsan Zahedi
- Department of Chemistry Shahrood Branch Islamic Azad University Shahrood Iran
| | - Temer Shah Ahmadi
- Department of Organic Chemistry University of Valencia, Dr. Moliner 50 46100 Burjassot Valencia Spain
- Department of Chemistry Villanova University Villanova PA 19085 USA
| |
Collapse
|
39
|
Gupta P, Rajakumar B. Reaction kinetics of a series of alkenes with ClO and BrO radicals: A theoretical study. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Parth Gupta
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| | - B. Rajakumar
- Department of Chemistry Indian Institute of Technology Madras Chennai India
| |
Collapse
|
40
|
Ramya CB, Rajakumar B. Tropospheric chemistry of ethyl tiglate initiated by Cl atoms. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Kaipara R, Rajakumar B. Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. J Phys Chem A 2020; 124:2768-2784. [PMID: 32207979 DOI: 10.1021/acs.jpca.0c00903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The relative rate (RR) technique was used for the measurement of OH-initiated photooxidation reactions of ethyl 2-methylpropionate (E2MP) and ethyl 2,2-dimethylpropionate (E22DMP) in the temperature range of 268-363 K at 760 Torr. In addition to this, the thermodynamic and kinetic parameters for the title reactions were theoretically investigated using CCSD(T)/cc-pVTZ//M06-2X/6-311++G(2d,2p) level of theory in the temperature range of 200-400 K using canonical variational transition state theory (CVT) in combination with small curvature tunneling (SCT) method. The rate coefficients at (298 ± 2) K were measured to be kE2MP+OH = (2.71 ± 0.79) × 10-12 cm3 molecule-1 s-1 and kE22DMP+OH = (2.58 ± 0.80) × 10-12 cm3 molecule-1 s-1. The degradation mechanisms for the title reactions were investigated in the presence of O2 using gas chromatography with mass spectrometry (GC-MS) and gas chromatography with infrared spectroscopy (GC-IR). From the recognized products, the possible product degradation mechanisms were predicted. In addition to this, the atmospheric lifetimes (ALs), lifetime-corrected radiative forcing (RF), global warming potential (GWPs) and photochemical ozone creation potentials (POCPs) were calculated to further understand the environmental impact of these molecules on the Earth's troposphere.
Collapse
Affiliation(s)
- Revathy Kaipara
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - B Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
42
|
Kumar A, Rajakumar B. Kinetic and Mechanistic Investigation for the Gas-Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Acrylate with OH Radicals and Cl Atoms. J Phys Chem A 2020; 124:2335-2351. [PMID: 32146806 DOI: 10.1021/acs.jpca.9b10009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photo-oxidation of 2,2,2-trifluoroethyl acrylate (TFEA) (CH2CHC(O)OCH2CF3) initiated by OH radicals and Cl atoms was investigated in tropospheric conditions using both experimental and computational methods. The kinetic measurements were carried out in the temperature range of 268-363 K using the relative rate method. The rate coefficients for the reaction of OH radicals with TFEA were measured relative to diethyl ether, ethylene, and acetaldehyde. The rate coefficients for the reaction of Cl atoms with TFEA were measured relative to propylene and ethylene. The rate coefficients for the reaction of TFEA with OH radicals and Cl atoms at 298 K were experimentally measured to be kR1exp - 298 K = (1.41 ± 0.31) × 10-11 cm3 molecule-1 s-1 and kR2exp - 298 K = (2.37 ± 0.50) × 10-10 cm3 molecule-1 s-1, respectively. The deduced temperature-dependent Arrhenius expressions for the reactions of OH radicals and Cl atoms with TFEA are kR1exp - (268 - 363 K) = (9.82 ± 1.37) × 10-12 exp. [(812 ± 152)/T] cm3 molecule-1 s-1 and kR2exp - (268 - 363 K) = (1.25 ± 0.17) × 10-11 exp. [(862 ± 85)/T] cm3 molecule-1 s-1, respectively. To complement our experimental results, computational calculations were performed at CCSD(T)/cc-pVDZ//M062X/6-31+G(d,p) and CCSD(T)/cc-pVDZ//MP2/6-311+G(d,p) levels of theory, respectively, in combination with canonical variational transition-state theory (CVT) with small curvature tunneling (SCT) over the temperature range of 200-400 K. Furthermore, the degradation mechanisms initiated by OH radicals and Cl atoms were proposed for the titled reactions based on the qualitative analysis of the products in gas chromatography-mass spectrometry (GC-MS) and gas chromatography-infrared spectroscopy (GC-IR). Atmospheric implications, thermochemistry, and branching ratios for the titled reactions are discussed in detail in the paper.
Collapse
Affiliation(s)
- Avinash Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Balla Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
43
|
Gour NK, Deka RC, Paul S. Atmospheric oxidation of 2-fluoropropene (CH3CFCH2) with Cl atom and aerial degradation of its product radicals by computational study. NEW J CHEM 2020. [DOI: 10.1039/c9nj05437e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Primary degradation of 2-fluoropropene initiated by Cl atom and subsequent degradation of its product radials.
Collapse
Affiliation(s)
| | | | - Subrata Paul
- Department of Chemical Sciences
- Tezpur University
- Tezpur
- India
| |
Collapse
|
44
|
Abstract
The atmosphere is composed of nitrogen, oxygen and argon, a variety of trace gases, and particles or aerosols from a variety of sources. Reactive, trace gases have short mean residence time in the atmosphere and large spatial and temporal variations in concentration. Many trace gases are removed by reaction with hydroxyl radical and deposition in rainfall or dryfall at the Earth's surface. The upper atmosphere, the stratosphere, contains ozone that screens ultraviolet light from the Earth's surface. Chlorofluorocarbons released by humans lead to the loss of stratospheric ozone, which might eventually render the Earth's land surface uninhabitable. Changes in the composition of the atmosphere, especially rising concentrations of CO2, CH4, and N2O, will lead to climatic changes over much of the Earth's surface.
Collapse
|
45
|
Gupta P, Rajakumar B. Cl Atoms and OH Radicals Initiated Kinetic and Mechanistic Study on the Degradation of Propyl Butanoate under Tropospheric Conditions. J Phys Chem A 2019; 123:10976-10989. [PMID: 31789521 DOI: 10.1021/acs.jpca.9b09546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of various OVOCs (mainly esters) in the troposphere leads to the generation of various organics, which in turn leads to an increase in the cloud acidity of the Earth's atmosphere. Hence, it becomes necessary to understand the mechanistic aspects of the reaction of these molecules with dominant atmospheric agents. In this study, the tropospheric degradation of one such ester, propyl butanoate (PB; CH3CH2CH2COOCH2CH2CH3) was studied with OH radicals and Cl atoms at the CCSD(T)//M06-2x/6-311+G(2d,2p) and CCSD(T)//BHandHLYP/6-311+G(2d,2p) level of theories over the studied temperature range of 200-400 K. The Arrhenius expressions obtained using the CVT/SCT/ISPE method were calculated as kPB + Cl (200-400 K) = 1.3 × 10-14 T1.3 exp[1335/T] cm3 molecule-1 s-1 and kPB + OH (200-400 K) = 1.8 × 10-26 T4.6 exp[4469/T] cm3 molecule-1 s-1. The obtained kinetics was also well validated against the SAR (structure-activity relationship)-based rate coefficients. The most prominent H-abstraction reaction channels were investigated for the PB + OH/Cl reaction. The abstraction of H atoms attached to the carbon atom present in the β-position to the ester (-C(O)O-) functionality was found to go via the lowest energy activation barriers for the reaction of PB toward both OH radicals and Cl atoms. The product degradation channels were also elucidated in an O2/NOx-rich environment. Moreover, to gauge the impact of the emitted PB on the troposphere, atmospheric lifetimes, radiative efficiencies, global warming potentials, and photochemical ozone creation potentials were also calculated and are included in the manuscript.
Collapse
Affiliation(s)
- Parth Gupta
- Department of Chemistry , Indian Institute of Technology, Madras , Chennai 600036 , India
| | - Balla Rajakumar
- Department of Chemistry , Indian Institute of Technology, Madras , Chennai 600036 , India
| |
Collapse
|
46
|
Kumar A, Rajakumar B. Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate with OH Radicals and Cl Atoms: An Experimental and Computational Approach. J Phys Chem A 2019; 123:10868-10884. [DOI: 10.1021/acs.jpca.9b08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avinash Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
47
|
Kumar A, Rajakumar B. Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate. J Phys Chem A 2019; 123:9978-9994. [DOI: 10.1021/acs.jpca.9b08410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Avinash Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - B. Rajakumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
48
|
|
49
|
Rashidian N, Zahedi E, Shiroudi A. Kinetic and mechanistic insight into the OH-initiated atmospheric oxidation of 2,3,7,8-tetrachlorodibenzo-p-dioxin via OH-addition and hydrogen abstraction pathways: A theoretical investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:106-114. [PMID: 31082585 DOI: 10.1016/j.scitotenv.2019.05.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
The 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most toxic polychlorinated dibenzo-p-dioxin. The OH-initiated oxidation of TCDD has been studied using the density functional, canonical transition state, and canonical Rice-Ramsperger-Kassel-Marcus theories. The kinetic data were corrected for quantum tunneling by the Wigner and Eckart models. All OH addition and hydrogen atom abstraction channels were thermodynamically exergonic. The kinetic and thermodynamic data analysis at the reliable level MPWB1K/MG3S//M06-2X/MG3S indicate that the addition of OH to the carbon atom adjacent to the oxygen atom in dioxin ring leads to the formation of predominant adduct. The calculated bimolecular rate constant for the formation of predominant adduct was ~5.97-6.75 × 10-13 cm3 molecule-1 s-1, its branching ratio was ~0.955, and the overall rate constant for the OH-initiated oxidation of TCDD was ~6.25-7.08 × 10-13 cm3 molecule-1 s-1. The atmospheric lifetime of TCDD determined by OH was ~8.17-9.26 days indicating the TCDD can be categorized as medium lifetime organic pollutant.
Collapse
Affiliation(s)
- Nooshin Rashidian
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Ehsan Zahedi
- Department of Chemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Abolfazl Shiroudi
- Young Researchers and Elite Club, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
50
|
Huang Z, Ma X, Xu F, Zuo C, Wei Y, Wang W, Sun Y, Zhang Q. Theoretical study of the formation of dinitro-pyrenes from mononitro-pyrenes initiated by OH radicals. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|