1
|
Tran TT, Prakash H, Nagasawa T, Nakao M, Somamoto T. Characterization of CD83 homologs differently expressed during monocytes differentiation in ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 159:105212. [PMID: 38878874 DOI: 10.1016/j.dci.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/19/2024]
Abstract
CD83 is a costimulatory molecule of antigen-presenting cells (APCs) that plays an important role in eliciting adaptive responses. It is also a well-known surface protein on mature dendritic cells (DCs). Furthermore, monocytes have been reported to differentiate into macrophages and monocyte-derived dendritic cells, which play an important role in innate immunity. CD83 expression affects the activation and maturation of DCs and stimulates cell-mediated immune responses. This study aims to reveal the CD83 expression during monocyte differentiation in teleosts, and the CD83 homologs evolutionary relationship. This study found two distinct CD83 homologs (GbCD83 and GbCD83-L) in ginbuna crucian carp (Gb) and investigated the evolutionary relationship among GbCD83 homologs and other vertebrates and the gene and protein expression levels of the homologs during 4 days of monocyte culture. The phylogenetic tree showed that the two GbCD83 homologs are classified into two distinct branches. Interestingly, only ostariophysians (Gb, common carp, rohu, fathead minnow and channel catfish), but not neoteleosts, mammals, and others, have two CD83 homologs. Morphological observation and colony-stimulating factor-1 receptor (CSF-1R), CD83, CD80/86, and CCR7 gene expressions illustrated that there is a differentiation of monocytes isolated from peripheral blood leukocytes after 4 days. Specifically, gene expression and immunocytochemistry revealed that GbCD83 is mainly expressed on monocytes at the early stage of cell culture, whereas GbCD83-L is expressed in the latter stage. These findings provided the first evidence of differential expression of CD83 homologs during monocytes differentiation in teleost.
Collapse
Affiliation(s)
- Trang Thu Tran
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 819-0395, Fukuoka, Japan.
| |
Collapse
|
2
|
Harrison DG, Patrick DM. Immune Mechanisms in Hypertension. Hypertension 2024; 81:1659-1674. [PMID: 38881474 PMCID: PMC11254551 DOI: 10.1161/hypertensionaha.124.21355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
It is now apparent that immune mediators including complement, cytokines, and cells of the innate and adaptive immune system contribute not only to blood pressure elevation but also to the target organ damage that occurs in response to stimuli like high salt, aldosterone, angiotensin II, and sympathetic outflow. Alterations of vascular hemodynamic factors, including microvascular pulsatility and shear forces, lead to vascular release of mediators that affect myeloid cells to become potent antigen-presenting cells and promote T-cell activation. Research in the past 2 decades has defined specific biochemical and molecular pathways that are engaged by these stimuli and an emerging paradigm is these not only lead to immune activation, but that products of immune cells, including cytokines, reactive oxygen species, and metalloproteinases act on target cells to further raise blood pressure in a feed-forward fashion. In this review, we will discuss these molecular and pathophysiological events and discuss clinical interventions that might prove effective in quelling this inflammatory process in hypertension and related cardiovascular diseases.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David M. Patrick
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs, Nashville, TN 37212
| |
Collapse
|
3
|
Obare LM, Simmons J, Oakes J, Zhang X, Nochowicz C, Priest S, Bailin SS, Warren CM, Mashayekhi M, Beasley HK, Shao J, Meenderink LM, Sheng Q, Stolze J, Gangula R, Absi T, Su YR, Neikirk K, Chopra A, Gabriel CL, Temu T, Pakala S, Wilfong EM, Gianella S, Phillips EJ, Harrison DG, Hinton A, Kalams SA, Kirabo A, Mallal SA, Koethe JR, Wanjalla CN. CD3 + T-cell: CD14 +monocyte complexes are dynamic and increased with HIV and glucose intolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538020. [PMID: 37162990 PMCID: PMC10168203 DOI: 10.1101/2023.04.24.538020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An increased risk of cardiometabolic disease accompanies persistent systemic inflammation. Yet, the innate and adaptive immune system features in persons who develop these conditions remain poorly defined. Doublets, or cell-cell complexes, are routinely eliminated from flow cytometric and other immune phenotyping analyses, which limits our understanding of their relationship to disease states. Using well-characterized clinical cohorts, including participants with controlled HIV as a model for chronic inflammation and increased immune cell interactions, we show that circulating CD14+ monocytes complexed to CD3+ T cells are dynamic, biologically relevant, and increased in individuals with diabetes after adjusting for confounding factors. The complexes form functional immune synapses with increased expression of proinflammatory cytokines and greater glucose utilization. Furthermore, in persons with HIV, the CD3+T-cell: CD14+monocyte complexes had more HIV copies compared to matched CD14+ monocytes or CD4+ T cells alone. Our results demonstrate that circulating CD3+T-cell:CD14+monocyte pairs represent dynamic cellular interactions that may contribute to inflammation and cardiometabolic disease pathogenesis and may originate or be maintained, in part, by chronic viral infections. These findings provide a foundation for future studies investigating mechanisms linking T cellmonocyte cell-cell complexes to developing immune-mediated diseases, including HIV and diabetes.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua Simmons
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jared Oakes
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiuqi Zhang
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Nochowicz
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen Priest
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Samuel S. Bailin
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Mona Mashayekhi
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather K. Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Leslie M. Meenderink
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Joey Stolze
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Rama Gangula
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tarek Absi
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yan Ru Su
- Department of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Curtis L. Gabriel
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tecla Temu
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Suman Pakala
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erin M. Wilfong
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara Gianella
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth J. Phillips
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David G. Harrison
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Spyros A. Kalams
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
| | - John R. Koethe
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
4
|
Chitta S, Nehete BP, Delise AB, Simmons JH, Nehete PN. Reactivity of HLADR antibody manifests expression of surface MHC II molecules on peripheral blood T lymphocytes in new world monkeys. Immun Inflamm Dis 2024; 12:e1318. [PMID: 38923761 PMCID: PMC11194976 DOI: 10.1002/iid3.1318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) class II molecules expressed on B cells, monocytes and dendritic cells present processed peptides to CD4+ T cells as one of the mechanisms to combat infection and inflammation. AIM To study MHC II expression in a variety of nonhuman primate species, including New World (NWM) squirrel monkeys (Saimiri boliviensis boliviensis), owl monkeys (Aotus nancymae), common marmosets (Callithrix spp.), and Old World (OWM) rhesus (Macaca mulatta), baboons (Papio anubis). METHODS Two clones of cross-reactive mouse anti-human HLADR monoclonal antibodies (mAb) binding were analyzed by flow cytometry to evaluate MHC II expression on NHP immune cells, including T lymphocytes in whole blood (WB) and peripheral blood mononuclear cells (PBMC). RESULTS MHC class II antibody reactivity is seen with CD20+ B cells, CD14+ monocytes and CD3+ T lymphocytes. Specific reactivity with both clones was demonstrated in T lymphocytes: this reactivity was not inhibited by purified CD16 antibody but was completely inhibited when pre-blocked with purified unconjugated MHC II antibody. Freshly prepared PBMC also showed reactivity with T lymphocytes without any stimulation. Interestingly, peripheral blood from rhesus macaques and olive baboons (OWM) showed no such T lymphocyte associated MHCII antibody reactivity. DISCUSSION & CONCLUSION Our results from antibody (MHC II) reactivity clearly show the potential existence of constitutively expressed (with no stimulation) MHC II molecules on T lymphocytes in new world monkeys. These results suggest that additional study is warranted to evaluate the functional and evolutionary significance of these finding and to better understand MHC II expression on T lymphocytes in new world monkeys.
Collapse
Affiliation(s)
- Sriram Chitta
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and ResearchUT‐MD Anderson Cancer CenterBastropTexasUSA
| | - Bharti P. Nehete
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and ResearchUT‐MD Anderson Cancer CenterBastropTexasUSA
| | - Ashley B. Delise
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and ResearchUT‐MD Anderson Cancer CenterBastropTexasUSA
| | - Joe H. Simmons
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and ResearchUT‐MD Anderson Cancer CenterBastropTexasUSA
| | - Pramod N. Nehete
- Department of Comparative Medicine, Keeling Center for Comparative Medicine and ResearchUT‐MD Anderson Cancer CenterBastropTexasUSA
- Department of Comparative MedicineThe University of Texas Graduate School of Biomedical SciencesHoustonTexasUSA
| |
Collapse
|
5
|
Kenison JE, Stevens NA, Quintana FJ. Therapeutic induction of antigen-specific immune tolerance. Nat Rev Immunol 2024; 24:338-357. [PMID: 38086932 PMCID: PMC11145724 DOI: 10.1038/s41577-023-00970-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 05/04/2024]
Abstract
The development of therapeutic approaches for the induction of robust, long-lasting and antigen-specific immune tolerance remains an important unmet clinical need for the management of autoimmunity, allergy, organ transplantation and gene therapy. Recent breakthroughs in our understanding of immune tolerance mechanisms have opened new research avenues and therapeutic opportunities in this area. Here, we review mechanisms of immune tolerance and novel methods for its therapeutic induction.
Collapse
Affiliation(s)
- Jessica E Kenison
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nikolas A Stevens
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
6
|
Maaliki D, Itani M, Jarrah H, El-Mallah C, Ismail D, El Atie YE, Obeid O, Jaffa MA, Itani HA. Dietary High Salt Intake Exacerbates SGK1-Mediated T Cell Pathogenicity in L-NAME/High Salt-Induced Hypertension. Int J Mol Sci 2024; 25:4402. [PMID: 38673987 PMCID: PMC11050194 DOI: 10.3390/ijms25084402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Sodium chloride (NaCl) activates Th17 and dendritic cells in hypertension by stimulating serum/glucocorticoid kinase 1 (SGK1), a sodium sensor. Memory T cells also play a role in hypertension by infiltrating target organs and releasing proinflammatory cytokines. We tested the hypothesis that the role of T cell SGK1 extends to memory T cells. We employed mice with a T cell deletion of SGK1, SGK1fl/fl × tgCD4cre mice, and used SGK1fl/fl mice as controls. We treated the mice with L-NAME (0.5 mg/mL) for 2 weeks and allowed a 2-week washout interval, followed by a 3-week high-salt (HS) diet (4% NaCl). L-NAME/HS significantly increased blood pressure and memory T cell accumulation in the kidneys and bone marrow of SGK1fl/fl mice compared to knockout mice on L-NAME/HS or groups on a normal diet (ND). SGK1fl/fl mice exhibited increased albuminuria, renal fibrosis, and interferon-γ levels after L-NAME/HS treatment. Myography demonstrated endothelial dysfunction in the mesenteric arterioles of SGK1fl/fl mice. Bone marrow memory T cells were adoptively transferred from either mouse strain after L-NAME/HS administration to recipient CD45.1 mice fed the HS diet for 3 weeks. Only the mice that received cells from SGK1fl/fl donors exhibited increased blood pressure and renal memory T cell infiltration. Our data suggest a new therapeutic target for decreasing hypertension-specific memory T cells and protecting against hypertension.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Maha Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Hala Jarrah
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Carla El-Mallah
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107, Lebanon; (C.E.-M.); (O.O.)
| | - Diana Ismail
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Yara E. El Atie
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
| | - Omar Obeid
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut 1107, Lebanon; (C.E.-M.); (O.O.)
| | - Miran A. Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut 1107, Lebanon;
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon; (D.M.); (M.I.); (H.J.); (D.I.); (Y.E.E.A.)
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
7
|
Liu YCG, Teng AY. Distinct cross talk of IL-17 & TGF-β with the immature CD11c + TRAF6 (-/-) -null myeloid dendritic cell-derived osteoclast precursor (mDDOCp) may engage signaling toward an alternative pathway of osteoclastogenesis for arthritic bone loss in vivo. Immun Inflamm Dis 2024; 12:e1173. [PMID: 38415924 PMCID: PMC10851637 DOI: 10.1002/iid3.1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Dendritic cells (DCs), though borne heterogeneous, are the most potent antigen-presenting cells, whose critical functions include triggering antigen-specific naïve T-cell responses and fine-tuning the innate versus adaptive immunity at the osteo-immune and/or mucosal mesenchyme interface. We previously reported that immature myeloid-CD11c+ DCs/mDCs may act like osteoclast (OC) precursors (OCp/mDDOCp) capable of developing into functional OCs via an alternative pathway of inflammation-induced osteoclastogenesis; however, what are their contribution and signaling interactions with key osteotropic cytokines (i.e., interleukin-17 [IL-17] and transforming growth factor-β [TGF-β]) to bearing such inflammatory bone loss in vivo remain unclear to date. METHODS Herein, we employed mature adult bone marrow-reconstituted C57BL/6 TRAF6(-/-) -null chimeras without the classical monocyte/macrophage (Mo/Mϕ)-derived OCs to address their potential contribution to OCp/mDDOCp-mediated osteoclastogenesis in the chicken type-II-collagen (CC-II)-induced joint inflammation versus arthritic bone loss and parallel associations with the double-positive CD11c+ TRAP+ TRAF6-null(-/-) DC-like OCs detected in vivo via the quantitative dual-immunohistochemistry and digital histomorphometry for analyses. RESULTS The resulting findings revealed the unrecognized novel insight that (i) immature myeloid-CD11c+ TRAF6(-/-) TRAP+ DC-like OCs were involved, co-localized, and strongly associated with joint inflammation and bone loss, independent of the Mo/Mϕ-derived classical OCs, in CC-II-immunized TRAF6(-/-) -null chimeras, and (ii) the osteotropic IL-17 may engage distinct crosstalk with CD11c+ mDCs/mDDOCp before developing the CD11c+ TRAP+ TRAF6(-/-) OCs via a TGF-β-dependent interaction toward inflammation-induced arthritic bone loss in vivo. CONCLUSION These results confirm and substantiate the validity of TRAF6(-/-) -null chimeras to address the significance of immature mCD11c+ TRAP+ DC-like OCs/mDDOCp subset for an alternative pathway of arthritic bone loss in vivo. Such CD11c+ mDCs/mDDOCp-associated osteoclastogenesis through the step-wise twist-in-turns osteo-immune cross talks are thereby theme highlighted to depict a summative re-visitation proposed.
Collapse
Affiliation(s)
- Yen Chun G. Liu
- Department of Oral HygieneCenter for Osteo‐immunology & Biotechnology Research (COBR), College of Dental Medicine, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Oral Hygiene & Nursing, and School of DentistryKanagawa Dental University (KDU)YokosukaKanagawaJapan
| | - Andy Yen‐Tung Teng
- The Eastman Institute for Oral Health (EIOH), School of Medicine & Dentistry, University of RochesterRochesterNew YorkUSA
- Center for Osteo‐immunology & Biotechnology Research (COBR), School of Dentistry, College of Dental Medicine, Kaohsiung Medical University (KMU) and KMU‐HospitalKaohsiungTaiwan
| |
Collapse
|
8
|
Rigamonti A, Villar J, Segura E. Monocyte differentiation within tissues: a renewed outlook. Trends Immunol 2023; 44:999-1013. [PMID: 37949783 DOI: 10.1016/j.it.2023.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
When recruited to mammalian tissues, monocytes differentiate into macrophages or dendritic cells (DCs). In the past few years, the existence of monocyte-derived DCs (moDCs) was questioned by the discovery of new DC populations with overlapping phenotypes. Here, we critically review the evidence for monocyte differentiation into DCs in tissues and highlight their specific functions. Recent studies have shown that monocyte-derived macrophages (moMacs) with distinct life cycles coexist in tissues, both at steady state and upon inflammation. Integrating studies in mice and humans, we highlight specific features of moMacs during inflammation and tissue repair. We also discuss the notion of monocyte differentiation occurring via a binary fate decision. Deciphering monocyte-derived cell properties is essential for understanding their role in nonresolving inflammation and how they might be targeted for therapies.
Collapse
Affiliation(s)
| | - Javiera Villar
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France
| | - Elodie Segura
- Institut Curie, PSL University, INSERM, U932, 26 Rue d'Ulm, Paris 75005, France.
| |
Collapse
|
9
|
Liu Y, Su S, Shayo S, Bao W, Pal M, Dou K, Shi PA, Aygun B, Campbell-Lee S, Lobo CA, Mendelson A, An X, Manwani D, Zhong H, Yazdanbakhsh K. Hemolysis dictates monocyte differentiation via two distinct pathways in sickle cell disease vaso-occlusion. J Clin Invest 2023; 133:e172087. [PMID: 37490346 PMCID: PMC10503794 DOI: 10.1172/jci172087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023] Open
Abstract
Sickle cell disease (SCD) is a hereditary hemoglobinopathy characterized by painful vaso-occlusive crises (VOC) and chronic hemolysis. The mononuclear phagocyte system is pivotal to SCD pathophysiology, but the mechanisms governing monocyte/macrophage differentiation remain unknown. This study examined the influence of hemolysis on circulating monocyte trajectories in SCD. We discovered that hemolysis stimulated CSF-1 production, partly by endothelial cells via Nrf2, promoting classical monocyte (CMo) differentiation into blood patrolling monocytes (PMo) in SCD mice. However, hemolysis also upregulated CCL-2 through IFN-I, inducing CMo transmigration and differentiation into tissue monocyte-derived macrophages. Blocking CMo transmigration by anti-P selectin antibody in SCD mice increased circulating PMo, corroborating that CMo-to-tissue macrophage differentiation occurs at the expense of CMo-to-blood PMo differentiation. We observed a positive correlation between plasma CSF-1/CCL-2 ratios and blood PMo levels in patients with SCD, underscoring the clinical significance of these two opposing factors in monocyte differentiation. Combined treatment with CSF-1 and anti-P selectin antibody more effectively increased PMo numbers and reduced stasis compared with single-agent therapies in SCD mice. Altogether, these data indicate that monocyte fates are regulated by the balance between two heme pathways, Nrf2/CSF-1 and IFN-I/CCL-2, and suggest that the CSF-1/CCL-2 ratio may present a diagnostic and therapeutic target in SCD.
Collapse
Affiliation(s)
| | - Shan Su
- Laboratory of Complement Biology
| | | | | | | | - Kai Dou
- Laboratory of Immune Regulation, and
| | - Patricia A. Shi
- Clinical Research in Sickle Cell Disease, New York Blood Center, New York, New York, USA
| | - Banu Aygun
- Cohen Children’s Medical Center, New Hyde Park, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| | - Sally Campbell-Lee
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | | | - Xiuli An
- Laboratory of Membrane Biology, New York Blood Center, New York, New York, USA
| | - Deepa Manwani
- Department of Pediatrics, Montefiore Medical Center, Albert Einstein College of Medicine, Children’s Hospital at Montefiore, New York, New York, USA
| | - Hui Zhong
- Laboratory of Immune Regulation, and
| | | |
Collapse
|
10
|
Colvert CA, Hawkins KP, Semenikhina M, Stefanenko M, Pavlykivska O, Oates JC, DeLeon-Pennell KY, Palygin O, Van Beusecum JP. Endothelial mechanical stretch regulates the immunological synapse interface of renal endothelial cells in a sex-dependent manner. Am J Physiol Renal Physiol 2023; 325:F22-F37. [PMID: 37167273 PMCID: PMC10292970 DOI: 10.1152/ajprenal.00258.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
Increased mechanical endothelial cell stretch contributes to the development of numerous cardiovascular and renal pathologies. Recent studies have shone a light on the importance of sex-dependent inflammation in the pathogenesis of renal disease states. The endothelium plays an intimate and critical role in the orchestration of immune cell activation through upregulation of adhesion molecules and secretion of cytokines and chemokines. While endothelial cells are not recognized as professional antigen-presenting cells, in response to cytokine stimulation, endothelial cells can express both major histocompatibility complex (MHC) I and MHC II. MHCs are essential to forming a part of the immunological synapse interface during antigen presentation to adaptive immune cells. Whether MHC I and II are increased under increased mechanical stretch is unknown. Due to hypertension being multifactorial, we hypothesized that increased mechanical endothelial stretch promotes the regulation of MHCs and key costimulatory proteins on mouse renal endothelial cells (MRECs) in a stretch-dependent manner. MRECs derived from both sexes underwent 5%, 10%, or 15% uniaxial cyclical stretch, and immunological synapse interface proteins were determined by immunofluorescence microscopy, immunoblot analysis, and RNA sequencing. We found that increased endothelial mechanical stretch conditions promoted downregulation of MHC I in male MRECs but upregulation in female MRECs. Moreover, MHC II was upregulated by mechanical stretch in both male and female MRECs, whereas CD86 and CD70 were regulated in a sex-dependent manner. By bulk RNA sequencing, we found that increased mechanical endothelial cell stretch promoted differential gene expression of key antigen processing and presentation genes in female MRECs, demonstrating that females have upregulation of key antigen presentation pathways. Taken together, our data demonstrate that mechanical endothelial stretch regulates endothelial activation and immunological synapse interface formation in renal endothelial cells in a sex-dependent manner.NEW & NOTEWORTHY Endothelial cells contribute to the development of renal inflammation and have the unique ability to express antigen presentation proteins. Whether increased endothelial mechanical stretch regulates immunological synapse interface proteins remains unknown. We found that antigen presentation proteins and costimulatory proteins on renal endothelial cells are modulated by mechanical stretch in a sex-dependent manner. Our data provide novel insights into the sex-dependent ability of renal endothelial cells to present antigens in response to endothelial mechanical stimuli.
Collapse
Affiliation(s)
- C Alex Colvert
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Kennedy P Hawkins
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Marharyta Semenikhina
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Mariia Stefanenko
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Olesia Pavlykivska
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Jim C Oates
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| | - Kristine Y DeLeon-Pennell
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Justin P Van Beusecum
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States
| |
Collapse
|
11
|
Padgett LE, Marcovecchio PM, Olingy CE, Araujo DJ, Steel K, Dinh HQ, Alimadadi A, Zhu YP, Meyer MA, Kiosses WB, Thomas GD, Hedrick CC. Nonclassical monocytes potentiate anti-tumoral CD8 + T cell responses in the lungs. Front Immunol 2023; 14:1101497. [PMID: 37426658 PMCID: PMC10325638 DOI: 10.3389/fimmu.2023.1101497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/15/2023] [Indexed: 07/11/2023] Open
Abstract
CD8+ T cells drive anti-cancer immunity in response to antigen-presenting cells such as dendritic cells and subpopulations of monocytes and macrophages. While CD14+ classical monocytes modulate CD8+ T cell responses, the contributions of CD16+ nonclassical monocytes to this process remain unclear. Herein we explored the role of nonclassical monocytes in CD8+ T cell activation by utilizing E2-deficient (E2-/-) mice that lack nonclassical monocytes. During early metastatic seeding, modeled by B16F10-OVA cancer cells injected into E2-/- mice, we noted lower CD8+ effector memory and effector T cell frequencies within the lungs as well as in lung-draining mediastinal lymph nodes in the E2-/- mice. Analysis of the myeloid compartment revealed that these changes were associated with depletion of MHC-IIloLy6Clo nonclassical monocytes within these tissues, with little change in other monocyte or macrophage populations. Additionally, nonclassical monocytes preferentially trafficked to primary tumor sites in the lungs, rather than to the lung-draining lymph nodes, and did not cross-present antigen to CD8+ T cells. Examination of the lung microenvironment in E2-/- mice revealed reduced CCL21 expression in endothelial cells, which is chemokine involved in T cell trafficking. Our results highlight the previously unappreciated importance of nonclassical monocytes in shaping the tumor microenvironment via CCL21 production and CD8+ T cell recruitment.
Collapse
Affiliation(s)
- Lindsey E. Padgett
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Paola M. Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Claire E. Olingy
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Daniel J. Araujo
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Kathleen Steel
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Huy Q. Dinh
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Ahmad Alimadadi
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Yanfang Peipei Zhu
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Melissa A. Meyer
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - William B. Kiosses
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Graham D. Thomas
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, United States
| | - Catherine C. Hedrick
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
12
|
Pitzer Mutchler A, Huynh L, Patel R, Lam T, Bain D, Jamison S, Kirabo A, Ray EC. The role of dietary magnesium deficiency in inflammatory hypertension. Front Physiol 2023; 14:1167904. [PMID: 37293263 PMCID: PMC10244581 DOI: 10.3389/fphys.2023.1167904] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Nearly 30% of adults consume less than the estimated average daily requirement of magnesium (Mg2+), and commonly used medications, such as diuretics, promote Mg2+ deficiency. Higher serum Mg2+ levels, increased dietary Mg2+ in-take, and Mg2+ supplementation are each associated with lower blood pressure, suggesting that Mg2+-deficiency contributes to the pathogenesis of hypertension. Antigen-presenting cells, such as monocytes and dendritic cells, are well-known to be involved in the pathogenesis of hypertension. In these cells, processes implicated as necessary for increased blood pressure include activation of the NLRP3 inflammasome, IL-1β production, and oxidative modification of fatty acids such as arachidonic acid, forming isolevuglandins (IsoLGs). We hypothesized that increased blood pressure in response to dietary Mg2+-depletion leads to increased NLRP3, IL-1β, and IsoLG production in antigen presenting cells. We found that a Mg2+-depleted diet (0.01% Mg2+ diet) increased blood pressure in mice compared to mice fed a 0.08% Mg2+ diet. Mg2+-depleted mice did not exhibit an increase in total body fluid, as measured by quantitative magnetic resonance. Plasma IL-1β concentrations were increased (0.13 ± 0.02 pg/mL vs. 0.04 ± 0.02 pg/mL). Using flow cytometry, we observed increased NLRP3 and IL-1β expression in antigen-presenting cells from spleen, kidney, and aorta. We also observed increased IsoLG production in antigen-presenting cells from these organs. Primary culture of CD11c+ dendritic cells confirmed that low extracellular Mg2+ exerts a direct effect on these cells, stimulating IL-1β and IL-18 production. The present findings show that NLRP3 inflammasome activation and IsoLG-adduct formation are stimulated when dietary Mg2+ is depleted. Interventions and increased dietary Mg2+ consumption may prove beneficial in decreasing the prevalence of hypertension and cardiovascular disease.
Collapse
Affiliation(s)
- Ashley Pitzer Mutchler
- Vanderbilt University Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, United States
| | - Linh Huynh
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Ritam Patel
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Tracey Lam
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| | - Daniel Bain
- University of Pittsburgh Department of Geology, Pittsburgh, PA, United States
| | - Sydney Jamison
- Meharry Medical College Nashville, Nashville, TN, United States
| | - Annet Kirabo
- Vanderbilt University Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, United States
| | - Evan C. Ray
- University of Pittsburgh Department of Medicine, Renal-Electrolyte Division, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Pietraforte I, Butera A, Gaddini L, Mennella A, Palazzo R, Campanile D, Stefanantoni K, Riccieri V, Lande R, Frasca L. CXCL4-RNA Complexes Circulate in Systemic Sclerosis and Amplify Inflammatory/Pro-Fibrotic Responses by Myeloid Dendritic Cells. Int J Mol Sci 2022; 24:ijms24010653. [PMID: 36614095 PMCID: PMC9820649 DOI: 10.3390/ijms24010653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 01/03/2023] Open
Abstract
CXCL4 is an important biomarker of systemic sclerosis (SSc), an incurable autoimmune disease characterized by vasculopathy and skin/internal organs fibrosis. CXCL4 contributes to the type I interferon (IFN-I) signature, typical of at least half of SSc patients, and its presence is linked to an unfavorable prognosis. The mechanism implicated is CXCL4 binding to self-DNA, with the formation of complexes amplifying TLR9 stimulation in plasmacytoid dendritic cells (pDCs). Here, we demonstrate that, upon binding to self-RNA, CXCL4 protects the RNA from enzymatic degradation. As a consequence, CXCL4-RNA complexes persist in vivo. Indeed, we show for the first time that CXCL4-RNA complexes circulate in SSc plasma and correlate with both IFN-I and TNF-α. By using monocyte-derived DCs (MDDCs) pretreated with IFN-α as a model system (to mimic the SSc milieu of the IFN-I signature), we demonstrate that CXCL4-RNA complexes induce MDDC maturation and increase, in particular, pro-inflammatory TNF-α as well as IL-12, IL-23, IL-8, and pro-collagen, mainly in a TLR7/8-dependent but CXCR3-independent manner. In contrast, MDDCs produced IL-6 and fibronectin independently in their CXCL4 RNA-binding ability. These findings support a role for CXCL4-RNA complexes, besides CXCL4-DNA complexes, in immune amplification via the modulation of myeloid DC effector functions in SSc and also during normal immune responses.
Collapse
Affiliation(s)
- Immacolata Pietraforte
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161 Rome, Italy
| | - Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Lucia Gaddini
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Anna Mennella
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Raffaella Palazzo
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Doriana Campanile
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Katia Stefanantoni
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Valeria Riccieri
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00185 Roma, Italy
| | - Roberto Lande
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
| | - Loredana Frasca
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
14
|
Wang Y, Yang T, Liang H, Deng M. Cell atlas of the immune microenvironment in gastrointestinal cancers: Dendritic cells and beyond. Front Immunol 2022; 13:1007823. [PMID: 36505406 PMCID: PMC9729272 DOI: 10.3389/fimmu.2022.1007823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal (GI) cancers occur in the alimentary tract and accessory organs. They exert a global burden with high morbidity and mortality. Inside the tumor microenvironment, dendritic cells (DCs) are the most efficient antigen-presenting cells and are necessary for adaptive immune responses such as T and B-cell maturation. However, the subsets of DCs revealed before were mostly based on flow cytometry and bulk sequencing. With the development of single-cell RNA sequencing (scRNA-seq), the tumor and microenvironment heterogeneity of GI cancer has been illustrated. In this review, we summarize the classification and development trajectory of dendritic cells at the single-cell level in GI cancer. Additionally, we focused on the interaction of DCs with T cells and their effect on the response to immunotherapy. Specifically, we focused on the newly identified tumor-infiltrating dendritic cells and discuss their potential function in antitumor immunity.
Collapse
Affiliation(s)
- Yinuo Wang
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Ting Yang
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Huan Liang
- School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China
| | - Mi Deng
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, China,School of Basic Medical Sciences, Peking University Health Science Center, Peking University, Beijing, China,Peking University Cancer Hospital and Institute, Peking University Health Science Center, Peking University, Beijing, China,*Correspondence: Mi Deng,
| |
Collapse
|
15
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
16
|
Greiner D, Scott TM, Olson GS, Aderem A, Roh-Johnson M, Johnson JS. Genetic Modification of Primary Human Myeloid Cells to Study Cell Migration, Activation, and Organelle Dynamics. Curr Protoc 2022; 2:e514. [PMID: 36018279 PMCID: PMC9476234 DOI: 10.1002/cpz1.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Myeloid dendritic cells (DCs) and macrophages are mononuclear phagocytes with key roles in the immune system. As antigen-presenting cells, they link innate detection of microbes with programming adaptive immune responses. Myeloid DCs and macrophages also play critical roles in development, promote tissue homeostasis, and direct repair in response to injury and inflammation. As cellular migration and organelle dynamics are intimately connected with these processes, it is necessary to develop tools to track myeloid cell behavior and function. Here, we build on previously established protocols to isolate primary human myeloid cells from peripheral blood and report an optimized method for their genetic modification with lentiviral vectors to study processes related to cell migration, activation, and organelle dynamics. Specifically, we provide a protocol for delivering genetically encoded fluorescent markers into primary monocyte-derived DCs (MDDCs) and monocyte-derived macrophages (MDMs) to label mitochondria, peroxisomes, and whole cells. We describe the isolation of primary CD14+ monocytes from peripheral blood using positive selection with magnetic beads and, alternatively, isolation based on plastic adherence. Isolated CD14+ cells can be transduced with lentiviral vectors and subsequently cultured in the presence of cytokines to derive MDDCs or MDMs. This protocol is highly adaptable for cotransduction with vectors to knock down or overexpress genes of interest. These tools enable mechanistic studies of genetically modified myeloid cells through flow cytometry, fluorescence microscopy, and other downstream assays. © 2022 Wiley Periodicals LLC. Basic Protocol: Transduction of MDDCs and MDMs with lentiviral vectors encoding fluorescent markers Alternate Protocol 1: Isolation of monocytes by plastic adhesion Alternate Protocol 2: Transduction of MDDCs and MDMs with lentiviral vectors to knock down or overexpress genes of interest Support Protocol 1: Production and purification of lentiviral vectors for transduction into primary human myeloid cells Support Protocol 2: Flow cytometry of MDDCs and MDMs Support Protocol 3: Fixed and live-cell imaging of fluorescent markers in MDMs and MDDCs.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Tiana M. Scott
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Gregory S. Olson
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
- Medical Scientist Training Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Alan Aderem
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| | - Jarrod S. Johnson
- Department of Pathology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
- Division of Microbiology and Immunology, University of Utah School of Medicine; Salt Lake City, UT, 84112, USA
| |
Collapse
|
17
|
Chu TH, Vo MC, Lakshmi TJ, Ahn SY, Kim M, Song GY, Yang DH, Ahn JS, Kim HJ, Jung SH, Lee JJ. Novel IL-15 dendritic cells have a potent immunomodulatory effect in immunotherapy of multiple myeloma. Transl Oncol 2022; 20:101413. [PMID: 35413499 PMCID: PMC9006865 DOI: 10.1016/j.tranon.2022.101413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Culture DCs with GM-CSF + IL-4 + IL-15 (IL-15 DCs) can be shortened for 6 days. IL-15 DCs showed high expression levels of costimulatory receptors, IFN-γ and IL-12p70. IL-15 DCs showed strong stimulation toward T, CIK and NK cells. The activated lymphocytes showed high cytotoxicity against myeloma cells.
Dendritic cells (DCs) are the most potent antigen-presenting cells, and have thus been used in clinical cancer vaccines. However, the effects of DC vaccines are still limited, leading researchers to explore novel ways to make them effective. In this study, we investigated whether human monocyte-derived DCs generated via the addition of interleukin 15 (IL-15) had a higher capacity to induce antigen-specific T cells compared to conventional DCs. We isolated CD14+ monocytes from peripheral blood from multiple myeloma (MM) patients, and induced immature DCs with granulocyte-macrophage colony-stimulating factor (GM-CSF) and IL-4 in the presence or absence of IL-15 for 4–6 days. Then we generated mature DCs (mDCs) with lipopolysaccharide for another 2 days [IL-15 mDCs (6 days), IL-15 mDCs (8 days), and conventional mDCs (8 days)]. IL-15 mDCs (6 days) showed higher expression of MHC I and II, CD40, CD86, and CCR7, and the secretion of IFN-γ was significantly higher compared to conventional mDCs. IL-15 mDCs (6 days) showed superior polarization of naïve T cells toward Th1 cells and a higher proportion of activated T cells, cytokine-induced killer (CIK) cells, and natural killer (NK) cells for inducing strong cytotoxicity against myeloma cells, and lower proportion of regulatory T cells compared to conventional mDCs. These data imply that novel multipotent mDCs generated by the addition of IL-15, which can be cultivated in 6 days, resulted in outstanding activation of T cells, CIK cells and NK cells, and may facilitate cellular immunotherapy for cancer patients.
Collapse
|
18
|
Müller M, Reguzova A, Löffler MW, Amann R. Orf Virus-Based Vectors Preferentially Target Professional Antigen-Presenting Cells, Activate the STING Pathway and Induce Strong Antigen-Specific T Cell Responses. Front Immunol 2022; 13:873351. [PMID: 35615366 PMCID: PMC9124846 DOI: 10.3389/fimmu.2022.873351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background Orf virus (ORFV)-based vectors are attractive for vaccine development as they enable the induction of potent immune responses against specific transgenes. Nevertheless, the precise mechanisms of immune activation remain unknown. This study therefore aimed to characterize underlying mechanisms in human immune cells. Methods Peripheral blood mononuclear cells were infected with attenuated ORFV strain D1701-VrV and analyzed for ORFV infection and activation markers. ORFV entry in susceptible cells was examined using established pharmacological inhibitors. Using the THP1-Dual™ reporter cell line, activation of nuclear factor-κB and interferon regulatory factor pathways were simultaneously evaluated. Infection with an ORFV recombinant encoding immunogenic peptides (PepTrio-ORFV) was used to assess the induction of antigen-specific CD8+ T cells. Results ORFV was found to preferentially target professional antigen-presenting cells (APCs) in vitro, with ORFV uptake mediated primarily by macropinocytosis. ORFV-infected APCs exhibited an activated phenotype, required for subsequent lymphocyte activation. Reporter cells revealed that the stimulator of interferon genes pathway is a prerequisite for ORFV-mediated cellular activation. PepTrio-ORFV efficiently induced antigen-specific CD8+ T cell recall responses in a dose-dependent manner. Further, activation and expansion of naïve antigen-specific CD8+ T cells was observed in response. Discussion Our findings confirm that ORFV induces a strong antigen-specific immune response dependent on APC uptake and activation. These data support the notion that ORFV D1701-VrV is a promising vector for vaccine development and the design of innovative immunotherapeutic applications.
Collapse
Affiliation(s)
- Melanie Müller
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Alena Reguzova
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Markus W. Löffler
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) ‘Image-Guided and Functionally Instructed Tumor Therapies’, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- *Correspondence: Ralf Amann, ; Markus W. Löffler,
| |
Collapse
|
19
|
Oates JC, Russell DL, Van Beusecum JP. Endothelial cells: potential novel regulators of renal inflammation. Am J Physiol Renal Physiol 2022; 322:F309-F321. [PMID: 35129369 PMCID: PMC8897017 DOI: 10.1152/ajprenal.00371.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.
Collapse
Affiliation(s)
- Jim C. Oates
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dayvia L. Russell
- 2Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Justin P. Van Beusecum
- 1Ralph H. Johnson Veteran Affairs Medical Center, Charleston, South Carolina,3Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
20
|
Rivera CA, Randrian V, Richer W, Gerber-Ferder Y, Delgado MG, Chikina AS, Frede A, Sorini C, Maurin M, Kammoun-Chaari H, Parigi SM, Goudot C, Cabeza-Cabrerizo M, Baulande S, Lameiras S, Guermonprez P, Reis e Sousa C, Lecuit M, Moreau HD, Helft J, Vignjevic DM, Villablanca EJ, Lennon-Duménil AM. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity 2022; 55:129-144.e8. [PMID: 34910930 PMCID: PMC8751639 DOI: 10.1016/j.immuni.2021.11.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) patrol tissues and transport antigens to lymph nodes to initiate adaptive immune responses. Within tissues, DCs constitute a complex cell population composed of distinct subsets that can exhibit different activation states and functions. How tissue-specific cues orchestrate DC diversification remains elusive. Here, we show that the small intestine included two pools of cDC2s originating from common pre-DC precursors: (1) lamina propria (LP) CD103+CD11b+ cDC2s that were mature-like proinflammatory cells and (2) intraepithelial cDC2s that exhibited an immature-like phenotype as well as tolerogenic properties. These phenotypes resulted from the action of food-derived retinoic acid (ATRA), which enhanced actomyosin contractility and promoted LP cDC2 transmigration into the epithelium. There, cDC2s were imprinted by environmental cues, including ATRA itself and the mucus component Muc2. Hence, by reaching distinct subtissular niches, DCs can exist as immature and mature cells within the same tissue, revealing an additional mechanism of DC functional diversification.
Collapse
Affiliation(s)
- Claudia A Rivera
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Violaine Randrian
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Wilfrid Richer
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | | | - Aleksandra S Chikina
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France; Institut Curie, CNRS UMR 144, PSL Research University, 75005 Paris, France
| | - Annika Frede
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Chiara Sorini
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Mathieu Maurin
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Hana Kammoun-Chaari
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France
| | - Sara M Parigi
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | - Christel Goudot
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Sylvain Baulande
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Sonia Lameiras
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL Research University, 75005 Paris, France
| | - Pierre Guermonprez
- Université de Paris, Centre for Inflammation Research, CNRS ERL8252, INSERM1149, Paris, France
| | | | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, INSERM U1117, 75015 Paris, France; Université de Paris, Necker-Enfants Malades University Hospital, Department of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, Paris, France
| | - Hélène D Moreau
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | - Julie Helft
- Institut Curie, INSERM U932, PSL Research University, 75005 Paris, France
| | | | - Eduardo J Villablanca
- Immunology and Allergy division, Department of Medicine, Solna, Karolinska Institutet and University Hospital, 17176 Stockholm, Sweden; Center of Molecular Medicine, 17176 Stockholm, Sweden
| | | |
Collapse
|
21
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
22
|
Van Beusecum JP, Barbaro NR, Smart CD, Patrick DM, Loperena R, Zhao S, Ao M, Xiao L, Shibao CA, Harrison DG. Growth Arrest Specific-6 and Axl Coordinate Inflammation and Hypertension. Circ Res 2021; 129:975-991. [PMID: 34565181 PMCID: PMC9125747 DOI: 10.1161/circresaha.121.319643] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Justin P. Van Beusecum
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Natalia R. Barbaro
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Charles D. Smart
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David M. Patrick
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Divison of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Roxana Loperena
- Vanderbilt Institute of Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Shilin Zhao
- Vanderbilt Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Mingfang Ao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Liang Xiao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Cyndya A. Shibao
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - David G. Harrison
- Divison of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
23
|
Innate immunity and clinical hypertension. J Hum Hypertens 2021; 36:503-509. [PMID: 34689174 DOI: 10.1038/s41371-021-00627-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023]
Abstract
Emerging evidence has supported a role of inflammation and immunity in the genesis of hypertension. In humans and experimental models of hypertension, cells of the innate and adaptive immune system enter target tissues, including vessels and the kidney, and release powerful mediators including cytokines, matrix metalloproteinases and reactive oxygen species that cause tissue damage, fibrosis and dysfunction. These events augment the blood pressure elevations in hypertension and promote end-organ damage. Factors that activate immune cells include sympathetic outflow, increased sodium within microenvironments where these cells reside, and signals received from the vasculature. In particular, the activated endothelium releases reactive oxygen species and interleukin (IL)-6 which in turn stimulate transformation of monocytes to become antigen presenting cells and produce cytokines like IL-1β and IL-23, which further affect T cell function to produce IL-17A. Genetic deletion or neutralization of these cytokines ameliorates hypertension and end-organ damage. In this review, we will consider in depth features of the hypertensive milieu that lead to these events and consider new treatment approaches to limit the untoward effects of inflammation in hypertension.
Collapse
|
24
|
Meena M, Van Delen M, De Laere M, Sterkens A, Costas Romero C, Berneman Z, Cools N. Transmigration across a Steady-State Blood-Brain Barrie Induces Activation of Circulating Dendritic Cells Partly Mediated by Actin Cytoskeletal Reorganization. MEMBRANES 2021; 11:membranes11090700. [PMID: 34564517 PMCID: PMC8472465 DOI: 10.3390/membranes11090700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
The central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood–brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady–state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs. Next, we aimed to gain further insights in the processes underlying activation of DCs following transmigration across the BBB. We investigated the interaction of DCs with endothelial cells as well as the involvement of actin cytoskeletal reorganization. Whereas we were not able to demonstrate that DCs engulf membrane fragments from fluorescently labelled endothelial cells during transmigration across the BBB, we found that blocking actin restructuring of DCs by latrunculin-A significantly impaired in vitro migration of DC across the BBB and subsequent T cell-stimulatory capacity, albeit no effect on migration-induced phenotypic activation could be demonstrated. These observations contribute to the current understanding of the interaction between DCs and the BBB, ultimately leading to the design of targeted therapies capable to inhibit autoimmune inflammation of the CNS.
Collapse
Affiliation(s)
- Megha Meena
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Mats Van Delen
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Ann Sterkens
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Department of Dermatology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Coloma Costas Romero
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium; (M.M.); (M.V.D.); (M.D.L.); (A.S.); (C.C.R.); (Z.B.)
- Center for Cell Therapy and Regenerative Medicine, Laboratory of Experimental Hematology, Antwerp University Hospital, 2650 Edegem, Belgium
- Correspondence:
| |
Collapse
|
25
|
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2021; 58:4816-4827. [PMID: 34181235 DOI: 10.1007/s12035-021-02465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14+ monocytes were collected from 24 RRMS patients sampled at baseline and after 6 months of treatment and RNA profiles were obtained through next-generation sequencing. We conducted pathway and sub-paths analysis, followed by centrality analysis of cell-specific interactomes on differentially expressed genes (DEGs). We investigated also the predictive role of baseline monocyte transcription profile in influencing the response to FTY therapy. We observed a marked down-regulation effect (60 down-regulated vs. 0 up-regulated genes). Most of the down-regulated DEGs resulted related with monocyte activation and migration like IL7R, CCR7 and the Wnt signaling mediators LEF1 and TCF7. The involvement of Wnt signaling was also confirmed by subpaths analyses. Furthermore, pathway and network analyses showed an involvement of processes related to immune function and cell migration. Baseline transcriptional profile of the HLA class II gene HLA-DQA1 and HLA-DPA1 were associated with evidence of disease activity after 2 years of treatment. Our data support the evidence that FTY induces major transcriptional changes in monocytes, mainly regarding genes involved in cell trafficking and immune cell activation. The baseline transcriptional levels of genes associated with antigen presenting function were associated with disease activity after 2 years of FTY treatment.
Collapse
|
26
|
Mansouri S, Katikaneni DS, Gogoi H, Jin L. Monocyte-Derived Dendritic Cells (moDCs) Differentiate into Bcl6 + Mature moDCs to Promote Cyclic di-GMP Vaccine Adjuvant-Induced Memory T H Cells in the Lung. THE JOURNAL OF IMMUNOLOGY 2021; 206:2233-2245. [PMID: 33879579 DOI: 10.4049/jimmunol.2001347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/25/2021] [Indexed: 12/15/2022]
Abstract
Induction of lung mucosal immune responses is highly desirable for vaccines against respiratory infections. We recently showed that monocyte-derived dendritic cells (moDCs) are responsible for lung IgA induction. However, the dendritic cell subset inducing lung memory TH cells is unknown. In this study, using conditional knockout mice and adoptive cell transfer, we found that moDCs are essential for lung mucosal responses but are dispensable for systemic vaccine responses. Next, we showed that mucosal adjuvant cyclic di-GMP differentiated lung moDCs into Bcl6+ mature moDCs promoting lung memory TH cells, but they are dispensable for lung IgA production. Mechanistically, soluble TNF mediates the induction of lung Bcl6+ moDCs. Our study reveals the functional heterogeneity of lung moDCs during vaccination and paves the way for an moDC-targeting vaccine strategy to enhance immune responses on lung mucosa.
Collapse
Affiliation(s)
- Samira Mansouri
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Divya S Katikaneni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Himanshu Gogoi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| | - Lei Jin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL
| |
Collapse
|
27
|
Abstract
Dr Irvine Page proposed the Mosaic Theory of Hypertension in the 1940s advocating that hypertension is the result of many factors that interact to raise blood pressure and cause end-organ damage. Over the years, Dr Page modified his paradigm, and new concepts regarding oxidative stress, inflammation, genetics, sodium homeostasis, and the microbiome have arisen that allow further refinements of the Mosaic Theory. A constant feature of this approach to understanding hypertension is that the various nodes are interdependent and that these almost certainly vary between experimental models and between individuals with hypertension. This review discusses these new concepts and provides an introduction to other reviews in this compendium of Circulation Research.
Collapse
Affiliation(s)
- David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center
| | - Thomas M. Coffman
- Cardiovascular and Metabolic Disorders Research Program, Duke-National University of Singapore Medical School
| | | |
Collapse
|
28
|
Li J, Jiang X, Li H, Gelinsky M, Gu Z. Tailoring Materials for Modulation of Macrophage Fate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004172. [PMID: 33565154 PMCID: PMC9245340 DOI: 10.1002/adma.202004172] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/31/2020] [Indexed: 05/03/2023]
Abstract
Human immune system acts as a pivotal role in the tissue homeostasis and disease progression. Immunomodulatory biomaterials that can manipulate innate immunity and adaptive immunity hold great promise for a broad range of prophylactic and therapeutic purposes. This review is focused on the design strategies and principles of immunomodulatory biomaterials from the standpoint of materials science to regulate macrophage fate, such as activation, polarization, adhesion, migration, proliferation, and secretion. It offers a comprehensive survey and discussion on the tunability of material designs regarding physical, chemical, biological, and dynamic cues for modulating macrophage immune response. The range of such tailorable cues encompasses surface properties, surface topography, materials mechanics, materials composition, and materials dynamics. The representative immunoengineering applications selected herein demonstrate how macrophage-immunomodulating biomaterials are being exploited for cancer immunotherapy, infection immunotherapy, tissue regeneration, inflammation resolution, and vaccination. A perspective on the future research directions of immunoregulatory biomaterials is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, 01307, Germany
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
29
|
Cabeza-Cabrerizo M, Cardoso A, Minutti CM, Pereira da Costa M, Reis E Sousa C. Dendritic Cells Revisited. Annu Rev Immunol 2021; 39:131-166. [PMID: 33481643 DOI: 10.1146/annurev-immunol-061020-053707] [Citation(s) in RCA: 357] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.
Collapse
Affiliation(s)
- Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| | | | - Caetano Reis E Sousa
- Immunobiology Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom;
| |
Collapse
|
30
|
Li L, Song J, Chuquisana O, Hannocks MJ, Loismann S, Vogl T, Roth J, Hallmann R, Sorokin L. Endothelial Basement Membrane Laminins as an Environmental Cue in Monocyte Differentiation to Macrophages. Front Immunol 2020; 11:584229. [PMID: 33193400 PMCID: PMC7662115 DOI: 10.3389/fimmu.2020.584229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/08/2020] [Indexed: 12/01/2022] Open
Abstract
Monocyte differentiation to macrophages is triggered by migration across the endothelial barrier, which is constituted by both endothelial cells and their underlying basement membrane. We address here the role of the endothelial basement membrane laminins (laminins 411 and 511) in this monocyte to macrophage switch. Chimeric mice carrying CX3CR1-GFP bone marrow were employed to track CCL2-induced monocyte extravasation in a cremaster muscle model using intravital microscopy, revealing faster extravasation in mice lacking endothelial laminin 511 (Tek-cre::Lama5−/−) and slower extravasation in mice lacking laminin 411 (Lama4−/−). CX3CR1-GFPlow extravasating monocytes were found to have a higher motility at laminin 511 low sites and to preferentially exit vessels at these sites. However, in vitro experiments reveal that this is not due to effects of laminin 511 on monocyte migration mode nor on the tightness of the endothelial barrier. Rather, using an intestinal macrophage replenishment model and in vitro differentiation studies, we demonstrate that laminin 511, together with the attached endothelium, promote monocyte differentiation to macrophages. Macrophage differentiation is associated with a change in integrin profile, permitting differentiating macrophages to distinguish between laminin 511 high and low areas and to preferentially migrate across laminin 511 low sites. These studies highlight the endothelial basement membrane as a critical site for monocyte differentiation to macrophages, which may be relevant to the differentiation of other cells at vascular niches.
Collapse
Affiliation(s)
- Lixia Li
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Jian Song
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Omar Chuquisana
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Melanie-Jane Hannocks
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Sophie Loismann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Thomas Vogl
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Johannes Roth
- Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany.,Institute of Immunology, University of Muenster, Muenster, Germany
| | - Rupert Hallmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, University of Muenster, Muenster, Germany.,Cells-in-Motion Interfaculty Centre, University of Muenster, Muenster, Germany
| |
Collapse
|
31
|
Safety biomarkers for development of vaccines and biologics: Report from the safety biomarkers symposium held on November 28-29, 2017, Marcy l'Etoile, France. Vaccine 2020; 38:8055-8063. [PMID: 33187767 DOI: 10.1016/j.vaccine.2020.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022]
Abstract
Vaccines prevent infectious diseases, but vaccination is not without risk and adverse events are reported although they are more commonly reported for biologicals than for vaccines. Vaccines and biologicals must undergo vigorous assessment before and after licensure to minimise safety concerns. Potential safety concerns should be identified as early as possible during the development for vaccines and biologicals to minimize investment risk. State-of-the art tools and methods to identify safety concerns and biomarkers that are predictive of clinical outcomes are indispensable. For vaccines and adjuvant formulations, systems biology approaches, supported by single-cell microfluidics applied to translational studies between preclinical and clinical studies, could improve reactogenicity and safety predictions. Next-generation animal models for clinical assessment of injection-site reactions with greater relevance for target human population and criteria to define the level of acceptability of local reactogenicity at vaccine injection sites in pre-clinical animal species should be assessed. Advanced in silico machine-learning-based analytics, species-specific cell or tissue expression, receptor occupancy and kinetics and cell-based assays for functional activity are needed to improve pre-clinical safety assessment of biologicals. The in vitro MIMIC® system could be used to compliment preclinical and clinical studies for assessing immune-toxicity, immunogenicity, immuno-inflammatory and mode of action of biologicals and vaccines. Sanofi Pasteur brought together leading experts in this field to review the state-of-the-art at a unique 'Safety Biomarkers Symposium' on 28-29 November 2017. Here we summarise the proceedings of this symposium. This unique scientific meeting confirmed the importance for institutions and industrial organizations to collaborate to develop tools and methods needed for predicting reactogenicity and immune-inflammatory reactions to vaccines and biologicals, and to develop more accuracy, reliability safety biomarkers, to inform decisions on the attrition or advancement of vaccines and biologicals.
Collapse
|
32
|
Sanchez-Schmitz G, Morrocchi E, Cooney M, Soni D, Khatun R, Palma P, Dowling DJ, Levy O. Neonatal monocytes demonstrate impaired homeostatic extravasation into a microphysiological human vascular model. Sci Rep 2020; 10:17836. [PMID: 33082466 PMCID: PMC7576166 DOI: 10.1038/s41598-020-74639-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Infections are most frequent at the extremes of life, especially among newborns, reflecting age-specific differences in immunity. Monocytes maintain tissue-homeostasis and defence-readiness by escaping circulation in the absence of inflammation to become tissue-resident antigen presenting cells in vivo. Despite equivalent circulating levels, neonates demonstrate lower presence of monocytes inside peripheral tissues as compared to adults. To study the ability of monocytes to undergo autonomous transendothelial extravasation under biologically accurate circumstances we engineered a three-dimensional human vascular-interstitial model including collagen, fibronectin, primary endothelial cells and autologous untreated plasma. This microphysiological tissue construct enabled age-specific autonomous extravasation of monocytes through a confluent human endothelium in the absence of exogenous chemokines and activation. Both CD16- and CD16+ newborn monocytes demonstrated lower adherence and extravasation as compared to adults. In contrast, pre-activated tissue constructs were colonized by newborn monocytes at the same frequency than adult monocytes, suggesting that neonatal monocytes are capable of colonizing inflamed tissues. The presence of autologous plasma neither improved newborn homeostatic extravasation nor shaped age-specific differences in endothelial cytokines that could account for this impairment. Newborn monocytes demonstrated significantly lower surface expression of CD31 and CD11b, and mechanistic experiments using blocking antibodies confirmed a functional role for CD31 and CD54 in neonatal homeostatic extravasation. Our data suggests that newborn monocytes are intrinsically impaired in extravasation through quiescent endothelia, a phenomenon that could contribute to the divergent immune responsiveness to vaccines and susceptibility to infection observed during early life.
Collapse
Affiliation(s)
- Guzman Sanchez-Schmitz
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA.
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Elena Morrocchi
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Academic Department of Paediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Children's Hospital Bambino Gesù, Rome, Italy
| | - Mitchell Cooney
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
| | - Dheeraj Soni
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Rahima Khatun
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Paolo Palma
- Academic Department of Paediatrics (DPUO), Research Unit of Congenital and Perinatal Infections, Children's Hospital Bambino Gesù, Rome, Italy
- Chair of Paediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - David J Dowling
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ofer Levy
- Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
- Precision Vaccines Program, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
33
|
Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol 2020; 11:2181. [PMID: 33013916 PMCID: PMC7516048 DOI: 10.3389/fimmu.2020.02181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/10/2020] [Indexed: 01/28/2023] Open
Abstract
Circulating inflammatory monocytes are attracted to infected mucosa and differentiate into macrophage or dendritic cells endowed with enhanced bactericidal and antigen presenting capacities. In this brief Perspective we discuss the newly emerging insight into how the cAMP signaling capacity of Bordetella pertussis adenylate cyclase toxin manipulates the differentiation of monocytes and trigger dedifferentiation of the alveolar macrophages to facilitate bacterial colonization of human airways.
Collapse
Affiliation(s)
- Jawid Nazir Ahmad
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the CAS, Prague, Czechia
| |
Collapse
|
34
|
Blood Monocyte Subsets with Activation Markers in Relation with Macrophages in Non-Small Cell Lung Cancer. Cancers (Basel) 2020; 12:cancers12092513. [PMID: 32899681 PMCID: PMC7563629 DOI: 10.3390/cancers12092513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary This study characterized monocyte subtypes: classical, intermediate, and non-classical with the expression of surfaces markers: CD62L, CD11c, CD18, HLA-DR in non-small cell lung cancer patients (NSCLC) compared to healthy controls and correlations between monocyte subtypes and macrophages in the lung cancer microenvironment. We confirmed the presence of various monocyte subtypes in the blood with predominance of classic monocytes and a higher proportion of classical and intermediate monocytes in NSCLC patients than in healthy subjects. Our observation that intermediate monocytes with CD11c+ and HLA-DR+ expression correlation with the amount of macrophages from the lung cancer microenvironment may indicate role of these cells in cancer immunity. A high proportion of monocytes with low expression of CD62L indicates participation of monocytes in attenuation of anticancer response. The detection and monitoring of the presented monocyte subsets in the blood might be a useful test in lung cancer. Abstract (1) The cells from the monocyte line play an important role as regulators of cancer development and progression. Monocytes present pro- and anti-tumor immunity and differentiation into macrophages. Macrophages are predominant in the lung cancer environment and could be evaluated by bronchoalveolar lavage fluid (BALF). (2) The aim of the study was analysis of monocytes: classical, intermediate and non-classical with expression of: CD62L, CD11c, CD18, HLA-DR in non-small cell lung cancer (NSCLC) and their correlation with BALF macrophages from lungs with cancer (clBALF) and healthy lungs (hlBALF). (3) A total of 24 patients with NSCLC and 20 healthy donors were investigated. Monocyte subtyping and macrophage counts were performed by flow cytometry. (4) There are three types in peripheral blood (PB): classical monocytes (CD14++CD16-), intermediate (CD14+CD16+) and non-classical (CD14-/+CD16++). We noticed a higher proportion of classical and intermediate monocytes in lung cancer than in healthy donors (76.2 vs. 67.3, and 7.9 vs. 5.2 p < 0.05). We observed a higher proportion of macrophages in clBALF then in hlBALF. A higher CD62L expression on all monocyte subtypes in healthy donors than in study group was found. There were positive correlations between: classical CD11c+, intermediate CD11c+, intermediate HLA-DR+ monocytes in PB with macrophages in clBALF. We did not observe these correlations with macrophages from hlBALF. (5) A predominance of classical and intermediate monocytes in lung cancer and the correlation between intermediate monocytes with CD11c+ and HLA-DR+ and macrophages from the NSCLC milieu support a role of monocyte-line cells in cancer immunity. A high proportion of monocytes with low expression of CD62L indicates the participation of monocytes in attenuation of anticancer response.
Collapse
|
35
|
Mentkowski KI, Euscher LM, Patel A, Alevriadou BR, Lang JK. Monocyte recruitment and fate specification after myocardial infarction. Am J Physiol Cell Physiol 2020; 319:C797-C806. [PMID: 32877204 DOI: 10.1152/ajpcell.00330.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Monocytes are critical mediators of the inflammatory response following myocardial infarction (MI) and ischemia-reperfusion injury. They are involved in both initiation and resolution of inflammation and play an integral role in cardiac repair. The antagonistic nature of their function is dependent on their subset heterogeneity and biphasic response following injury. New advancements in single-cell transcriptomics and mass cytometry have allowed us to identify smaller, transcriptionally distinct clusters that may have functional relevance in disease and homeostasis. Additionally, recent insights into the spatiotemporal dynamics of monocytes following ischemic injury and their subsequent interactions with the endothelium and other immune cells reveal a complex interplay between monocytes and the cardiac milieu. In this review, we highlight recent findings on monocyte functional heterogeneity, present new mechanistic insight into monocyte recruitment and fate specification following MI, and discuss promising therapeutic avenues targeting monocytes for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Kyle I Mentkowski
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Lindsey M Euscher
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York
| | - Akshar Patel
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - B Rita Alevriadou
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| | - Jennifer K Lang
- Department of Medicine, Division of Cardiology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York.,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York.,Veterans Affairs Western New York Healthcare System, Buffalo, New York
| |
Collapse
|
36
|
Padgett LE, Araujo DJ, Hedrick CC, Olingy CE. Functional crosstalk between T cells and monocytes in cancer and atherosclerosis. J Leukoc Biol 2020; 108:297-308. [PMID: 32531833 DOI: 10.1002/jlb.1mir0420-076r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022] Open
Abstract
Monocytes and monocyte-derived cells, including Mϕs and dendritic cells, exhibit a diverse array of phenotypic states that are dictated by their surrounding microenvironment. These cells direct T cell activation and function via cues that range from being immunosuppressive to immunostimulatory. Solid tumors and atherosclerotic plaques represent two pathological niches with distinct immune microenvironments. While monocytes and their progeny possess a phenotypic spectrum found within both disease contexts, most within tumors are pro-tumoral and support evasion of host immune responses by tumor cells. In contrast, monocyte-derived cells within atherosclerotic plaques are usually pro-atherogenic, pro-inflammatory, and predominantly directed against self-antigens. Consequently, cancer immunotherapies strive to enhance the immune response against tumor antigens, whereas atherosclerosis treatments seek to dampen the immune response against lipid antigens. Insights into monocyte-T cell interactions within these niches could thus inform therapeutic strategies for two immunologically distinct diseases. Here, we review monocyte diversity, interactions between monocytes and T cells within tumor and plaque microenvironments, how certain therapies have leveraged these interactions, and novel strategies to assay such associations.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniel J Araujo
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Claire E Olingy
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, California, USA
| |
Collapse
|
37
|
Raftery MJ, Lalwani P, Lütteke N, Kobak L, Giese T, Ulrich RG, Radosa L, Krüger DH, Schönrich G. Replication in the Mononuclear Phagocyte System (MPS) as a Determinant of Hantavirus Pathogenicity. Front Cell Infect Microbiol 2020; 10:281. [PMID: 32596167 PMCID: PMC7304325 DOI: 10.3389/fcimb.2020.00281] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/12/2020] [Indexed: 02/03/2023] Open
Abstract
Members of different virus families including Hantaviridae cause viral hemorrhagic fevers (VHFs). The decisive determinants of hantavirus-associated pathogenicity are still enigmatic. Pathogenic hantavirus species, such as Puumala virus (PUUV), Hantaan virus (HTNV), Dobrava-Belgrade virus (DOBV), and Sin Nombre virus (SNV), are associated with significant case fatality rates. In contrast, Tula virus (TULV) only sporadically causes mild disease in immunocompetent humans and Prospect Hill virus (PHV) so far has not been associated with any symptoms. They are thus defined here as low pathogenic/apathogenic hantavirus species. We found that productive infection of cells of the mononuclear phagocyte system (MPS), such as monocytes and dendritic cells (DCs), correlated well with the pathogenicity of hantavirus species tested. HTNV (intermediate case fatality rates) replicated more efficiently than PUUV (low case fatality rates) in myeloid cells, whereas low pathogenic/apathogenic hantavirus species did not produce any detectable virus titers. Analysis of PHPUV, a reassortant hantavirus derived from a pathogenic (PUUV) and an apathogenic (PHV) hantavirus species, indicated that the viral glycoproteins are not decisive for replication in MPS cells. Moreover, blocking acidification of endosomes with chloroquine decreased the number of TULV genomes in myeloid cells suggesting a post-entry block for low pathogenic/apathogenic hantavirus species in myeloid cells. Intriguingly, pathogenic but not low pathogenic/apathogenic hantavirus species induced conversion of monocytes into inflammatory DCs. The proinflammatory programming of MPS cells by pathogenic hantavirus species required integrin signaling and viral replication. Our findings indicate that the capacity to replicate in MPS cells is a prominent feature of hantaviral pathogenicity.
Collapse
Affiliation(s)
- Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Pritesh Lalwani
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Nina Lütteke
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Lidija Kobak
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Greifswald-Insel Riems, Germany
| | - Lukas Radosa
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Detlev H Krüger
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Regulation of Tumor Immunity by Lysophosphatidic Acid. Cancers (Basel) 2020; 12:cancers12051202. [PMID: 32397679 PMCID: PMC7281403 DOI: 10.3390/cancers12051202] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
The tumor microenvironment (TME) may be best conceptualized as an ecosystem comprised of cancer cells interacting with a multitude of stromal components such as the extracellular matrix (ECM), blood and lymphatic networks, fibroblasts, adipocytes, and cells of the immune system. At the center of this crosstalk between cancer cells and their TME is the bioactive lipid lysophosphatidic acid (LPA). High levels of LPA and the enzyme generating it, termed autotaxin (ATX), are present in many cancers. It is also well documented that LPA drives tumor progression by promoting angiogenesis, proliferation, survival, invasion and metastasis. One of the hallmarks of cancer is the ability to modulate and escape immune detection and eradication. Despite the profound role of LPA in regulating immune functions and inflammation, its role in the context of tumor immunity has not received much attention until recently where emerging studies highlight that this signaling axis may be a means that cancer cells adopt to evade immune detection and eradication. The present review aims to look at the immunomodulatory actions of LPA in baseline immunity to provide a broad understanding of the subject with a special emphasis on LPA and cancer immunity, highlighting the latest progress in this area of research.
Collapse
|
39
|
Monocyte-Derived Dendritic Cells as Antigen-Presenting Cells in T-Cell Proliferation and Cytokine Production. Methods Mol Biol 2020; 2020:131-141. [PMID: 31177496 DOI: 10.1007/978-1-4939-9591-2_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dendritic cells (DC) are the most potent antigen-presenting cells that link innate with adaptive immunity. They circulate the body and sample the microenvironments for maintaining homeostasis and for mounting T-cell responses against invading pathogens, foreign antigens, and aberrant self-proteins. In humans, DC derived from blood monocytes (MDC) by cytokine treatment provide the most abundant and versatile source for studying DC and T-cell biology, and for use as adjuvants in cancer therapy. In asthma patients, T-cell functions are studied by using autologous MDC as accessory cells for allergen presentation. The method for isolating T cells and monocytes from peripheral blood mononuclear cells (PBMC) and the stimulation of T cells to proliferate and produce cytokines by MDC are outlined in this chapter. The method can be applied to the functional studies of T cells and DC in other diseases.
Collapse
|
40
|
Han P, Hanlon D, Arshad N, Lee JS, Tatsuno K, Robinson E, Filler R, Sobolev O, Cote C, Rivera-Molina F, Toomre D, Fahmy T, Edelson R. Platelet P-selectin initiates cross-presentation and dendritic cell differentiation in blood monocytes. SCIENCE ADVANCES 2020; 6:eaaz1580. [PMID: 32195350 PMCID: PMC7065880 DOI: 10.1126/sciadv.aaz1580] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/17/2019] [Indexed: 05/04/2023]
Abstract
Dendritic cells (DCs) are adept at cross-presentation and initiation of antigen-specific immunity. Clinically, however, DCs produced by in vitro differentiation of monocytes in the presence of exogenous cytokines have been met with limited success. We hypothesized that DCs produced in a physiological manner may be more effective and found that platelets activate a cross-presentation program in peripheral blood monocytes with rapid (18 hours) maturation into physiological DCs (phDCs). Differentiation of monocytes into phDCs was concomitant with the formation of an "adhesion synapse," a biophysical junction enriched with platelet P-selectin and monocyte P-selectin glycoprotein ligand 1, followed by intracellular calcium fluxing and nuclear localization of nuclear factor κB. phDCs were more efficient than cytokine-derived DCs in generating tumor-specific T cell immunity. Our findings demonstrate that platelets mediate a cytokine-independent, physiologic maturation of DC and suggest a novel strategy for DC-based immunotherapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Najla Arshad
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Jung Seok Lee
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Kazuki Tatsuno
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Eve Robinson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Renata Filler
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Christine Cote
- Yale Flow Cytometry Facility, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Felix Rivera-Molina
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Derek Toomre
- Yale CINEMA Lab, School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Tarek Fahmy
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Department of Biomedical Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| | - Richard Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT 06511, USA
- Corresponding author. (T.F.); (R.E.)
| |
Collapse
|
41
|
Abstract
During the past few years, there has been a substantial increase in the understanding of innate immunity. Dendritic cells are emerging as key players in the orchestration of this early phase of immune responses, with a role that will translate into the subsequent type of adaptive immune response against infection. Here we provide an overview of dendritic cell differentiation and function, with particular emphasis on those features unique to the immune defense of the peritoneal cavity and in the context of peritoneal dialysis-associated immune responses. The reader is referred to the primary references included in the accompanying list for specific details in this fascinating field.
Collapse
Affiliation(s)
- Michelle L. McCully
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| | - Joaquín Madrenas
- The FOCIS Centre for Clinical Immunology and Immunotherapeutics, Robarts Research Institute, and the Departments of Microbiology and Immunology, and Medicine, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
42
|
Carnevale D, Wenzel P. Mechanical stretch on endothelial cells interconnects innate and adaptive immune response in hypertension. Cardiovasc Res 2020; 114:1432-1434. [PMID: 29912294 DOI: 10.1093/cvr/cvy148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, Via dell'Elettronica, Pozzilli, IS, Italy.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Philip Wenzel
- Center for Cardiology-Cardiology I, University Medical Center Mainz, Langenbeckstrasse 1, Mainz, Germany.,Center for Thrombosis and Hemostasis Mainz, University Medical Center Mainz, Langenbeckstrasse 1, Mainz, Germany.,German Center for Cardiovascular Research (DZHK)-Partner site Rhine-Main, Germany
| |
Collapse
|
43
|
Xiao L, Harrison DG. Inflammation in Hypertension. Can J Cardiol 2020; 36:635-647. [PMID: 32389337 DOI: 10.1016/j.cjca.2020.01.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022] Open
Abstract
For more than 50 years, evidence has accumulated that inflammation contributes to the pathogenesis of hypertension. Immune cells have been observed in vessels and kidneys of hypertensive humans. Biomarkers of inflammation, including high sensitivity C-reactive protein, various cytokines, and products of the complement pathway are elevated in humans with hypertension. Emerging evidence suggests that hypertension is accompanied and indeed initiated by activation of complement, the inflammasome, and by a change in the phenotype of circulating immune cells, particularly myeloid cells. High-dimensional transcriptomic analyses are providing insight into new subclasses of immune cells that are likely injurious in hypertension. These inflammatory events are interdependent and there is ultimately engagement of the adaptive immune system through mechanisms involving oxidative stress, modification of endogenous proteins, and alterations in antigen processing and presentation. These observations suggest new therapeutic opportunities to reduce end organ damage in hypertension might be used and guided by levels of inflammatory biomarkers.
Collapse
Affiliation(s)
- Liang Xiao
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David G Harrison
- Departments of Medicine, Pharmacology, and Physiology, and Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
44
|
Han P, Hanlon D, Sobolev O, Chaudhury R, Edelson RL. Ex vivo dendritic cell generation-A critical comparison of current approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:251-307. [PMID: 31759433 DOI: 10.1016/bs.ircmb.2019.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells, required for the initiation of naïve and memory T cell responses and regulation of adaptive immunity. The discovery of DCs in 1973, which culminated in the Nobel Prize in Physiology or Medicine in 2011 for Ralph Steinman and colleagues, initially focused on the identification of adherent mononuclear cell fractions with uniquely stellate dendritic morphology, followed by key discoveries of their critical immunologic role in initiating and maintaining antigen-specific immunity and tolerance. The medical promise of marshaling these key capabilities of DCs for therapeutic modulation of antigen-specific immune responses has guided decades of research in hopes to achieve genuine physiologic partnership with the immune system. The potential uses of DCs in immunotherapeutic applications include cancer, infectious diseases, and autoimmune disorders; thus, methods for rapid and reliable large-scale production of DCs have been of great academic and clinical interest. However, difficulties in obtaining DCs from lymphoid and peripheral tissues, low numbers and poor survival in culture, have led to advancements in ex vivo production of DCs, both for probing molecular details of DC function as well as for experimenting with their clinical utility. Here, we review the development of a diverse array of DC production methodologies, ranging from cytokine-based strategies to genetic engineering tools devised for enhancing DC-specific immunologic functions. Further, we explore the current state of DC therapies in clinic, as well as emerging insights into physiologic production of DCs inspired by existing therapies.
Collapse
Affiliation(s)
- Patrick Han
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Douglas Hanlon
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Olga Sobolev
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT, United States
| | - Richard L Edelson
- Department of Dermatology, School of Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|
45
|
CD16 + monocytes give rise to CD103 +RALDH2 +TCF4 + dendritic cells with unique transcriptional and immunological features. Blood Adv 2019; 2:2862-2878. [PMID: 30381402 DOI: 10.1182/bloodadvances.2018020123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022] Open
Abstract
Classical CD16- vs intermediate/nonclassical CD16+ monocytes differ in their homing potential and biological functions, but whether they differentiate into dendritic cells (DCs) with distinct contributions to immunity against bacterial/viral pathogens remains poorly investigated. Here, we employed a systems biology approach to identify clinically relevant differences between CD16+ and CD16- monocyte-derived DCs (MDDCs). Although both CD16+ and CD16- MDDCs acquire classical immature/mature DC markers in vitro, genome-wide transcriptional profiling revealed unique molecular signatures for CD16+ MDDCs, including adhesion molecules (ITGAE/CD103), transcription factors (TCF7L2/TCF4), and enzymes (ALDH1A2/RALDH2), whereas CD16- MDDCs exhibit a CDH1/E-cadherin+ phenotype. Of note, lipopolysaccharides (LPS) upregulated distinct transcripts in CD16+ (eg, CCL8, SIGLEC1, MIR4439, SCIN, interleukin [IL]-7R, PLTP, tumor necrosis factor [TNF]) and CD16- MDDCs (eg, MMP10, MMP1, TGM2, IL-1A, TNFRSF11A, lysosomal-associated membrane protein 1, MMP8). Also, unique sets of HIV-modulated genes were identified in the 2 subsets. Further gene set enrichment analysis identified canonical pathways that pointed to "inflammation" as the major feature of CD16+ MDDCs at immature stage and on LPS/HIV exposure. Finally, functional validations and meta-analysis comparing the transcriptome of monocyte and MDDC subsets revealed that CD16+ vs CD16- monocytes preserved their superior ability to produce TNF-α and CCL22, as well as other sets of transcripts (eg, TCF4), during differentiation into DC. These results provide evidence that monocyte subsets are transcriptionally imprinted/programmed with specific differentiation fates, with intermediate/nonclassical CD16+ monocytes being precursors for pro-inflammatory CD103+RALDH2+TCF4+ DCs that may play key roles in mucosal immunity homeostasis/pathogenesis. Thus, alterations in the CD16+ /CD16- monocyte ratios during pathological conditions may dramatically influence the quality of MDDC-mediated immunity.
Collapse
|
46
|
Balan S, Saxena M, Bhardwaj N. Dendritic cell subsets and locations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:1-68. [PMID: 31810551 DOI: 10.1016/bs.ircmb.2019.07.004] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) are a unique class of immune cells that act as a bridge between innate and adaptive immunity. The discovery of DCs by Cohen and Steinman in 1973 laid the foundation for DC biology, and the advances in the field identified different versions of DCs with unique properties and functions. DCs originate from hematopoietic stem cells, and their differentiation is modulated by Flt3L. They are professional antigen-presenting cells that patrol the environmental interphase, sites of infection, or infiltrate pathological tissues looking for antigens that can be used to activate effector cells. DCs are critical for the initiation of the cellular and humoral immune response and protection from infectious diseases or tumors. DCs can take up antigens using specialized surface receptors such as endocytosis receptors, phagocytosis receptors, and C type lectin receptors. Moreover, DCs are equipped with an array of extracellular and intracellular pattern recognition receptors for sensing different danger signals. Upon sensing the danger signals, DCs get activated, upregulate costimulatory molecules, produce various cytokines and chemokines, take up antigen and process it and migrate to lymph nodes where they present antigens to both CD8 and CD4 T cells. DCs are classified into different subsets based on an integrated approach considering their surface phenotype, expression of unique and conserved molecules, ontogeny, and functions. They can be broadly classified as conventional DCs consisting of two subsets (DC1 and DC2), plasmacytoid DCs, inflammatory DCs, and Langerhans cells.
Collapse
Affiliation(s)
- Sreekumar Balan
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Mansi Saxena
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nina Bhardwaj
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Parker Institute for Cancer Immunotherapy, San Francisco, CA, United States
| |
Collapse
|
47
|
Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, Pandey AK, Itani HA, Himmel LE, Harrison DG, Kirabo A. High Salt Activates CD11c + Antigen-Presenting Cells via SGK (Serum Glucocorticoid Kinase) 1 to Promote Renal Inflammation and Salt-Sensitive Hypertension. Hypertension 2019; 74:555-563. [PMID: 31280647 PMCID: PMC6687568 DOI: 10.1161/hypertensionaha.119.12761] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
Salt-sensing mechanisms in hypertension involving the kidney, vasculature, and central nervous system have been well studied; however, recent studies suggest that immune cells can sense sodium (Na+). Antigen-presenting cells (APCs) including dendritic cells critically modulate inflammation by activating T cells and producing cytokines. We recently found that Na+ enters dendritic cells through amiloride-sensitive channels including the α and γ subunits of the epithelial sodium channel (ENaC) and mediates nicotinamide adenine dinucleotide phosphate oxidase-dependent formation of immunogenic IsoLG (isolevuglandin)-protein adducts leading to inflammation and hypertension. Here, we describe a novel pathway in which the salt-sensing kinase SGK1 (serum/glucocorticoid kinase 1) in APCs mediates salt-induced expression and assembly of ENaC-α and ENaC-γ and promotes salt-sensitive hypertension by activation of the nicotinamide adenine dinucleotide phosphate oxidase and formation of IsoLG-protein adducts. Mice lacking SGK1 in CD11c+ cells were protected from renal inflammation, endothelial dysfunction, and developed blunted hypertension during the high salt feeding phase of the N-Nitro-L-arginine methyl ester hydrochloride/high salt model of salt-sensitive hypertension. CD11c+ APCs treated with high salt exhibited increased expression of ENaC-γ which coimmunoprecipitated with ENaC-α. This was associated with increased activation and expression of various nicotinamide adenine dinucleotide phosphate oxidase subunits. Genetic deletion or pharmacological inhibition of SGK1 in CD11c+ cells prevented the high salt-induced expression of ENaC and nicotinamide adenine dinucleotide phosphate oxidase. These studies indicate that expression of SGK1 in CD11c+ APCs contributes to the pathogenesis of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Justin P. Van Beusecum
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Natalia R. Barbaro
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Zoe McDowell
- School of Graduate Studies and Research, Meharry Medical College, Nashville, TN
| | - Luul A. Aden
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Liang Xiao
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Arvind K. Pandey
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Hana A. Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren E. Himmel
- Division of Comparative Medicine, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
48
|
Cattin A, Wiche Salinas TR, Gosselin A, Planas D, Shacklett B, Cohen EA, Ghali MP, Routy JP, Ancuta P. HIV-1 is rarely detected in blood and colon myeloid cells during viral-suppressive antiretroviral therapy. AIDS 2019; 33:1293-1306. [PMID: 30870200 PMCID: PMC6686847 DOI: 10.1097/qad.0000000000002195] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study was to explore the contribution of blood and colon myeloid cells to HIV persistence during antiretroviral therapy (ART). DESIGN Leukapheresis was collected from HIV-infected individuals with undetectable plasma viral load during ART (HIV + ART; n = 15) and viremics untreated (HIV+; n = 6). Rectal sigmoid biopsies were collected from n = 8 HIV+ART. METHODS Myeloid cells (total monocytes (Mo), CD16/CD16 Mo, CD1c dendritic cells) and CD4 T cells were isolated by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) from peripheral blood. Matched myeloid and CCR6CD4 T cells were isolated from blood and rectal biopsies by FACS. Levels of early (RU5 primers), late (Gag primers) and/or integrated HIV-DNA (Alu/HIV primers) were quantified by nested real-time PCR. Replication-competent HIV was amplified by co-culturing cells from HIV-positive individuals with CD3/CD28-activated CD4 T cells from uninfected donors. RESULTS Early/late but not integrated HIV reverse transcripts were detected in blood myeloid subsets of four out of 10 HIV+ART; in contrast, integrated HIV-DNA was exclusively detected in CD4 T cells. In rectal biopsies, late HIV reverse transcripts were detected in myeloid cells and CCR6CD4 T cells from one out of eight and seven out of eight HIV+ART individuals, respectively. Replication-competent HIV was outgrown from CD4 T cells but not from myeloid of untreated/ART-treated HIV-positive individuals. CONCLUSION In contrast to CD4 T cells, blood and colon myeloid cells carry detectable HIV only in a small fraction of HIV+ART individuals. This is consistent with the documented resistance of Mo to HIV infection and the rapid turnover of Mo-derived macrophages in the colon. Future assessment of multiple lymphoid and nonlymphoid tissues is required to include/exclude myeloid cells as relevant HIV reservoirs during ART.
Collapse
Affiliation(s)
- Amélie Cattin
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | - Tomas Raul Wiche Salinas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Delphine Planas
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| | | | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
- Institut de Recherche Clinique de Montréal, Montréal, Qc, Canada
| | - Maged P. Ghali
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Canada
| | - Jean-Pierre Routy
- Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
- Chronic Viral Illness Service and Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Petronela Ancuta
- CHUM-Research Centre, Montréal, Qc, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Qc, Canada
| |
Collapse
|
49
|
Inflammation research sails through the sea of immunology to reach immunometabolism. Int Immunopharmacol 2019; 73:128-145. [PMID: 31096130 DOI: 10.1016/j.intimp.2019.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 02/08/2023]
Abstract
Inflammation occurs as a result of acute trauma, invasion of the host by different pathogens, pathogen-associated molecular patterns (PAMPs) or chronic cellular stress generating damage-associated molecular patterns (DAMPs). Thus inflammation may occur under both sterile inflammatory conditions including certain cancers, autoimmune or autoinflammatory diseases (Rheumatic arthritis (RA)) and infectious diseases including sepsis, pneumonia-associated acute lung inflammation (ALI) or acute respiratory distress syndrome (ARDS). The pathogenesis of inflammation involves dysregulation of an otherwise protective immune response comprising of various innate and adaptive immune cells and humoral (cytokines and chemokines) mediators secreted by these immune cells upon the activation of signaling mechanisms regulated by the activation of different pattern recognition receptors (PRRs). However, the pro-inflammatory and anti-inflammatory action of these immune cells is determined by the metabolic stage of the immune cells. The metabolic process of immune cells is called immunometabolism and its shift determined by inflammatory stimuli is called immunometabolic reprogramming. The article focuses on the involvement of various immune cells generating the inflammation, their interaction, immunometabolic reprogramming, and the therapeutic targeting of the immunometabolism to manage inflammation.
Collapse
|
50
|
Sensitization to endothelial cell antigens: Unraveling the cause or effect paradox. Hum Immunol 2019; 80:614-620. [PMID: 31054781 DOI: 10.1016/j.humimm.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/02/2019] [Accepted: 04/23/2019] [Indexed: 01/03/2023]
Abstract
Anti-endothelial cell antibodies (AECAs) have been correlated with increased acute and chronic rejection across all organ types and early graft dysfunction in kidney and heart transplantation. Nevertheless, the lack of appropriate tools and clear criteria for defining injurious versus non-injurious AECAs prohibits their routine inclusion in clinical risk assessments and diagnostic algorithms for antibody mediated injury. Clinical characterization of AECAs is complicated due to the wide range of polymorphic and non-polymorphic antigens expressed across different vascular tissues and the diverse array of specificities observed between individuals. This complexity is also reflected in the broad spectrum of reported injury phenotypes. AECAs detected at time of allograft dysfunction may represent biomarkers of past vascular injury or active contributors to a current rejection process. New tools within the fields of proteomics, genomics, bioinformatics, and imaging are currently being validated and hold great promise for unraveling the AECA paradox.
Collapse
|