1
|
Qi Y, Yu CH. PI(3,4,5)P3-mediated Cdc42 activation regulates macrophage podosome assembly. Cell Mol Life Sci 2025; 82:127. [PMID: 40126693 PMCID: PMC11933580 DOI: 10.1007/s00018-025-05664-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/16/2025] [Indexed: 03/26/2025]
Abstract
Podosomes are adhesion structures with densely-polymerized F-actin. While PI(3,4,5)P3 and Cdc42-GTP are known factors to trigger WASP-mediated actin polymerization at the macrophage podosome, their causal mechanism to activate WASP remains unclear. Here, we demonstrate that spatially elevated Cdc42-GTP is a downstream effector of local PI(3,4,5)P3 production at the podosome. We further examine the expression and distribution of 19 Cdc42 guanine exchange factors (GEFs) and identify VAV1 as the key PI(3,4,5)P3-dependent Cdc42 GEF. VAV1 is spatially enriched at the macrophage podosome, and the association of VAV1 with the membrane plays a critical role in upregulating its GEF activity. Reintroduction of wildtype VAV1, rather than the PI(3,4,5)P3-binding deficient or catalytically dead mutants restores the matrix degradation and chemotactic migration of VAV1-knockdown macrophage. Thus, the biogenesis of PI(3,4,5)P3 acts as an upstream signal to locally recruit VAV1 and in turn triggers the guanine nucleotide exchange of Cdc42. Elevated levels of Cdc42-GTP then promote WASP-mediated podosome assembly and macrophage chemotaxis.
Collapse
Affiliation(s)
- Yaoyue Qi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Cheng-Han Yu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
2
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
3
|
Yan K, Zhang Y, Li Y, Tang M, Xu Y, Yan X, Hu J, Wang Y. Immune Response of Silver Pomfret (Pampus argenteus) CC Chemokine Ligand Gene Family to Photobacterium damselae Subsp. Damselae and Nocardia seriolae Infections. JOURNAL OF FISH DISEASES 2025; 48:e14032. [PMID: 39440715 DOI: 10.1111/jfd.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024]
Abstract
Chemokines play a crucial role in immune responses by facilitating the migration of cells expressing corresponding chemokine receptors along concentration gradients. Photobacterium damselae subsp. Damselae (PDD) and Nocardia seriolae (NS) are known to induce substantial mortality in silver pomfret populations, yet there exists a dearth of research regarding the immune response of CCLs in PDD- or NS-infected silver pomfret. In our investigation, we identified 10 PaCCLs, which include one fish-specific CCL (PaCCL44). Phylogenetic analysis revealed considerable diversity in CCL types and copy numbers among various teleost fishes. Notably, silver pomfret lacks specific CCL genes, with most PaCCLs exhibiting heightened expression levels in immune-related organs such as the spleen and kidney, and some being expressed in mucosal immune-related organs like the skin and gills. Transcriptome analysis conducted on silver pomfret infected with NS and PDD elucidated that the expression changes of PaCCLs primarily manifested in the spleen during the initial stages of NS infection, shifting to the kidney in later stages. Conversely, the expression changes of PaCCLs following PDD infection predominantly occurred in the kidney. In vitro studies using silver pomfret spleen cell lines demonstrated an early peak in PaCCLs expression during infection, followed by gradual decline with NS treatment and rapid diminishment with PDD treatment. These findings suggest that PaCCLs primarily support the innate immunity of silver pomfret, potentially exhibiting chemotactic effects in the early infection stages, such as the synergistic action of PaCCL4 and PaCCL25, and later serving as direct antibacterial agents. NS invasion is characterised by a chronic infection affecting multiple organs, whereas PDD primarily inflicts severe damage to the kidney. PaCCL19a and PaCCL19b are specific to PDD, and their expression levels may decrease in the later stages of infection due to PDD immune escape. These data offer initial insights into understanding the mechanism underlying the innate immune response of the CCL gene family in silver pomfret and provide theoretical underpinnings for fish culture practices.
Collapse
Affiliation(s)
- Kaiheng Yan
- College of Marine Sciences, Ningbo University, Ningbo, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Youyi Zhang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yuanbo Li
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Mengke Tang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yifan Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Xiaojun Yan
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- College of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
4
|
Ravala SK, Tesmer JJG. New Mechanisms Underlying Oncogenesis in Dbl Family Rho Guanine Nucleotide Exchange Factors. Mol Pharmacol 2024; 106:117-128. [PMID: 38902036 PMCID: PMC11331503 DOI: 10.1124/molpharm.124.000904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Transmembrane signaling is a critical process by which changes in the extracellular environment are relayed to intracellular systems that induce changes in homeostasis. One family of intracellular systems are the guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GTP for GDP bound to inactive guanine nucleotide binding proteins (G proteins). The resulting active G proteins then interact with downstream targets that control cell proliferation, growth, shape, migration, adhesion, and transcription. Dysregulation of any of these processes is a hallmark of cancer. The Dbl family of GEFs activates Rho family G proteins, which, in turn, alter the actin cytoskeleton and promote gene transcription. Although they have a common catalytic mechanism exercised by their highly conserved Dbl homology (DH) domains, Dbl GEFs are regulated in diverse ways, often involving the release of autoinhibition imposed by accessory domains. Among these domains, the pleckstrin homology (PH) domain is the most commonly observed and found immediately C-terminal to the DH domain. The domain has been associated with both positive and negative regulation. Recently, some atomic structures of Dbl GEFs have been determined that reemphasize the complex and central role that the PH domain can play in orchestrating regulation of the DH domain. Here, we discuss these newer structures, put them into context by cataloging the various ways that PH domains are known to contribute to signaling across the Dbl family, and discuss how the PH domain might be exploited to achieve selective inhibition of Dbl family RhoGEFs by small-molecule therapeutics. SIGNIFICANCE STATEMENT: Dysregulation via overexpression or mutation of Dbl family Rho guanine nucleotide exchange factors (GEFs) contributes to cancer and neurodegeneration. Targeting the Dbl homology catalytic domain by small-molecule therapeutics has been challenging due to its high conservation and the lack of a discrete binding pocket. By evaluating some new autoinhibitory mechanisms in the Dbl family, we demonstrate the great diversity of roles played by the regulatory domains, in particular the PH domain, and how this holds tremendous potential for the development of selective therapeutics that modulate GEF activity.
Collapse
Affiliation(s)
- Sandeep K Ravala
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| | - John J G Tesmer
- Departments of Biological Sciences and Medicinal Chemistry and Molecular Pharmacology (S.K.R., J.J.G.T.) and Purdue University Institute for Cancer Research (J.J.G.T.), Purdue University, West Lafayette, Indiana
| |
Collapse
|
5
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Olufunmilayo EO, Holsinger RMD. INPP5D/SHIP1: Expression, Regulation and Roles in Alzheimer's Disease Pathophysiology. Genes (Basel) 2023; 14:1845. [PMID: 37895194 PMCID: PMC10606568 DOI: 10.3390/genes14101845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, accounting for approximately 38.5 million cases of all-cause dementia. Over 60% of these individuals live in low- and middle-income countries and are the worst affected, especially by its deleterious effects on the productivity of both patients and caregivers. Numerous risk factors for the disease have been identified and our understanding of gene-environment interactions have shed light on several gene variants that contribute to the most common, sporadic form of AD. Microglial cells, the innate immune cells of the central nervous system (CNS), have long been established as guardians of the brain by providing neuroprotection and maintaining cellular homeostasis. A protein with a myriad of effects on various important signaling pathways that is expressed in microglia is the Src Homology 2 (SH2) domain-containing Inositol 5' Phosphatase 1 (SHIP1) protein. Encoded by the INPP5D (Inositol Polyphosphate-5-Phosphatase D) gene, SHIP1 has diminutive effects on most microglia signaling processes. Polymorphisms of the INPP5D gene have been found to be associated with a significantly increased risk of AD. Several studies have elucidated mechanistic processes by which SHIP1 exerts its perturbations on signaling processes in peripheral immune cells. However, current knowledge of the controllers of INPP5D/SHIP1 expression and the idiosyncrasies of its influences on signaling processes in microglia and their relevance to AD pathophysiology is limited. In this review, we summarize these discoveries and discuss the potential of leveraging INPP5D/SHIP1 as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Edward O. Olufunmilayo
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Department of Medicine, University College Hospital, Queen Elizabeth Road, Oritamefa, Ibadan 2002012, Nigeria
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
7
|
Zarkada G, Chen X, Zhou X, Lange M, Zeng L, Lv W, Zhang X, Li Y, Zhou W, Liu K, Chen D, Ricard N, Liao JK, Kim YB, Benedito R, Claesson-Welsh L, Alitalo K, Simons M, Ju R, Li X, Eichmann A, Zhang F. Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption. Circ Res 2023; 133:333-349. [PMID: 37462027 PMCID: PMC10530007 DOI: 10.1161/circresaha.123.322607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.
Collapse
Affiliation(s)
- Georgia Zarkada
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuetong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenyu Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunhua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Weibin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dongying Chen
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Nicolas Ricard
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - James K. Liao
- University of Arizona, College of Medicine, Banner University Medical Center, Tucson, AZ, 85724, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid E28029, Spain
| | - Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, 751 85 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland
| | - Michael Simons
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
- INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
8
|
Yadav S, Garrido A, Hernández MC, Oliveros JC, Pérez-García V, Fraga MF, Carrera AC. PI3Kβ-regulated β-catenin mediates EZH2 removal from promoters controlling primed human ESC stemness and primitive streak gene expression. Stem Cell Reports 2022; 17:2239-2255. [PMID: 36179694 PMCID: PMC9561645 DOI: 10.1016/j.stemcr.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
The mechanism governing the transition of human embryonic stem cells (hESCs) toward differentiated cells is only partially understood. To explore this transition, the activity and expression of the ubiquitous phosphatidylinositol 3-kinase (PI3Kα and PI3Kβ) were modulated in primed hESCs. The study reports a pathway that dismantles the restraint imposed by the EZH2 polycomb repressor on an essential stemness gene, NODAL, and on transcription factors required to trigger primitive streak formation. The primitive streak is the site where gastrulation begins to give rise to the three embryonic cell layers from which all human tissues derive. The pathway involves a PI3Kβ non-catalytic action that controls nuclear/active RAC1 levels, activation of JNK (Jun N-terminal kinase) and nuclear β-catenin accumulation. β-Catenin deposition at promoters triggers release of the EZH2 repressor, permitting stemness maintenance (through control of NODAL) and correct differentiation by allowing primitive streak master gene expression. PI3Kβ epigenetic control of EZH2/β-catenin might be modulated to direct stem cell differentiation. PI3Kβ directs epigenetic control of stemness and primitive streak (PS) essential genes PI3Kβ directs RAC1/JNK/β-catenin activation and induces EZH2 promoter displacement β-Catenin/EZH2 control NODAL, a gene essential for stemness and the master PS genes PI3Kβ/PI3K activities cooperate at stemness; PI3Kβ directs PS gene expression
Collapse
Affiliation(s)
- Sudhanshu Yadav
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Antonio Garrido
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - M Carmen Hernández
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Juan C Oliveros
- Department of Systems Biology, Bioinformatics, Centro Nacional de Biotecnología/CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Vicente Pérez-García
- Centro de Investigación Príncipe Felipe, Eduardo Primo Yúfera, 46013 Valencia, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center/CSIC, Health Research Institute of Asturias (ISPA), Institute of Oncology of Asturias (IUOPA), Research Center for Rare Diseases (CIBERER), 33011 Oviedo, Asturias, Spain
| | - Ana C Carrera
- Department of Immunology and Oncology, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
9
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
10
|
Ueda Y, Sugimoto N, Ozawa T. Increased spine PIP3 is sequestered from dendritic shafts. Mol Brain 2022; 15:59. [PMID: 35787719 PMCID: PMC9254409 DOI: 10.1186/s13041-022-00944-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/26/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3) is a lipid second messenger that is crucial for the synaptic plasticity underlying learning and memory in pyramidal neurons in the brain. Our previous study uncovered PIP3 enrichment in the dendritic spines of hippocampal pyramidal neurons in the static state using a fluorescence lifetime-based PIP3 probe. However, the extent to which PIP3 enrichment is preserved in different states has not been fully investigated. Here, we revealed that PIP3 accumulation in dendritic spines is strictly controlled even in an active state in which PIP3 is increased by glutamate stimulation and high potassium-induced membrane depolarization. Time-course PIP3 analysis clarified the gradual PIP3 accumulation in dendritic spines over days during neuronal development. Collectively, these results deepen our understanding of PIP3 dynamics in dendritic spines, and the dysregulation of the PIP3 gradient between dendritic spines and shafts could cause neuronal diseases and mental disorders, such as autism spectrum disorder.
Collapse
Affiliation(s)
- Yoshibumi Ueda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| | - Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
11
|
Zhao Y, Lykov N, Tzeng C. Talin‑1 interaction network in cellular mechanotransduction (Review). Int J Mol Med 2022; 49:60. [PMID: 35266014 PMCID: PMC8930095 DOI: 10.3892/ijmm.2022.5116] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
The mechanical signals within the extracellular matrix (ECM) regulate cell growth, proliferation and differentiation, and integrins function as the hub between the ECM and cellular actin. Focal adhesions (FAs) are multi‑protein, integrin‑containing complexes, acting as tension‑sensing anchoring points that bond cells to the extracellular microenvironment. Talin‑1 serves as the central protein of FAs that participates in the activation of integrins and connects them with the actin cytoskeleton. As a cytoplasmic protein, Talin‑1 consists of a globular head domain and a long rod comprised of a series of α‑helical bundles. The unique structure of the Talin‑1 rod domain permits folding and unfolding in response to the mechanical stress, revealing various binding sites. Thus, conformation changes of the Talin‑1 rod domain enable the cell to convert mechanical signals into chemical through multiple signaling pathways. The present review discusses the binding partners of Talin‑1, their interactions, effects on the cellular processes, and their possible roles in diseases.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Nikita Lykov
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211800, P.R. China
| | - Chimeng Tzeng
- Translational Medicine Research Center-Key Laboratory for Cancer T-Cell Theragnostic and Clinical Translation, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361005, P.R. China
- Xiamen Chang Gung Hospital Medical Research Center, Xiamen, Fujian 361005, P.R. China
| |
Collapse
|
12
|
Tan MH, Xu XH, Yuan TJ, Hou X, Wang J, Jiang ZH, Peng LH. Self-powered smart patch promotes skin nerve regeneration and sensation restoration by delivering biological-electrical signals in program. Biomaterials 2022; 283:121413. [DOI: 10.1016/j.biomaterials.2022.121413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 11/02/2022]
|
13
|
Wang F, Liu Y, Qiu W, Shum E, Feng M, Zhao D, Zheng D, Borczuk A, Cheng H, Halmos B. Functional analysis of MET exon 14 skipping alteration in cancer invasion and metastatic dissemination. Cancer Res 2022; 82:1365-1379. [PMID: 35078819 DOI: 10.1158/0008-5472.can-21-1327] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/18/2021] [Accepted: 01/20/2022] [Indexed: 11/16/2022]
Abstract
MET exon 14 skipping alteration (MET∆14Ex) is an actionable oncogenic driver that occurs in 2-4% of non-small cell lung cancer (NSCLC) cases. The precise role of MET∆14Ex in tumor progression of NSCLC is poorly understood. Using multiple isogenic MET∆14Ex cell models established with CRISPR editing, we demonstrate that MET∆14Ex expression increases receptor kinase activity and downstream signaling by impairing receptor internalization and endocytic degradation, significantly boosting cell scatter, migration, and invasion capacity in vitro as well as metastasis in vivo. RNA sequencing analysis revealed that MET∆14Ex preferentially activates biological processes associated with cell movement, providing novel insights into its unique molecular mechanism of action. Activation of PI3K/Akt/Rac1 signaling and upregulation of multiple matrix metallopeptidases (MMPs) by MET∆14Ex induced cytoskeleton remodeling and extracellular matrix disassembly, which are critical functional pathways that facilitate cell invasion and metastasis. Therapeutically, MET inhibitors dramatically repressed MET∆14Ex-mediated tumor growth and metastasis in vivo, indicating potential therapeutic options for MET∆14Ex-altered NSCLC patients. These mechanistic insights into MET∆14Ex-mediated invasion and metastasis provide a deeper understanding of the role of MET∆14Ex in NSCLC.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine
| | - Wanglong Qiu
- Irving Cancer Research Center, Columbia University Medical Center
| | - Elaine Shum
- Medicine/Division of Hematology and Medical Oncology, Perlmutter Cancer Institute at NYU Langone Health
| | - Monica Feng
- Department of Oncology, Montefiore Medical Center/Albert Einstein College of Medicine
| | - Dejian Zhao
- Yale Center for Genome Analysis, Yale School of Medicine
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine
| | | | | | | |
Collapse
|
14
|
Puccini J, Badgley MA, Bar-Sagi D. Exploiting cancer's drinking problem: regulation and therapeutic potential of macropinocytosis. Trends Cancer 2022; 8:54-64. [PMID: 34649835 PMCID: PMC8702483 DOI: 10.1016/j.trecan.2021.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
Macropinocytosis, an evolutionarily conserved endocytic mechanism that mediates non-specific fluid-phase uptake, is potently upregulated by various oncogenic pathways. It is now well appreciated that high macropinocytic activity is a hallmark of many human tumors, which use this adaptation to scavenge extracellular nutrients for fueling cell growth. In the context of the nutrient-scarce tumor microenvironment, this process provides tumor cells with metabolic flexibility. However, dependence on this scavenging mechanism also illuminates a potential metabolic vulnerability. As such, there is a great deal of interest in understanding the molecular underpinnings of macropinocytosis. In this review, we will discuss the most recent advances in characterizing macropinocytosis: the pathways that regulate it, its contribution to the metabolic fitness of cancer cells, and its therapeutic potential.
Collapse
Affiliation(s)
- Joseph Puccini
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Michael Alexander Badgley
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, USA,Correspondence: (D. Bar-Sagi)
| |
Collapse
|
15
|
Canales Coutiño B, Mayor R. Reprint of: Mechanosensitive ion channels in cell migration. Cells Dev 2021; 168:203730. [PMID: 34456177 DOI: 10.1016/j.cdev.2021.203730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/18/2022]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
16
|
Johansen KH, Golec DP, Thomsen JH, Schwartzberg PL, Okkenhaug K. PI3K in T Cell Adhesion and Trafficking. Front Immunol 2021; 12:708908. [PMID: 34421914 PMCID: PMC8377255 DOI: 10.3389/fimmu.2021.708908] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022] Open
Abstract
PI3K signalling is required for activation, differentiation, and trafficking of T cells. PI3Kδ, the dominant PI3K isoform in T cells, has been extensively characterised using PI3Kδ mutant mouse models and PI3K inhibitors. Furthermore, characterisation of patients with Activated PI3K Delta Syndrome (APDS) and mouse models with hyperactive PI3Kδ have shed light on how increased PI3Kδ activity affects T cell functions. An important function of PI3Kδ is that it acts downstream of TCR stimulation to activate the major T cell integrin, LFA-1, which controls transendothelial migration of T cells as well as their interaction with antigen-presenting cells. PI3Kδ also suppresses the cell surface expression of CD62L and CCR7 which controls the migration of T cells across high endothelial venules in the lymph nodes and S1PR1 which controls lymph node egress. Therefore, PI3Kδ can control both entry and exit of T cells from lymph nodes as well as the recruitment to and retention of T cells within inflamed tissues. This review will focus on the regulation of adhesion receptors by PI3Kδ and how this contributes to T cell trafficking and localisation. These findings are relevant for our understanding of how PI3Kδ inhibitors may affect T cell redistribution and function.
Collapse
Affiliation(s)
- Kristoffer H Johansen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom.,Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Dominic P Golec
- Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, United States
| | - Julie H Thomsen
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Mosaddeghzadeh N, Ahmadian MR. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021; 10:1831. [PMID: 34359999 PMCID: PMC8305018 DOI: 10.3390/cells10071831] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Much progress has been made toward deciphering RHO GTPase functions, and many studies have convincingly demonstrated that altered signal transduction through RHO GTPases is a recurring theme in the progression of human malignancies. It seems that 20 canonical RHO GTPases are likely regulated by three GDIs, 85 GEFs, and 66 GAPs, and eventually interact with >70 downstream effectors. A recurring theme is the challenge in understanding the molecular determinants of the specificity of these four classes of interacting proteins that, irrespective of their functions, bind to common sites on the surface of RHO GTPases. Identified and structurally verified hotspots as functional determinants specific to RHO GTPase regulation by GDIs, GEFs, and GAPs as well as signaling through effectors are presented, and challenges and future perspectives are discussed.
Collapse
Affiliation(s)
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Universitätsstrasse 1, Building 22.03.05, 40225 Düsseldorf, Germany;
| |
Collapse
|
18
|
Mushtaq U, Bashir M, Nabi S, Khanday FA. Epidermal growth factor receptor and integrins meet redox signaling through P66shc and Rac1. Cytokine 2021; 146:155625. [PMID: 34157521 DOI: 10.1016/j.cyto.2021.155625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/23/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022]
Abstract
This review examines the concerted role of Epidermal Growth Factor Receptor (EGFR) and integrins in regulating Reactive oxygen species (ROS) production through different signaling pathways. ROS as such are not always deleterious to the cells but they also act as signaling molecules, that regulates numerous indespensible physiological fuctions of life. Many adaptor proteins, particularly Shc and Grb2, are involved in mediating the downstream signaling pathways stimulated by EGFR and integrins. Integrin-induced activation of EGFR and subsequent tyrosine phosphorylation of a class of acceptor sites on EGFR leads to alignment and tyrosine phosphorylation of Shc, PLCγ, the p85 subunit of PI-3 K, and Cbl, followed by activation of the downstream targets Erk and Akt/PKB. Functional interactions between these receptors result in the activation of Rac1 via these adaptor proteins, thereby leading to Reactive Oxygen Species. Both GF and integrin activation can produce oxidants independently, however synergistically there is increased ROS generation, suggesting a mutual cooperation between integrins and GFRs for redox signalling. The ROS produced further promotes feed-forward stimulation of redox signaling events such as MAPK activation and gene expression. This relationship has not been reviewed previously. The literature presented here can have multiple implications, ranging from looking at synergistic effects of integrin and EGFR mediated signaling mechanisms of different proteins to possible therapeutic interventions operated by these two receptors. Furthermore, such mutual redox regulation of crosstalk between EGFR and integrins not only add to the established models of pathological oxidative stress, but also can impart new avenues and opportunities for targeted antioxidant based therapeutics.
Collapse
Affiliation(s)
- Umar Mushtaq
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Biotechnology, Central University of Kashmir, Ganderbal, JK 191201, India
| | - Muneesa Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India; Department of Higher Education, Government of Jammu & Kashmir, 190001, India
| | - Sumaiya Nabi
- Department of Biochemistry, University of Kashmir, Srinagar, JK 190006, India
| | - Firdous A Khanday
- Department of Biotechnology, University of Kashmir, Srinagar, JK 190006, India.
| |
Collapse
|
19
|
Wang Q, Gong L, Mao S, Yao C, Liu M, Wang Y, Yang J, Yu B, Chen G, Gu X. Klf2-Vav1-Rac1 axis promotes axon regeneration after peripheral nerve injury. Exp Neurol 2021; 343:113788. [PMID: 34147481 DOI: 10.1016/j.expneurol.2021.113788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/03/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Increasing the intrinsic regeneration potential of neurons is the key to promote axon regeneration and repair of nerve injury. Therefore, identifying the molecular switches that respond to nerve injury may play critical role in improving intrinsic regeneration ability. The mechanisms by which injury unlocks the intrinsic axonal growth competence of mature neurons are not well understood. The present study identified the key regulatory genes after sciatic nerve crush injury by RNA sequencing (RNA-Seq) and found that the hub gene Vav1 was highly expressed at both early response and regenerative stages of sciatic nerve injury. Furthermore, Vav1 was required for axon regeneration of dorsal root ganglia (DRG) neurons and functional recovery. Krüppel-like factor 2 (Klf2) was induced by retrograde Ca2+ signaling from injured axons and could directly promote Vav1 transcription in adult DRG neurons. The increased Vav1 then promoted axon regeneration by activating Rac1 GTPase independent of its tyrosine phosphorylation. Collectively, these findings break through previous limited cognition of Vav1, and first reveal a crucial role of Vav1 as a molecular switch in response to axonal injury for promoting axon regeneration, which might further serve as a novel molecular therapeutic target for clinical nerve injury repair.
Collapse
Affiliation(s)
- Qihui Wang
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Susu Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Mingwen Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaxian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guiquan Chen
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China.
| | - Xiaosong Gu
- Ministry of Education (MOE) Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210061, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
20
|
Canales Coutiño B, Mayor R. Mechanosensitive ion channels in cell migration. Cells Dev 2021; 166:203683. [PMID: 33994356 PMCID: PMC8240554 DOI: 10.1016/j.cdev.2021.203683] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 01/05/2023]
Abstract
Cellular processes are initiated and regulated by different stimuli, including mechanical forces. Cell membrane mechanosensors represent the first step towards the conversion of mechanical stimuli to a biochemical or electrical response. Mechanosensitive (MS) ion channels form a growing family of ion gating channels that respond to direct physical force or plasma membrane deformations. A number of calcium (Ca2+) permeable MS channels are known to regulate the initiation, direction, and persistence of cell migration during development and tumour progression. While the evidence that links individual MS ion channels to cell migration is growing, a unified analysis of the molecular mechanisms regulated downstream of MS ion channel activation is lacking. In this review, we describe the MS ion channel families known to regulate cell migration. We discuss the molecular mechanisms that act downstream of MS ion channels with an emphasis on Ca2+ mediated processes. Finally, we propose the future directions and impact of MS ion channel activity in the field of cell migration.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
21
|
Soriano O, Alcón-Pérez M, Vicente-Manzanares M, Castellano E. The Crossroads between RAS and RHO Signaling Pathways in Cellular Transformation, Motility and Contraction. Genes (Basel) 2021; 12:genes12060819. [PMID: 34071831 PMCID: PMC8229961 DOI: 10.3390/genes12060819] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ras and Rho proteins are GTP-regulated molecular switches that control multiple signaling pathways in eukaryotic cells. Ras was among the first identified oncogenes, and it appears mutated in many forms of human cancer. It mainly promotes proliferation and survival through the MAPK pathway and the PI3K/AKT pathways, respectively. However, the myriad proteins close to the plasma membrane that activate or inhibit Ras make it a major regulator of many apparently unrelated pathways. On the other hand, Rho is weakly oncogenic by itself, but it critically regulates microfilament dynamics; that is, actin polymerization, disassembly and contraction. Polymerization is driven mainly by the Arp2/3 complex and formins, whereas contraction depends on myosin mini-filament assembly and activity. These two pathways intersect at numerous points: from Ras-dependent triggering of Rho activators, some of which act through PI3K, to mechanical feedback driven by actomyosin action. Here, we describe the main points of connection between the Ras and Rho pathways as they coordinately drive oncogenic transformation. We emphasize the biochemical crosstalk that drives actomyosin contraction driven by Ras in a Rho-dependent manner. We also describe possible routes of mechanical feedback through which myosin II activation may control Ras/Rho activation.
Collapse
Affiliation(s)
- Olga Soriano
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Marta Alcón-Pérez
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
| | - Miguel Vicente-Manzanares
- Tumor Biophysics Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007 Salamanca, Spain;
- Correspondence: (M.V.-M.); (E.C.)
| |
Collapse
|
22
|
Ben-Shmuel A, Sabag B, Biber G, Barda-Saad M. The Role of the Cytoskeleton in Regulating the Natural Killer Cell Immune Response in Health and Disease: From Signaling Dynamics to Function. Front Cell Dev Biol 2021; 9:609532. [PMID: 33598461 PMCID: PMC7882700 DOI: 10.3389/fcell.2021.609532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 01/13/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells, which play key roles in elimination of virally infected and malignant cells. The balance between activating and inhibitory signals derived from NK surface receptors govern the NK cell immune response. The cytoskeleton facilitates most NK cell effector functions, such as motility, infiltration, conjugation with target cells, immunological synapse assembly, and cytotoxicity. Though many studies have characterized signaling pathways that promote actin reorganization in immune cells, it is not completely clear how particular cytoskeletal architectures at the immunological synapse promote effector functions, and how cytoskeletal dynamics impact downstream signaling pathways and activation. Moreover, pioneering studies employing advanced imaging techniques have only begun to uncover the architectural complexity dictating the NK cell activation threshold; it is becoming clear that a distinct organization of the cytoskeleton and signaling receptors at the NK immunological synapse plays a decisive role in activation and tolerance. Here, we review the roles of the actin cytoskeleton in NK cells. We focus on how actin dynamics impact cytolytic granule secretion, NK cell motility, and NK cell infiltration through tissues into inflammatory sites. We will also describe the additional cytoskeletal components, non-muscle Myosin II and microtubules that play pivotal roles in NK cell activity. Furthermore, special emphasis will be placed on the role of the cytoskeleton in assembly of immunological synapses, and how mutations or downregulation of cytoskeletal accessory proteins impact NK cell function in health and disease.
Collapse
Affiliation(s)
- Aviad Ben-Shmuel
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Batel Sabag
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Guy Biber
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mira Barda-Saad
- Laboratory of Molecular and Applied Immunology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
23
|
Abstract
Developments in chemical protein synthesis have enabled the generation of tailor-made proteins including incorporation of many types of modifications into proteins, enhancing our ability to control site-specificity of protein posttranslational modifications (PTMs), modify protein backbones and introduce photocrosslinking probes. For PDZ (postsynaptic density protein, disks large, zonula occludens) protein domains, expressed protein ligation (EPL) has been employed to introduce analogs of cognate amino acids, amide-to-ester bond mutations, and phosphorylations in the study of PDZ domain-mediated protein-protein interactions (PPIs). Here, we present protocols for EPL of PDZ domains focusing on phosphorylation and amide-to-ester modifications in the PDZ domain proteins.
Collapse
Affiliation(s)
- Christin Kossmann
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Sana Ma
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
25
|
Pauls SD, Hou S, Marshall AJ. SHIP interacts with adaptor protein Nck and restricts actin turnover in B cells. Biochem Biophys Res Commun 2020; 527:207-212. [PMID: 32446368 DOI: 10.1016/j.bbrc.2020.04.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
Abstract
SH2 domain-containing inositol 5'-phosphatase (SHIP) has critical functions in regulating signal transduction. In additional to its lipid phosphatase activity, SHIP engages in multiple protein-protein interactions, which can serve to localize either SHIP or its binding partners to a particular subcellular domain. Knock-out and knock-down studies have elucidated that SHIP negatively regulates the accumulation of F-actin in leukocytes, usually resulting in inhibition of actin dependent cellular activities such as spreading and migration. Here, we demonstrate that overexpression of SHIP inhibits B cell antigen receptor (BCR)-mediated cell spreading in murine and human B cell lines. B cell stimulation via the BCR or pervanadate induces an interaction between SHIP and Nck, an adaptor protein known to promote actin polymerization. Using a fluorescence recovery after photobleaching (FRAP) assay, we demonstrate that overexpression of SHIP slows F-actin dynamics in BCR-stimulated B cells and this can be overcome by co-overexpression of Nck. Our data supports a role for SHIP in limiting actin turnover and suggests it may do so in part by sequestering Nck.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Sen Hou
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aaron J Marshall
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada; Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells 2019; 8:cells8121649. [PMID: 31888228 PMCID: PMC6952945 DOI: 10.3390/cells8121649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol–5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs. Unlike other phospholipid–protein complexes, the affinity and specificity of the Vav1–lipid interaction entail a new structural solution that involves the synergistic action of the Vav1 C1 domain and an adjacent polybasic tail. This new regulatory layer, which is not conserved in the Vav family paralogs, favors the engagement of optimal Vav1 signaling outputs in lymphocytes.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Citterio
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Baltanás-Copado
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Clara Llorente-González
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
27
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
28
|
PIK3CA Cooperates with KRAS to Promote MYC Activity and Tumorigenesis via the Bromodomain Protein BRD9. Cancers (Basel) 2019; 11:cancers11111634. [PMID: 31652979 PMCID: PMC6896067 DOI: 10.3390/cancers11111634] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor formation is generally linked to the acquisition of two or more driver genes that cause normal cells to progress from proliferation to abnormal expansion and malignancy. In order to understand genetic alterations involved in this process, we compared the transcriptomes of an isogenic set of breast epithelial cell lines that are non-transformed or contain a single or double knock-in (DKI) of PIK3CA (H1047R) or KRAS (G12V). Gene set enrichment analysis revealed that DKI cells were enriched over single mutant cells for genes that characterize a MYC target gene signature. This gene signature was mediated in part by the bromodomain-containing protein 9 (BRD9) that was found in the SWI-SNF chromatin-remodeling complex, bound to the MYC super-enhancer locus. Small molecule inhibition of BRD9 reduced MYC transcript levels. Critically, only DKI cells had the capacity for anchorage-independent growth in semi-solid medium, and CRISPR-Cas9 manipulations showed that PIK3CA and BRD9 expression were essential for this phenotype. In contrast, KRAS was necessary for DKI cell migration, and BRD9 overexpression induced the growth of KRAS single mutant cells in semi-solid medium. These results provide new insight into the earliest transforming events driven by oncoprotein cooperation and suggest BRD9 is an important mediator of mutant PIK3CA/KRAS-driven oncogenic transformation.
Collapse
|
29
|
Leptin-induced Trafficking of K ATP Channels: A Mechanism to Regulate Pancreatic β-cell Excitability and Insulin Secretion. Int J Mol Sci 2019; 20:ijms20112660. [PMID: 31151172 PMCID: PMC6600549 DOI: 10.3390/ijms20112660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022] Open
Abstract
The adipocyte hormone leptin was first recognized for its actions in the central nervous system to regulate energy homeostasis but has since been shown to have direct actions on peripheral tissues. In pancreatic β-cells leptin suppresses insulin secretion by increasing KATP channel conductance, which causes membrane hyperpolarization and renders β-cells electrically silent. However, the mechanism by which leptin increases KATP channel conductance had remained unresolved for many years following the initial observation. Recent studies have revealed that leptin increases surface abundance of KATP channels by promoting channel trafficking to the β-cell membrane. Thus, KATP channel trafficking regulation has emerged as a mechanism by which leptin increases KATP channel conductance to regulate β-cell electrical activity and insulin secretion. This review will discuss the leptin signaling pathway that underlies KATP channel trafficking regulation in β-cells.
Collapse
|
30
|
RAC1 Takes the Lead in Solid Tumors. Cells 2019; 8:cells8050382. [PMID: 31027363 PMCID: PMC6562738 DOI: 10.3390/cells8050382] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Three GTPases, RAC, RHO, and Cdc42, play essential roles in coordinating many cellular functions during embryonic development, both in healthy cells and in disease conditions like cancers. We have presented patterns of distribution of the frequency of RAC1-alteration(s) in cancers as obtained from cBioPortal. With this background data, we have interrogated the various functions of RAC1 in tumors, including proliferation, metastasis-associated phenotypes, and drug-resistance with a special emphasis on solid tumors in adults. We have reviewed the activation and regulation of RAC1 functions on the basis of its sub-cellular localization in tumor cells. Our review focuses on the role of RAC1 in cancers and summarizes the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of RAC1-PAK targeting agents.
Collapse
|
31
|
Bhat AV, Palanichamy Kala M, Rao VK, Pignata L, Lim HJ, Suriyamurthy S, Chang KT, Lee VK, Guccione E, Taneja R. Epigenetic Regulation of the PTEN-AKT-RAC1 Axis by G9a Is Critical for Tumor Growth in Alveolar Rhabdomyosarcoma. Cancer Res 2019; 79:2232-2243. [PMID: 30833420 DOI: 10.1158/0008-5472.can-18-2676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/17/2018] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is an aggressive pediatric cancer with poor prognosis. As transient and stable modifications to chromatin have emerged as critical mechanisms in oncogenic signaling, efforts to target epigenetic modifiers as a therapeutic strategy have accelerated in recent years. To identify chromatin modifiers that sustain tumor growth, we performed an epigenetic screen and found that inhibition of lysine methyltransferase G9a significantly affected the viability of ARMS cell lines. Targeting expression or activity of G9a reduced cellular proliferation and motility in vitro and tumor growth in vivo. Transcriptome and chromatin immunoprecipitation-sequencing analysis provided mechanistic evidence that the tumor-suppressor PTEN was a direct target gene of G9a. G9a repressed PTEN expression in a methyltransferase activity-dependent manner, resulting in increased AKT and RAC1 activity. Re-expression of constitutively active RAC1 in G9a-deficient tumor cells restored oncogenic phenotypes, demonstrating its critical functions downstream of G9a. Collectively, our study provides evidence for a G9a-dependent epigenetic program that regulates tumor growth and suggests targeting G9a as a therapeutic strategy in ARMS. SIGNIFICANCE: These findings demonstrate that RAC1 is an effector of G9a oncogenic functions and highlight the potential of G9a inhibitors in the treatment of ARMS.
Collapse
Affiliation(s)
- Akshay V Bhat
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Monica Palanichamy Kala
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Suriyamurthy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kenneth T Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor K Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
32
|
UEDA Y, II T, AONO Y, SUGIMOTO N, SHINJI S, YOSHIDA H, SATO M. Membrane Dynamics Induced by a Phosphatidylinositol 3,4,5-Trisphosphate Optogenetic Tool. ANAL SCI 2019; 35:57-63. [DOI: 10.2116/analsci.18sdp06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yoshibumi UEDA
- Graduate School of Arts and Sciences, The University of Tokyo
- AMED-PRIME, Japan Agency for Medical Research and Development
| | - Tatsuhito II
- Department of Veterinary Pathology, School of Veterinary Medicine, Nippon Veterinary and Life Science University
| | - Yuki AONO
- Graduate School of Arts and Sciences, The University of Tokyo
| | - Naotoshi SUGIMOTO
- Department of Physiology, Graduate School of Medical Science, Kanazawa University
| | - Seiichi SHINJI
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Hiroshi YOSHIDA
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School
| | - Moritoshi SATO
- Graduate School of Arts and Sciences, The University of Tokyo
| |
Collapse
|
33
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
34
|
Payapilly A, Malliri A. Compartmentalisation of RAC1 signalling. Curr Opin Cell Biol 2018; 54:50-56. [PMID: 29723737 DOI: 10.1016/j.ceb.2018.04.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/12/2018] [Accepted: 04/15/2018] [Indexed: 12/22/2022]
Abstract
RAC1 signalling has been implicated in a variety of dynamic cell biological processes that are orchestrated through regulated localisation and activation of RAC1. As a small GTPase, RAC1 switches between active and inactive states at various subcellular locations that include the plasma membrane, nucleus and mitochondria. Once activated, RAC1 interacts with a range of effectors that then mediate various biological functions. RAC1 is regulated by a large number of proteins that can promote its recruitment, activation, deactivation, or stability. RAC1 and its regulators are subject to various post-translational modifications that further fine tune RAC1 localisation, levels and activity. Developments in technologies have enabled the accurate detection of activated RAC1 during processes such as cell migration, invasion and DNA damage. Here, we highlight recent advances in our understanding of RAC1 regulation and function at specific subcellular sites.
Collapse
Affiliation(s)
- Aishwarya Payapilly
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG, UK.
| |
Collapse
|
35
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Nalbant P, Dehmelt L. Exploratory cell dynamics: a sense of touch for cells? Biol Chem 2018; 399:809-819. [DOI: 10.1515/hsz-2017-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Abstract
Cells need to process multifaceted external cues to steer their dynamic behavior. To efficiently perform this task, cells implement several exploratory mechanisms to actively sample their environment. In particular, cells can use exploratory actin-based cell protrusions and contractions to engage and squeeze the environment and to actively probe its chemical and mechanical properties. Multiple excitable signal networks were identified that can generate local activity pulses to control these exploratory processes. Such excitable signal networks offer particularly efficient mechanisms to process chemical or mechanical signals to steer dynamic cell behavior, such as directional migration, tissue morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology , Center for Medical Biotechnology , University of Duisburg-Essen, Universitätsstrasse 2 , D-45141 Essen , Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Faculty of Chemistry and Chemical Biology , Otto-Hahn-Str. 4a , D-44227 Dortmund , Germany
| |
Collapse
|
37
|
Krygowska AA, Castellano E. PI3K: A Crucial Piece in the RAS Signaling Puzzle. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031450. [PMID: 28847905 DOI: 10.1101/cshperspect.a031450] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance.
Collapse
Affiliation(s)
- Agata Adelajda Krygowska
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Esther Castellano
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
38
|
Acevedo A, González-Billault C. Crosstalk between Rac1-mediated actin regulation and ROS production. Free Radic Biol Med 2018; 116:101-113. [PMID: 29330095 DOI: 10.1016/j.freeradbiomed.2018.01.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/08/2023]
Abstract
The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement. Remarkably, another event that is completely different from those related to actin regulation has the same relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX). Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoskeleton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover, on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX. How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions. Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions) are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.
Collapse
Affiliation(s)
- Alejandro Acevedo
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile.
| | - Christian González-Billault
- FONDAP Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Department of Biology, Faculty of Sciences, Universidad de Chile, 7800024, Chile; The Buck Institute for Research on Aging, Novato, USA.
| |
Collapse
|
39
|
Zhang Y, Chen P, Yin W, Ji Y, Shen Q, Ni Q. Nectin-4 promotes gastric cancer progression via the PI3K/AKT signaling pathway. Hum Pathol 2018; 72:107-116. [PMID: 29208564 DOI: 10.1016/j.humpath.2017.10.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/09/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
Abstract
Nectin-4, a member of the Nectin family that includes 4 Ca+-independent immunoglobulin-like cell adhesion molecules, plays a carcinogenic role in multiple cancers. However, Nectin-4 expression and its biological role in gastric cancer (GC) remain largely unknown. In this study, quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry were used to evaluate the expression patterns of Nectin-4 in GC specimens and cell lines. We observed that high expression of Nectin-4 in GC patients was associated with TNM stage and lymph node metastasis status, and poor prognosis. In addition, cell proliferation and cell migration assays in vitro and tumorigenicity in vivo were performed to observe the effects of up-regulation and down-regulation of Nectin-4 expression on GC cell phenotypes. In further studies, the PI3K/AKT signaling pathway was revealed to be involved in Nectin-4-mediated GC progression. These results demonstrated that Nectin-4 had a promoter effect on human GC cell growth and motility, indicating that Nectin-4 may serve as an effective therapeutic target in GC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Peisheng Chen
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Yin
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Ye Ji
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qin Shen
- Medical College, Nantong University, Nantong, Jiangsu 226001, China
| | - Qingfeng Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
40
|
Belmont J, Gu T, Mudd A, Salomon AR. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex. J Proteome Res 2017. [PMID: 28644030 DOI: 10.1021/acs.jproteome.6b01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.
Collapse
Affiliation(s)
- Judson Belmont
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Tao Gu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Ashley Mudd
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States.,Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
41
|
Pauls SD, Marshall AJ. Regulation of immune cell signaling by SHIP1: A phosphatase, scaffold protein, and potential therapeutic target. Eur J Immunol 2017; 47:932-945. [PMID: 28480512 DOI: 10.1002/eji.201646795] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023]
Abstract
The phosphoinositide phosphatase SHIP is a critical regulator of immune cell activation. Despite considerable study, the mechanisms controlling SHIP activity to ensure balanced cell activation remain incompletely understood. SHIP dampens BCR signaling in part through its association with the inhibitory coreceptor Fc gamma receptor IIB, and serves as an effector for other inhibitory receptors in various immune cell types. The established paradigm emphasizes SHIP's inhibitory receptor-dependent function in regulating phosphoinositide 3-kinase signaling by dephosphorylating the phosphoinositide PI(3,4,5)P3 ; however, substantial evidence indicates that SHIP can be activated independently of inhibitory receptors and can function as an intrinsic brake on activation signaling. Here, we integrate historical and recent reports addressing the regulation and function of SHIP in immune cells, which together indicate that SHIP acts as a multifunctional protein controlled by multiple regulatory inputs, and influences downstream signaling via both phosphatase-dependent and -independent means. We further summarize accumulated evidence regarding the functions of SHIP in B cells, T cells, NK cells, dendritic cells, mast cells, and macrophages, and data suggesting defective expression or activity of SHIP in autoimmune and malignant disorders. Lastly, we discuss the biological activities, therapeutic promise, and limitations of small molecule modulators of SHIP enzymatic activity.
Collapse
Affiliation(s)
- Samantha D Pauls
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Chen PH, Yao H, Huang LJS. Cytokine Receptor Endocytosis: New Kinase Activity-Dependent and -Independent Roles of PI3K. Front Endocrinol (Lausanne) 2017; 8:78. [PMID: 28507533 PMCID: PMC5410625 DOI: 10.3389/fendo.2017.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Type I and II cytokine receptors are cell surface sensors that bind cytokines in the extracellular environment and initiate intracellular signaling to control processes such as hematopoiesis, immune function, and cellular growth and development. One key mechanism that regulates signaling from cytokine receptors is through receptor endocytosis. In this mini-review, we describe recent advances in endocytic regulations of cytokine receptors, focusing on new paradigms by which PI3K controls receptor endocytosis through both kinase activity-dependent and -independent mechanisms. These advances underscore the notion that the p85 regulatory subunit of PI3K has functions beyond regulating PI3K kinase activity, and that PI3K plays both positive and negative roles in receptor signaling. On the one hand, the PI3K/Akt pathway controls various aspects downstream of cytokine receptors. On the other hand, it stimulates receptor endocytosis and downregulation, thus contributing to signaling attenuation.
Collapse
Affiliation(s)
- Ping-hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- *Correspondence: Lily Jun-shen Huang,
| |
Collapse
|
43
|
Singh R. Central role of PI3K-SYK interaction in fibrinogen-induced lamellipodia and filopodia formation in platelets. FEBS Open Bio 2016; 6:1285-1296. [PMID: 28255536 PMCID: PMC5324771 DOI: 10.1002/2211-5463.12149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 12/27/2022] Open
Abstract
The WAVE complex‐1, a complex of WAVE, Abi1, NAP1, PIR121, HSPC300, RacGTP and Arp2/3 proteins, and WASP complex‐1, a complex of WASP, Cdc42, PIP2, and Arp2/3 proteins, are involved in lamellipodia and filopodia formation, respectively. It is known that the two complexes have opposite dynamics. Furthermore, Rac has two guanine nucleotide exchange factors, Vav and Sos, whose role in activating Rac is not well understood. In this work, by the construction of signaling network, analysis, and mathematical modeling, I show that Sos generates a pulse of WAVE complex‐1, decreasing the response time of WAVE complex‐1 formation upon the stimulation of platelets by fibrinogen. Furthermore, I also show that the dynamics of WAVE and WASP complexes depends on PI3K–SYK interaction. In the absence of this interaction, the WAVE complex‐1 does not form and the WASP complex‐1 remains at the initial, sustained level. Thus, I show the significance of the two protein/protein complexes: Sos and PI3K–SYK interaction, in fibrinogen‐induced lamellipodia and filopodia formation in platelets.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering Indian Institute of Technology Kanpur India
| |
Collapse
|
44
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
45
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
46
|
Barrows D, He JZ, Parsons R. PREX1 Protein Function Is Negatively Regulated Downstream of Receptor Tyrosine Kinase Activation by p21-activated Kinases (PAKs). J Biol Chem 2016; 291:20042-54. [PMID: 27481946 DOI: 10.1074/jbc.m116.723882] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 12/15/2022] Open
Abstract
Downstream of receptor tyrosine kinase and G protein-coupled receptor (GPCR) stimulation, the phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchange factor (PREX) family of guanine nucleotide exchange factors (GEFs) activates Rho GTPases, leading to important roles for PREX proteins in numerous cellular processes and diseases, including cancer. PREX1 and PREX2 GEF activity is activated by the second messengers PIP3 and Gβγ, and further regulation of PREX GEF activity occurs by phosphorylation. Stimulation of receptor tyrosine kinases by neuregulin and insulin-like growth factor 1 (IGF1) leads to the phosphorylation of PREX1; however, the kinases that phosphorylate PREX1 downstream of these ligands are not known. We recently reported that the p21-activated kinases (PAKs), which are activated by GTP-bound Ras-related C3 botulinum toxin substrate 1 (Rac1), mediate the phosphorylation of PREX2 after insulin receptor activation. Here we show that certain phosphorylation events on PREX1 after insulin, neuregulin, and IGF1 treatment are PAK-dependent and lead to a reduction in PREX1 binding to PIP3 Like PREX2, PAK-mediated phosphorylation also negatively regulates PREX1 GEF activity. Furthermore, the onset of PREX1 phosphorylation was delayed compared with the phosphorylation of AKT, supporting a model of negative feedback downstream of PREX1 activation. We also found that the phosphorylation of PREX1 after isoproterenol and prostaglandin E2-mediated GPCR activation is partially PAK-dependent and likely also involves protein kinase A, which is known to reduce PREX1 function. Our data point to multiple mechanisms of PREX1 negative regulation by PAKs within receptor tyrosine kinase and GPCR-stimulated signaling pathways that have important roles in diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and the Department of Pharmacology, Columbia University, New York, New York 10032
| | - John Z He
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 and
| |
Collapse
|
47
|
Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I, Yumerefendi H, Kuhlman B, Liu R, Danuser G, Hahn KM. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 2016; 13:755-8. [PMID: 27427858 PMCID: PMC5137947 DOI: 10.1038/nmeth.3926] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 06/16/2016] [Indexed: 01/03/2023]
Abstract
Here we introduce LOVTRAP, an optogenetic approach for reversible, light-induced protein dissociation. LOVTRAP is based on protein A fragments that bind to the LOV domain only in the dark, with tunable kinetics and a >150-fold change in Kd. By reversibly sequestering proteins at mitochondria, we precisely modulated the proteins’ access to the cell edge, demonstrating a naturally occurring 3 mHz cell edge oscillation driven by interactions of Vav2, Rac1 and PI3K.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Marco Vilela
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas Winkler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Ilme Schlichting
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Hayretin Yumerefendi
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rihe Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.,Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
48
|
Ruan W, Srinivasan A, Lin S, Kara KI, Barker PA. Eiger-induced cell death relies on Rac1-dependent endocytosis. Cell Death Dis 2016; 7:e2181. [PMID: 27054336 PMCID: PMC4855659 DOI: 10.1038/cddis.2016.80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/11/2022]
Abstract
Signaling via tumor necrosis factor receptor (TNFR) superfamily members regulates cellular life and death decisions. A subset of mammalian TNFR proteins, most notably the p75 neurotrophin receptor (p75NTR), induces cell death through a pathway that requires activation of c-Jun N-terminal kinases (JNKs). However the receptor-proximal signaling events that mediate this remain unclear. Drosophila express a single tumor necrosis factor (TNF) ligand termed Eiger (Egr) that activates JNK-dependent cell death. We have exploited this model to identify phylogenetically conserved signaling events that allow Egr to induce JNK activation and cell death in vivo. Here we report that Rac1, a small GTPase, is specifically required in Egr-mediated cell death. rac1 loss of function blocks Egr-induced cell death, whereas Rac1 overexpression enhances Egr-induced killing. We identify Vav as a GEF for Rac1 in this pathway and demonstrate that dLRRK functions as a negative regulator of Rac1 that normally acts to constrain Egr-induced death. Thus dLRRK loss of function increases Egr-induced cell death in the fly. We further show that Rac1-dependent entry of Egr into early endosomes is a crucial prerequisite for JNK activation and for cell death and show that this entry requires the activity of Rab21 and Rab7. These findings reveal novel regulatory mechanisms that allow Rac1 to contribute to Egr-induced JNK activation and cell death.
Collapse
Affiliation(s)
- W Ruan
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - A Srinivasan
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - S Lin
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - k-I Kara
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - P A Barker
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.,Department of Biology, The University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| |
Collapse
|
49
|
Wachter A, Beißbarth T. Decoding Cellular Dynamics in Epidermal Growth Factor Signaling Using a New Pathway-Based Integration Approach for Proteomics and Transcriptomics Data. Front Genet 2016; 6:351. [PMID: 26779252 PMCID: PMC4703778 DOI: 10.3389/fgene.2015.00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/03/2015] [Indexed: 12/15/2022] Open
Abstract
Identification of dynamic signaling mechanisms on different cellular layers is now facilitated as the increased usage of various high-throughput techniques goes along with decreasing costs for individual experiments. A lot of these signaling mechanisms are known to be coordinated by their dynamics, turning time-course data sets into valuable information sources for inference of regulatory mechanisms. However, the combined analysis of parallel time-course measurements from different high-throughput platforms still constitutes a major challenge requiring sophisticated bioinformatic tools in order to ease biological interpretation. We developed a new pathway-based integration approach for the analysis of coupled omics time-series data, which we implemented in the R package pwOmics. Unlike many other approaches, our approach acknowledges the role of the different cellular layers of measurement and infers consensus profiles and time profile clusters for further biological interpretation. We investigated a time-course data set on epidermal growth factor stimulation of human mammary epithelial cells generated on the two layers of RNA and proteins. The data was analyzed using our new approach with a focus on feedback signaling and pathway crosstalk. We could confirm known regulatory patterns relevant in the physiological cellular response to epidermal growth factor stimulation as well as identify interesting new interactions in this signaling context, such as the regulatory influence of the connective tissue growth factor on transferrin receptor or the influence of growth arrest and DNA-damage-inducible alpha on the connective tissue growth factor. Thus, we show that integrated cross-platform analysis provides a deeper understanding of regulatory signaling mechanisms. Combined with time-course information it enables the characterization of dynamic signaling processes and leads to the identification of important regulatory interactions which might be dysregulated in disease with adverse effects.
Collapse
Affiliation(s)
- Astrid Wachter
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Germany
| |
Collapse
|
50
|
Huranova M, Laboratory of Adaptive Immunity, Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, Prague, Czech Republic, Stepanek O. Role of actin cytoskeleton at multiple levels of T cell activation. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.4.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|