1
|
Das A, Bhattarai DP, Rathore E, Biswas K. High Performance and Selective Sequestration of Cd(II) from Water by Layered Thiophosphate. Inorg Chem 2024; 63:18092-18102. [PMID: 39279677 DOI: 10.1021/acs.inorgchem.4c02831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The extensive use of toxic cadmium (Cd) in energy conversion and industrial applications ranging from solar cells and battery appliances to paints and pigments contaminates water bodies. However, the upper limit of Cd contamination in drinking water is to be only 3 ppb by the WHO and 5 ppb by the USA-EPA, which underscores the need for cost-effective, efficient, and ppb level capture of Cd from contaminated water. Leveraging the selectivity due to Lewis's hard-soft acid-base (HSAB) theory, we have achieved swift and highly selective capture of Cd(II) ions from aqueous mediums using layered potassium manganese thiophosphate (K-MnPS3). K-MnPS3 effectively removes Cd(II) ions from extremely dilute aqueous solutions (ppb levels), achieving a maximum sorption capacity of 405.43 mg/g and a removal rate exceeding 97% within 20 min. Even in the presence of competing ions such as Na+, Mg2+, Ca2+, and Pb2+, K-MnPS3 remains selective. Additionally, it operates efficiently across a wide pH range (1.78-11.19) with a high distribution coefficient (∼104 mL/g). Breakthrough experiments using a 1 wt % K-MnPS3 and 99 wt % sand column showed complete breakthrough of Cd(II) after 62 h, leading K-MnPS3 as a promising candidate for Cd(II) removal from industrial effluents.
Collapse
Affiliation(s)
- Animesh Das
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, India
| | - Deval Prasad Bhattarai
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, India
| | - Ekashmi Rathore
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, India
| | - Kanishka Biswas
- New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, India
| |
Collapse
|
2
|
Ghosh S, Mondal S, Kaur R, Mondal D, Daripa B, Kumar Sinha P, Chandra Mondal P, Das S, Dhar A. Wormhole Mesoporous Silica Framework with Enhanced Thiol Loading for Improved Hg 2+ Sequestration. Chem Asian J 2024:e202400921. [PMID: 39267405 DOI: 10.1002/asia.202400921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Thiol-functionalized mesoporous silica and materials potentially dedicated to diverse applications of composite materials, metal colloids, and metal catalysts, etc. Here, we developed a new synthesis route for 3-methacryloxypropyl trimethoxy silane (MPTMS) functionalized mesoporous silica (KIT-6), achieving a 71.5 % enhancement in thiol functionalization on KIT-6 surfaces. Characterization using XRD, TEM, BET, FTIR, Raman, 29Si NMR, XPS, and ICP-OES revealed structural and morphological features. XRD, TEM, and BET confirmed the three-dimensional structural stabilization of mesoporous silica with ~4 nm pore diameter and a surface area of 1451 m2 g-1. FTIR, Raman, and 29Si NMR studies established the mechanism of thiol functionalization, the formation of a new wormhole chain structural framework (WCSF), and stabilization through hydrogen bonding within the mesopores. The 29Si NMR spectra showed characteristic peaks (T3, T2, Q4, Q3) indicating self-condensed functionalized thiols with siloxane networks. XPS analysis validated enhanced thiol functionalization, indicating a structurally homogeneous WCSF suitable for mercury adsorption. ICP-OES measured a mercury adsorption capacity of 3199.6 mg g-1 for KIT-6, with an Hg2+/S ratio of 1.8, corroborated by molecular structure and mechanism analysis. This innovative thiol functionalization approach enhances the efficacy of applications such as extracting Hg2+ from contaminated sources.
Collapse
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry, New Alipore College, Kolkata, 700 053, India
| | - Shyamal Mondal
- Department of Chemistry, New Alipore College, Kolkata, 700 053, India
| | - Rajwinder Kaur
- Department of Chemistry, Indian Institute of Technology, Uttar Pradesh, 208 016, India
| | - Dhananjoy Mondal
- Department of Physics, Jadavpur University, Kolkata, 700 032, India
| | - Bishnu Daripa
- CSIR-Central Glass & Ceramic Research Institute, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Prasanta Kumar Sinha
- CSIR-Central Glass & Ceramic Research Institute, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | | | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata, 700 032, India
| | - Anirban Dhar
- CSIR-Central Glass & Ceramic Research Institute, Kolkata, 700 032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
3
|
Rohit RC, Roy SC, Alam R, Islam SM. Metal-sulfide/polysulfide functionalized layered double hydroxides - recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions. Dalton Trans 2024; 53:10037-10049. [PMID: 38775042 DOI: 10.1039/d4dt00883a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (Sx, x = 2-5), Mo-S, and Sn-S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.
Collapse
Affiliation(s)
- R C Rohit
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Subrata Chandra Roy
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Robiul Alam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| | - Saiful M Islam
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
| |
Collapse
|
4
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
5
|
Mitra S, Mukherjee S, Sil M, Adak S, Maitra P, Goswami A, Hessel V. Role of mesoporous silica nanoparticles in combating mercury-induced stress in Vigna radiata (mung bean) and Bacillus coagulans (soil bacteria). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109343-109353. [PMID: 37924174 DOI: 10.1007/s11356-023-30088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/22/2023] [Indexed: 11/06/2023]
Abstract
The last few decades have witnessed a dramatic progress of human civilization via industrialization, which, in turn, is associated with a surge in pollution of the environment. Heavy metals being one of the most hazardous pollutants have posed a serious threat to life sustaining ecosystem. Among the various remediation techniques, presently, the use of nanoparticles as adsorbents and chelator of heavy metal ions has emerged being practical and cost effective. Mesoporous silica nanoparticles, due to its unique structural attributes, have found application in adsorption of heavy metals in solutions. This study encompasses elucidation of the role of mesoporous silica nanoparticles MCM 41 and MCM 48 in mitigating stress caused by toxic dose of heavy metal Hg2+ (25 ppm) on growing seedlings of Vigna radiata and probiotic soil bacteria Bacillus coagulans. The results revealed that application of the nanoparticles at specific concentration can stimulate an increase in growth of plantlets, decrease in the yield reactive oxygen species like superoxide anion and hydrogen peroxide, reduction of lipid peroxidation, increase in antioxidant enzyme activity in Vigna radiata, and enhancement of growth of Bacillus coagulans as compared to that of Hg2+ alone. Moreover, it was found that MCM 41 was effective at higher dosages compared to MCM 48, which indicates the structure to function relationship.
Collapse
Affiliation(s)
- Sutanuka Mitra
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India.
| | - Sampurna Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Moumita Sil
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Serene Adak
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Piyali Maitra
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials, University of Adelaide, Adelaide, Australia
| |
Collapse
|
6
|
Budiman A, Rusdin A, Subra L, Aulifa DL. How Key Alterations of Mesoporous Silica Nanoparticles Affect Anti-Lung Cancer Therapy? A Comprehensive Review of the Literature. Int J Nanomedicine 2023; 18:5473-5493. [PMID: 37791322 PMCID: PMC10542112 DOI: 10.2147/ijn.s426120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023] Open
Abstract
In 2020, there were 2.21 million new instances of lung cancer, making it the top cause of mortality globally, responsible for close to 10 million deaths. The physicochemical problems of chemotherapy drugs are the primary challenge that now causes a drug's low effectiveness. Solubility is a physicochemical factor that has a significant impact on a drug's biopharmaceutical properties, starting with the rate at which it dissolves and extending through how well it is absorbed and bioavailable. One of the most well-known methods for addressing a drug's solubility is mesoporous silica, which has undergone excellent development due to the conjugation of polymers and ligands that increase its effectiveness. However, there are still very few papers addressing the success of this discovery, particularly those addressing its molecular pharmaceutics and mechanism. Our study's objectives were to explore and summarize the effects of targeting mediator on drug development using mesoporous silica with and without functionalized polymer. We specifically focused on highlighting the molecular pharmaceutics and mechanism in this study's innovative findings. Journals from the Scopus, PubMed, and Google Scholar databases that were released during the last ten years were used to compile this review. According to inclusion and exclusion standards adjusted. This improved approach produced very impressive results, a very significant change in the characteristics of mesoporous silica that can affect effectiveness. Mesoporous silica approaches have the capacity to greatly enhance a drug's physicochemical issues, boost therapeutic efficacy, and acquire superb features.
Collapse
Affiliation(s)
- Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| | - Laila Subra
- Department of Pharmacy, faculty of Bioeconomic, Food and Health Sciences, Universiti Geomatika Malaysia, Kuala Lumpur, Malaysia
| | - Diah Lia Aulifa
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, West Java, Indonesia
| |
Collapse
|
7
|
Deng Y, Fu S, Xu M, Liu H, Jiang L, Liu X, Jiang H. Purification and water resource circulation utilization of Cd-containing wastewater during microbial remediation of Cd-polluted soil. ENVIRONMENTAL RESEARCH 2023; 219:115036. [PMID: 36502910 DOI: 10.1016/j.envres.2022.115036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The purification and water resource circulation utilization of cadmium-containing leachate is a key link in the field application of microbial remediation in Cd-polluted soil. In this study, through a simulation experiment of microbial remediation of Cd-polluted paddy soil, the feasibility of the purification and recycling process of wastewater derived from microbial remediation of Cd-polluted soil was explored. The results of the microbial mobilization and removal experiment showed that the concentrations of Cd, N, P, and K in the leachate were 88.51 μg/L, 38.06, 0.53, and 98.87 mg/L, respectively. The leachate also contained a large number of microbial resources, indicating that it had high recovery values. To recycle this wastewater, activated carbon (C), humic acid (H), and self-assembled monolayers on mesoporous supports (SAMMS; S) were used as adsorbents. The results showed that the co-existing cations in the leachate had a major influence on the adsorption of Cd. In the ternary system of Fe, Al, and Cd, the removal efficiency of Cd increased to 91.2% when the S dosage was increased to 5‰, and the sorption of Cd occurred after Fe and Al. However, C and H exhibited poor adsorption performances. The isotherm models further showed that the maximum adsorption capacities of S, H, and C were 13.96, 6.41 and 2.94 mg/g, respectively. The adsorption kinetics of S showed that adsorption was a rapid process, and the C-H and O-Si-O of S were the key functional groups. The pH of the leachate significantly affected the adsorption efficiency of Cd. Finally, the purified leachate was successfully applied to microbial cultivation and soil remediation. Overall, the reclamation of Cd-containing wastewater can not only dampen the impacts of water shortages, but also achieve the purposes of Cd removal and resource recovery to lower costs by approximately 1166-3499 yuan per mu.
Collapse
Affiliation(s)
- Yan Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China; School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China.
| | - Shaodong Fu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Menglong Xu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Hongwei Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Luhua Jiang
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, 410083, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
8
|
An BH, Lee TG, Khan TT, Seo HW, Hwang HJ, Jun YS. Optical and quantitative detection of cobalt ion using graphitic carbon nitride-based chemosensor for hydrometallurgy of waste lithium-ion batteries. CHEMOSPHERE 2023; 315:137789. [PMID: 36626953 DOI: 10.1016/j.chemosphere.2023.137789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
A hydrometallurgy is one of the most important techniques for recycling waste LIBs, where identifying the exact composition of the metal-leached solution is critical in controlling the metal extraction efficiency and the stoichiometry of the regenerated product. In this study, we report a simple and selective optical detection of high-concentrated Co2+ using a graphitic carbon nitride (g-CN)-based fluorescent chemosensor. g-CN is prepared by molten salt synthesis using dicyandiamide (DCDA) and LiI/KI. The mass ratio of LiI/KI to DCDA modifies the resulting g-CN (CNI) in terms of in-plane molecular distances of base sites including cyano functional groups (─CN) and fluorescent emission wavelength via nucleophilic substitution. The fluorescent sensing performance of CNIs is evaluated through photoluminescence (PL) emission spectroscopy in a broad Co2+ concentration range (10-4-100 M). The correlation between the surface exposure of hidden nitrogen pots (base sites) and PL intensity change is achieved where the linear relationship between the PL quenching and the logarithm of Co2+ concentration in the analyte solution is well established with the regression of 0.9959. This study will provide the design principle of the chemosensor suitable for the fast and accurate optical detection of Co2+ present in a broad concentration range for hydrometallurgy for the recycling of waste LIBs.
Collapse
Affiliation(s)
- Byeong-Hyeon An
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tae-Gyu Lee
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Tamal Tahsin Khan
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; Department of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hye-Won Seo
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hyun Jin Hwang
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Young-Si Jun
- Department of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea; School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
9
|
Mann J, Garnweitner G, Schilde C. Preparation of Self-Assembled Nanoparticle-Polymer Hybrids from Modified Silica Nanoparticles and Polystyrene-Block-Polyacrylic Acid Vesicles via the Co-Precipitation Method. Polymers (Basel) 2023; 15:polym15020444. [PMID: 36679323 PMCID: PMC9867192 DOI: 10.3390/polym15020444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Nanoparticle-polymer hybrids are becoming increasingly important because seemingly contrasting properties, such as mechanical stability and high elasticity, can be combined into one material. In particular, hybrids made of self-assembled polymers are of growing interest since they exhibit high structural precision and diversity and the subsequent reorganization of the nanoparticles is possible. In this work, we show, for the first time, how hybrids of silica nanoparticles and self-assembled vesicles of polystyrene-block-polyacrylic acid can be prepared using the simple and inexpensive method of co-precipitation, highlighting in particular the challenges of using silica instead of other previously well-researched materials, such as gold. The aim was to investigate the influence of the type of modification and the particle size of the silica nanoparticles on the encapsulation and structure of the polymer vesicles. For this purpose, we first needed to adjust the surface properties of the nanoparticles, which we achieved with a two-step modification procedure using APTES and carboxylic acids of different chain lengths. We found that silica nanoparticles modified only with APTES could be successfully encapsulated, while those modified with APTES and decanoic acid resulted in vesicle agglomeration and poor encapsulation due to their strong hydrophobicity. In contrast, no negative effects were observed when different particle sizes (20 nm and 45 nm) were examined.
Collapse
Affiliation(s)
- Jil Mann
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Langer Kamp 6A, 38106 Braunschweig, Germany
- Correspondence:
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Langer Kamp 6A, 38106 Braunschweig, Germany
| | - Carsten Schilde
- Institute for Particle Technology, Technische Universität Braunschweig, Volkmaroder Str. 5, 38104 Braunschweig, Germany
- Laboratory for Emerging Nanometrology, Technische Universität Braunschweig, Langer Kamp 6A, 38106 Braunschweig, Germany
| |
Collapse
|
10
|
Mamidi N, Delgadillo RMV. Squaramide-Immobilized Carbon Nanoparticles for Rapid and High-Efficiency Elimination of Anthropogenic Mercury Ions from Aquatic Systems. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35789-35801. [PMID: 35881879 DOI: 10.1021/acsami.2c09232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water pollution due to environmental remediation and poor waste administration in certain areas of the globe signifies a serious problem in acquiring safe and clean drinking water. This problem is especially critical in rural areas, where advanced water purification techniques are deficient, and it remains a daunting task for ecosystem and public health protection. This critical task can be addressed herein by developing scalable poly squaramide-phenyl methacrylamide (PSQ)-functionalized carbon nanoparticles (CNPs) (PSQ-CNPs) with densely populated chelating sites with strong Hg2+-binding capacity. The PSQ-CNPs have shown high efficiency in removing Hg2+ from aqueous solution, providing a Hg2+ capacity of 2840 mg g-1, surpassing all the amine and thiol-based adsorbents reported hitherto. More significantly, the adsorbent reveals the largest distribution coefficient value (Kd) of 9.09 × 1010 mL g-1, which allows it to reduce Hg2+ content from 10 ppm to less than 0.011 ppb, well below the United States Environmental Protection Agency (EPA) limits for drinking water standards (2 ppb). The adsorption measurements of the adsorbent followed the Langmuir isotherm model and pseudo-second order. The practical applicability of PSQ-CNPs was verified with the real samples (the lake, river, and industrial wastewater) and has been proven to be excellent. The adsorbent could still retain its Hg2+ removal efficacy even after 12 sorption cycles. It is attributed that the remarkable performance of PSQ-CNPs arises from the high-density chelating sites and pores on the surface of CNPs. The present work shows a new benchmark for Hg2+-removal adsorbents and presents a novel practical approach for decontaminating Hg2+ and other heavy metal ions from wastewater.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Ramiro Manuel Velasco Delgadillo
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| |
Collapse
|
11
|
Anyanwu JT, Wang Y, Yang RT. Tunable amine loading of amine grafted mesoporous silica grafted at room temperature: Applications for CO2 capture. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers (Basel) 2022; 14:polym14112183. [PMID: 35683856 PMCID: PMC9182857 DOI: 10.3390/polym14112183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/19/2022] Open
Abstract
Chemical water pollution poses a threat to human beings and ecological systems. The purification of water to remove toxic organic and inorganic pollutants is essential for a safe society and a clean environment. Adsorption-based water treatment is considered one of the most effective and economic technologies designed to remove toxic substances. In this article, we review the recent progress in the field of nanostructured materials used for water purification, particularly those used for the adsorption of heavy metal ions and organic dyes. This review includes a range of nanostructured materials such as metal-based nanoparticles, polymer-based nanomaterials, carbon nanomaterials, bio-mass materials, and other types of nanostructured materials. Finally, the current challenges in the fields of adsorption of toxic materials using nanostructured materials are briefly discussed.
Collapse
|
13
|
Tang Y, Zheng M, Xue W, Huang H, Zhang G. Synergistic disulfide sites of tetrathiafulvalene-based metal–organic framework for highly efficient and selective mercury capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Zhao F, Yao X, Liu C, Ran X, Wang C, Lu B. Mercapto-functionalized ordered mesoporous silica-modified PVDF membrane for efficiently scavenging Cd 2+ from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:114103. [PMID: 34798586 DOI: 10.1016/j.jenvman.2021.114103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this study, (3-mercaptopropyl) triethoxysilane (MPTMS)-modified ordered mesoporous silica (OMS) materials were prepared using a post-grifting method, with MPTMS as the organic functionalized reagent. The OMS materials were analyzed by FT-IR spectra, N2 sorption, and small angle X-ray scattering to evaluate their potential for scavenging Cd2+ from water. Moreover, a (3-mercaptopropyl) triethoxysilane-functionalized ordered mesoporous silica modified polyvinylidene fluoride (MPTMS-OMS/PVDF) membrane was synthesized using the solvent phase inversion method to remediate wastewater containing heavy metal ions. The MPTMS-OMS was characterized by a maximum specific surface area of 422 m2/g, high surface hydrophilicity, and high pure water flux. The MPTMS-OMS/PVDF exhibited a dynamic adsorption capacity for Cd2+ in water. At an MPTMS-OMS content of 5 wt%, the Cd2+ removal efficiency was 90%, whereas the pure PVDF showed no Cd2+ adsorption capacity. These results highlight the potential of the MPTMS-OMS/PVDF membrane to eliminate Cd2+ during the decontamination of aqueous streams containing low-concentrations of contaminants.
Collapse
Affiliation(s)
- Fengbin Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xinyun Yao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 20037, China
| | - Chang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xianqiang Ran
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chengxian Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Bin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
15
|
Wen L, Shen L. Effect of Surface-Chelated Cu 2+ on Amyloid-β Peptide Fibrillation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:174-181. [PMID: 34932369 DOI: 10.1021/acs.langmuir.1c02322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Abnormal interactions of copper (Cu) ions with amyloid-β (Aβ) peptides are believed to play an important role in the pathogenesis of Alzheimer's disease (AD). However, there is still debate as to the exact role of Cu ions in Aβ amyloidosis despite extensive studies on Aβ-Cu interactions. Unlike previously reported works, we herein study the effect of surface-chelated Cu2+, rather than the more usual solution-phase dissolved Cu2+, on Aβ aggregation. Through the combination of single molecule fluorescent tracking, atomic force microscopy imaging experiments, and all-atom molecular dynamic simulations, we show that the surface-chelated Cu2+ dynamically interacts with Aβ chains, restricts their 2D-diffusivity on the surface, and retards their fibrillation, while the designated surfaces without Cu2+ facilitate the 2D-diffusivity of Aβ chains for better interpeptide interaction and promote Aβ fibrillation. We offer a microscopic molecular insight into the retardation mechanism of surface-chelated Cu2+ on Aβ fibrillation, suggesting that the surface-bound pools of metal ions are critical in AD progression and drug design.
Collapse
Affiliation(s)
- Lisi Wen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Lei Shen
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
16
|
Kamel RM, Shahat A, Atta AH, Farag-Allah MM. Development of a novel and potential chemical sensor for colorimetric detection of Pd(II) or Cu(II) in E-wastes. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Kajale SN, Yadav S, Cai Y, Joy B, Sarkar D. 2D material based field effect transistors and nanoelectromechanical systems for sensing applications. iScience 2021; 24:103513. [PMID: 34934930 DOI: 10.1016/j.isci.2021.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Sensors are ubiquitous in modern society because of their wide applications in healthcare, security, forensic industries as well as environmental protection. Specifically, sensors which can be microfabricated employing very-large-scale-integration (VLSI) compatible microfabrication techniques are particularly desirable. This is because they can provide several advantages: small size, low cost, and possibility of mass fabrication. 2D materials are a promising building block for such sensors. Their atomically thin nature, flat surfaces and ability to form van der Waals hetero junctions opens up the pathway for versatile functionalities. Here, we review 2D material-based field-effect-transistors (FETs) and nano-electro-mechanical systems (NEMs) for applications in detecting different gases, chemicals, and biomolecules. We will provide insights into the unique advantages of these materials for these sensing applications and discuss the fabrication methods, detection schemes and performance pertaining to these technologies. Finally, we will discuss the current challenges and prospects for this field.
Collapse
Affiliation(s)
- Shivam Nitin Kajale
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shubham Yadav
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yubin Cai
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Baju Joy
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Deblina Sarkar
- Media Arts and Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
18
|
Anbazhagan R, Krishnamoorthi R, Kumaresan S, Thankachan D, Van DTT, Wang JS, Tsai HC. Benzobisthiazole-bridged white fluorescent emitting covalent organic framework for simultaneous mercury detection and removal. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Enzymatic Production of Ecodiesel by Using a Commercial Lipase CALB, Immobilized by Physical Adsorption on Mesoporous Organosilica Materials. Catalysts 2021. [DOI: 10.3390/catal11111350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of two biocatalysts based on a commercial Candida antarctica lipase B, CALB enzyme (E), physically immobilized on two silica supports, was carried out. The first support was a periodic mesoporous organosilica (PMO) and the second one was a commercial silica modified with octyl groups (octyl-MS3030). The maximum enzyme load was 122 mg enzyme/g support on PMO and 288 mg enzyme/g support on octyl-MS3030. In addition, the biocatalytic efficiency was corroborated by two reaction tests based on the hydrolysis of p-nitrophenylacetate (p-NPA) and tributyrin (TB). The transesterification of sunflower oil with ethanol was carried out over the biocatalysts synthesized at the following reaction conditions: 6 mL sunflower oil, 1.75 mL EtOH, 30 °C, 25 μL NaOH 10 N and 300 rpm, attaining conversion values over 80% after 3 h of reaction time. According to the results obtained, we can confirm that these biocatalytic systems are viable candidates to develop, optimize and improve a new methodology to achieve the integration of glycerol in different monoacylglycerol molecules together with fatty acid ethyl esters (FAEE) molecules to obtain Ecodiesel.
Collapse
|
20
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
21
|
Deng C, Hou L, Zhang C. Eco-Friendly Ferrimagnetic-Humic Acid Nanocomposites as Superior Magnetic Adsorbents. MATERIALS 2021; 14:ma14185125. [PMID: 34576348 PMCID: PMC8467093 DOI: 10.3390/ma14185125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022]
Abstract
Recyclable, cheap, eco-friendly, and efficient adsorbent materials are very important for the removal of pollution. In this work, we report the design and implementation of ferrimagnetic-humic acid nanocomposites as superior magnetic adsorbent for heavy metals. Ferrimagnetic and ferrimagnetic-humic acid nanocomposite particles with different morphologies were prepared using the coprecipitation method and hydrothermal synthesis method, respectively. The results show that the morphology of the nanoparticles prepared by the coprecipitation method is more uniform and the size is smaller than that by the hydrothermal synthesis method. Adsorption experiments show that the ferrimagnetic-humic acid nanoparticles prepared by the coprecipitation method has high sorption capacity for cadmium, and the maximum adsorption capacity is about 763 μg/g. At the same time, magnetic technology can be used to realize the recycling of ferrimagnetic-humic acid adsorbents.
Collapse
|
22
|
Anyanwu JT, Wang Y, Yang RT. Influence of water on amine loading for ordered mesoporous silica. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Ravichandiran P, Kaliannagounder VK, Maroli N, Boguszewska-Czubara A, Masłyk M, Kim AR, Park BH, Han MK, Kim CS, Park CH, Yoo DJ. A dual-channel colorimetric and ratiometric fluorescence chemosensor for detection of Hg 2+ ion and its bioimaging applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 257:119776. [PMID: 33857751 DOI: 10.1016/j.saa.2021.119776] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
A new colorimetric and ratiometric fluorescence chemosensor 4-((3-(octadecylthio)-1,4-dioxo-1,4-dihydronaphthalen-2-yl)amino)benzenesulfonamide (4DBS) was synthesized and investigated for the selective detection of Hg2+ in DMSO-H2O (9:1, v/v) solution. The chemosensor was efficiently synthesized in two steps via Michael-like addition and nucleophilic substitution reactions. The ratiometric fluorescence turn-on response was obtained towards Hg2+, and its fluorescence emission peak was red-shifted by 140 nm with an associated color change from light maroon to pale yellow due to the intramolecular charge transfer effect. The formed coordination metal complex was further evaluated by FT-IR, 1H NMR, and quantum chemical analyses to confirm the binding mechanism. The detection process was sensitive/reversible, and the calculated limit of detection for Hg2+ was 0.451 µM. Furthermore, 4DBS was effectively utilized as a bioimaging agent for detection of Hg2+ in live cells and zebrafish larvae. Additionally, 4DBS showed distinguishing detection of Hg2+ in cancer cells in comparison with normal cells. Thus, 4DBS could be employed as an efficient bioimaging probe for discriminative identification of human cancer cells.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Nikhil Maroli
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, ul. Chodźki 4A, 20-093 Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708 Lublin, Poland
| | - Ae Rhan Kim
- Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea; Mechanical Design Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea; Department of Life Science, Graduate School, Department of Energy Storage/Conversion Engineering, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea.
| |
Collapse
|
24
|
Ishag A, Sun Y. Recent Advances in Two-Dimensional MoS 2 Nanosheets for Environmental Application. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alhadi Ishag
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| | - Yubing Sun
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| |
Collapse
|
25
|
A free nitrogen-containing Sm-MOF for selective detection and facile removal of mercury(II). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Anyanwu JT, Wang Y, Yang RT. SBA-15 Functionalized with Amines in the Presence of Water: Applications to CO 2 Capture and Natural Gas Desulfurization. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John-Timothy Anyanwu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yiren Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ralph T. Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Uliana AA, Bui NT, Kamcev J, Taylor MK, Urban JJ, Long JR. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021; 372:296-299. [PMID: 33859036 DOI: 10.1126/science.abf5991] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Technologies that can efficiently purify nontraditional water sources are needed to meet rising global demand for clean water. Water treatment plants typically require a series of costly separation units to achieve desalination and the removal of toxic trace contaminants such as heavy metals and boron. We report a series of robust, selective, and tunable adsorptive membranes that feature porous aromatic framework nanoparticles embedded within ion exchange polymers and demonstrate their use in an efficient, one-step separation strategy termed ion-capture electrodialysis. This process uses electrodialysis configurations with adsorptive membranes to simultaneously desalinate complex water sources and capture diverse target solutes with negligible capture of competing ions. Our methods are applicable to the development of efficient and selective multifunctional separations that use adsorptive membranes.
Collapse
Affiliation(s)
- Adam A Uliana
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ngoc T Bui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jovan Kamcev
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Mercedes K Taylor
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
28
|
Dinari M, Mokhtari N, Hatami M. Covalent triazine based polymer with high nitrogen levels for removal of copper (II) ions from aqueous solutions. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02463-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
(Baitong) Tirayaphanitchkul C, (Jaa) Imwiset K, Ogawa M. Nanoarchitectonics through Organic Modification of Oxide Based Layered Materials; Concepts, Methods and Functions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200310] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chalunda (Baitong) Tirayaphanitchkul
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Kamonnart (Jaa) Imwiset
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| |
Collapse
|
30
|
Zhang Y, Bland GD, Yan J, Avellan A, Xu J, Wang Z, Hoelen TP, Lopez-Linares F, Hatakeyama ES, Matyjaszewski K, Tilton RD, Lowry GV. Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1231-1241. [PMID: 33404237 DOI: 10.1021/acs.est.0c05470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg0) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR)2 species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L-1 applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Garret D Bland
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiajun Yan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Astrid Avellan
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jiang Xu
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas P Hoelen
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | | | - Evan S Hatakeyama
- Chevron Energy Technology Company, San Ramon, California 94583, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Robert D Tilton
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Gregory V Lowry
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
- Center for Environmental Implications of Nano Technology (CEINT), Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
31
|
Mitran RA, Ioniţǎ S, Lincu D, Berger D, Matei C. A Review of Composite Phase Change Materials Based on Porous Silica Nanomaterials for Latent Heat Storage Applications. Molecules 2021; 26:E241. [PMID: 33466451 PMCID: PMC7796474 DOI: 10.3390/molecules26010241] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 12/31/2022] Open
Abstract
Phase change materials (PCMs) can store thermal energy as latent heat through phase transitions. PCMs using the solid-liquid phase transition offer high 100-300 J g-1 enthalpy at constant temperature. However, pure compounds suffer from leakage, incongruent melting and crystallization, phase separation, and supercooling, which limit their heat storage capacity and reliability during multiple heating-cooling cycles. An appropriate approach to mitigating these drawbacks is the construction of composites as shape-stabilized phase change materials which retain their macroscopic solid shape even at temperatures above the melting point of the active heat storage compound. Shape-stabilized materials can be obtained by PCMs impregnation into porous matrices. Porous silica nanomaterials are promising matrices due to their high porosity and adsorption capacity, chemical and thermal stability and possibility of changing their structure through chemical synthesis. This review offers a first in-depth look at the various methods for obtaining composite PCMs using porous silica nanomaterials, their properties, and applications. The synthesis and properties of porous silica composites are presented based on the main classes of compounds which can act as heat storage materials (paraffins, fatty acids, polymers, small organic molecules, hydrated salts, molten salts and metals). The physico-chemical phenomena arising from the nanoconfinement of phase change materials into the silica pores are discussed from both theoretical and practical standpoints. The lessons learned so far in designing efficient composite PCMs using porous silica matrices are presented, as well as the future perspectives on improving the heat storage materials.
Collapse
Affiliation(s)
- Raul-Augustin Mitran
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Indepedentei, 060021 Bucharest, Romania; (S.I.); (D.L.)
| | - Simona Ioniţǎ
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Indepedentei, 060021 Bucharest, Romania; (S.I.); (D.L.)
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.B.); (C.M.)
| | - Daniel Lincu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 202 Splaiul Indepedentei, 060021 Bucharest, Romania; (S.I.); (D.L.)
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.B.); (C.M.)
| | - Daniela Berger
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.B.); (C.M.)
| | - Cristian Matei
- Faculty of Applied Chemistry and Material Science, University “Politehnica” of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania; (D.B.); (C.M.)
| |
Collapse
|
32
|
Sarkar R, Mondal S, Hansda B, Chatterjee M, Mandal B. A dithizone-anchored silica gel surface, {SiO 2}@DZ for the selective sample cleanup of Gd( iii) amidst Fe( iii), Th( iv), and Ce( iv) employing ion pair complexation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01265g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sorption–desorption equilibration, {extractor-HOMO}:{H3O}+ + {metal-species}n+ ⇄ {extractor-HOMO}:{metal-species}n+ + {H3O}+, an eventual ion-pair complexation controlled by {H3O}+.
Collapse
|
33
|
Kumar V, Katyal D, Nayak S. Removal of heavy metals and radionuclides from water using nanomaterials: current scenario and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41199-41224. [PMID: 32829433 DOI: 10.1007/s11356-020-10348-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
There is an increase in concern about the hazardous effects of radioactivity due to the presence of undesirable radioactive substances in our vicinity. Nuclear accidents such as Chernobyl (1986) and Fukushima (2011) have further raised concerns towards such incidents which have led to contamination of water bodies. Conventional methods of water purification are less efficient in decontamination of radioisotopes. They are usually neither cost-effective nor environmentally friendly. However, nanotechnology can play a vital role in providing practical solutions to this problem. Nano-engineered materials like metal oxides, metallic organic frameworks, and nanoparticle-impregnated membranes have proven to be highly efficient in treating contaminated water. Their unique characteristics such as high adsorption capacity, large specific surface area, high tensile strength, and excellent biocompatibility properties make them useful in the field of water purification. This review explores the present status and future prospects of nanomaterials as the next-generation water purification systems that can play an important role in the removal of heavy metals and radioactive contaminants from aqueous solutions.
Collapse
Affiliation(s)
- Vinod Kumar
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| | - Deeksha Katyal
- University School of Environment Management (USEM), Guru Gobind Singh Indraprastha University, Dwarka, Delhi, 110078, India.
| | - SwayangSiddha Nayak
- Division of CBRN Defense, Institute of Nuclear Medicine and Allied Sciences, Timarpur, Delhi, 110054, India
| |
Collapse
|
34
|
Wu Z, Ye X, Liu H, Zhang H, Liu Z, Guo M, Li Q, Li J. Interactions between adsorbents and adsorbates in aqueous solutions. PURE APPL CHEM 2020. [DOI: 10.1515/pac-2019-1110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Adsorption is one of the most widely used processes in physicochemical operations. To design an adsorbent for a specific adsorbate, it is important to understand the interactions between adsorbents and adsorbates, which are very important for both adsorption capacity and selectivity. Electrostatic interactions, hydrogen bonding, hydrophobic interactions, complexation, and precipitation are comprehensively discussed. Adjusting solution pH and ionic strength is an effective method to improve the adsorption, especially when electrostatic and hydrophobic interactions are main interactions. With the increase in ionic strength, the hydrophobic interactions between adsorbents and adsorbates increase, while the electrostatic interactions decrease.
Collapse
Affiliation(s)
- Zhijian Wu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Xiushen Ye
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Haining Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Huifang Zhang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Zhong Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Min Guo
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Quan Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| | - Jun Li
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences , Xining , 810008, China
- Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province , Xining , 810008, China
| |
Collapse
|
35
|
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐Muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020; 15:2588-2621. [DOI: 10.1002/asia.202000651] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Yadav
- Department of Chemistry Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Thangaraj Baskaran
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Anjali Kaiprathu
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Maqsood Ahmed
- Department of Chemistry University of Delhi Delhi India
| | | | - Stalin Joseph
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat 123 P.O.Box 33 Oman
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | | | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| |
Collapse
|
36
|
Sompalli NK, Deivasigamani P. Structurally designed porous polymer monoliths as probe-anchoring templates as benign and fast responsive solid-state optical sensors for the sensing and recovery of copper ions. NANOTECHNOLOGY 2020; 31:414004. [PMID: 32554881 DOI: 10.1088/1361-6528/ab9e2a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In this study, we report on the superior ion-capturing and sensing competence of a new breed of aqua-compatible solid-state ion-sensor using a structurally organized polymer monolith, for the ocular sensing of trace levels of divalent copper ions. The polymer monolithic template exhibits a single block framework with a uniform structural pattern and porous network that serves as an efficient host for the homogeneous probe anchoring, to constitute a renewable solid-state optical sensor. Here, a series of solid-state colorimetric Cu(II) sensors has been designed using three indigenously synthesized chelating probes (molecules) namely, 4-butyl-N-(2-(2,4-dinitrophenyl)hydrazine-1-carbonothioyl)benzamide (BNHCB), 2-(thiophen-2-ylmethylene)hydrazinen-1-carbothioamide (TMHCA), and 4-butylphenyl(diazenyl)-2-mercaptopyrimidine-4,6-diol (BDMPD). The polymer monoliths are characterized using various surface and structural analysis techniques such as HR-SEM, HR-TEM, XPS, XRD, FT-IR, EDAX, and BET surface area analysis. The fabricated solid-state sensors exhibit excellent selectivity and sensitivity for copper ions with unique color transitions that are reliable even at ultra-trace (ppb) levels. The impact of diverse sensing parameters such as solution pH, probe concentration, sensor quantity, target ion concentration, temperature, response kinetics, and matrix tolerances have been optimized. The fabricated sensor materials proffer maximum sensing efficiency in neutral pH conditions, with a limit of detection (LD) and quantification (LQ) values of 0.56 and 1.87μg l-1, 0.30 and 1.0μg l-1, and 0.12 and 0.42μg l-1, for BNHCB-, BDMPD-, and TMHCA-anchored polymer sensors, respectively. The proposed reusable solid-state colorimetric sensors are environmentally benign, cost-effective and data reproducible, with superior analytical performance.
Collapse
Affiliation(s)
- Naveen Kumar Sompalli
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Prabhakaran Deivasigamani
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
37
|
Abstract
Mesostructured silica nanoparticles offer a unique opportunity in the field of biocatalysis thanks to their outstanding properties. The tunable pore size in the range of mesopores allows for immobilizing bulky enzyme molecules. The large surface area improves the catalytic efficiency by increasing enzyme loading and finely dispersing the biocatalyst molecules. The easily tunable pore morphology allows for creating a proper environment to host an enzyme. The confining effect of mesopores can improve the enzyme stability and its resistance to extreme pH and temperatures. Benefits also arise from other peculiarities of nanoparticles such as Brownian motion and easy dispersion. Fossil fuel depletion and environmental pollution have led to the need for alternative sustainable and renewable energy sources such as biofuels. In this context, lignocellulosic biomass has been considered as a strategic fuel source. Cellulases are a class of hydrolytic enzymes that convert cellulose into fermentable sugars. This review is intended to survey the immobilization of cellulolytic enzymes (cellulases and β-glucosidase) onto mesoporous silica nanoparticles and their catalytic performance, with the aim to give a contribution to the urgent action required against climate change and its impacts, by biorefineries’ development.
Collapse
|
38
|
Yang CH, Chang JS, Lee DJ. Chemically stable covalent organic framework as adsorbent from aqueous solution: A mini-review. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Ahmad M, Wang J, Xu J, Yang Z, Zhang Q, Zhang B. Novel synthetic method for magnetic sulphonated tubular trap for efficient mercury removal from wastewater. J Colloid Interface Sci 2020; 565:523-535. [DOI: 10.1016/j.jcis.2020.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 10/25/2022]
|
40
|
Chen Z, Xiao Y, Zhang C, Fu Z, Huang T, Li Q, Yao Y, Xu S, Pan X, Luo W, Li C. Fabrication of a solid superacid with temperature-regulated silica-isolated biochar nanosheets. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63522-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
41
|
Miller PJ, Shantz DF. Covalently functionalized uniform amino-silica nanoparticles. Synthesis and validation of amine group accessibility and stability. NANOSCALE ADVANCES 2020; 2:860-868. [PMID: 36133245 PMCID: PMC9417799 DOI: 10.1039/c9na00772e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/15/2020] [Indexed: 06/16/2023]
Abstract
This paper describes the synthesis and characterization of colloidally stable, 18 nm silica nanoparticles that are functionalized with amine groups. Electron microscopy, small-angle X-ray scattering (SAXS), and dynamic light scattering show the amine grafting does not impact particle size. SAXS and DLS confirm the particles do not aggregate at 10 mg mL-1 and pH 2 for 30 days. Ninhydrin analysis, fluorescamine binding, and NMR studies of carboxylic acid binding show that the amines are present on the surface and accessible with maximum loading calculated to be 0.14 mmol g-1. These materials should find a range of use in nanotechnology applications.
Collapse
Affiliation(s)
- Peter J Miller
- Department of Chemical and Biomolecular Engineering, Tulane University 6823 St. Charles Avenue New Orleans LA 70118 USA
| | - Daniel F Shantz
- Department of Chemical and Biomolecular Engineering, Tulane University 6823 St. Charles Avenue New Orleans LA 70118 USA
| |
Collapse
|
42
|
Zhou G, Zhang X, Ni XL. Tuning the amphiphilicity of terpyridine-based fluorescent probe in water: Assembly and disassembly-controlled H g 2+ sensing, removal, and adsorption of H 2S. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121474. [PMID: 31635819 DOI: 10.1016/j.jhazmat.2019.121474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/01/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
A water-soluble terpyridine-based cationic fluorescent probe (SP-TPy) was synthesized, which emerged with pH-dependent amphiphilicity, resulting in self-assembly and disassembly in aqueous media with the aggregation-induced emission (AIE) property. In neutral water (pH 7.4), a moderate sensing response to Hg2+ ions was given by the self-assembly of SP-TPy. However, in acidic aqueous media, the monomer of SP-TPy not only appeared to be highly selective and sensitive for Hg2+ ions, but also displayed highly efficient removal of Hg2+ ions from solution by rapid precipitation, which was attributed to the coordination-triggered reassembly of SP-TPy. The removal efficiency of SP-TPy for Hg2+ was found to be over 99%. Further study indicated that the precipitates were composed of various polyhedral porous frameworks, a property that was further used to adsorb H2S gas to form HgS complexes with higher uptake capacities. In addition, SP-TPy can be efficiently regenerated and recycled using a simple treatment with acidic water after adsorption of the H2S gas.
Collapse
Affiliation(s)
- Guilin Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xiaodong Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin-Long Ni
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
43
|
Liao P, Li B, Xie L, Bai X, Qiao H, Li Q, Yang B, Liu C. Immobilization of Cr(VI) on engineered silicate nanoparticles: Microscopic mechanisms and site energy distribution. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121145. [PMID: 31522069 DOI: 10.1016/j.jhazmat.2019.121145] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Engineered nanoparticles-mediated contaminant transport has been recognized as a significant process governing the mobility of metals and radionuclides in groundwater. Engineered silicate nanoparticles (ESNPs) are attractive materials for the sequestration or extraction of Cr(VI) and other metals and radionuclides from groundwater. While great efforts have been devoted toward the application of these materials for Cr(VI) sequestration, the underlying interface adsorption mechanism is not thoroughly elucidated. This study investigates the immobilization mechanisms of Cr(VI) on a representative ESNPs, NH2-MCM-41, over a range of water chemistry conditions. By combining batch adsorption experiments with an array of complementary characterizations, we provided spectroscopic and microscopic evidence that the electrostatic interactions between the positively charged NH2-MCM-41 surface derived from amino functionality and the negatively charged Cr(VI) species was the dominant mechanism responsible for Cr(VI) immobilization. In addition, the weak hydrogen bonding interactions may also contribute to adsorption to a degree. Furthermore, thermodynamic studies suggested a favorable, spontaneous, and exothermic adsorption process. Site energy analysis illustrated that the distribution of energy binding sites on NH2-MCM-41 is Cr(VI) loading dependent. The new insights provided here can advance understanding of the transport of Cr(VI) associated NH2-MCM-41 that benefits the application of ESNPs-based technologies for metals immobilization in groundwater.
Collapse
Affiliation(s)
- Peng Liao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| | - Binrui Li
- School of Environment, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, PR China
| | - Lin Xie
- Department of Physics, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, PR China
| | - Xiaoao Bai
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Han Qiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Qianqian Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, PR China.
| |
Collapse
|
44
|
Li X, Yuan J, Du J, Sui H, He L. Functionalized Ordered Mesoporous Silica by Vinyltriethoxysilane for the Removal of Volatile Organic Compounds through Adsorption/Desorption Process. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xingang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jingjuan Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Jinze Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
| | - Hong Sui
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Lin He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- National Engineering Research Centre of Distillation Technology, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
45
|
Xing M, Xie Q, Li X, Guan T, Wu D. Monolayers of an organosilane on magnetite nanoparticles for the fast removal of Cr(VI) from water. ENVIRONMENTAL TECHNOLOGY 2020; 41:658-668. [PMID: 30074861 DOI: 10.1080/09593330.2018.1508254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/28/2018] [Indexed: 06/08/2023]
Abstract
Monolayers of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane have been established on magnetite nanoparticles to develop a novel magnetic adsorbent for fast decontamination of hexavalent chromium (Cr(VI)) from water. Results indicated that monolayer adsorption of the silane from water took place at low concentrations (<300 mg/L) and around 100% surface coverage was obtained at temperatures ≥90°C. The hydrolysed silane was anchored to the magnetite surface through condensation reactions between its silanol groups and the surface hydroxyl groups of magnetite. The functional amine groups were protonated by acid treatment for adsorbing Cr(VI). The monolayer of the silane on magnetite (MSM) with approximately 100% surface coverage showed extremely rapid adsorption kinetics for Cr(VI), such that the process was complete within 1 min. This enables the treatment of large amounts of sewage per unit time. The adsorption capacity for Cr(VI) was 8.0 mg/g, as estimated from the Langmuir isotherm model. The saturation magnetization of the MSM reached 64.16 emu/g, allowing easy magnetic recovery from water. In the presence of up to 50-fold molar excesses of chloride and nitrate anions, little effect on Cr(VI) removal was seen, but moderate and large impacts were observed with sulphate and hydroxyl anions, respectively. Desorption of adsorbed Cr(VI) and regeneration of the MSM were successfully achieved by NaOH and HCl treatments to deprotonate and protonate the amine groups, respectively. By selecting a silane with suitable functional groups, the surface properties may be tailored for a particular pollutant.
Collapse
Affiliation(s)
- Mingchao Xing
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qiang Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaodi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Tong Guan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
46
|
Miller PJ, Shantz DF. Amine‐functionalized ordered mesoporous silicas as model materials for liquid phase acid capture. AIChE J 2020. [DOI: 10.1002/aic.16918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peter J. Miller
- Department of Chemical and Biomolecular EngineeringTulane University New Orleans Louisiana
| | - Daniel F. Shantz
- Department of Chemical and Biomolecular EngineeringTulane University New Orleans Louisiana
| |
Collapse
|
47
|
Alamgholiloo H, Rostamnia S, Noroozi Pesyan N. Extended architectures constructed of thiourea‐modified SBA‐15 nanoreactor: A versatile new support for the fabrication of palladium pre‐catalyst. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hassan Alamgholiloo
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of ScienceUniversity of Maragheh PO Box 55181‐83111 Maragheh Iran
- Department of Organic Chemistry, Faculty of ChemistryUrmia University 57159 Urmia Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Faculty of ScienceUniversity of Maragheh PO Box 55181‐83111 Maragheh Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of ChemistryUrmia University 57159 Urmia Iran
| |
Collapse
|
48
|
Choudhury P, Dinda S, Kumar Das P. Fabrication of soft-nanocomposites from functional molecules with diversified applications. SOFT MATTER 2020; 16:27-53. [PMID: 31693041 DOI: 10.1039/c9sm01304k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increasing demand for new soft materials having excellent physical and biological characteristics and functionality, the design of hybrid materials offers a simple, yet versatile platform for the development of materials with specific and tunable properties. By definition a "soft-nanocomposite" is the combination of supramolecular self-assemblies with nanomaterials of different origins (inorganic/metallic nanoparticles and carbonaceous allotropes like carbon nanotubes and graphene) through covalent/non-covalent interactions. Dynamic supramolecular self-assemblies can serve as excellent hosts for the incorporation of these dimensionally different nanomaterials. Nanomaterials within the matrix of supramolecular self-assemblies can give rise to new characteristics due to the synergistic contribution of both materials. Although the very initial work intended to use molecular gels as media for the preparation and stabilization of nanoparticles, recent reports have suggested that amalgamation of different supramolecular self-assemblies with nanoparticles is advantageous for both constituents. These newly developed soft-nanocomposites have interesting properties including electrical conductivity, viscoelasticity, thermal robustness, magnetic, phase-selective, redox and near-infrared radiation sensitive properties and so on. This review will focus on some of the most recent advancements in the development of novel soft-nanocomposites. In particular, we intend to correlate various design strategies for synthesis as well as composite preparation from functional molecules with interesting applications in the area of supercapacitors, nanoelectronics, photovoltaic devices, chemical and biosensors, biomedicine and so on. We expect that this article will be a general and conceptual demonstration of various approaches to develop different soft-nanocomposites and will highlight their applications across disciplines.
Collapse
Affiliation(s)
- Pritam Choudhury
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| | - Soumik Dinda
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata-700 032, India.
| |
Collapse
|
49
|
Yusran Y, Guan X, Li H, Fang Q, Qiu S. Postsynthetic functionalization of covalent organic frameworks. Natl Sci Rev 2020; 7:170-190. [PMID: 34692030 PMCID: PMC8288834 DOI: 10.1093/nsr/nwz122] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 01/03/2023] Open
Abstract
Covalent organic frameworks (COFs) have been at the forefront of porous-material research in recent years. With predictable structural compositions and controllable functionalities, the structures and properties of COFs could be controlled to achieve targeted materials. On the other hand, the predesigned structure of COFs allows fruitful postsynthetic modifications to introduce new properties and functions. In this review, the postsynthetic functionalizations of COFs are discussed and their impacts towards structural qualities and performances are comparatively elaborated on. The functionalization involves the formation of specific interactions (covalent or coordination/ionic bonds) and chemical reactions (oxidation/reduction reaction) with pendant groups, skeleton and reactive linkages of COFs. The chemical stability and performance of COFs including catalytic activity, storage, sorption and opto-electronic properties might be enhanced by specific postsynthetic functionalization. The generality of these strategies in terms of chemical reactions and the range of suitable COFs places them as a pivotal role for the development of COF-based smart materials.
Collapse
Affiliation(s)
- Yusran Yusran
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Departement of Chemistry, Jilin University, Changchun 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Departement of Chemistry, Jilin University, Changchun 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Departement of Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Departement of Chemistry, Jilin University, Changchun 130012, China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Departement of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
50
|
Deng JH, Luo J, Mao YL, Lai S, Gong YN, Zhong DC, Lu TB. π-π stacking interactions: Non-negligible forces for stabilizing porous supramolecular frameworks. SCIENCE ADVANCES 2020; 6:eaax9976. [PMID: 31950081 PMCID: PMC6954060 DOI: 10.1126/sciadv.aax9976] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/11/2019] [Indexed: 05/25/2023]
Abstract
Revealing the contribution of π-π stacking interactions in supramolecular assembly is important for understanding the intrinsic nature of molecular assembly fundamentally. However, because they are much weaker than covalent bonds, π-π stacking interactions are usually ignored in the construction of porous materials. Obtaining stable porous materials that are only dependent on π-π stacking interactions, despite being very challenging, could address this concern. Here, we present a porous supramolecular framework (π-1) stabilized only by intermolecular π-π stacking interactions. π-1 shows good thermal and chemical stability not only in various organic solvents but also in aqueous solution in a broad pH range. Furthermore, featuring one-dimensional channels with dangling thiolate groups, π-1 exhibits excellent Hg2+ removal performance, with adsorption capacity as high as 786.67 mg g-1 and an adsorption ratio as high as 99.998%. In addition, π-1 also shows high adsorption selectivity to Hg2+ in the presence of a series of interfering ions.
Collapse
Affiliation(s)
- Ji-Hua Deng
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jie Luo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yue-Lei Mao
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Shan Lai
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yun-Nan Gong
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, and School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|