1
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025; 39:1011-1030. [PMID: 40140631 PMCID: PMC12055591 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
2
|
Darwish A, Ebissy E, Hafez A, Ateya A, El-Sayed A. Nucleotide sequence variants, gene expression and serum profile of immune and antioxidant markers associated with bacterial diarrhea susceptibility in Barki lambs. BMC Vet Res 2024; 20:462. [PMID: 39394128 PMCID: PMC11468138 DOI: 10.1186/s12917-024-04288-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 09/16/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Despite the fact that diarrhea is more accurately described as a clinical symptom than a disease. Diarrhea is one of the most important issues in ovine medicine, particularly in lambs, and because of high morbidity and mortality rate, sluggish growth performance, and veterinary costs, it is believed to be a major source of economic loss. Salmonella and enterotoxigenic Escherichia coli are the most common and commercially significant agents responsible for diarrhea. OBJECTIVE The objective of this study was to monitor the nucleotide sequence variations, gene expression, serum inflammatory and oxidative stress biomarkers in diarrheic lambs. Another aim was to identify different pathotypes and virulence genes of Salmonella and E. coli causing diarrhea. METHODOLOGY Blood samples were taken from 50 Barki who were diarrheal and 50 who appeared to be healthy, and then divided in 3 portions, with EDTA added to the first part for CBC, DNA and RNA extraction. The second sample received 5000 I.U. of heparin calcium, and a clean plain tube was used for the third component. The second and third sections were centrifuged to extract serum and plasma until the biochemical and immunological analysis was completed. Fecal samples were collected for bacteriological examination, and the bacteria were identified by PCR analysis. PCR-DNA sequencing was conducted for immune (SELL, JAK2, SLC11A1, IL10, FEZF1, NCF4, LITAF, SBD2, NFKB, TNF-α, IL1B, IL6, LGALS, and CATH1), antioxidant (SOD1, CAT, GPX1, GST, Nrf2, Keap1, HMOX1, and NQO1), and GIT health (CALB1, GT, and MUC2) genes in healthy and diarrheic lambs. RESULTS Virulent genetic markers of pathogenic characteristics of E. coli (astA, Vt2e (Stx2e), CFA/I, groES and luxS) and Salmonella (invA, SopB, bcfC and avrA) were detected in all diarrheic lambs. PCR-DNA sequencing of immune, antioxidant and intestinal health genes found eleven single nucleotide polymorphisms (SNPs) linked to either diarrhea resistance or susceptibility in Barki lambs. Transcript levels of immune, antioxidant, and GIT health (CALB1, GT, and MUC2) genes varied between healthy and diarrheic lambs. Nucleotide sequence variation of the genes under inquiry between reference sequences in GenBank and those of the animals under investigation verified all identified SNPs. Significant (P = 0.001) erythrocytosis, neutrophilic leukocytosis, with lymphocytopenia were observed in diarrheic lambs. Significant (P = 0.001) increases in serum IL-1α, IL-1β, IL-6, TNF-α (90.5 ± 1.7, 101.8 ± 1.7, 72.3 ± 6.6, 71.26 ± 4.89 Pg/ml, respectively), serum Fb, Cp, Hp, SAA (230.7 ± 12.4 mg/dl, 6.5 ± 0.07 mg/dl, 2.5 ± 0.09 g/dl, 7.4 ± 0.4 mg/L, respectively), free radicals (MDA, NO), cortisol (6.91 ± 0.18 μg/dl) and growth hormone, with significant (P = 0.001) decreases in serum IL-10 (81.71 ± 1.05 Pg/ml), antioxidants (CAT, GPx), insulin, triiodothyronine (T3) and thyroxine (T4) in diarrheic lambs. CONCLUSIONS The study's findings provided credence to the theory that marker-assisted selection (MAS) could be used to predict and prevent diarrhea in Barki sheep by selecting lambs based on SNPs in genes linked to inflammation, antioxidants, and intestinal health. In order to establish an efficient management protocol and determine the most susceptible risk period for disease occurrence, gene expression profiles of the genes under investigation, pro-inflammatory cytokines and acute phase proteins may also be utilized as proxy biomarkers for lamb enteritis.
Collapse
Affiliation(s)
- Asmaa Darwish
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Eman Ebissy
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Amani Hafez
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| | - Ahmed Ateya
- Department of Development of Animal , of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Ahmed El-Sayed
- Department of Animal Health and Poultry, Animal and Poultry Production Division, Desert Research Center (DRC), Cairo, Egypt
| |
Collapse
|
3
|
Guleken Z, Aday A, Bayrak AG, Hindilerden İY, Nalçacı M, Cebulski J, Depciuch J. Relationship between amide ratio assessed by Fourier-transform infrared spectroscopy: A biomarker candidate for polycythemia vera disease. JOURNAL OF BIOPHOTONICS 2024; 17:e202400162. [PMID: 38978265 DOI: 10.1002/jbio.202400162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
The study utilized Fourier transform infrared (FTIR) spectroscopy coupled with chemometrics to investigate protein composition and structural changes in the blood serum of patients with polycythemia vera (PV). Principal component analysis (PCA) revealed distinct biochemical properties, highlighting elevated absorbance of phospholipids, amides, and lipids in PV patients compared to healthy controls. Ratios of amide I/amide II and amide I/amide III indicated alterations in protein structures. Support vector machine analysis and receiver operating characteristic curves identified amide I as a crucial predictor of PV, achieving 100% accuracy, sensitivity, and specificity, while amide III showed a lower predictive value (70%). PCA analysis demonstrated effective differentiation between PV patients and controls, with key wavenumbers including amide II, amide I, and CH lipid vibrations. These findings underscore the potential of FTIR spectroscopy for diagnosing and monitoring PV.
Collapse
Affiliation(s)
- Zozan Guleken
- Faculty of Medicine, Department of Physiology, Gaziantep University of Islam Science and Technology, Gaziantep, Turkey
| | - Aynur Aday
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - Ayşe Gül Bayrak
- Faculty of Medicine, Department of Internal Medicine, Division of Medical Genetics, Istanbul University, Istanbul, Turkey
| | - İpek Yönal Hindilerden
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Meliha Nalçacı
- Department of Internal Medicine, Division of Hematology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Jozef Cebulski
- Institute of Physics, University of Rzeszow, Rzeszow, Poland
| | - Joanna Depciuch
- Institute of Nuclear Physics, Krakow, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
4
|
Lazarevic V, Lilljebjörn H, Olsson-Arvidsson L, Orsmark-Pietras C, Ågerstam H. TLE3 Is a Novel Fusion Partner of JAK2 in Myeloid/Lymphoid Neoplasm With Eosinophilia Responding to JAK2 Inhibition. Genes Chromosomes Cancer 2024; 63:e23261. [PMID: 39105620 DOI: 10.1002/gcc.23261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Chromosomal rearrangements involving Janus kinase 2 (JAK2) are rare but recurrent findings in lymphoid or myeloid neoplasia. Detection of JAK2 fusion genes is important as patients with aberrantly activated JAK2 may benefit from treatment with tyrosine kinase inhibitors such as ruxolitinib. Here, we report a novel fusion gene between the transcriptional co-repressor-encoding gene transducin-like enhancer of split 3 (TLE3) and JAK2 in a patient initially diagnosed with chronic eosinophilic leukemia with additional mutations in PTPN11 and NRAS. The patient was successfully treated with the JAK2 inhibitor ruxolitinib for 8 months before additional somatic mutations were acquired and the disease progressed into an acute lymphoblastic T-cell leukemia/lymphoma. The present case shows similarities to previously reported cases with PCM1::JAK2 and BCR::JAK2 with regard to disease phenotype and response to ruxolitinib, and importantly, provides an example that also patients harboring other JAK2 fusion genes may benefit from treatment with JAK2 inhibitors.
Collapse
Affiliation(s)
- Vladimir Lazarevic
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | | | - Linda Olsson-Arvidsson
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Christina Orsmark-Pietras
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| | - Helena Ågerstam
- Division of Clinical Genetics, Lund University, Lund, Sweden
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Lund, Sweden
| |
Collapse
|
5
|
Gorantla SP, Prince G, Osius J, Dinesh DC, Boddu V, Duyster J, von Bubnoff N. Type II mode of JAK2 inhibition and destabilization are potential therapeutic approaches against the ruxolitinib resistance driven myeloproliferative neoplasms. Front Oncol 2024; 14:1430833. [PMID: 39091915 PMCID: PMC11291247 DOI: 10.3389/fonc.2024.1430833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Background Ruxolitinib has been approved by the US FDA for the treatment of myeloproliferative neoplasms such as polycythemia vera and primary myelofibrosis. Ruxolitinib will remain a main stay in the treatment of MPN patients due to its effective therapeutic benefits. However, there have been instances of ruxolitinib resistance in MPN patients. As JAK2 is a direct target of ruxolitinib, we generated ruxolitinib-resistant clones to find out the mechanism of resistance. Methods Cell-based screening strategy was used to detect the ruxolitinib-resistant mutations in JAK2. The Sanger sequencing method was used to detect the point mutations in JAK2. Mutations were re-introduced using the site-directed mutagenesis method and stably expressed in Ba/F3 cells. Drug sensitivities against the JAK2 inhibitors were measured using an MTS-based assay. JAK2 and STAT5 activation levels and total proteins were measured using immunoblotting. Computational docking studies were performed using the Glide module of Schrodinger Maestro software. Results In this study, we have recovered seven residues in the kinase domain of JAK2 that affect ruxolitinib sensitivity. All these mutations confer cross-resistance across the panel of JAK2 kinase inhibitors except JAK2-L983F. JAK2-L983F reduces the sensitivity towards ruxolitinib. However, it is sensitive towards fedratinib indicating that our screen identifies the drug-specific resistance profiles. All the ruxolitinib-resistant JAK2 variants displayed sensitivity towards type II JAK2 inhibitor CHZ-868. In this study, we also found that JAK1-L1010F (homologous JAK2-L983F) is highly resistant towards ruxolitinib suggesting the possibility of JAK1 escape mutations in JAK2-driven MPNs and JAK1 mutated ALL. Finally, our study also shows that HSP90 inhibitors are potent against ruxolitinib-resistant variants through the JAK2 degradation and provides the rationale for clinical evaluation of potent HSP90 inhibitors in genetic resistance driven by JAK2 inhibitors. Conclusion Our study identifies JAK1 and JAK2 resistance variants against the type I JAK2 inhibitors ruxolitinib, fedratinib, and lestaurtinib. The sensitivity of these resistant variants towards the type II JAK2 inhibitor CHZ-868 indicates that this mode of type II JAK2 inhibition is a potential therapeutic approach against ruxolitinib refractory leukemia. This also proposes the development of potent and specific type II JAK2 inhibitors using ruxolitinib-resistance variants as a prototype.
Collapse
Affiliation(s)
- Sivahari P. Gorantla
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Gerin Prince
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Jasmin Osius
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Dhurvas Chandrasekaran Dinesh
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Vijay Boddu
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| | - Justus Duyster
- Department of Internal Medicine I, University Medical Center Freiburg, Freiburg, Germany
| | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical Center, University of Schleswig-Holstein, Lübeck, Germany
| |
Collapse
|
6
|
Xie W, Zhang Y, Zhang Z, Li Q, Tao L, Zhang R. ISG15 promotes tumor progression via IL6/JAK2/STAT3 signaling pathway in ccRCC. Clin Exp Med 2024; 24:140. [PMID: 38951255 PMCID: PMC11217101 DOI: 10.1007/s10238-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.
Collapse
Affiliation(s)
- Wei Xie
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Yuanfeng Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Zhechuan Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China
| | - Qinke Li
- Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Yuzhong, Chongqing, China
| | - Lesha Tao
- Department of Urology, Chongqing People's Hospital, Xingguang Road.118, Chongqing, China
| | - Ronggui Zhang
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Linjiang Road. 74, Jiangbei, Chongqing, China.
- Department of Urology, Chongqing People's Hospital, Xingguang Road.118, Chongqing, China.
| |
Collapse
|
7
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
8
|
Long L, Fei X, Chen L, Yao L, Lei X. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer. Front Oncol 2024; 14:1381251. [PMID: 38699644 PMCID: PMC11063389 DOI: 10.3389/fonc.2024.1381251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a significant clinical challenge due to its propensity for metastasis and poor prognosis. TNBC evades the body's immune system recognition and attack through various mechanisms, including the Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. This pathway, characterized by heightened activity in numerous solid tumors, exhibits pronounced activation in specific TNBC subtypes. Consequently, targeting the JAK2/STAT3 signaling pathway emerges as a promising and precise therapeutic strategy for TNBC. The signal transduction cascade of the JAK2/STAT3 pathway predominantly involves receptor tyrosine kinases, the tyrosine kinase JAK2, and the transcription factor STAT3. Ongoing preclinical studies and clinical research are actively investigating this pathway as a potential therapeutic target for TNBC treatment. This article comprehensively reviews preclinical and clinical investigations into TNBC treatment by targeting the JAK2/STAT3 signaling pathway using small molecule compounds. The review explores the role of the JAK2/STAT3 pathway in TNBC therapeutics, evaluating the benefits and limitations of active inhibitors and proteolysis-targeting chimeras in TNBC treatment. The aim is to facilitate the development of novel small-molecule compounds that target TNBC effectively. Ultimately, this work seeks to contribute to enhancing therapeutic efficacy for patients with TNBC.
Collapse
Affiliation(s)
- Lin Long
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiangyu Fei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liucui Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Liang Yao
- Department of Pharmacy, Central Hospital of Hengyang, Hengyang, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
9
|
Gorantla SP, Mueller TA, Albers‐Leischner C, Rudelius M, von Bubnoff N, Duyster J. A newly identified 45-kDa JAK2 variant with an altered kinase domain structure represents a novel mode of JAK2 kinase inhibitor resistance. Mol Oncol 2024; 18:415-430. [PMID: 38104968 PMCID: PMC10850816 DOI: 10.1002/1878-0261.13566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/16/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023] Open
Abstract
Tyrosine-protein kinase (janus kinase; JAK)-signal transducer and activator of transcription (STAT) signaling plays a pivotal role in the development of myeloproliferative neoplasms (MPNs). Treatment with the potent JAK1/JAK2-specific inhibitor, ruxolitinib, significantly reduces tumor burden; however, ruxolitinib treatment does not fully eradicate the malignant clone. As the molecular basis for the disease persistence is not well understood, we set out to gain new insights by generating ruxolitinib-resistant cell lines. Surprisingly, these cells harbor a 45 kDa JAK2 variant (FERM-JAK2) consisting of the N-terminal FERM domain directly fused to the C-terminal kinase domain in 80% of sublines resistant to ruxolitinib. At the molecular level, FERM-JAK2 is able to directly bind and activate STAT5 in the absence of cytokine receptors. Furthermore, phosphorylation of activation-loop tyrosines is dispensable for FERM-JAK2-mediated STAT5 activation and cellular transformation, in contrast to JAK2-V617F. As a result, FERM-JAK2 is highly resistant to several ATP-competitive JAK2 inhibitors, whereas it is particularly sensitive to HSP90 inhibition. A murine model of FERM-JAK2 leukemogenesis showed an accelerated MPN phenotype with pronounced splenomegaly. Notably, most current protocols for the monitoring of emerging JAK variants are unable to detect FERM-JAK2, highlighting the urgent need for implementing next-generation sequencing approaches in MPN patients receiving ruxolitinib.
Collapse
Affiliation(s)
- Sivahari Prasad Gorantla
- Department of Hematology and Oncology, Medical CenterUniversity of Schleswig‐HolsteinLübeckGermany
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| | - Tony Andreas Mueller
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
- Department of Internal Medicine I, Center for Molecular Medicine Cologne (CMMC)University of CologneGermany
| | - Corinna Albers‐Leischner
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center HamburgUniversity Medical Center Hamburg‐EppendorfGermany
| | | | - Nikolas von Bubnoff
- Department of Hematology and Oncology, Medical CenterUniversity of Schleswig‐HolsteinLübeckGermany
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| | - Justus Duyster
- Department of Internal Medicine IUniversity Medical Center FreiburgGermany
| |
Collapse
|
10
|
Liang D, Wang Q, Zhang W, Tang H, Song C, Yan Z, Liang Y, Wang H. JAK/STAT in leukemia: a clinical update. Mol Cancer 2024; 23:25. [PMID: 38273387 PMCID: PMC10811937 DOI: 10.1186/s12943-023-01929-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Over the past three decades, considerable efforts have been expended on understanding the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in leukemia, following the identification of the JAK2V617F mutation in myeloproliferative neoplasms (MPNs). The aim of this review is to summarize the latest progress in our understanding of the involvement of the JAK/STAT signaling pathway in the development of leukemia. We also attempt to provide insights into the current use of JAK/STAT inhibitors in leukemia therapy and explore pertinent clinical trials in this field.
Collapse
Affiliation(s)
- Dong Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiaoli Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenbiao Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Cailu Song
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zhimin Yan
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Yang Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
11
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
12
|
Oster N, Szewczuk MA, Zych S, Stankiewicz T, Błaszczyk B, Wieczorek-Dąbrowska M. Association between Polymorphism in the Janus Kinase 2 ( JAK2) Gene and Selected Performance Traits in Cattle and Sheep. Animals (Basel) 2023; 13:2470. [PMID: 37570280 PMCID: PMC10416845 DOI: 10.3390/ani13152470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/17/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The Janus Kinase 2 (JAK2) tyrosine kinase is an essential component of signal transduction of the class II cytokine receptors, including the growth hormone receptor. Therefore, it may play a crucial role in the signaling pathway of the somatotropic axis, which influences growth, development, and reproductive traits in ruminants. For this purpose, for three breeds of cattle (Hereford, Angus, and Limousin; a total of 781 individuals), two polymorphic sites located in exon 16 (rs210148032; p.Ile704Val, within pseudokinase (JH2)) and exon 23 (silent mutation rs211067160, within JH1 kinase domain) were analyzed. For two breeds of sheep (Pomeranian and Suffolk; 333 individuals in total), two polymorphic sites in exon 6 (rs160146162 and rs160146160; encoding the FERM domain) and one polymorphic site in exon 24 of the JAK2 gene (rs160146116; JH1 kinase domain) were genotyped. In our study, the associations examined for cattle were inconclusive. However, Hereford and Limousin cattle with genotypes AA (e16/RsaI) and AA (e23/HaeIII) tended to have the highest body weight and better daily gains (p ≤ 0.05). No clear tendency was observed in the selected reproductive traits. In the case of sheep, regardless of breed, individuals with the AA (e6/EarI), GG (e6/seq), and AA (e24/Hpy188III) genotypes had the highest body weights and daily gains in the study periods (p ≤ 0.01). The same individuals in the Pomeranian breed also had better fertility and lamb survival (p ≤ 0.01). To the best of our knowledge, these are the first association studies for all these polymorphic sites. Single-nucleotide polymorphisms in the JAK2 gene can serve as genetic markers for growth and selected reproductive traits in ruminants given that they are further investigated in subsequent populations and analyzed using haplotype and/or combined genotype systems.
Collapse
Affiliation(s)
- Nicola Oster
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Małgorzata Anna Szewczuk
- Department of Monogastric Animal Science, Faculty of Biotechnology and Animal Husbandry, West Pommeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland;
| | - Sławomir Zych
- Laboratory of Chromatography and Mass Spectroscopy, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland
| | - Tomasz Stankiewicz
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Barbara Błaszczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 29 Klemensa Janickiego, 71-270 Szczecin, Poland; (T.S.); (B.B.)
| | - Marta Wieczorek-Dąbrowska
- National Research Institute of Animal Production, Kraków, Experimental Department, Kołbacz, 1 Warcisława Street, 74-106 Stare Czarnowo, Poland
| |
Collapse
|
13
|
Arwood ML, Liu Y, Harkins SK, Weinstock DM, Yang L, Stevenson KE, Plana OD, Dong J, Cirka H, Jones KL, Virtanen AT, Gupta DG, Ceas A, Lawney B, Yoda A, Leahy C, Hao M, He Z, Choi HG, Wang Y, Silvennoinen O, Hubbard SR, Zhang T, Gray NS, Li LS. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Cell Chem Biol 2023; 30:618-631.e12. [PMID: 37290440 PMCID: PMC10495080 DOI: 10.1016/j.chembiol.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Recurrent JAK2 alterations are observed in myeloproliferative neoplasms, B-cell acute lymphoblastic leukemia, and other hematologic malignancies. Currently available type I JAK2 inhibitors have limited activity in these diseases. Preclinical data support the improved efficacy of type II JAK2 inhibitors, which lock the kinase in the inactive conformation. By screening small molecule libraries, we identified a lead compound with JAK2 selectivity. We highlight analogs with on-target biochemical and cellular activity and demonstrate in vivo activity using a mouse model of polycythemia vera. We present a co-crystal structure that confirms the type II binding mode of our compounds with the "DFG-out" conformation of the JAK2 activation loop. Finally, we identify a JAK2 G993A mutation that confers resistance to the type II JAK2 inhibitor CHZ868 but not to our analogs. These data provide a template for identifying novel type II kinase inhibitors and inform further development of agents targeting JAK2 that overcome resistance.
Collapse
Affiliation(s)
- Matthew L Arwood
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Yao Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Shannon K Harkins
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Cancer Biology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen E Stevenson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Olivia D Plana
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyun Dong
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Haley Cirka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kristen L Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anniina T Virtanen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Dikshat G Gupta
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Amanda Ceas
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Brian Lawney
- Center for Cancer Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Akinori Yoda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Catharine Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Mingfeng Hao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Hwan Geun Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Yaning Wang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Olli Silvennoinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Institute of Biotechnology, HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Stevan R Hubbard
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA; Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Loretta S Li
- Molecular and Translational Cancer Biology Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics, Division of Hematology, Oncology, and Stem Cell Transplantation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Zhang L, Shah B, Zhang Y, Tashkandi H, Xiao W, Fernandez-Pol S, Vergara-Lluri M, Hussaini M, Song J, Lancet J, Moscinski L, Yun S, Lu CM, Medeiros LJ, Tang G. Clinicopathologic characteristics, genetic features, and treatment options for acute lymphoblastic leukemia with JAK2 rearrangement-A 10-case study and literature review. Hum Pathol 2023; 136:1-15. [PMID: 36958463 DOI: 10.1016/j.humpath.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 03/25/2023]
Abstract
JAK2 rearrangement (JAK2-R) in acute lymphoblastic leukemia (ALL) is rare and often categorized as B-ALL with BCR::ABL1-like features based on the World Health Organization classification. We report 10 patients with JAK2-R ALL, 9 males and 1 female, with a median age 40.5 years. Eight patients presented with marked leukocytosis (median WBC, 63 × 10 9/L) and hypercellular (>95%) bone marrow with increased lymphoblasts (72%-95%). There was no evidence of bone marrow fibrosis or hypereosinophilia. Immunophenotypic analysis showed 9 B-cell and 1 T-cell neoplasms. Using fluorescence in situ hybridization (FISH) and RNA sequencing analysis, JAK2 partners were identified for 7 cases and included PCM1 (n=4), ETV6 (n=2) and BCR (n=1). All patients received upfront polychemotherapy. Additionally, 2 patients received ruxolitinib, 2 received allogeneic stem cell transplant, and 1 received CAR-T therapy. The 1- and 3-year overall survival rates were 55.6% and 22.2%, respectively. A literature review identified 24 B-ALL and 4 T-ALL cases with JAK2-R reported, including 16 males, 6 females and 6 gender not stated. Many JAK2 partner-genes were reported with the most common being PAX5 (n=7), ETV6 (n=4), BCR (n=3) and PCM1 (n=2). Survival data or 13 reported cases showed 1- and 3-year overall survival rates of 41.7% and 41.7%, respectively. In summary, JAK2-R ALL occurs more often in adult males, are mostly of B-cell lineage, and associated with an aggressive clinical course. Absence of eosinophilia and bone marrow fibrosis and no evidence of preexisting/concurrent JAK2-R myeloid neoplasms distinguish JAK2-R ALL from other myeloid/lymphoid neoplasms with eosinophilia and JAK2-R.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Bijal Shah
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Yumeng Zhang
- Morsani College of Medicine, the University of South Florida and H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hammad Tashkandi
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wenbin Xiao
- Department of Pathology, Memorial Sloane Kettering Cancer Center, New York, New York, USA
| | | | - Maria Vergara-Lluri
- Department of Pathology, Hematopathology Section, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hussaini
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jinming Song
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jeffrey Lancet
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Lynn Moscinski
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Seongseok Yun
- Department of Hematological Malignancy, H Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Chuanyi M Lu
- Department of Laboratory Medicine, University of California at San Francisco and San Francisco VA Health Care System, San Francisco, CA, USA
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center Houston, TX, USA
| |
Collapse
|
15
|
Smith MR, Satter LRF, Vargas-Hernández A. STAT5b: A master regulator of key biological pathways. Front Immunol 2023; 13:1025373. [PMID: 36755813 PMCID: PMC9899847 DOI: 10.3389/fimmu.2022.1025373] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The Signal Transducer and Activator of Transcription (STAT)-5 proteins are required in immune regulation and homeostasis and play a crucial role in the development and function of several hematopoietic cells. STAT5b activation is involved in the expression of genes that participate in cell development, proliferation, and survival. STAT5a and STAT5b are paralogs and only human mutations in STAT5B have been identified leading to immune dysregulation and hematopoietic malignant transformation. The inactivating STAT5B mutations cause impaired post-natal growth, recurrent infections and immune dysregulation, whereas gain of function somatic mutations cause dysregulated allergic inflammation. These mutations are rare, and they are associated with a wide spectrum of clinical manifestations which provide a disease model elucidating the biological mechanism of STAT5 by studying the consequences of perturbations in STAT5 activity. Further, the use of Jak inhibitors as therapy for a variety of autoimmune and malignant disorders has increased substantially heading relevant lessons for the consequences of Jak/STAT immunomodulation from the human model. This review summarizes the biology of the STAT5 proteins, human disease associate with molecular defects in STAT5b, and the connection between aberrant activation of STAT5b and the development of certain cancers.
Collapse
Affiliation(s)
- Madison R. Smith
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Lisa R. Forbes Satter
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States
| | - Alexander Vargas-Hernández
- Department of Pediatrics, Division of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States,William T. Shearer Texas Children’s Hospital Center for Human Immunobiology, Houston, TX, United States,*Correspondence: Alexander Vargas-Hernández,
| |
Collapse
|
16
|
Agashe RP, Lippman SM, Kurzrock R. JAK: Not Just Another Kinase. Mol Cancer Ther 2022; 21:1757-1764. [PMID: 36252553 PMCID: PMC10441554 DOI: 10.1158/1535-7163.mct-22-0323] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
The JAK/STAT axis is implicated in cancer, inflammation, and immunity. Numerous cytokines/growth factors affect JAK/STAT signaling. JAKs (JAK1, JAK2, JAK3, and TYK2) noncovalently associate with cytokine receptors, mediate receptor tyrosine phosphorylation, and recruit ≥1 STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6). Tyrosine-phosphorylated STATs dimerize and are then transported into the nucleus to function as transcription factors. Signaling is attenuated by specific suppressor of cytokine signaling proteins, creating a negative feedback loop. Both germline mutations and polymorphisms of JAK family members correlate with specific diseases: Systemic lupus erythematosus (TYK2 polymorphisms); severe combined immunodeficiency (JAK3 mutations); pediatric acute lymphoblastic leukemia (TYK2 mutations); and hereditary thrombocytosis (JAK2 mutations). Somatic gain-of-function JAK mutations mainly occur in hematologic malignancies, with the activating JAK2 V617F being a myeloproliferative disorder hallmark; it is also seen in clonal hematopoiesis of indeterminate potential. Several T-cell malignancies, as well as B-cell acute lymphoblastic leukemia, and acute megakaryoblastic leukemia also harbor JAK family somatic alterations. On the other hand, JAK2 copy-number loss is associated with immune checkpoint inhibitor resistance. JAK inhibitors (jakinibs) have been deployed in many conditions with JAK activation; they are approved in myeloproliferative disorders, rheumatoid and psoriatic arthritis, atopic dermatitis, ulcerative colitis, graft-versus-host disease, alopecia areata, ankylosing spondylitis, and in patients hospitalized for COVID-19. Clinical trials are investigating jakinibs in multiple other autoimmune/inflammatory conditions. Furthermore, dermatologic and neurologic improvements have been observed in children with Aicardi-Goutieres syndrome (a genetic interferonopathy) treated with JAK inhibitors.
Collapse
Affiliation(s)
| | | | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, Wisconsin
- Win Consortium, Paris, France
| |
Collapse
|
17
|
Xiong Z, Wu S, Li FJ, Luo C, Jin QY, Connolly ID, Hayden Gephart M, You L. Elevated ETV6 Expression in Glioma Promotes an Aggressive In Vitro Phenotype Associated with Shorter Patient Survival. Genes (Basel) 2022; 13:genes13101882. [PMID: 36292767 PMCID: PMC9656946 DOI: 10.3390/genes13101882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Background: GBM astrocytes may adopt fetal astrocyte transcriptomic signatures involved in brain development and migration programs to facilitate diffuse tumor infiltration. Our previous data show that ETS variant 6 (ETV6) is highly expressed in human GBM and fetal astrocytes compared to normal mature astrocytes. We hypothesized that ETV6 played a role in GBM tumor progression. Methods: Expression of ETV6 was first examined in two American and three Chinese tissue microarrays. The correlation between ETV6 staining intensity and patient survival was calculated, followed by validation using public databases—TCGA and REMBRANDT. The effect of ETV6 knockdown on glioma cell proliferation (EdU), viability (AnnexinV labeling), clonogenic growth (colony formation), and migration/invasion (transwell assays) in GBM cells was tested. RNA sequencing and Western blot were performed to elucidate the underlying molecular mechanisms. Results: ETV6 was highly expressed in GBM and associated with an unfavorable prognosis. ETV6 silencing in glioma cells led to increased apoptosis or decreased proliferation, clonogenicity, migration, and invasion. RNA-Seq-based gene expression and pathway analyses revealed that ETV6 knockdown in U251 cells led to the upregulation of genes involved in extracellular matrix organization, NF-κB signaling, TNF-mediated signaling, and the downregulation of genes in the regulation of cell motility, cell proliferation, PI3K-AKT signaling, and the Ras pathway. The downregulation of the PI3K-AKT and Ras-MAPK pathways were further validated by immunoblotting. Conclusion: Our findings suggested that ETV6 was highly expressed in GBM and its high expression correlated with poor survival. ETV6 silencing decreased an aggressive in vitro phenotype probably via the PI3K-AKT and Ras-MAPK pathways. The study encourages further investigation of ETV6 as a potential therapeutic target of GBM.
Collapse
Affiliation(s)
- Zhang Xiong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Feng-jiao Li
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
- Neurosurgical Institute, Fudan University, Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai 200040, China
| | - Qiu-yan Jin
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ian David Connolly
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Melanie Hayden Gephart
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Correspondence: to: (M.H.G.); (L.Y.)
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai 200032, China
- Correspondence: to: (M.H.G.); (L.Y.)
| |
Collapse
|
18
|
The JAK-STAT pathway at 30: Much learned, much more to do. Cell 2022; 185:3857-3876. [PMID: 36240739 PMCID: PMC9815833 DOI: 10.1016/j.cell.2022.09.023] [Citation(s) in RCA: 344] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway arose from investigations of how cells respond to interferons (IFNs), revealing a paradigm in cell signaling conserved from slime molds to mammals. These discoveries revealed mechanisms underlying rapid gene expression mediated by a wide variety of extracellular polypeptides including cytokines, interleukins, and related factors. This knowledge has provided numerous insights into human disease, from immune deficiencies to cancer, and was rapidly translated to new drugs for autoimmune, allergic, and infectious diseases, including COVID-19. Despite these advances, major challenges and opportunities remain.
Collapse
|
19
|
Genomic Mutations of the STAT5 Transcription Factor Are Associated with Human Cancer and Immune Diseases. Int J Mol Sci 2022; 23:ijms231911297. [PMID: 36232600 PMCID: PMC9569778 DOI: 10.3390/ijms231911297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Signal transducer and activation of transcription 5 (STAT5) is a key transcription factor that regulates various biological processes in mammalian development. Aberrant regulation of STAT5 has also been causally linked to many diseases, including cancers and immune-related diseases. Although persistent activation of STAT5 due to dysregulation of the signaling cascade has been reported to be associated with the progression of solid tumors and leukemia, various genomic mutations of STAT5 have also been found to cause a wide range of diseases. The present review comprehensively summarizes results of recent studies evaluating the intrinsic function of STAT5 and the link between STAT5 mutations and human diseases. This review also describes the types of disease models useful for investigating the mechanism underlying STAT5-driven disease progression. These findings provide basic knowledge for understanding the regulatory mechanisms of STAT5 and the progression of various diseases resulting from aberrant regulation of STAT5. Moreover, this review may provide insights needed to create optimal disease models that reflect human disease associated STAT5 mutations and to design gene therapies to correct STAT5 mutations.
Collapse
|
20
|
Dewangan PS, Beraki TG, Paiz EA, Appiah Mensah D, Chen Z, Reese ML. Divergent kinase WNG1 is regulated by phosphorylation of an atypical activation sub-domain. Biochem J 2022; 479:1877-1889. [PMID: 35938919 PMCID: PMC9555795 DOI: 10.1042/bcj20220076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Apicomplexan parasites like Toxoplasma gondii grow and replicate within a specialized organelle called the parasitophorous vacuole. The vacuole is decorated with parasite proteins that integrate into the membrane after trafficking through the parasite secretory system as soluble, chaperoned complexes. A regulator of this process is an atypical protein kinase called WNG1. Phosphorylation by WNG1 appears to serve as a switch for membrane integration. However, like its substrates, WNG1 is secreted from the parasite dense granules, and its activity must, therefore, be tightly regulated until the correct membrane is encountered. Here, we demonstrate that, while another member of the WNG family can adopt multiple multimeric states, WNG1 is monomeric and therefore not regulated by multimerization. Instead, we identify two phosphosites on WNG1 that are required for its kinase activity. Using a combination of in vitro biochemistry and structural modeling, we identify basic residues that are also required for WNG1 activity and appear to recognize the activating phosphosites. Among these coordinating residues are the 'HRD' Arg, which recognizes activation loop phosphorylation in canonical kinases. WNG1, however, is not phosphorylated on its activation loop, but rather on atypical phosphosites on its C-lobe. We propose a simple model in which WNG1 is activated by increasing ATP concentration above a critical threshold once the kinase traffics to the parasitophorous vacuole.
Collapse
Affiliation(s)
- Pravin S. Dewangan
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Tsebaot G. Beraki
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - E. Ariana Paiz
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Delia Appiah Mensah
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
- Honors College, University of Texas at Dallas, Richardson, TX, U.S.A
| | - Zhe Chen
- Department of Biophysics, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| | - Michael L. Reese
- Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
- Department of Biochemistry, University of Texas, Southwestern Medical Center, Dallas, TX, U.S.A
| |
Collapse
|
21
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022; 12:1093. [PMID: 36008987 PMCID: PMC9406097 DOI: 10.3390/biom12081093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 01/18/2023] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I-V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I-V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
Affiliation(s)
- Arulraj Ramalingam
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore 119228, Singapore
| | - Mouna Medimagh
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| | - Sivakumar Sambandam
- Research and Development Centre, Bharathiar University, Coimbatore 641046, India
- BPJ College of Arts and Science, Kozhai, Srimushnam 608703, India
| | - Noureddine Issaoui
- Laboratory of Quantum and Statistical Physics (LR18ES18), Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia
| |
Collapse
|
22
|
Ramalingam A, Mustafa N, Chng WJ, Medimagh M, Sambandam S, Issaoui N. 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as Anti-Cancer Agents: Synthesis, Biological Evaluation, Molecular Docking, and In Silico ADMET Prediction. Biomolecules 2022. [DOI: doi.org/10.3390/biom12081093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Piperidine pharmacophore-containing compounds have demonstrated therapeutic efficacy against a range of diseases and are now being investigated in cancer. A series of 3-chloro-3-methyl-2,6-diarylpiperidin-4-ones, compounds (I–V) were designed and synthesized for their evaluation as a potential anti-cancer agent. Compounds II and IV reduced the growth of numerous hematological cancer cell lines while simultaneously increasing the mRNA expression of apoptosis-promoting genes, p53 and Bax. Molecular docking analyses confirmed that compounds can bind to 6FS1, 6FSO (myeloma), 6TJU (leukemia), 5N21, and 1OLL (NKTL). Computational ADMET research confirmed the essential physicochemical, pharmacokinetic, and drug-like characteristics of compounds (I–V). The results revealed that these compounds interact efficiently with active site residues and that compounds (II) and (V) can be further evaluated as potential therapeutic candidates.
Collapse
|
23
|
Downes CEJ, McClure BJ, McDougal DP, Heatley SL, Bruning JB, Thomas D, Yeung DT, White DL. JAK2 Alterations in Acute Lymphoblastic Leukemia: Molecular Insights for Superior Precision Medicine Strategies. Front Cell Dev Biol 2022; 10:942053. [PMID: 35903543 PMCID: PMC9315936 DOI: 10.3389/fcell.2022.942053] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.
Collapse
Affiliation(s)
- Charlotte EJ. Downes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Barbara J. McClure
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Daniel P. McDougal
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Susan L. Heatley
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| | - John B. Bruning
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T. Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Department of Haematology, Royal Adelaide Hospital and SA Pathology, Adelaide, SA, Australia
| | - Deborah L. White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Australian and New Zealand Children’s Oncology Group (ANZCHOG), Clayton, VIC, Australia
| |
Collapse
|
24
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
25
|
SOCS3 gene silencing does not occur through methylation and mutations in gastric cancer. Hum Cell 2022; 35:1114-1125. [PMID: 35596898 DOI: 10.1007/s13577-022-00715-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/04/2022] [Indexed: 11/04/2022]
Abstract
Gastric cancer (GC) is ranked the third leading cause of cancer-related deaths worldwide. Mutations and epigenetic alterations in several essential genes, including p53, KRAS, PIK3CA, FAT4 and ARID1A, are often reported. Furthermore, loss of SOCS3 expression was reported in GC, suggesting its tumor suppressor role. To assess the mutational and methylation status of SOCS3, we performed gene panel exome sequencing on 47 human GC samples. The SOCS3 gene was rarely mutated, suggesting alternative regulation mechanisms, such as promoter hypermethylation and/or long non-coding RNAs (lncRNAs). We first explored SOCS3 promoter methylation status in 44 human GC samples by methylation-specific PCR (MS-PCR). Thirteen out of forty-four patients (29.5%) displayed a methylation pattern. Then, to see whether SOCS3 expression is silenced by CpG methylation, we examined publicly available databases (cbioportal and The Cancer Genome Atlas (TCGA)). The analysis revealed β values lower than 0.1, indicating hypo-methylation in healthy and GC samples. Moreover, moderate methylation (β < 0.4) and high methylation (β > 0.4) did not affect the free survival, suggesting that methylation is unlikely to be the mechanism ruling SOCS3 silencing in GC. Next, to assess the regulatory effects of lncRNAs on SOCS3, we silenced the AC125807.2-lncRNA and quantified the SOCS3 gene expression in AGS and NCI-N87 gastric cancer cell line. SOCS3 was found to be downregulated following AC125807.2-lncRNA silencing in AGS cells, suggesting the potential implication of lncRNA AC125807.2 in SOCS3 regulation. However, in NCI-N87 cells, there was no significant change in SOCS3 expression. In conclusion, neither mutations nor hypermethylation was associated with the SOCS3 downregulation in GC, and alternative mechanisms, including non-coding RNAs-mediated gene silencing, may be proposed.
Collapse
|
26
|
Kaplan HG, Jin R, Bifulco CB, Scanlan JM, Corwin DR. OUP accepted manuscript. Oncologist 2022; 27:e661-e670. [PMID: 35472244 PMCID: PMC9355817 DOI: 10.1093/oncolo/oyac072] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022] Open
Abstract
Background This review summarizes the case studies of PCM1-JAK2 fusion tyrosine kinase gene-related neoplasia. Recommended treatment includes JAK2 inhibitors and hematologic stem cell transplantation (HSCT), although the small number of patients has limited study of their efficacy. Herein, we present all available cases in the current searchable literature with their demographics, diagnoses, treatments, and outcomes. Methods PubMed, ScienceDirect, Publons, the Cochrane Library, and Google were searched with the following terms: PCM1-JAK2, ruxolitinib and myeloid/lymphoid. Results Sixty-six patients (mean age = 50, 77% male) had an initial diagnosis of myeloproliferative neoplasm (MPN) in 40, acute leukemia in 21 and T-cell cutaneous lymphoma in 5. Thirty-five patients (53%) had completed 5-year follow-up. The 5-year survival for the MPN, acute myelogenous leukemia (AML), acute lymphocytic leukemia, and lymphoma groups are 62.7, 14.9%, 40.0%, and 100%, respectively. Too few patients have been treated with ruxolitinib to draw conclusions regarding its effect on survival while the 5-year survival for MPN patients with or without HSCT was 80.2% (40.3%-94.8%) versus 51.5% (22.3%-74.6%), respectively. The T-cell cutaneous lymphoma patients have all survived at least 7 years. Conclusion This rare condition may be increasingly detected with wider use of genomics. Ruxolitinib can yield hematologic and molecular remissions. However, HSCT is, at this time, the only potentially curative treatment. Useful prognostic markers are needed to determine appropriate timing for HSCT in patients with MPN. Patients presenting with acute leukemia have a poor prognosis.
Collapse
Affiliation(s)
- Henry G Kaplan
- Corresponding author: Henry G. Kaplan, MD, Swedish Cancer Institute, 1221 Madison St, Suite 920, Seattle, Washington 98104, USA. Tel: +1 206 310 4259.
| | - Ruyun Jin
- Center for Cardiovascular Analytics, Research and Data Science (CARDS), Providence Heart Institute, Providence Research Network, Portland, OR, USA
| | | | - James M Scanlan
- Swedish Center for Research and Innovation, Seattle, WA, USA
| | - David R Corwin
- CellNetix, Seattle, WA, USA
- Swedish Medical Center, Seattle, WA, USA
| |
Collapse
|
27
|
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell (HSC) disorders with overproduction of mature myeloid blood cells, including essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF). In 2005, several groups identified a single gain-of-function point mutation JAK2V617F in the majority of MPN patients. The JAK2V617F mutation confers cytokine independent proliferation to hematopoietic progenitor cells by constitutively activating canonical and non-canonical downstream pathways. In this chapter, we focus on (1) the regulation of JAK2, (2) the molecular mechanisms used by JAK2V617F to induce MPNs, (3) the factors that are involved in the phenotypic diversity in MPNs, and (4) the effects of JAK2V617F on hematopoietic stem cells (HSCs). The discovery of the JAK2V617F mutation led to a comprehensive understanding of MPN; however, the question still remains about how one mutation can give rise to three distinct disease entities. Various mechanisms have been proposed, including JAK2V617F allele burden, differential STAT signaling, and host genetic modifiers. In vivo modeling of JAK2V617F has dramatically enhanced the understanding of the pathophysiology of the disease and provided the pre-clinical platform. Interestingly, most of these models do not show an increased hematopoietic stem cell self-renewal and function compared to wildtype controls, raising the question of whether JAK2V617F alone is sufficient to give a clonal advantage in MPN patients. In addition, the advent of modern sequencing technologies has led to a broader understanding of the mutational landscape and detailed JAK2V617F clonal architecture in MPN patients.
Collapse
|
28
|
Martínez-Pérez C, Kay C, Meehan J, Gray M, Dixon JM, Turnbull AK. The IL6-like Cytokine Family: Role and Biomarker Potential in Breast Cancer. J Pers Med 2021; 11:1073. [PMID: 34834425 PMCID: PMC8624266 DOI: 10.3390/jpm11111073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
IL6-like cytokines are a family of regulators with a complex, pleiotropic role in both the healthy organism, where they regulate immunity and homeostasis, and in different diseases, including cancer. Here we summarise how these cytokines exert their effect through the shared signal transducer IL6ST (gp130) and we review the extensive evidence on the role that different members of this family play in breast cancer. Additionally, we discuss how the different cytokines, their related receptors and downstream effectors, as well as specific polymorphisms in these molecules, can serve as predictive or prognostic biomarkers with the potential for clinical application in breast cancer. Lastly, we also discuss how our increasing understanding of this complex signalling axis presents promising opportunities for the development or repurposing of therapeutic strategies against cancer and, specifically, breast neoplasms.
Collapse
Affiliation(s)
- Carlos Martínez-Pérez
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Charlene Kay
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - James Meehan
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - Mark Gray
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| | - J. Michael Dixon
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
| | - Arran K. Turnbull
- Breast Cancer Now Edinburgh Research Team, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK; (C.K.); (J.M.D.); (A.K.T.)
- Translational Oncology Research Group, MRC Institute of Genetics and Cancer, Western General Hospital, University of Edinburgh, Edinburgh EH8 9YL, UK; (J.M.); (M.G.)
| |
Collapse
|
29
|
Murai Y, Jo U, Murai J, Fukuda S, Takebe N, Pommier Y. Schlafen 11 expression in human acute leukemia cells with gain-of-function mutations in the interferon-JAK signaling pathway. iScience 2021; 24:103173. [PMID: 34693224 PMCID: PMC8517841 DOI: 10.1016/j.isci.2021.103173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Schlafen11 (SLFN11) is referred to as interferon (IFN)-inducible. Based on cancer genomic databases, we identified human acute myeloid and lymphoblastic leukemia cells with gain-of-function mutations in the Janus kinase (JAK) family as exhibiting high SLFN11 expression. In these cells, the clinical JAK inhibitors cerdulatinib, ruxolitinib, and tofacitinib reduced SLFN11 expression, but IFN did not further induce SLFN11 despite phosphorylated STAT1. We provide evidence that suppression of SLFN11 by JAK inhibitors is caused by inactivation of the non-canonical IFN pathway controlled by AKT and ERK. Accordingly, the AKT and ERK inhibitors MK-2206 and SCH77284 suppressed SLFN11 expression. Both also suppressed the E26 transformation-specific (ETS)-family genes ETS-1 and FLI-1 that act as transcription factors for SLFN11. Moreover, SLFN11 expression was inhibited by the ETS inhibitor TK216. Our study reveals that SLFN11 expression is regulated via the JAK, AKT and ERK, and ETS axis. Pharmacological suppression of SLFN11 warrants future studies.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
30
|
Schischlik F. Transcriptional configurations of myeloproliferative neoplasms. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:25-39. [PMID: 35153005 DOI: 10.1016/bs.ircmb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Myeloproliferative neoplasms (MPNs) is an umbrella term for several heterogenous diseases, which are characterized by their stem cell origin, clonal hematopoiesis and increase of blood cells of the myeloid lineage. The focus will be on BCR-ABL1 negative MPNs, polycythemia vera (PV), primary myelofibrosis (PMF), essential thrombocythemia (ET). Seminal findings in the field of MPN were driven by genomic analysis, focusing on dissecting genomic changes MPN patients. This led to identification of major MPN driver genes, JAK2, MPL and CALR. Transcriptomic analysis promises to bridge the gap between genetic and phenotypic characterization of each patient's tumor and with the advent of single cell sequencing even for each MPN cancer cell. This review will focus on efforts to mine the bulk transcriptome of MPN patients, including analysis of fusion genes and splicing alterations which can be addressed with RNA-seq technologies. Furthermore, this paper aims to review recent endeavors to elucidate tumor heterogeneity in MPN hematopoietic stem and progenitor cells using single cell technologies. Finally, it will highlight current shortcoming and future applications to advance the field in MPN biology and improve patient diagnostics using RNA-based assays.
Collapse
Affiliation(s)
- Fiorella Schischlik
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States.
| |
Collapse
|
31
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
32
|
Expression of RUNX1-JAK2 in Human Induced Pluripotent Stem Cell-Derived Hematopoietic Cells Activates the JAK-STAT and MYC Pathways. Int J Mol Sci 2021; 22:ijms22147576. [PMID: 34299194 PMCID: PMC8304339 DOI: 10.3390/ijms22147576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022] Open
Abstract
A heterogeneous genetic subtype of B-cell precursor acute lymphoblastic leukemia is driven by constitutive kinase-activation, including patients with JAK2 fusions. In our study, we model the impact of a novel JAK2 fusion protein on hematopoietic development in human induced pluripotent stem cells (hiPSCs). We insert the RUNX1-JAK2 fusion into one endogenous RUNX1 allele through employing in trans paired nicking genome editing. Tagging of the fusion with a degron facilitates protein depletion using the heterobifunctional compound dTAG-13. Throughout in vitro hematopoietic differentiation, the expression of RUNX1-JAK2 is driven by endogenous RUNX1 regulatory elements at physiological levels. Functional analysis reveals that RUNX1-JAK2 knock-in cell lines yield fewer hematopoietic progenitors, due to RUNX1 haploinsufficiency. Nevertheless, these progenitors further differentiate toward myeloid lineages to a similar extent as wild-type cells. The expression of the RUNX1-JAK2 fusion protein only elicits subtle effects on myeloid differentiation, and is unable to transform early hematopoietic progenitors. However, phosphoprotein and transcriptome analyses reveal that RUNX1-JAK2 constitutively activates JAK-STAT signaling in differentiating hiPSCs and at the same time upregulates MYC targets—confirming the interaction between these pathways. This proof-of-principle study indicates that conditional expression of oncogenic fusion proteins in combination with hematopoietic differentiation of hiPSCs may be applicable to leukemia-relevant disease modeling.
Collapse
|
33
|
Genomic Analyses of Pediatric Acute Lymphoblastic Leukemia Ph+ and Ph-Like-Recent Progress in Treatment. Int J Mol Sci 2021; 22:ijms22126411. [PMID: 34203891 PMCID: PMC8232636 DOI: 10.3390/ijms22126411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Pediatric acute lymphoblastic leukemia (ALL) with t(9;22)(q34;q11.2) is a very rare malignancy in children. Approximately 3-5% of pediatric ALL patients present with the Philadelphia chromosome. Previously, children with Ph+ had a poor prognosis, and were considered for allogeneic stem cell transplantation (allo-HSCT) in their first remission (CR1). Over the last few years, the treatment of childhood ALL has significantly improved due to standardized research protocols. Hematopoietic stem cell transplantation (HSCT) has been the gold standard therapy in ALL Ph+ patients, but recently first-generation tyrosine kinase inhibitor (TKI)-imatinib became a major milestone in increasing overall survival. Genomic analyses give the opportunity for the investigation of new fusions or mutations, which can be used to establish effective targeted therapies. Alterations of the IKZF1 gene are present in a large proportion of pediatric and adult ALL Ph+ cases. IKZF1 deletions are present in ~15% of patients without BCR-ABL1 rearrangements. In BCR-ABL1-negative cases, IKZF1 deletions have been shown to have an independent prognostic impact, carrying a three-fold increased risk of treatment failure. The prognostic significance of IKZF1 gene aberrations in pediatric ALL Ph+ is still under investigation. More research should focus on targeted therapies and immunotherapy, which is not associated with serious toxicity in the same way as classic chemotherapy, and on the improvement of patient outcomes. In this review, we provide a molecular analysis of childhood ALL with t(9;22)(q34;q11.2), including the Ph-like subtype, and of treatment strategies.
Collapse
|
34
|
Gerak CAN, Zhang SM, Balgi AD, Sadowski IJ, Sessions RB, McIntosh LP, Roberge M. A Multipronged Screening Approach Targeting Inhibition of ETV6 PNT Domain Polymerization. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:698-711. [PMID: 33345679 DOI: 10.1177/2472555220979599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ETV6 is an ETS family transcriptional repressor for which head-to-tail polymerization of its PNT domain facilitates cooperative binding to DNA by its ETS domain. Chromosomal translocations frequently fuse the ETV6 PNT domain to one of several protein tyrosine kinases. The resulting chimeric oncoproteins undergo ligand-independent self-association, autophosphorylation, and aberrant stimulation of downstream signaling pathways, leading to a variety of cancers. Currently, no small-molecule inhibitors of ETV6 PNT domain polymerization are known and no assays targeting PNT domain polymerization have been described. In this study, we developed complementary experimental and computational approaches for identifying such inhibitory compounds. One mammalian cellular approach utilized a mutant PNT domain heterodimer system covalently attached to split Gaussia luciferase fragments. In this protein-fragment complementation assay, inhibition of PNT domain heterodimerization reduces luminescence. A yeast assay took advantage of activation of the reporter HIS3 gene upon heterodimerization of mutant PNT domains fused to DNA-binding and transactivation domains. In this two-hybrid screen, inhibition of PNT domain heterodimerization prevents cell growth in medium lacking histidine. The Bristol University Docking Engine (BUDE) was used to identify virtual ligands from the ZINC8 library predicted to bind the PNT domain polymerization interfaces. More than 75 hits from these three assays were tested by nuclear magnetic resonance spectroscopy for binding to the purified ETV6 PNT domain. Although none were found to bind, the lessons learned from this study may facilitate future approaches for developing therapeutics that act against ETV6 oncoproteins by disrupting PNT domain polymerization.
Collapse
Affiliation(s)
- Chloe A N Gerak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Si Miao Zhang
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Aruna D Balgi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ivan J Sadowski
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | | | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Michel Roberge
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
35
|
Padzik N, Szewczuk M. Molecular basis of essential thrombocythaemia in humans and dogs – a review. ROCZNIKI NAUKOWE POLSKIEGO TOWARZYSTWA ZOOTECHNICZNEGO 2021. [DOI: 10.5604/01.3001.0014.7548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
<b>A potential cause of essential thrombocythaemia can be seen as the V617F point mutation within Janus kinase 2. This mutation occurs in 60-70% of patients with this disease and is located in the domain acting as an inhibitor. It increases the enzymatic activity of JAK2 kinase and induces intensified sensitivity of cells to cytokines. Identification of mutations in the JAK2 gene has made it possible to describe the molecular pathogenesis of myeloproliferative syndromes, which has enabled more accurate diagnosis and assisted in effective treatment. The significant similarity of the clinical, laboratory and morphological features of myeloproliferative syndromes (including essential thrombocythaemia) in animals and humans suggests that common signalling pathways within the JAK2 gene may be involved in the development of these diseases.</b>
Collapse
Affiliation(s)
- Nicola Padzik
- West Pomeranian University of Technology in Szczecin Department of Ruminant Science Laboratory of Biostatistics
| | - Małgorzata Szewczuk
- West Pomeranian University of Technology in Szczecin Department of Ruminant Science Laboratory of Biostatistics
| |
Collapse
|
36
|
Quesada AE, Zhang Y, Ptashkin R, Ho C, Horwitz S, Benayed R, Dogan A, Arcila ME. Next generation sequencing of breast implant-associated anaplastic large cell lymphomas reveals a novel STAT3-JAK2 fusion among other activating genetic alterations within the JAK-STAT pathway. Breast J 2021; 27:314-321. [PMID: 33660353 DOI: 10.1111/tbj.14205] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Breast implant associated anaplastic large cell lymphoma (BIA-ALCL) is a distinct type of ALCL, and a new provisional entity by the 2016 revision of the World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues. In contrast to systemic and primary cutaneous ALCLs, BIA-ALCLs have been genetically characterized by the absence of fusions and frequent activation of the JAK-STAT3 pathway through mutations in JAK1 and STAT3. In this study, we report the results of the genetic profiling of 9 BIA-ALCL cases supporting the role of the JAK-STAT pathway activation in this entity, including the identification of an activating STAT3-JAK2 fusion similar to those recently reported in T-cell lymphoproliferative disorders of the gastrointestinal tract. To our knowledge, this is the first fusion reported in BIA-ALCL, providing further insight into the overall genetic landscape of this rare entity as well as uncovering potential options for targeted therapy in cases with advanced disease.
Collapse
Affiliation(s)
- Andrés E Quesada
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanming Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Ptashkin
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caleb Ho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven Horwitz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryma Benayed
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria E Arcila
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Janus Kinases in Leukemia. Cancers (Basel) 2021; 13:cancers13040800. [PMID: 33672930 PMCID: PMC7918039 DOI: 10.3390/cancers13040800] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/12/2023] Open
Abstract
Janus kinases (JAKs) transduce signals from dozens of extracellular cytokines and function as critical regulators of cell growth, differentiation, gene expression, and immune responses. Deregulation of JAK/STAT signaling is a central component in several human diseases including various types of leukemia and other malignancies and autoimmune diseases. Different types of leukemia harbor genomic aberrations in all four JAKs (JAK1, JAK2, JAK3, and TYK2), most of which are activating somatic mutations and less frequently translocations resulting in constitutively active JAK fusion proteins. JAKs have become important therapeutic targets and currently, six JAK inhibitors have been approved by the FDA for the treatment of both autoimmune diseases and hematological malignancies. However, the efficacy of the current drugs is not optimal and the full potential of JAK modulators in leukemia is yet to be harnessed. This review discusses the deregulation of JAK-STAT signaling that underlie the pathogenesis of leukemia, i.e., mutations and other mechanisms causing hyperactive cytokine signaling, as well as JAK inhibitors used in clinic and under clinical development.
Collapse
|
38
|
K. Bhanumathy K, Balagopal A, Vizeacoumar FS, Vizeacoumar FJ, Freywald A, Giambra V. Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia. Cancers (Basel) 2021; 13:cancers13020184. [PMID: 33430292 PMCID: PMC7825731 DOI: 10.3390/cancers13020184] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase superfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies. In this review, we provide insights into the role of tyrosine kinases in leukaemia and discuss their targeting for therapeutic purposes with the currently available inhibitory compounds. Abstract Protein kinases constitute a large group of enzymes catalysing protein phosphorylation and controlling multiple signalling events. The human protein kinase superfamily consists of 518 members and represents a complicated system with intricate internal and external interactions. Protein kinases are classified into two main families based on the ability to phosphorylate either tyrosine or serine and threonine residues. Among the 90 tyrosine kinase genes, 58 are receptor types classified into 20 groups and 32 are of the nonreceptor types distributed into 10 groups. Tyrosine kinases execute their biological functions by controlling a variety of cellular responses, such as cell division, metabolism, migration, cell–cell and cell matrix adhesion, cell survival and apoptosis. Over the last 30 years, a major focus of research has been directed towards cancer-associated tyrosine kinases owing to their critical contributions to the development and aggressiveness of human malignancies through the pathological effects on cell behaviour. Leukaemia represents a heterogeneous group of haematological malignancies, characterised by an uncontrolled proliferation of undifferentiated hematopoietic cells or leukaemia blasts, mostly derived from bone marrow. They are usually classified as chronic or acute, depending on the rates of their progression, as well as myeloid or lymphoblastic, according to the type of blood cells involved. Overall, these malignancies are relatively common amongst both children and adults. In malignant haematopoiesis, multiple tyrosine kinases of both receptor and nonreceptor types, including AXL receptor tyrosine kinase (AXL), Discoidin domain receptor 1 (DDR1), Vascular endothelial growth factor receptor (VEGFR), Fibroblast growth factor receptor (FGFR), Mesenchymal–epithelial transition factor (MET), proto-oncogene c-Src (SRC), Spleen tyrosine kinase (SYK) and pro-oncogenic Abelson tyrosine-protein kinase 1 (ABL1) mutants, are implicated in the pathogenesis and drug resistance of practically all types of leukaemia. The role of ABL1 kinase mutants and their therapeutic inhibitors have been extensively analysed in scientific literature, and therefore, in this review, we provide insights into the impact and mechanism of action of other tyrosine kinases involved in the development and progression of human leukaemia and discuss the currently available and emerging treatment options based on targeting these molecules.
Collapse
Affiliation(s)
- Kalpana K. Bhanumathy
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| | - Amrutha Balagopal
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (A.B.); (F.J.V.)
- Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (F.S.V.); (A.F.)
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy
- Correspondence: (K.K.B.); (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.)
| |
Collapse
|
39
|
Padzik N, Szewczuk M, Ropka-Molik K. Distribution of JAK2 genotypes across Suffolk and Pomeranian sheep. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2020.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Guan Y, Yang YJ, Nagarajan P, Ge Y. Transcriptional and signalling regulation of skin epithelial stem cells in homeostasis, wounds and cancer. Exp Dermatol 2020; 30:529-545. [PMID: 33249665 DOI: 10.1111/exd.14247] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
The epidermis and skin appendages are maintained by their resident epithelial stem cells, which undergo long-term self-renewal and multilineage differentiation. Upon injury, stem cells are activated to mediate re-epithelialization and restore tissue function. During this process, they often mount lineage plasticity and expand their fates in response to damage signals. Stem cell function is tightly controlled by transcription machineries and signalling transductions, many of which derail in degenerative, inflammatory and malignant dermatologic diseases. Here, by describing both well-characterized and newly emerged pathways, we discuss the transcriptional and signalling mechanisms governing skin epithelial homeostasis, wound repair and squamous cancer. Throughout, we highlight common themes underscoring epithelial stem cell plasticity and tissue-level crosstalk in the context of skin physiology and pathology.
Collapse
Affiliation(s)
- Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Priyadharsini Nagarajan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
41
|
Strous GJ, Almeida ADS, Putters J, Schantl J, Sedek M, Slotman JA, Nespital T, Hassink GC, Mol JA. Growth Hormone Receptor Regulation in Cancer and Chronic Diseases. Front Endocrinol (Lausanne) 2020; 11:597573. [PMID: 33312162 PMCID: PMC7708378 DOI: 10.3389/fendo.2020.597573] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
The GHR signaling pathway plays important roles in growth, metabolism, cell cycle control, immunity, homeostatic processes, and chemoresistance via both the JAK/STAT and the SRC pathways. Dysregulation of GHR signaling is associated with various diseases and chronic conditions such as acromegaly, cancer, aging, metabolic disease, fibroses, inflammation and autoimmunity. Numerous studies entailing the GHR signaling pathway have been conducted for various cancers. Diverse factors mediate the up- or down-regulation of GHR signaling through post-translational modifications. Of the numerous modifications, ubiquitination and deubiquitination are prominent events. Ubiquitination by E3 ligase attaches ubiquitins to target proteins and induces proteasomal degradation or starts the sequence of events that leads to endocytosis and lysosomal degradation. In this review, we discuss the role of first line effectors that act directly on the GHR at the cell surface including ADAM17, JAK2, SRC family member Lyn, Ubc13/CHIP, proteasome, βTrCP, CK2, STAT5b, and SOCS2. Activity of all, except JAK2, Lyn and STAT5b, counteract GHR signaling. Loss of their function increases the GH-induced signaling in favor of aging and certain chronic diseases, exemplified by increased lung cancer risk in case of a mutation in the SOCS2-GHR interaction site. Insight in their roles in GHR signaling can be applied for cancer and other therapeutic strategies.
Collapse
Affiliation(s)
- Ger J. Strous
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
- BIMINI Biotech B.V., Leiden, Netherlands
| | - Ana Da Silva Almeida
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joyce Putters
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Julia Schantl
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Magdalena Sedek
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Johan A. Slotman
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Tobias Nespital
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Gerco C. Hassink
- Department of Cell Biology, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Jan A. Mol
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
42
|
TBL1XR1-JAK2: a novel fusion in a pediatric T cell acute lymphoblastic leukemia patient with increased absolute eosinophil count. J Hematop 2020. [DOI: 10.1007/s12308-020-00413-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Garrido-Trigo A, Salas A. Molecular Structure and Function of Janus Kinases: Implications for the Development of Inhibitors. J Crohns Colitis 2020; 14:S713-S724. [PMID: 32083640 PMCID: PMC7395311 DOI: 10.1093/ecco-jcc/jjz206] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cytokines can trigger multiple signalling pathways, including Janus tyrosine kinases [JAK] and signal transducers and activators of transcription [STATS] pathways. JAKs are cytoplasmic proteins that, following the binding of cytokines to their receptors, transduce the signal by phosphorylating STAT proteins which enter the nuclei and rapidly target gene promoters to regulate gene transcription. Due to the critical involvement of JAK proteins in mediating innate and adaptive immune responses, these family of kinases have become desirable pharmacological targets in inflammatory diseases, including ulcerative colitis and Crohn's disease. In this review we provide an overview of the main cytokines that signal through the JAK/STAT pathway and the available in vivo evidence on mutant or deleted JAK proteins, and discuss the implications of pharmacologically targeting this kinase family in the context of inflammatory diseases.
Collapse
Affiliation(s)
- Alba Garrido-Trigo
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain
| | - Azucena Salas
- Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Barcelona, Spain,Corresponding author: Azucena Salas, PhD, Inflammatory Bowel Disease Unit, Department of Gastroenterology, Institut d’Investigacions Biomèdiques August Pi i Sunyer [IDIBAPS] – CIBEREHD, Rosselló 149-153, Barcelona 08036, Spain.
| |
Collapse
|
44
|
Bahoush G, Vafapour M, Kariminejad R. New translocation in acute myeloid leukemia M4 eos. Leuk Res Rep 2020; 14:100209. [PMID: 32566479 PMCID: PMC7296338 DOI: 10.1016/j.lrr.2020.100209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/10/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
The most common childhood malignancy is acute leukemia. Approximately 15- 20% of it, is Acute myeloid leukemia (AML). The general symptoms of this malignancy include fatigue, weakness, fever, paleness and bleeding disorders. There are two methods of classifying for AML: The French-American-British (FAB) and the World Health Organization (WHO) classification.The M4 eos subtype, also called myelomonocytic leukemia, is one subtype of AML with eosinophilia. The most common cytogenetic variations in this leukemia include inv (16) (p13q22) or the variant t (16; 16) (p13; q22). In this report, we present the first AML-M4 eos case with a new translocation that has not yet been reported.
Collapse
Affiliation(s)
- Gholamreza Bahoush
- Associate Professor in Pediatrics, Pediatric Hematologist and Oncologist, Ali-Asghar Children Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Vafapour
- Chief resident of Pediatrics, Ali-Asghar Children Hospital, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roxana Kariminejad
- Cytogenetic division, Kariminejad,Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
45
|
Gianni F, Belver L, Ferrando A. The Genetics and Mechanisms of T-Cell Acute Lymphoblastic Leukemia. Cold Spring Harb Perspect Med 2020; 10:a035246. [PMID: 31570389 PMCID: PMC7050584 DOI: 10.1101/cshperspect.a035246] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy derived from early T-cell progenitors. The recognition of clinical, genetic, transcriptional, and biological heterogeneity in this disease has already translated into new prognostic biomarkers, improved leukemia animal models, and emerging targeted therapies. This work reviews our current understanding of the molecular mechanisms of T-ALL.
Collapse
Affiliation(s)
- Francesca Gianni
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
| | - Adolfo Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York 10032, USA
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
46
|
Fattizzo B, Rosa J, Giannotta JA, Baldini L, Fracchiolla NS. The Physiopathology of T- Cell Acute Lymphoblastic Leukemia: Focus on Molecular Aspects. Front Oncol 2020; 10:273. [PMID: 32185137 PMCID: PMC7059203 DOI: 10.3389/fonc.2020.00273] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
T-cell acute lymphoblastic leukemia/lymphoma is an aggressive hematological neoplasm whose classification is still based on immunophenotypic findings. Frontline treatment encompass high intensity combination chemotherapy with good overall survival; however, relapsing/refractory patients have very limited options. In the last years, the understanding of molecular physiopathology of this disease, lead to the identification of a subset of patients with peculiar genetic profile, namely “early T-cell precursors” lymphoblastic leukemia, characterized by dismal outcome and indication to frontline allogeneic bone marrow transplant. In general, the most common mutations occur in the NOTCH1/FBXW7 pathway (60% of adult patients), with a positive prognostic impact. Other pathogenic steps encompass transcriptional deregulation of oncogenes/oncosuppressors, cell cycle deregulation, kinase signaling (including IL7R-JAK-STAT pathway, PI3K/AKT/mTOR pathway, RAS/MAPK signaling pathway, ABL1 signaling pathway), epigenetic deregulation, ribosomal dysfunction, and altered expression of oncogenic miRNAs or long non-coding RNA. The insight in the genomic landscape of the disease paves the way to the use of novel targeted drugs that might improve the outcome, particularly in relapse/refractory patients. In this review, we analyse available literature on T-ALL pathogenesis, focusing on molecular aspects of clinical, prognostic, and therapeutic significance.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Jessica Rosa
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Juri Alessandro Giannotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | - Luca Baldini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy.,Dipartimento di Oncologia ed Oncoematologia, Università degli studi di Milano, Milan, Italy
| | | |
Collapse
|
47
|
Vincenzi M, Mercurio FA, Leone M. Sam Domains in Multiple Diseases. Curr Med Chem 2020; 27:450-476. [PMID: 30306850 DOI: 10.2174/0929867325666181009114445] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/26/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The sterile alpha motif (Sam) domain is a small helical protein module, able to undergo homo- and hetero-oligomerization, as well as polymerization, thus forming different types of protein architectures. A few Sam domains are involved in pathological processes and consequently, they represent valuable targets for the development of new potential therapeutic routes. This study intends to collect state-of-the-art knowledge on the different modes by which Sam domains can favor disease onset and progression. METHODS This review was build up by searching throughout the literature, for: a) the structural properties of Sam domains, b) interactions mediated by a Sam module, c) presence of a Sam domain in proteins relevant for a specific disease. RESULTS Sam domains appear crucial in many diseases including cancer, renal disorders, cataracts. Often pathologies are linked to mutations directly positioned in the Sam domains that alter their stability and/or affect interactions that are crucial for proper protein functions. In only a few diseases, the Sam motif plays a kind of "side role" and cooperates to the pathological event by enhancing the action of a different protein domain. CONCLUSION Considering the many roles of the Sam domain into a significant variety of diseases, more efforts and novel drug discovery campaigns need to be engaged to find out small molecules and/or peptides targeting Sam domains. Such compounds may represent the pillars on which to build novel therapeutic strategies to cure different pathologies.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone, 16, 80134 Naples, Italy
| |
Collapse
|
48
|
Multiplexed Digital Detection of B-Cell Acute Lymphoblastic Leukemia Fusion Transcripts Using the NanoString nCounter System. J Mol Diagn 2020; 22:72-80. [DOI: 10.1016/j.jmoldx.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/27/2022] Open
|
49
|
Cook JR, Rogers HJ, Chandra PK, Prescott JL, Mukherjee S. Myeloid neoplasm with eosinophilia and ETV6-JAK2 fusion. Leuk Lymphoma 2020; 61:213-216. [PMID: 31482743 DOI: 10.1080/10428194.2019.1658105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
Affiliation(s)
- James R Cook
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Heesun J Rogers
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|
50
|
Tettweiler G, Blaquiere JA, Wray NB, Verheyen EM. Hipk is required for JAK/STAT activity during development and tumorigenesis. PLoS One 2019; 14:e0226856. [PMID: 31891940 PMCID: PMC6938406 DOI: 10.1371/journal.pone.0226856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Drosophila has been instrumental as a model system in studying signal transduction and revealing molecular functions in development and human diseases. A point mutation in the Drosophila Janus kinase JAK (called hop) causes constitutive activation of the JAK/STAT pathway. We provide robust genetic evidence that the Homeodomain interacting protein kinase (Hipk) is required for endogenous JAK/STAT activity. Overexpression of Hipk can phenocopy the effects of overactive JAK/STAT mutations and lead to melanized tumors, and loss of Hipk can suppress the effects of hyperactive JAK/STAT. Further, the loss of the pathway effector Stat92E can suppress Hipk induced overgrowth. Interaction studies show that Hipk can physically interact with Stat92E and regulate Stat92E subcellular localization. Together our results show that Hipk is a novel factor required for effective JAK/STAT signaling.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Jessica A. Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Nathan B. Wray
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
- * E-mail:
| |
Collapse
|