1
|
Sivasankar VS, Zia RN. The Matter/Life Nexus in Biological Cells. Annu Rev Chem Biomol Eng 2025; 16:409-432. [PMID: 40489303 DOI: 10.1146/annurev-chembioeng-100722-104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The search for what differentiates inanimate matter from living things began in antiquity as a search for a fundamental life force embedded deep within living things-a special material unit owned only by life-later transforming to a more circumspect search for unique gains in function that transform nonliving matter to that which can reproduce, adapt, and survive. Aristotelian thinking about the matter/life distinction and Vitalistic philosophy's vital force persisted well into the Scientific Revolution, only to be debunked by Pasteur and Brown in the nineteenth century. Acceptance of the atomic reality and understanding of the uniqueness of life's heredity, evolution, and reproduction led to formation of the Central Dogma. With startling speed, technological development then gave rise to structural biology, systems biology, and synthetic biology-and a search to replicate and synthesize that gain in function that transforms matter to life. Yet one still cannot build a living cell de novo from its atomic and molecular constituents, and "what I cannot create, I do not understand," in the words of Richard Feynman. In the last two decades, new recognition of old ideas-spatial organization and compartmentalization-has renewed focus on Brownian and flow physics. In this article, we explore how experimental and computational advances in the last decade have embraced the deep coupling between physics and cellular biochemistry to shed light on the matter/life nexus. Whole-cell modeling and synthesis are offering promising new insights that may shed light on this nexus in the cell's watery, crowded milieu.
Collapse
Affiliation(s)
- Vishal S Sivasankar
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| | - Roseanna N Zia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri, USA;
| |
Collapse
|
2
|
Gąsienica P, Toch K, Zając-Garlacz KS, Labocha-Derkowska M. Genetic Background and Gene Essentiality. Genes (Basel) 2025; 16:570. [PMID: 40428392 PMCID: PMC12111165 DOI: 10.3390/genes16050570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/01/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Essential genes are those required for an organism's survival and reproduction. However, gene essentiality is not absolute; it can be highly context-dependent, varying across genetic and environmental conditions. Most previous studies have assessed gene essentiality in a single genetic background, limiting our understanding of its variability. The objective of this study was to investigate how genetic background influences gene essentiality in the multicellular model organism Caenorhabditis elegans. METHODS We examined gene essentiality in three genetically distinct C. elegans strains: N2, LKC34, and MY16. A total of 294 genes were selected for RNA interference (RNAi) knockdown: 101 previously classified as essential, 175 as nonessential and 18 as conditional (condition-dependent essentiality). Each gene-strain combination was tested in multiple biological and technical replicates, and rigorous quality control and statistical analyses were used to identify strain-specific effects. RESULTS Our results demonstrate substantial variation in gene essentiality across genetic backgrounds. Among the 101 genes previously identified as essential in the N2 strain, only 56% were consistently essential in all three strains. We identified 23 genes that were newly essential across all strains, 13 genes essential in two strains, and 9 genes essential in only one strain. These results reveal that a significant proportion of essential genes exhibit strain-dependent essentiality. CONCLUSIONS This study underscores the importance of genetic context in determining gene essentiality. Our findings suggest that relying on a single genetic background, such as N2, may lead to an incomplete or misleading view of gene essentiality. Understanding context-dependent gene essentiality has important implications for functional genomics, evolutionary biology, and potentially for translational research where genetic background can modulate phenotypic outcomes.
Collapse
Affiliation(s)
| | - Katarzyna Toch
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, 30-387 Kraków, Poland (K.S.Z.-G.); (M.L.-D.)
| | | | | |
Collapse
|
3
|
Lee-Glover LP, Picard M, Shutt TE. Mitochondria - the CEO of the cell. J Cell Sci 2025; 138:jcs263403. [PMID: 40310473 PMCID: PMC12070065 DOI: 10.1242/jcs.263403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As we have learned more about mitochondria over the past decades, including about their essential cellular roles and how altered mitochondrial biology results in disease, it has become apparent that they are not just powerplants pumping out ATP at the whim of the cell. Rather, mitochondria are dynamic information and energy processors that play crucial roles in directing dozens of cellular processes and behaviors. They provide instructions to enact programs that regulate various cellular operations, such as complex metabolic networks, signaling and innate immunity, and even control cell fate, dictating when cells should divide, differentiate or die. To help current and future generations of cell biologists incorporate the dynamic, multifaceted nature of mitochondria and assimilate modern discoveries into their scientific framework, mitochondria need a 21st century 'rebranding'. In this Opinion article, we argue that mitochondria should be considered as the 'Chief Executive Organelle' - the CEO - of the cell.
Collapse
Affiliation(s)
- Laurie P. Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- New York State Psychiatric Institute, New York, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Timothy E. Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
4
|
Yi X, Huang Y, Li X, Xu H, Liu C, Li C, Zeng Q, Luo H, Ye Z, He J, You X. Decoding Mycoplasma Nucleases: Biological Functions and Pathogenesis. Toxins (Basel) 2025; 17:215. [PMID: 40423298 DOI: 10.3390/toxins17050215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025] Open
Abstract
Nucleases are critical metabolic enzymes expressed by mycoplasmas to acquire nucleic acid precursors from the host for their parasitic existence. Certain nucleases, either membrane-bound or secreted, not only contribute to the growth of mycoplasmas but also serve as key virulence factors due to their unique spatial structures and physiological activity. The pathogenesis includes, but is not limited to, degradation of host DNA and RNA, leading to disruptions of nucleic acid metabolism and the induction of host cell apoptosis; degradation of neutrophil extracellular traps (NETs), allowing escape from neutrophil-mediated killing; and upregulation of inflammatory molecules to modulate the immune response of the host. Understanding the biological functions of nucleases is essential for gaining deeper insights into the virulence and immune evasion strategies of mycoplasmas, which can inform the development of novel approaches for the prevention, diagnosis, and treatment of mycoplasma infections.
Collapse
Affiliation(s)
- Xinchao Yi
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Ying Huang
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Xinru Li
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Hao Xu
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Chang Liu
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Chao Li
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Qianrui Zeng
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Haodang Luo
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Zufeng Ye
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
| | - Jun He
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Xiaoxing You
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang 421002, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Rudman T, Rowlands RS, Jensen JS, Beeton ML, On Behalf Of The Escmid Study Group For Mycoplasma And Chlamydia Infections Esgmac. JMM Profile: Mycoplasma genitalium: a small, yet significant pathogen. J Med Microbiol 2025; 74. [PMID: 40183779 DOI: 10.1099/jmm.0.001984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025] Open
Abstract
Mycoplasma genitalium is characterized by a small genome and a lack of a cell wall, contributing to its unique biology. It is associated with reproductive tract infections, including non-gonococcal urethritis and pelvic inflammatory disease. It is nearly as common as chlamydia in most studies from high-income countries. The emergence of antimicrobial resistance in M. genitalium raises concern about the long-term efficacy of current therapeutic strategies. Understanding its genomic intricacies and pathogenic mechanisms is crucial for developing targeted interventions to address the growing public health impact of this elusive microbe.
Collapse
Affiliation(s)
- Tia Rudman
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, UK
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Richard S Rowlands
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Michael L Beeton
- Microbiology and Infection Research Group, Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | |
Collapse
|
6
|
Mizutani M, Glass JI, Fukatsu T, Suzuki Y, Kakizawa S. Robust and highly efficient transformation method for a minimal mycoplasma cell. J Bacteriol 2025; 207:e0041524. [PMID: 39903184 PMCID: PMC11925241 DOI: 10.1128/jb.00415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Mycoplasmas have been widely investigated for their pathogenicity, as well as for genomics and synthetic biology. Conventionally, transformation of mycoplasmas was not highly efficient, and due to the low transformation efficiency, large amounts of DNA and recipient cells were required for that purpose. Here, we report a robust and highly efficient transformation method for the minimal cell JCVI-syn3B, which was created through streamlining the genome of Mycoplasma mycoides. When the growth states of JCVI-syn3B were examined in detail by focusing on such factors as pH, color, absorbance, colony forming unit, and transformation efficiency, it was found that the growth phase after the lag phase can be divided into three distinct phases, of which the highest transformation efficiency was observed during the early exponential growth phase. Notably, the transformation efficiency of up to 4.4 × 10-2 transformants per cell per microgram of plasmid DNA was obtained. A method to obtain several hundred to several thousand transformants with less than 0.2 mL of culture with approximately 1 × 107-108 cells and 10 ng of plasmid DNA was developed. Moreover, a transformation method using a frozen stock of transformation-ready cells was established. These procedures and information could simplify and enhance the transformation process of minimal cells, facilitating advanced genetic engineering and biological research using minimal cells. IMPORTANCE Mycoplasmas are parasitic and pathogenic bacteria for many animals. They are also useful bacteria to understand the cellular process of life and for bioengineering because of their simple metabolism, small genomes, and cultivability. Genetic manipulation is crucial for these purposes, but transformation efficiency in mycoplasmas is typically quite low. Here, we report a highly efficient transformation method for the minimal genome mycoplasma JCVI-syn3B. Using this method, transformants can be obtained with only 10 ng of plasmid DNA, which is around one-thousandth of the amount required for traditional mycoplasma transformations. Moreover, a convenient method using frozen stocks of transformation-ready cells was established. These improved methods play a crucial role in further studies using minimal cells.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| | - John I. Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Prefecture, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki Prefecture, Japan
| |
Collapse
|
7
|
Bobbo T, Biscarini F, Yaddehige SK, Alberghini L, Rigoni D, Bianchi N, Taccioli C. Machine learning classification of archaea and bacteria identifies novel predictive genomic features. BMC Genomics 2024; 25:955. [PMID: 39402493 PMCID: PMC11472548 DOI: 10.1186/s12864-024-10832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Several genome-based methods have been developed for their accurate classification, yet many aspects of the specific genomic features that determine these differences are not fully understood. In this study, we used publicly available whole-genome sequences from bacteria ( N = 2546 ) and archaea ( N = 109 ). From these, a set of genomic features (nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes (ncRNA, rRNA, tRNA), Chargaff's, topological entropy and Shannon's entropy scores) was extracted and used as input data to develop machine learning models for the classification of archaea and bacteria. RESULTS The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable importance, tRNA topological and Shannon's entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA and rRNA Chargaff's scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topological and Shannon's) was the most important genomic feature for classification, pointing at the complex interactions between the genetic code, tRNAs and the translational machinery. CONCLUSIONS tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classification of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Tania Bobbo
- Institute for Biomedical Technologies, National Research Council (CNR), Via Fratelli Cervi 93, Segrate (MI), 20054, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Edoardo Bassini 15, Milano, 20133, Italy.
| | - Sachithra K Yaddehige
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Leonardo Alberghini
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Davide Rigoni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, Padova, 35131, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy.
| |
Collapse
|
8
|
Chávez-Luzanía RA, Ortega-Urquieta ME, Aguilera-Ibarra J, Morales-Sandoval PH, Hernández-Coss JA, González-Vázquez LA, Jara-Morales VB, Arredondo-Márquez SH, Olea-Félix MJ, de los Santos-Villalobos S. Transdisciplinary approaches for the study of cyanobacteria and cyanotoxins. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100289. [PMID: 39469049 PMCID: PMC11513502 DOI: 10.1016/j.crmicr.2024.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Cyanobacteria, ancient aerobic and photoautotrophic prokaryotes, thrive in diverse ecosystems due to their extensive morphological and physiological adaptations. They play crucial roles in aquatic ecosystems as primary producers and resource providers but also pose significant ecological and health risks through blooms that produce harmful toxins, called cyanotoxins. The taxonomic affiliation of cyanobacteria has evolved from morphology-based methods to genomic analysis, which offers detailed structural and physiological insights that are essential for accurate taxonomic affiliation and monitoring. However, challenges posed by uncultured species have been extrapolated to the detection and quantification of cyanotoxins. Current advances in molecular biology and informatics improve the precision of monitoring and allow the analysis of groups of genes related to toxin production, providing crucial information for environmental biosafety and public health. Unfortunately, public genomic databases heavily underrepresent cyanobacteria, which limits the understanding of their diversity and metabolic capabilities. Despite the increasing availability of cyanobacterial genome sequences, research is still largely focused on a few model strains, narrowing the scope of genetic and metabolic studies. The challenges posed by cyanobacterial blooms and cyanotoxins necessitate improved molecular, cultivation, and polyphasic techniques for comprehensive classification and quantification, highlighting the need for advanced genomic approaches to better understand and manage cyanobacteria and toxins. This review explores the application of transdisciplinary approaches for the study of cyanobacteria and cyanotoxins focused on diversity analysis, population quantification, and cyanotoxin monitoring, emphasizing their genomic resources and their potential in the genomic mining of toxin-related genes.
Collapse
Affiliation(s)
- Roel Alejandro Chávez-Luzanía
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - María Edith Ortega-Urquieta
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Jaquelyn Aguilera-Ibarra
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Pamela Helué Morales-Sandoval
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - José Antonio Hernández-Coss
- Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera internacional, México 15, C.P.81223, Los Mochis, Sinaloa, Mexico
| | - Luis Alberto González-Vázquez
- Universidad Autónoma de Sinaloa, Blvd. Miguel Tamayo Espinosa de los Monteros, C.P. 80050, Col. Desarrollo Urbano Tres Ríos, Culiacán, Sinaloa, Mexico
| | - Vielka Berenice Jara-Morales
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio Hiram Arredondo-Márquez
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Marie Jennifer Olea-Félix
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| | - Sergio de los Santos-Villalobos
- Laboratorio de Biotecnología del Recurso Microbiano, Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P.85000, Col. Centro, Ciudad Obregón, Sonora, Mexico
| |
Collapse
|
9
|
Goodyear MC, Cameron CE. How Proteomics Can Inform Vaccine Design for Sexually Transmitted Infections. Sex Transm Dis 2024; 51:e36-e39. [PMID: 38860670 PMCID: PMC11392604 DOI: 10.1097/olq.0000000000001986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Mara C. Goodyear
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Caroline E. Cameron
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Prince CR, Lin IN, Feaga HA. The evolution and functional significance of the programmed ribosomal frameshift in prfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614795. [PMID: 39386688 PMCID: PMC11463598 DOI: 10.1101/2024.09.24.614795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Release Factor 2 (RF2) is one of two peptide release factors that terminate translation in bacteria. In Escherichia coli, the gene encoding RF2, prfB, contains an in-frame premature RF2-specific stop codon. Therefore, a programmed ribosomal frameshift is required to translate full-length RF2. Here, we investigate the diversity of prfB frameshifting through bioinformatic analyses of >12,000 genomes. We present evidence that prfB frameshifting autoregulates RF2 levels throughout the bacterial domain since (i) the prfB in-frame stop codon is always TGA or TAA, both of which are recognized by RF2, and never the RF1-specific TAG stop codon, and (ii) species that lack the autoregulatory programmed frameshift likely need higher RF2 levels since, on average, they have significantly higher RF2-specific stop codon usage. Overexpression of prfB without the autoregulatory frameshift motif is toxic to Bacillus subtilis, an organism with intermediate RF2-specific stop codon usage. We did not detect the programmed frameshift in any Actinobacteriota. Consistent with this finding, we observed very low frameshift efficiency at the prfB frameshift motif in the Actinobacterium Mycobacterium smegmatis. Our work provides a more complete picture of the evolution of the RF2 programmed frameshifting motif, and its usage to prevent toxic overexpression of RF2.
Collapse
Affiliation(s)
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
11
|
Surdel MC, Coburn J. Leptospiral adhesins: from identification to future perspectives. Front Microbiol 2024; 15:1458655. [PMID: 39206373 PMCID: PMC11350617 DOI: 10.3389/fmicb.2024.1458655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Leptospirosis is a significant zoonosis worldwide, with disease severity ranging from a mild non-specific illness to multi-organ dysfunction and hemorrhage. The disease is caused by pathogenic bacteria of the genus Leptospira, which are classified into pathogenic and saprophytic clades. Bacterial binding to host molecules and cells, coordinated by adhesin proteins, is an important step in pathogenesis. While many leptospiral adhesins have been identified, the vast majority have not been characterized in vivo. Herein, we present an overview of the current methodologies and successes in identifying adhesins in Leptospira, including known biological roles in vivo. We will also identify and discuss potential areas for future research.
Collapse
Affiliation(s)
- Matthew C. Surdel
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenifer Coburn
- Division of Infectious Diseases, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
12
|
Kim K, Choe D, Cho S, Palsson B, Cho BK. Reduction-to-synthesis: the dominant approach to genome-scale synthetic biology. Trends Biotechnol 2024; 42:1048-1063. [PMID: 38423803 DOI: 10.1016/j.tibtech.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Advances in systems and synthetic biology have propelled the construction of reduced bacterial genomes. Genome reduction was initially focused on exploring properties of minimal genomes, but more recently it has been deployed as an engineering strategy to enhance strain performance. This review provides the latest updates on reduced genomes, focusing on dual-track approaches of top-down reduction and bottom-up synthesis for their construction. Using cases from studies that are based on established industrial workhorse strains, we discuss the construction of a series of synthetic phenotypes that are candidates for biotechnological applications. Finally, we address the possible uses of reduced genomes for biotechnological applications and the needed future research directions that may ultimately lead to the total synthesis of rationally designed genomes.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Donghui Choe
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Suhyung Cho
- KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Kongens, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
13
|
Beamud B, Benz F, Bikard D. Going viral: The role of mobile genetic elements in bacterial immunity. Cell Host Microbe 2024; 32:804-819. [PMID: 38870898 DOI: 10.1016/j.chom.2024.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Bacteriophages and other mobile genetic elements (MGEs) pose a significant threat to bacteria, subjecting them to constant attacks. In response, bacteria have evolved a sophisticated immune system that employs diverse defensive strategies and mechanisms. Remarkably, a growing body of evidence suggests that most of these defenses are encoded by MGEs themselves. This realization challenges our traditional understanding of bacterial immunity and raises intriguing questions about the evolutionary forces at play. Our review provides a comprehensive overview of the latest findings on the main families of MGEs and the defense systems they encode. We also highlight how a vast diversity of defense systems remains to be discovered and their mechanism of mobility understood. Altogether, the composition and distribution of defense systems in bacterial genomes only makes sense in the light of the ecological and evolutionary interactions of a complex network of MGEs.
Collapse
Affiliation(s)
- Beatriz Beamud
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| | - Fabienne Benz
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3525, Microbial Evolutionary Genomics, 75015 Paris, France
| | - David Bikard
- Institut Pasteur, Université de Paris, Synthetic Biology, 75015 Paris, France.
| |
Collapse
|
14
|
Ohdera AH, Mansbridge M, Wang M, Naydenkov P, Kamel B, Goentoro L. The microbiome of a Pacific moon jellyfish Aurelia coerulea. PLoS One 2024; 19:e0298002. [PMID: 38635587 PMCID: PMC11025843 DOI: 10.1371/journal.pone.0298002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024] Open
Abstract
The impact of microbiome in animal physiology is well appreciated, but characterization of animal-microbe symbiosis in marine environments remains a growing need. This study characterizes the microbial communities associated with the moon jellyfish Aurelia coerulea, first isolated from the East Pacific Ocean and has since been utilized as an experimental system. We find that the microbiome of this Pacific Aurelia culture is dominated by two taxa, a Mollicutes and Rickettsiales. The microbiome is stable across life stages, although composition varies. Mining the host sequencing data, we assembled the bacterial metagenome-assembled genomes (MAGs). The bacterial MAGs are highly reduced, and predict a high metabolic dependence on the host. Analysis using multiple metrics suggest that both bacteria are likely new species. We therefore propose the names Ca. Mariplasma lunae (Mollicutes) and Ca. Marinirickettsia aquamalans (Rickettsiales). Finally, comparison with studies of Aurelia from other geographical populations suggests the association with Ca. Mariplasma lunae occurs in Aurelia from multiple geographical locations. The low-diversity microbiome of Aurelia provides a relatively simple system to study host-microbe interactions.
Collapse
Affiliation(s)
- Aki H. Ohdera
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
- National Museum of Natural History, Smithsonian Institute, Washington, D.C., United States of America
| | | | - Matthew Wang
- Flintridge Preparatory School, La Cañada Flintridge, CA, United States of America
| | - Paulina Naydenkov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Bishoy Kamel
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Lea Goentoro
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| |
Collapse
|
15
|
Mustafa AS. Whole Genome Sequencing: Applications in Clinical Bacteriology. Med Princ Pract 2024; 33:185-197. [PMID: 38402870 PMCID: PMC11221363 DOI: 10.1159/000538002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
The success in determining the whole genome sequence of a bacterial pathogen was first achieved in 1995 by determining the complete nucleotide sequence of Haemophilus influenzae Rd using the chain-termination method established by Sanger et al. in 1977 and automated by Hood et al. in 1987. However, this technology was laborious, costly, and time-consuming. Since 2004, high-throughput next-generation sequencing technologies have been developed, which are highly efficient, require less time, and are cost-effective for whole genome sequencing (WGS) of all organisms, including bacterial pathogens. In recent years, the data obtained using WGS technologies coupled with bioinformatics analyses of the sequenced genomes have been projected to revolutionize clinical bacteriology. WGS technologies have been used in the identification of bacterial species, strains, and genotypes from cultured organisms and directly from clinical specimens. WGS has also helped in determining resistance to antibiotics by the detection of antimicrobial resistance genes and point mutations. Furthermore, WGS data have helped in the epidemiological tracking and surveillance of pathogenic bacteria in healthcare settings as well as in communities. This review focuses on the applications of WGS in clinical bacteriology.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Liang Y, Luo H, Lin Y, Gao F. Recent advances in the characterization of essential genes and development of a database of essential genes. IMETA 2024; 3:e157. [PMID: 38868518 PMCID: PMC10989110 DOI: 10.1002/imt2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/14/2024]
Abstract
Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.
Collapse
Affiliation(s)
| | - Hao Luo
- Department of PhysicsTianjin UniversityTianjinChina
| | - Yan Lin
- Department of PhysicsTianjin UniversityTianjinChina
| | - Feng Gao
- Department of PhysicsTianjin UniversityTianjinChina
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
| |
Collapse
|
18
|
Tummler K, Klipp E. Data integration strategies for whole-cell modeling. FEMS Yeast Res 2024; 24:foae011. [PMID: 38544322 PMCID: PMC11042497 DOI: 10.1093/femsyr/foae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
Data makes the world go round-and high quality data is a prerequisite for precise models, especially for whole-cell models (WCM). Data for WCM must be reusable, contain information about the exact experimental background, and should-in its entirety-cover all relevant processes in the cell. Here, we review basic requirements to data for WCM and strategies how to combine them. As a species-specific resource, we introduce the Yeast Cell Model Data Base (YCMDB) to illustrate requirements and solutions. We discuss recent standards for data as well as for computational models including the modeling process as data to be reported. We outline strategies for constructions of WCM despite their inherent complexity.
Collapse
Affiliation(s)
- Katja Tummler
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Theoretical Biophysics,, Invalidenstr. 42, 10115 Berlin, Germany
| | - Edda Klipp
- Humboldt-Universität zu Berlin, Faculty of Life Sciences, Institute of Biology, Theoretical Biophysics,, Invalidenstr. 42, 10115 Berlin, Germany
| |
Collapse
|
19
|
Jiang S, Luo Z, Wu J, Yu K, Zhao S, Cai Z, Yu W, Wang H, Cheng L, Liang Z, Gao H, Monti M, Schindler D, Huang L, Zeng C, Zhang W, Zhou C, Tang Y, Li T, Ma Y, Cai Y, Boeke JD, Zhao Q, Dai J. Building a eukaryotic chromosome arm by de novo design and synthesis. Nat Commun 2023; 14:7886. [PMID: 38036514 PMCID: PMC10689750 DOI: 10.1038/s41467-023-43531-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The genome of an organism is inherited from its ancestor and continues to evolve over time, however, the extent to which the current version could be altered remains unknown. To probe the genome plasticity of Saccharomyces cerevisiae, here we replace the native left arm of chromosome XII (chrXIIL) with a linear artificial chromosome harboring small sets of reconstructed genes. We find that as few as 12 genes are sufficient for cell viability, whereas 25 genes are required to recover the partial fitness defects observed in the 12-gene strain. Next, we demonstrate that these genes can be reconstructed individually using synthetic regulatory sequences and recoded open-reading frames with a "one-amino-acid-one-codon" strategy to remain functional. Finally, a synthetic neochromsome with the reconstructed genes is assembled which could substitute chrXIIL for viability. Together, our work not only highlights the high plasticity of yeast genome, but also illustrates the possibility of making functional eukaryotic chromosomes from entirely artificial sequences.
Collapse
Grants
- National Natural Science Foundation of China (31725002), Shenzhen Science and Technology Program (KQTD20180413181837372), Guangdong Provincial Key Laboratory of Synthetic Genomics (2019B030301006),Bureau of International Cooperation,Chinese Academy of Sciences (172644KYSB20180022) and Shenzhen Outstanding Talents Training Fund.
- National Key Research and Development Program of China (2018YFA0900100),National Natural Science Foundation of China (31800069),Guangdong Basic and Applied Basic Research Foundation (2023A1515030285)
- National Key Research and Development Program of China (2018YFA0900100), National Natural Science Foundation of China (31800082 and 32122050),Guangdong Natural Science Funds for Distinguished Young Scholar (2021B1515020060)
- UK Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/M005690/1, BB/P02114X/1 and BB/W014483/1, and a Volkswagen Foundation “Life? Initiative” Grant (Ref. 94 771)
- US NSF grants MCB-1026068, MCB-1443299, MCB-1616111 and MCB-1921641
Collapse
Affiliation(s)
- Shuangying Jiang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhouqing Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jie Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Kang Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shijun Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zelin Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenfei Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Li Cheng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenzhen Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Gao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Marco Monti
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Daniel Schindler
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Linsen Huang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
| | - Chun Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanwei Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianyi Li
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingxin Ma
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yizhi Cai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, UK
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
| | - Qiao Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
20
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
21
|
Georgouli K, Yeom JS, Blake RC, Navid A. Multi-scale models of whole cells: progress and challenges. Front Cell Dev Biol 2023; 11:1260507. [PMID: 38020904 PMCID: PMC10661945 DOI: 10.3389/fcell.2023.1260507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Whole-cell modeling is "the ultimate goal" of computational systems biology and "a grand challenge for 21st century" (Tomita, Trends in Biotechnology, 2001, 19(6), 205-10). These complex, highly detailed models account for the activity of every molecule in a cell and serve as comprehensive knowledgebases for the modeled system. Their scope and utility far surpass those of other systems models. In fact, whole-cell models (WCMs) are an amalgam of several types of "system" models. The models are simulated using a hybrid modeling method where the appropriate mathematical methods for each biological process are used to simulate their behavior. Given the complexity of the models, the process of developing and curating these models is labor-intensive and to date only a handful of these models have been developed. While whole-cell models provide valuable and novel biological insights, and to date have identified some novel biological phenomena, their most important contribution has been to highlight the discrepancy between available data and observations that are used for the parametrization and validation of complex biological models. Another realization has been that current whole-cell modeling simulators are slow and to run models that mimic more complex (e.g., multi-cellular) biosystems, those need to be executed in an accelerated fashion on high-performance computing platforms. In this manuscript, we review the progress of whole-cell modeling to date and discuss some of the ways that they can be improved.
Collapse
Affiliation(s)
- Konstantia Georgouli
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Jae-Seung Yeom
- Center for Applied Scientific Computing, Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Robert C. Blake
- Center for Applied Scientific Computing, Computing Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| | - Ali Navid
- Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, United States
| |
Collapse
|
22
|
Sprankel L, Scheffer MP, Manger S, Ermel UH, Frangakis AS. Cryo-electron tomography reveals the binding and release states of the major adhesion complex from Mycoplasma genitalium. PLoS Pathog 2023; 19:e1011761. [PMID: 37939157 PMCID: PMC10659161 DOI: 10.1371/journal.ppat.1011761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/20/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023] Open
Abstract
The nap particle is an immunogenic surface adhesion complex from Mycoplasma genitalium. It is essential for motility and responsible for binding sialylated oligosaccharides on the surface of the host cell. The nap particle is composed of two P140-P110 heterodimers, the structure of which was recently solved. However, the interpretation of the mechanism by which the mycoplasma cells orchestrate adhesion remained challenging. Here, we provide cryo-electron tomography structures at ~11 Å resolution, which allow for the distinction between the bound and released state of the nap particle, displaying the in vivo conformational states. Fitting of the atomically resolved structures reveals that bound sialylated oligosaccharides are stabilized by both P110 and P140. Movement of the stalk domains allows for the transfer of conformational changes from the interior of the cell to the binding pocket, thus having the capability of an active release process. It is likely that the same mechanism can be transferred to other Mycoplasma species that belong to the pneumoniae cluster.
Collapse
Affiliation(s)
- Lasse Sprankel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Margot P. Scheffer
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Sina Manger
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Utz H. Ermel
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| | - Achilleas S. Frangakis
- Buchmann Institute for Molecular Life Sciences and Institute of Biophysics, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
23
|
Maerkl SJ. On biochemical constructors and synthetic cells. Interface Focus 2023; 13:20230014. [PMID: 37577005 PMCID: PMC10415740 DOI: 10.1098/rsfs.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 08/15/2023] Open
Abstract
Is it possible to build life? More specifically, is it possible to create a living synthetic cell from inanimate building blocks? This question precipitated into one of the most significant grand challenges in biochemistry and synthetic biology, with several large research consortia forming around this endeavour in Europe (European Synthetic Cell Initiative), the USA (Build-a-Cell Initiative) and Japan (Japanese Society for Cell Synthesis Research). The mature field of biochemistry, the advent of synthetic biology in the early 2000s, and the burgeoning field of cell-free synthetic biology made it feasible to tackle this grand challenge.
Collapse
Affiliation(s)
- Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Vaud, Switzerland
| |
Collapse
|
24
|
Magnuson JT, Monticelli G, Schlenk D, Bisesi JH, Pampanin DM. Connecting gut microbiome changes with fish health conditions in juvenile Atlantic cod (Gadus morhua) exposed to dispersed crude oil. ENVIRONMENTAL RESEARCH 2023; 234:116516. [PMID: 37399986 DOI: 10.1016/j.envres.2023.116516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023]
Abstract
Polycyclic aromatic hydrocarbons found in crude oil can impair fish health following sublethal exposure. However, the dysbiosis of microbial communities within the fish host and influence it has on the toxic response of fish following exposure has been less characterized, particularly in marine species. To better understand the effect of dispersed crude oil (DCO) on juvenile Atlantic cod (Gadus morhua) microbiota composition and potential targets of exposure within the gut, fish were exposed to 0.05 ppm DCO for 1, 3, 7, or 28 days and 16 S metagenomic and metatranscriptomic sequencing on the gut and RNA sequencing on intestinal content were conducted. In addition to assessing species composition, richness, and diversity from microbial gut community analysis and transcriptomic profiling, the functional capacity of the microbiome was determined. Mycoplasma and Aliivibrio were the two most abundant genera after DCO exposure and Photobacterium the most abundant genus in controls, after 28 days. Metagenomic profiles were only significantly different between treatments after a 28-day exposure. The top identified pathways were involved in energy and the biosynthesis of carbohydrates, fatty acids, amino acids, and cellular structure. Biological processes following fish transcriptomic profiling shared common pathways with microbial functional annotations such as energy, translation, amide biosynthetic process, and proteolysis. There were 58 differently expressed genes determined from metatranscriptomic profiling after 7 days of exposure. Predicted pathways that were altered included those involved in translation, signal transduction, and Wnt signaling. EIF2 signaling was consistently dysregulated following exposure to DCO, regardless of exposure duration, with impairments in IL-22 signaling and spermine and spermidine biosynthesis in fish after 28 days. Data were consistent with predictions of a potentially reduced immune response related to gastrointestinal disease. Herein, transcriptomic-level responses helped explain the relevance of differences in gut microbial communities in fish following DCO exposure.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway.
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| |
Collapse
|
25
|
Mascher T. Past, Present, and Future of Extracytoplasmic Function σ Factors: Distribution and Regulatory Diversity of the Third Pillar of Bacterial Signal Transduction. Annu Rev Microbiol 2023; 77:625-644. [PMID: 37437215 DOI: 10.1146/annurev-micro-032221-024032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Responding to environmental cues is a prerequisite for survival in the microbial world. Extracytoplasmic function σ factors (ECFs) represent the third most abundant and by far the most diverse type of bacterial signal transduction. While archetypal ECFs are controlled by cognate anti-σ factors, comprehensive comparative genomics efforts have revealed a much higher abundance and regulatory diversity of ECF regulation than previously appreciated. They have also uncovered a diverse range of anti-σ factor-independent modes of controlling ECF activity, including fused regulatory domains and phosphorylation-dependent mechanisms. While our understanding of ECF diversity is comprehensive for well-represented and heavily studied bacterial phyla-such as Proteobacteria, Firmicutes, and Actinobacteria (phylum Actinomycetota)-our current knowledge about ECF-dependent signaling in the vast majority of underrepresented phyla is still far from complete. In particular, the dramatic extension of bacterial diversity in the course of metagenomic studies represents both a new challenge and an opportunity in expanding the world of ECF-dependent signal transduction.
Collapse
Affiliation(s)
- Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany;
| |
Collapse
|
26
|
Nakane D. Rheotaxis in Mycoplasma gliding. Microbiol Immunol 2023; 67:389-395. [PMID: 37430383 DOI: 10.1111/1348-0421.13090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023]
Abstract
This review describes the upstream-directed movement in the small parasitic bacterium Mycoplasma. Many Mycoplasma species exhibit gliding motility, a form of biological motion over surfaces without the aid of general surface appendages such as flagella. The gliding motility is characterized by a constant unidirectional movement without changes in direction or backward motion. Unlike flagellated bacteria, Mycoplasma lacks the general chemotactic signaling system to control their moving direction. Therefore, the physiological role of directionless travel in Mycoplasma gliding remains unclear. Recently, high-precision measurements under an optical microscope have revealed that three species of Mycoplasma exhibited rheotaxis, that is, the direction of gliding motility is lead upstream by the water flow. This intriguing response appears to be optimized for the flow patterns encountered at host surfaces. This review provides a comprehensive overview of the morphology, behavior, and habitat of Mycoplasma gliding, and discusses the possibility that the rheotaxis is ubiquitous among them.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, Tokyo, Japan
| |
Collapse
|
27
|
van den Elzen A, Helena-Bueno K, Brown CR, Chan LI, Melnikov S. Ribosomal proteins can hold a more accurate record of bacterial thermal adaptation compared to rRNA. Nucleic Acids Res 2023; 51:8048-8059. [PMID: 37395434 PMCID: PMC10450194 DOI: 10.1093/nar/gkad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Ribosomal genes are widely used as 'molecular clocks' to infer evolutionary relationships between species. However, their utility as 'molecular thermometers' for estimating optimal growth temperature of microorganisms remains uncertain. Previously, some estimations were made using the nucleotide composition of ribosomal RNA (rRNA), but the universal application of this approach was hindered by numerous outliers. In this study, we aimed to address this problem by identifying additional indicators of thermal adaptation within the sequences of ribosomal proteins. By comparing sequences from 2021 bacteria with known optimal growth temperature, we identified novel indicators among the metal-binding residues of ribosomal proteins. We found that these residues serve as conserved adaptive features for bacteria thriving above 40°C, but not at lower temperatures. Furthermore, the presence of these metal-binding residues exhibited a stronger correlation with the optimal growth temperature of bacteria compared to the commonly used correlation with the 16S rRNA GC content. And an even more accurate correlation was observed between the optimal growth temperature and the YVIWREL amino acid content within ribosomal proteins. Overall, our work suggests that ribosomal proteins contain a more accurate record of bacterial thermal adaptation compared to rRNA. This finding may simplify the analysis of unculturable and extinct species.
Collapse
Affiliation(s)
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
28
|
Kristensen T, Sørensen LH, Pedersen SK, Jensen JD, Mordhorst H, Lacy-Roberts N, Lukjancenko O, Luo Y, Hoffmann M, Hendriksen RS. Results of the 2020 Genomic Proficiency Test for the network of European Union Reference Laboratory for Antimicrobial Resistance assessing whole-genome-sequencing capacities. Microb Genom 2023; 9:mgen001076. [PMID: 37526643 PMCID: PMC10483428 DOI: 10.1099/mgen.0.001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
The global surveillance and outbreak investigation of antimicrobial resistance (AMR) is amidst a paradigm shift from traditional biology to bioinformatics. This is due to developments in whole-genome-sequencing (WGS) technologies, bioinformatics tools, and reduced costs. The increased use of WGS is accompanied by challenges such as standardization, quality control (QC), and data sharing. Thus, there is global need for inter-laboratory WGS proficiency test (PT) schemes to evaluate laboratories' capacity to produce reliable genomic data. Here, we present the results of the first iteration of the Genomic PT (GPT) organized by the Global Capacity Building Group at the Technical University of Denmark in 2020. Participating laboratories sequenced two isolates and corresponding DNA of Salmonella enterica, Escherichia coli and Campylobacter coli, using WGS methodologies routinely employed at their laboratories. The participants' ability to obtain consistently good-quality WGS data was assessed based on several QC WGS metrics. A total of 21 laboratories from 21 European countries submitted WGS and meta-data. Most delivered high-quality sequence data with only two laboratories identified as overall underperforming. The QC metrics, N50 and number of contigs, were identified as good indicators for high-sequencing quality. We propose QC thresholds for N50 greater than 20 000 and 25 000 for Campylobacter coli and Escherichia coli, respectively, and number of contigs >200 bp greater than 225, 265 and 100 for Salmonella enterica, Escherichia coli and Campylobacter coli, respectively. The GPT2020 results confirm the importance of systematic QC procedures, ensuring the submission of reliable WGS data for surveillance and outbreak investigation to meet the requirements of the paradigm shift in methodology.
Collapse
Affiliation(s)
- Thea Kristensen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Department of Plant and Environmental Sciences, Section for Organismal Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lauge Holm Sørensen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Susanne Karlsmose Pedersen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jacob Dyring Jensen
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hanne Mordhorst
- National Food Institute, Research Group of Genomic Epidemiology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niamh Lacy-Roberts
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Yan Luo
- Center for Food and Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Maria Hoffmann
- Center for Food and Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Rene S. Hendriksen
- National Food Institute, Research Group of Global Capacity Building, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
29
|
Singh AK, Amar I, Ramadasan H, Kappagantula KS, Chavali S. Proteins with amino acid repeats constitute a rapidly evolvable and human-specific essentialome. Cell Rep 2023; 42:112811. [PMID: 37453061 DOI: 10.1016/j.celrep.2023.112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Protein products of essential genes, indispensable for organismal survival, are highly conserved and bring about fundamental functions. Interestingly, proteins that contain amino acid homorepeats that tend to evolve rapidly are enriched in eukaryotic essentialomes. Why are proteins with hypermutable homorepeats enriched in conserved and functionally vital essential proteins? We solve this functional versus evolutionary paradox by demonstrating that human essential proteins with homorepeats bring about crosstalk across biological processes through high interactability and have distinct regulatory functions affecting expansive global regulation. Importantly, essential proteins with homorepeats rapidly diverge with the amino acid substitutions frequently affecting functional sites, likely facilitating rapid adaptability. Strikingly, essential proteins with homorepeats influence human-specific embryonic and brain development, implying that the presence of homorepeats could contribute to the emergence of human-specific processes. Thus, we propose that homorepeat-containing essential proteins affecting species-specific traits can be potential intervention targets across pathologies, including cancers and neurological disorders.
Collapse
Affiliation(s)
- Anjali K Singh
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Ishita Amar
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Harikrishnan Ramadasan
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Keertana S Kappagantula
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India
| | - Sreenivas Chavali
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
30
|
Stupak A, Kwaśniewski W. Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy. Biomolecules 2023; 13:911. [PMID: 37371491 PMCID: PMC10296270 DOI: 10.3390/biom13060911] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The microbiome is of great interest due to its potential influence on the occurrence and treatment of some human illnesses. It may be regarded as disruptions to the delicate equilibrium that humans ordinarily maintain with their microorganisms or the microbiota in their environment. The focus of this review is on the methodologies and current understanding of the functional microbiome in pregnancy outcomes. We present how novel techniques bring new insights to the contemporary field of maternal-fetal medicine with a critical analysis. The maternal microbiome in late pregnancy has been extensively studied, although data on maternal microbial changes during the first trimester are rare. Research has demonstrated that, in healthy pregnancies, the origin of the placental microbiota is oral (gut) rather than vaginal. Implantation, placental development, and maternal adaptation to pregnancy are complex processes in which fetal and maternal cells interact. Microbiome dysbiosis or microbial metabolites are rising as potential moderators of antenatal illnesses related to the placenta, such as fetal growth restriction, preeclampsia, and others, including gestational diabetes and preterm deliveries. However, because of the presence of antimicrobial components, it is likely that the bacteria identified in placental tissue are (fragments of) bacteria that have been destroyed by the placenta's immune cells. Using genomic techniques (metagenomics, metatranscriptomics, and metaproteomics), it may be possible to predict some properties of a microorganism's genome and the biochemical (epigenetic DNA modification) and physical components of the placenta as its environment. Despite the results described in this review, this subject needs further research on some major and crucial aspects. The phases of an in utero translocation of the maternal gut microbiota to the fetus should be explored. With a predictive knowledge of the impacts of the disturbance on microbial communities that influence human health and the environment, genomics may hold the answer to the development of novel therapies for the health of pregnant women.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, Staszica Str. 16, 20-081 Lublin, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecological Oncology and Gynecology, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
31
|
Klose SM, De Souza DP, Disint JF, Andrews DM, Underwood GJ, Morrow CJ, Marenda MS, Noormohammadi AH. Reversion of mutations in a live mycoplasma vaccine alters its metabolism. Vaccine 2023; 41:3358-3366. [PMID: 37100722 DOI: 10.1016/j.vaccine.2023.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/28/2023]
Abstract
The live attenuated temperature sensitive vaccine strain MS-H (Vaxsafe® MS, Bioproperties Pty. Ltd., Australia) is widely used to control disease associated with M. synoviae infection in commercial poultry. MS-H was derived from a field strain (86079/7NS) through N-methyl-N'-nitro-N-nitrosoguanidine (NTG)-induced mutagenesis. Whole genomic sequence analysis of the MS-H and comparison with that of the 86079/7NS have found that MS-H contains 32 single nucleotide polymorphisms (SNPs). Three of these SNPs, found in the obgE, oppF and gapdh genes, have been shown to be prone to reversion under field condition, albeit at a low frequency. Three MS-H reisolates containing the 86079/7NS genotype in obgE (AS2), obgE and oppF (AB1), and obgE, oppF and gapdh (TS4), appeared to be more immunogenic and transmissible compared to MS-H in chickens. To investigate the influence of these reversions in the in vitro fitness of M. synoviae, the growth kinetics and steady state metabolite profiles of the MS-H reisolates, AS2, AB1 and TS4, were compared to those of the vaccine strain. Steady state metabolite profiling of the reisolates showed that changes in ObgE did not significantly influence the metabolism, while changes in OppF was associated with significant alterations in uptake of peptides and/or amino acids into the M. synoviae cell. It was also found that GAPDH plays a role in metabolism of the glycerophospholipids as well as an arginine deiminase (ADI) pathway. This study underscores the role of ObgE, OppF and GAPDH in M. synoviae metabolism, and suggests that the impaired fitness arising from variations in ObgE, OppF and GAPDH contributes to attenuation of MS-H.
Collapse
Affiliation(s)
- Sara M Klose
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Australia.
| | - David P De Souza
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Australia
| | - Jillian F Disint
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Australia
| | | | | | - Chris J Morrow
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Australia; Bioproperties Pty Ltd, Australia
| | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Australia
| | - Amir H Noormohammadi
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Australia
| |
Collapse
|
32
|
Sidebottom AM. A Brief History of Microbial Study and Techniques for Exploring the Gastrointestinal Microbiome. Clin Colon Rectal Surg 2023; 36:98-104. [PMID: 36844714 PMCID: PMC9946713 DOI: 10.1055/s-0042-1760678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Over the past 20 years, the study of microbial communities has benefited from simultaneous advancements across several fields resulting in a high-resolution view of human consortia. Although the first bacterium was described in the mid-1600s, the interest in community membership and function has not been a focus or feasible until recent decades. With strategies such as shotgun sequencing, microbes can be taxonomically profiled without culturing and their unique variants defined and compared across phenotypes. Approaches such as metatranscriptomics, metaproteomics, and metabolomics can define the current functional state of a population through the identification of bioactive compounds and significant pathways. Prior to sample collection in microbiome-based studies it is critical to evaluate the requirements of downstream analyses to ensure accurate processing and storage for generation of high data quality. A common pipeline for the analysis of human samples includes approval of collection protocols and method finalization, patient sample collection, sample processing, data analysis, and visualization. Human-based microbiome studies are inherently challenging but with the application of complementary multi-omic strategies there is an unbounded potential for discovery.
Collapse
|
33
|
Tantoso E, Eisenhaber B, Sinha S, Jensen LJ, Eisenhaber F. About the dark corners in the gene function space of Escherichia coli remaining without illumination by scientific literature. Biol Direct 2023; 18:7. [PMID: 36855185 PMCID: PMC9976479 DOI: 10.1186/s13062-023-00362-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Although Escherichia coli (E. coli) is the most studied prokaryote organism in the history of life sciences, many molecular mechanisms and gene functions encoded in its genome remain to be discovered. This work aims at quantifying the illumination of the E. coli gene function space by the scientific literature and how close we are towards the goal of a complete list of E. coli gene functions. RESULTS The scientific literature about E. coli protein-coding genes has been mapped onto the genome via the mentioning of names for genomic regions in scientific articles both for the case of the strain K-12 MG1655 as well as for the 95%-threshold softcore genome of 1324 E. coli strains with known complete genome. The article match was quantified with the ratio of a given gene name's occurrence to the mentioning of any gene names in the paper. The various genome regions have an extremely uneven literature coverage. A group of elite genes with ≥ 100 full publication equivalents (FPEs, FPE = 1 is an idealized publication devoted to just a single gene) attracts the lion share of the papers. For K-12, ~ 65% of the literature covers just 342 elite genes; for the softcore genome, ~ 68% of the FPEs is about only 342 elite gene families (GFs). We also find that most genes/GFs have at least one mentioning in a dedicated scientific article (with the exception of at least 137 protein-coding transcripts for K-12 and 26 GFs from the softcore genome). Whereas the literature growth rates were highest for uncharacterized or understudied genes until 2005-2010 compared with other groups of genes, they became negative thereafter. At the same time, literature for anyhow well-studied genes started to grow explosively with threshold T10 (≥ 10 FPEs). Typically, a body of ~ 20 actual articles generated over ~ 15 years of research effort was necessary to reach T10. Lineage-specific co-occurrence analysis of genes belonging to the accessory genome of E. coli together with genomic co-localization and sequence-analytic exploration hints previously completely uncharacterized genes yahV and yddL being associated with osmotic stress response/motility mechanisms. CONCLUSION If the numbers of scientific articles about uncharacterized and understudied genes remain at least at present levels, full gene function lists for the strain K-12 MG1655 and the E. coli softcore genome are in reach within the next 25-30 years. Once the literature body for a gene crosses 10 FPEs, most of the critical fundamental research risk appears overcome and steady incremental research becomes possible.
Collapse
Affiliation(s)
- Erwin Tantoso
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Birgit Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore
| | - Swati Sinha
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore.,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore.,European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Lars Juhl Jensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frank Eisenhaber
- Agency for Science, Technology and Research (A*STAR), Genome Institute of Singapore (GIS), 60 Biopolis Street, Singapore, 138672, Republic of Singapore. .,Agency for Science, Technology and Research (A*STAR), Bioinformatics Institute (BII), 30 Biopolis Street #07-01, Matrix Building, Singapore, 138671, Republic of Singapore. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
34
|
Silva L, Antunes A. Omics and Remote Homology Integration to Decipher Protein Functionality. Methods Mol Biol 2023; 2627:61-81. [PMID: 36959442 DOI: 10.1007/978-1-0716-2974-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the recent years, several "omics" technologies based on specific biomolecules (from DNA, RNA, proteins, or metabolites) have won growing importance in the scientific field. Despite each omics possess their own laboratorial protocols, they share a background of bioinformatic tools for data integration and analysis. A recent subset of bioinformatic tools, based on available templates or remote homology protocols, allow computational fast and high-accuracy prediction of protein structures. The quickly predict of actually unsolved protein structures, together with late omics findings allow a boost of scientific advances in multiple fields such as cancer, longevity, immunity, mitochondrial function, toxicology, drug design, biosensors, and recombinant protein engineering. In this chapter, we assessed methodological approaches for the integration of omics and remote homology inferences to decipher protein functionality, opening the door to the next era of biological knowledge.
Collapse
Affiliation(s)
- Liliana Silva
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
35
|
Yu J, Zhou Y, Luo H, Su X, Gan T, Wang J, Ye Z, Deng Z, He J. Mycoplasma genitalium infection in the female reproductive system: Diseases and treatment. Front Microbiol 2023; 14:1098276. [PMID: 36896431 PMCID: PMC9989269 DOI: 10.3389/fmicb.2023.1098276] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Mycoplasma genitalium is a newly emerged sexually transmitted disease pathogen and an independent risk factor for female cervicitis and pelvic inflammatory disease. The clinical symptoms caused by M. genitalium infection are mild and easily ignored. If left untreated, M. genitalium can grow along the reproductive tract and cause salpingitis, leading to infertility and ectopic pregnancy. Additionally, M. genitalium infection in late pregnancy can increase the incidence of preterm birth. M. genitalium infections are often accompanied by co-infection with other sexually transmitted pathogens (Chlamydia trachomatis, Neisseria gonorrhoeae, and Trichomonas vaginalis) and viral infections (Human Papilloma Virus and Human Immunodeficiency Virus). A recent study suggested that M. genitalium plays a role in tumor development in the female reproductive system. However, few studies endorsed this finding. In recent years, M. genitalium has evolved into a new "superbug" due to the emergence of macrolide-and fluoroquinolone-resistant strains leading to frequent therapy failures. This review summarizes the pathogenic characteristics of M. genitalium and the female reproductive diseases caused by M. genitalium (cervicitis, pelvic inflammatory disease, ectopic pregnancy, infertility, premature birth, co-infection, reproductive tumors, etc.), as well as its potential relationship with reproductive tumors and clinical treatment.
Collapse
Affiliation(s)
- Jianwei Yu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yan Zhou
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Haodang Luo
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoling Su
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Tian Gan
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Jingyun Wang
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zufeng Ye
- The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhongliang Deng
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jun He
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.,The Affiliated Nanhua Hospital, Department of Clinical Laboratory, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
36
|
Clinical Performance of Three Commercial Molecular Diagnostic Assays for the Detection of Fluoroquinolone Resistance-Associated Mutations in Mycoplasma genitalium. J Clin Microbiol 2022; 60:e0113522. [PMID: 36321820 PMCID: PMC9769504 DOI: 10.1128/jcm.01135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The high prevalence of macrolide resistance in Mycoplasma genitalium results in an increased reliance on moxifloxacin, the second-line treatment; however, moxifloxacin resistance has also emerged. Because assays that can detect fluoroquinolone resistance-associated mutations will be useful for the management of macrolide-resistant M. genitalium infections, we evaluated the performance of three commercial assays (the Allplex MG & MoxiR Assay [Seegene], LightMix Modular parC kit [TIBMOLBIOL], and MGMO qPCR [NYtor) in comparison with parC gene Sanger sequencing used as the reference. Between January 2018 and December 2020, remnants of M. genitalium-positive clinical specimens received at the French National Reference Center for Bacterial Sexually Transmitted Infections were collected if a Sanger sequencing result was obtained for the parC gene. Overall, 368 M. genitalium-positive specimens were assessed. The clinical sensitivities for the detection of the ParC mutations that are likely of clinical significance were 91.8% (95% CI = 83.2 to 96.2), 98.6% (95% CI = 92.4 to 99.8), and 94.4% (95% CI = 86.6 to 97.8) for the Allplex MG & MoxiR, LightMix Modular parC, and MGMO qPCR kits, respectively, with no significant difference between the three kits. The clinical specificity of the Allplex MG & MoxiR and MGMO qPCR kits was 100% (95% CI = 97.7 to 100 and 98.7 to 100, respectively), which was significantly higher than the specificity of the LightMix Modular parC kit of 95.4% (95%CI = 92.3 to 97.3), for which the interpretation of melting curves may be misleading. These kits should be useful for the selection of antimicrobials in macrolide-resistant M. genitalium infections, although further developments may be necessary because parC mutations involved in fluoroquinolone resistance have not been precisely determined.
Collapse
|
37
|
Yueyue W, Feichen X, Yixuan X, Lu L, Yiwen C, Xiaoxing Y. Pathogenicity and virulence of Mycoplasma genitalium: Unraveling Ariadne's Thread. Virulence 2022; 13:1161-1183. [PMID: 35791283 PMCID: PMC9262362 DOI: 10.1080/21505594.2022.2095741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma genitalium, a pathogen from class Mollicutes, has been linked to sexually transmitted diseases and sparked widespread concern. To adapt to its environment, M. genitalium has evolved specific adhesins and motility mechanisms that allow it to adhere to and invade various eukaryotic cells, thereby causing severe damage to the cells. Even though traditional exotoxins have not been identified, secreted nucleases or membrane lipoproteins have been shown to cause cell death and inflammatory injury in M. genitalium infection. However, as both innate and adaptive immune responses are important for controlling infection, the immune responses that develop upon infection do not necessarily eliminate the organism completely. Antigenic variation, detoxifying enzymes, immunoglobulins, neutrophil extracellular trap-degrading enzymes, cell invasion, and biofilm formation are important factors that help the pathogen overcome the host defence and cause chronic infections in susceptible individuals. Furthermore, M. genitalium can increase the susceptibility to several sexually transmitted pathogens, which significantly complicates the persistence and chronicity of M. genitalium infection. This review aimed to discuss the virulence factors of M. genitalium to shed light on its complex pathogenicity and pathogenesis of the infection.
Collapse
Affiliation(s)
- Wu Yueyue
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiu Feichen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xi Yixuan
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Liu Lu
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Chen Yiwen
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - You Xiaoxing
- Institute of Pathogenic Biology, Hengyang Medical School; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
38
|
Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies. ENDOCRINES 2022. [DOI: 10.3390/endocrines3040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement.
Collapse
|
39
|
Jiang W, Wu Z, Gao Z, Wan M, Zhou M, Mao C, Shen J. Artificial Cells: Past, Present and Future. ACS NANO 2022; 16:15705-15733. [PMID: 36226996 DOI: 10.1021/acsnano.2c06104] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Artificial cells are constructed to imitate natural cells and allow researchers to explore biological process and the origin of life. The construction methods for artificial cells, through both top-down or bottom-up approaches, have achieved great progress over the past decades. Here we present a comprehensive overview on the development of artificial cells and their properties and applications. Artificial cells are derived from lipids, polymers, lipid/polymer hybrids, natural cell membranes, colloidosome, metal-organic frameworks and coacervates. They can be endowed with various functions through the incorporation of proteins and genes on the cell surface or encapsulated inside of the cells. These modulations determine the properties of artificial cells, including producing energy, cell growth, morphology change, division, transmembrane transport, environmental response, motility and chemotaxis. Multiple applications of these artificial cells are discussed here with a focus on therapeutic applications. Artificial cells are used as carriers for materials and information exchange and have been shown to function as targeted delivery systems of personalized drugs. Additionally, artificial cells can function to substitute for cells with impaired function. Enzyme therapy and immunotherapy using artificial cells have been an intense focus of research. Finally, prospects of future development of cell-mimic properties and broader applications are highlighted.
Collapse
Affiliation(s)
- Wentao Jiang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ziyu Wu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Zheng Gao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
40
|
Khalid K, Hussain T, Jamil Z, Alrokayan KS, Ahmad B, Waheed Y. Vaccinomics-Aided Development of a Next-Generation Chimeric Vaccine against an Emerging Threat: Mycoplasma genitalium. Vaccines (Basel) 2022; 10:1720. [PMID: 36298585 PMCID: PMC9608589 DOI: 10.3390/vaccines10101720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma genitalium, besides urethritis, causes a number of other sexually transmitted diseases, posing a significant health threat to both men and women, particularly in developing countries. In light of the rapid appearance of multidrug-resistant strains, M. genitalium is regarded as an emerging threat and has been placed on the CDC's "watch list". Hence, a protective vaccine is essential for combating this pathogen. In this study, we utilized reverse vaccinology to develop a chimeric vaccine against M. genitalium by identifying vaccine targets from the reference proteome (Strain G-37) of this pathogen. A multiepitope vaccine was developed using proteins that are non-toxic, non-allergic, and non-homologous to human proteins. Several bioinformatic tools identified linear and non-linear B-cell epitopes, as well as MHC epitopes belonging to classes I and II, from the putative vaccine target proteins. The epitopes that showed promiscuity among the various servers were shortlisted and subsequently selected for further investigation based on an immunoinformatic analysis. Using GPGPG, AAY, and KK linkers, the shortlisted epitope sequences were assembled to create a chimeric construct. A GPI anchor protein immunomodulating adjuvant was adjoined to the vaccine construct's N-terminus through the EAAK linker so as to improve the overall immunogenicity. For further investigations of the designed construct, various bioinformatic tools were employed to study the physicochemical properties, immune profile, solubility, and allergenicity profile. A tertiary chimeric design was computationally modeled using I-TASSER and Robetta and was subsequently refined through GalaxyRefine. ProSA-Web was exploited to corroborate the quality of the construct by detecting errors and the Ramachandran plot was used to identify possible quality issues. Simulation studies of the molecular dynamics demonstrated the robustness and flexibility of the designed construct. Following the successful docking of the designed model to the immune receptors, the construct was computationally cloned into Escherichia coli plasmids to affirm the efficient expression of the designed construct in a biological system.
Collapse
Affiliation(s)
- Kashaf Khalid
- Clinical and Biomedical Research Center, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | - Tajamul Hussain
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zubia Jamil
- Department of Medicine, Foundation University Medical College, Foundation University Islamabad, Islamabad 44000, Pakistan
| | | | - Bashir Ahmad
- Department of Biotechnology, International Islamic University, Islamabad 44000, Pakistan
| | - Yasir Waheed
- Office of Research, Innovation and Commercialization, Shaheed Zulfiqar Ali Bhutto Medical University (SZABMU), Islamabad 44000, Pakistan
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos 1401, Lebanon
| |
Collapse
|
41
|
Uchiyama J, Takemura-Uchiyama I, Gotoh K, Kato SI, Sakaguchi Y, Murakami H, Fukuyama T, Kaneki M, Matsushita O, Matsuzaki S. Phylogenic analysis of new viral cluster of large phages with unusual DNA genomes containing uracil in place of thymine in gene-sharing network, using phages S6 and PBS1 and relevant uncultured phages derived from sewage metagenomics. Virus Res 2022; 319:198881. [PMID: 35934259 DOI: 10.1016/j.virusres.2022.198881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022]
Abstract
Bacteriophages (phages) are the most diverse and abundant life-form on Earth. Jumbophages are phages with double-stranded DNA genomes longer than 200 kbp. Among these, some jumbophages with uracil in place of thymine as a nucleic acid base, which we have tentatively termed "dU jumbophages" in this study, have been reported. Because the dU jumbophages are considered to be a living fossil from the RNA world, the evolutionary traits of dU jumbophages are of interest. In this study, we examined the phylogeny of dU jumbophages. First, tBLASTx analysis of newly sequenced dU jumbophages such as Bacillus phage PBS1 and previously isolated Staphylococcus phage S6 showed similarity to the other dU jumbophages. Second, we detected the two partial genome sequences of uncultured phages possibly relevant to dU jumbophages, scaffold_002 and scaffold_007, from wastewater metagenomics. Third, according to the gene-sharing network analysis, the dU jumbophages, including phages PBS1 and S6, and uncultured phage scaffold_002 formed a cluster, which suggested a new viral subfamily/family. Finally, analyses of the phylogenetic relationship with other phages showed that the dU jumbophage cluster, which had two clades of phages infecting Gram-negative and Gram-positive bacteria, diverged from the single ancestral phage. These findings together with previous reports may imply that dU jumbophages evolved from the same origin before divergence of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
| | - Iyo Takemura-Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Kazuyoshi Gotoh
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shin-Ichiro Kato
- Research Institute of Molecular Genetics, Kochi University, Kochi 783-0093, Japan
| | - Yoshihiko Sakaguchi
- Department of Microbiology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Tomoki Fukuyama
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Mao Kaneki
- School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Shigenobu Matsuzaki
- Department of Medical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan
| |
Collapse
|
42
|
Wang H, Zhang W, Tang YW. Clinical Microbiology in Detection and Identification of Emerging Microbial Pathogens: Past, Present and Future. Emerg Microbes Infect 2022; 11:2579-2589. [PMID: 36121351 PMCID: PMC9639501 DOI: 10.1080/22221751.2022.2125345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clinical microbiology has possessed a marvellous past, an important present and a bright future. Western medicine modernization started with the discovery of bacterial pathogens, and from then, clinical bacteriology became a cornerstone of diagnostics. Today, clinical microbiology uses standard techniques including Gram stain morphology, in vitro culture, antigen and antibody assays, and molecular biology both to establish a diagnosis and monitor the progression of microbial infections. Clinical microbiology has played a critical role in pathogen detection and characterization for emerging infectious diseases as evidenced by the ongoing COVID-19 pandemic. Revolutionary changes are on the way in clinical microbiology with the application of “-omic” techniques, including transcriptomics and metabolomics, and optimization of clinical practice configurations to improve outcomes of patients with infectious diseases.
Collapse
Affiliation(s)
- Hui Wang
- Department of Laboratory Medicine, Peking University People's Hospital, Beijing 100044, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Fudan University Huashan Hospital, Shanghai 200040, China
| | - Yi-Wei Tang
- Medical Affairs, Danaher Diagnostic Platform China/Cepheid, Shanghai 200325, China
| |
Collapse
|
43
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
44
|
Pitt R, Boampong D, Day M, Jensen JS, Cole M. Challenges of in vitro propagation and antimicrobial susceptibility testing of Mycoplasma genitalium. J Antimicrob Chemother 2022; 77:2901-2907. [PMID: 35979812 DOI: 10.1093/jac/dkac281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The sexually transmitted bacterial pathogen Mycoplasma genitalium has proved a complex organism to work with in the laboratory setting. Exhibiting an extremely fastidious nature, successful in vitro propagation of M. genitalium has remained elusive for many researchers. Antimicrobial resistance to both first- and second-line recommended therapies (macrolides and fluoroquinolones, respectively) is commonly reported. However, phenotypic susceptibility testing is not routinely performed, due to the difficulties of in vitro growth. Instead, molecular detection of known resistance determinants is used to infer susceptibility/resistance. However, associations between determinant detection and clinical treatment failure are not always clear. Furthermore, molecular assays have limited use for detection of emerging resistance mechanisms. The present review collates and discusses the development of successful culture systems for initial isolation of this organism and current methodologies employed for phenotypic susceptibility testing to aid researchers in this field. As with Neisseria gonorrhoeae, future treatment options are extremely limited for M. genitalium and, if this sexually transmitted infection is to remain treatable, phenotypic susceptibility testing will play an invaluable role in evaluation of potential therapeutics. As such, retainment of these techniques is imperative.
Collapse
Affiliation(s)
- Rachel Pitt
- UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | | | - Michaela Day
- UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| | | | - Michelle Cole
- UK Health Security Agency, 61 Colindale Avenue, London, NW9 5EQ, UK
| |
Collapse
|
45
|
Venter JC, Glass JI, Hutchison CA, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022; 185:2708-2724. [PMID: 35868275 PMCID: PMC9347161 DOI: 10.1016/j.cell.2022.06.046] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- J Craig Venter
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA.
| | - John I Glass
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Sanjay Vashee
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| |
Collapse
|
46
|
Prolyl aminopeptidases: Reclassification, properties, production and industrial applications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Zhu X, Zhaoyang Zhang, Bin Jia, Yuan Y. Current advances of biocontainment strategy in synthetic biology. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas. Microbiol Spectr 2022; 10:e0064522. [PMID: 35638916 PMCID: PMC9241803 DOI: 10.1128/spectrum.00645-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. Mycoplasma cells have minute sizes, often in the 300- to 800-nm range. As these dimensions are close to the diffraction limit of visible light, fluorescence imaging in mycoplasmas is often poorly informative. Recently developed superresolution imaging techniques can break this diffraction limit, improving the imaging resolution by an order of magnitude and offering a new nanoscale vision of the organization of these bacteria. These techniques have, however, not been applied to mycoplasmas before. Here, we describe an efficient and reliable protocol to perform single-molecule localization microscopy (SMLM) imaging in mycoplasmas. We provide a polyvalent transposon-based system to express the photoconvertible fluorescent protein mEos3.2, enabling photo-activated localization microscopy (PALM) in most Mycoplasma species. We also describe the application of direct stochastic optical reconstruction microscopy (dSTORM). We showcase the potential of these techniques by studying the subcellular localization of two proteins of interest. Our work highlights the benefits of state-of-the-art microscopy techniques for mycoplasmology and provides an incentive to further the development of SMLM strategies to study these organisms in the future. IMPORTANCE Mycoplasmas are important models in biology, as well as highly problematic pathogens in the medical and veterinary fields. The very small sizes of these bacteria, well below a micron, limits the usefulness of traditional fluorescence imaging methods, as their resolution limit is similar to the dimensions of the cells. Here, to bypass this issue, we established a set of state-of-the-art superresolution microscopy techniques in a wide range of Mycoplasma species. We describe two strategies: PALM, based on the expression of a specific photoconvertible fluorescent protein, and dSTORM, based on fluorophore-coupled antibody labeling. With these methods, we successfully performed single-molecule imaging of proteins of interest at the surface of the cells and in the cytoplasm, at lateral resolutions well below 50 nm. Our work paves the way toward a better understanding of mycoplasma biology through imaging of subcellular structures at the nanometer scale.
Collapse
|
49
|
Vaňková Hausnerová V, Marvalová O, Šiková M, Shoman M, Havelková J, Kambová M, Janoušková M, Kumar D, Halada P, Schwarz M, Krásný L, Hnilicová J, Pánek J. Ms1 RNA Interacts With the RNA Polymerase Core in Streptomyces coelicolor and Was Identified in Majority of Actinobacteria Using a Linguistic Gene Synteny Search. Front Microbiol 2022; 13:848536. [PMID: 35633709 PMCID: PMC9130861 DOI: 10.3389/fmicb.2022.848536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bacteria employ small non-coding RNAs (sRNAs) to regulate gene expression. Ms1 is an sRNA that binds to the RNA polymerase (RNAP) core and affects the intracellular level of this essential enzyme. Ms1 is structurally related to 6S RNA that binds to a different form of RNAP, the holoenzyme bearing the primary sigma factor. 6S RNAs are widespread in the bacterial kingdom except for the industrially and medicinally important Actinobacteria. While Ms1 RNA was identified in Mycobacterium, it is not clear whether Ms1 RNA is present also in other Actinobacteria species. Here, using a computational search based on secondary structure similarities combined with a linguistic gene synteny approach, we identified Ms1 RNA in Streptomyces. In S. coelicolor, Ms1 RNA overlaps with the previously annotated scr3559 sRNA with an unknown function. We experimentally confirmed that Ms1 RNA/scr3559 associates with the RNAP core without the primary sigma factor HrdB in vivo. Subsequently, we applied the computational approach to other Actinobacteria and identified Ms1 RNA candidates in 824 Actinobacteria species, revealing Ms1 RNA as a widespread class of RNAP binding sRNAs, and demonstrating the ability of our multifactorial computational approach to identify weakly conserved sRNAs in evolutionarily distant genomes.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Olga Marvalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Šiková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Mahmoud Shoman
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Havelková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Milada Kambová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Martina Janoušková
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Dilip Kumar
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Halada
- Laboratory of Structural Biology and Cell Signaling, Institute of Microbiology of the Czech Academy of Sciences, Vestec, Czechia
| | - Marek Schwarz
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jarmila Hnilicová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
50
|
The Notable Achievements and the Prospects of Bacterial Pathogen Genomics. Microorganisms 2022; 10:microorganisms10051040. [PMID: 35630482 PMCID: PMC9148168 DOI: 10.3390/microorganisms10051040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Throughout the entirety of human history, bacterial pathogens have played an important role and even shaped the fate of civilizations. The application of genomics within the last 27 years has radically changed the way we understand the biology and evolution of these pathogens. In this review, we discuss how the short- (Illumina) and long-read (PacBio, Oxford Nanopore) sequencing technologies have shaped the discipline of bacterial pathogen genomics, in terms of fundamental research (i.e., evolution of pathogenicity), forensics, food safety, and routine clinical microbiology. We have mined and discuss some of the most prominent data/bioinformatics resources such as NCBI pathogens, PATRIC, and Pathogenwatch. Based on this mining, we present some of the most popular sequencing technologies, hybrid approaches, assemblers, and annotation pipelines. A small number of bacterial pathogens are of very high importance, and we also present the wealth of the genomic data for these species (i.e., which ones they are, the number of antimicrobial resistance genes per genome, the number of virulence factors). Finally, we discuss how this discipline will probably be transformed in the near future, especially by transitioning into metagenome-assembled genomes (MAGs), thanks to long-read sequencing.
Collapse
|