1
|
Yoo H, Lee HR, Kang SB, Lee J, Park K, Yoo H, Kim J, Chung TD, Lee KM, Lim HH, Son CY, Sun JY, Oh SS. G-Quadruplex-Filtered Selective Ion-to-Ion Current Amplification for Non-Invasive Ion Monitoring in Real Time. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303655. [PMID: 37433455 DOI: 10.1002/adma.202303655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023]
Abstract
Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K+ -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K+ -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K+ channels and nerve impulse transmitters, in-line K+ -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K+ flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals. By the synergistic combination of charge repulsion, sieving, and ion recognition, the synthetic membrane allows K+ transport exclusively without water leakage; it is 250× and 17× more permeable toward K+ than monovalent anion, Cl- , and polyatomic cation, N-methyl-d-glucamine+ , respectively. The molecular recognition-mediated ion channeling provides a 500% larger signal for K+ as compared to Li+ (0.6× smaller than K+ ) despite the same valence. Using the miniaturized device, non-invasive, direct, and real-time K+ efflux monitoring from living cell spheroids is achieved with minimal crosstalk, specifically in identifying osmotic shock-induced necrosis and drug-antidote dynamics.
Collapse
Affiliation(s)
- Hyebin Yoo
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Hyun-Ro Lee
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Soon-Bo Kang
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Juhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Kunwoong Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Hyunjae Yoo
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jinmin Kim
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, South Korea
| | - Hyun-Ho Lim
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, 41062, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| | - Jeong-Yun Sun
- Department of Materials Science & Engineering, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| | - Seung Soo Oh
- Department of Materials Science & Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon, 21983, South Korea
| |
Collapse
|
2
|
Yu SP, Jiang MQ, Shim SS, Pourkhodadad S, Wei L. Extrasynaptic NMDA receptors in acute and chronic excitotoxicity: implications for preventive treatments of ischemic stroke and late-onset Alzheimer's disease. Mol Neurodegener 2023; 18:43. [PMID: 37400870 DOI: 10.1186/s13024-023-00636-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
Stroke and late-onset Alzheimer's disease (AD) are risk factors for each other; the comorbidity of these brain disorders in aging individuals represents a significant challenge in basic research and clinical practice. The similarities and differences between stroke and AD in terms of pathogenesis and pathophysiology, however, have rarely been comparably reviewed. Here, we discuss the research background and recent progresses that are important and informative for the comorbidity of stroke and late-onset AD and related dementia (ADRD). Glutamatergic NMDA receptor (NMDAR) activity and NMDAR-mediated Ca2+ influx are essential for neuronal function and cell survival. An ischemic insult, however, can cause rapid increases in glutamate concentration and excessive activation of NMDARs, leading to swift Ca2+ overload in neuronal cells and acute excitotoxicity within hours and days. On the other hand, mild upregulation of NMDAR activity, commonly seen in AD animal models and patients, is not immediately cytotoxic. Sustained NMDAR hyperactivity and Ca2+ dysregulation lasting from months to years, nevertheless, can be pathogenic for slowly evolving events, i.e. degenerative excitotoxicity, in the development of AD/ADRD. Specifically, Ca2+ influx mediated by extrasynaptic NMDARs (eNMDARs) and a downstream pathway mediated by transient receptor potential cation channel subfamily M member (TRPM) are primarily responsible for excitotoxicity. On the other hand, the NMDAR subunit GluN3A plays a "gatekeeper" role in NMDAR activity and a neuroprotective role against both acute and chronic excitotoxicity. Thus, ischemic stroke and AD share an NMDAR- and Ca2+-mediated pathogenic mechanism that provides a common receptor target for preventive and possibly disease-modifying therapies. Memantine (MEM) preferentially blocks eNMDARs and was approved by the Federal Drug Administration (FDA) for symptomatic treatment of moderate-to-severe AD with variable efficacy. According to the pathogenic role of eNMDARs, it is conceivable that MEM and other eNMDAR antagonists should be administered much earlier, preferably during the presymptomatic phases of AD/ADRD. This anti-AD treatment could simultaneously serve as a preconditioning strategy against stroke that attacks ≥ 50% of AD patients. Future research on the regulation of NMDARs, enduring control of eNMDARs, Ca2+ homeostasis, and downstream events will provide a promising opportunity to understand and treat the comorbidity of AD/ADRD and stroke.
Collapse
Affiliation(s)
- Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA.
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Seong S Shim
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Soheila Pourkhodadad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Visual & Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, 30033, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Abstract
The energy cost of information processing is thought to be chiefly neuronal, with a minor fraction attributed to glial cells. However, there is compelling evidence that astrocytes capture synaptic K+ using their Na+/K+ ATPase, and not solely through Kir4.1 channels as was once thought. When this active buffering is taken into account, the cost of astrocytes rises by >200%. Gram-per-gram, astrocytes turn out to be as expensive as neurons. This conclusion is supported by 3D reconstruction of the neuropil showing similar mitochondrial densities in neurons and astrocytes, by cell-specific transcriptomics and proteomics, and by the rates of the tricarboxylic acid cycle. Possible consequences for reactive astrogliosis and brain disease are discussed.
Collapse
Affiliation(s)
- L F Barros
- Centro de Estudios Científicos - CECs, Valdivia, Chile
| |
Collapse
|
4
|
Hassan WM, Al-Dbass A, Al-Ayadhi L, Bhat RS, El-Ansary A. Discriminant analysis and binary logistic regression enable more accurate prediction of autism spectrum disorder than principal component analysis. Sci Rep 2022; 12:3764. [PMID: 35260688 PMCID: PMC8904630 DOI: 10.1038/s41598-022-07829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/31/2022] [Indexed: 12/04/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interaction and restricted, repetitive behavior. Multiple studies have suggested mitochondrial dysfunction, glutamate excitotoxicity, and impaired detoxification mechanism as accepted etiological mechanisms of ASD that can be targeted for therapeutic intervention. In the current study, blood samples were collected from 40 people with autism and 40 control participants after informed consent and full approval from the Institutional Review Board of King Saud University. Sodium (Na+), Potassium (K+), lactate dehydrogenase (LDH), glutathione-s-transferase (GST), and mitochondrial respiratory chain complex I (MRC1) were measured in plasma of both groups. Predictive models were established to discriminate individuals with ASD from controls. The predictive power of these five variables, individually and in combination, was compared using the area under a ROC curve (AUC). We compared the performance of principal component analysis (PCA), discriminant analysis (DA), and binary logistic regression (BLR) as ways to combine single variables and create the predictive models. K+ had the highest AUC (0.801) of any single variable, followed by GST, LDH, Na+, and MRC1, respectively. Combining the five variables resulted in higher AUCs than those obtained using single variables across all models. Both DA and BLR were superior to PCA and comparable to each other. In our study, the combination of Na+, K+, LDH, GST, and MRC1 showed the highest promise in discriminating individuals with autism from controls. These results provide a platform that can potentially be used to verify the efficacy of our models with a larger sample size or evaluate other biomarkers.
Collapse
Affiliation(s)
- Wail M Hassan
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Abeer Al-Dbass
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia.,Autism Research and Treatment Center, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh, Saudi Arabia. .,Central Research Laboratory, Female Centre for Scientific and Medical Studies, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
5
|
Nomiri S, Hoshyar R, Chamani E, Rezaei Z, Salmani F, Larki P, Tavakoli T, Gholipour F, Tabrizi NJ, Derakhshani A, Santarpia M, Franchina T, Brunetti O, Silvestris N, Safarpour H. Prediction and validation of GUCA2B as the hub-gene in colorectal cancer based on co-expression network analysis: In-silico and in-vivo study. Biomed Pharmacother 2022; 147:112691. [PMID: 35151227 DOI: 10.1016/j.biopha.2022.112691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Several serious attempts to treat colorectal cancer have been made in recent decades. However, no effective treatment has yet been discovered due to the complexities of its etiology. METHODS we used Weighted Gene Co-expression Network Analysis (WGCNA) to identify key modules, hub-genes, and mRNA-miRNA regulatory networks associated with CRC. Next, enrichment analysis of modules has been performed using Cluepedia. Next, quantitative real-time PCR (RT-qPCR) was used to validate the expression of selected hub-genes in CRC tissues. RESULTS Based on the WGCNA results, the brown module had a significant positive correlation (r = 0.98, p-value=9e-07) with CRC. Using the survival and DEGs analyses, 22 genes were identified as hub-genes. Next, three candidate hub-genes were selected for RT-qPCR validation, and 22 pairs of cancerous and non-cancerous tissues were collected from CRC patients referred to the Gastroenterology and Liver Clinic. The RT-qPCR results revealed that the expression of GUCA2B was significantly reduced in CRC tissues, which is consistent with the results of differential expression analysis. Finally, top miRNAs correlated with GUCA2B were identified, and ROC analyses revealed that GUCA2B has a high diagnostic performance for CRC. CONCLUSIONS The current study discovered key modules and GUCA2B as a hub-gene associated with CRC, providing references to understand the pathogenesis and be considered a novel candidate to CRC target therapy.
Collapse
Affiliation(s)
- Samira Nomiri
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Reyhane Hoshyar
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Chamani
- Department of Clinical Biochemistry, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Fatemeh Salmani
- Department of Epidemiology and Biostatistics, Social Determinants of Health Research Center, Faculty of Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Pegah Larki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahmine Tavakoli
- Cardiovascular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Faranak Gholipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II" of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari, Bari, Italy.
| | - Hossein Safarpour
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
6
|
Shen Y, Zhou T, Liu X, Liu Y, Li Y, Zeng D, Zhong W, Zhang M. Sevoflurane-Induced miR-211-5p Promotes Neuronal Apoptosis by Inhibiting Efemp2. ASN Neuro 2021; 13:17590914211035036. [PMID: 34730432 PMCID: PMC8819752 DOI: 10.1177/17590914211035036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sevoflurane exposure can result in serious neurological side effects including neuronal
apoptosis and cognitive impairment. Although the microRNA miR-211-5p is profoundly
upregulated following sevoflurane exposure in neonatal rodent models, the impact of
miR-211-5p on neuronal apoptosis and cognitive impairment postsevoflurane exposure has not
yet been elucidated. Here, we found that sevoflurane upregulated miR-211-5p and
downregulated EGF-Containing Fibulin Extracellular Matrix Protein 2 (Efemp2, Fibulin-4)
levels in vitro and in vivo. Sevoflurane's effect on miR-211-5p expression was based on
enhancing primary miR-211 transcription. miR-211-5p targets Efemp2's mRNA 3′-untranslated
region, reducing Efemp2 expression. RNA immunoprecipitation revealed significant
enrichment of the miR-211-5p:Efemp2 mRNA dyad in the RNA-induced silencing complex.
miR-211-5p mimics downregulated Efemp2, leading to phosphorylation of Smad2 and Smad3,
upregulation of pro-apoptotic Bim, and mitochondrial release of allograft inflammatory
factor 1 and cytochrome C. In contrast, miR-211-5p hairpin inhibitor (AntimiR-211-5p)
negatively regulated this apoptotic pathway and reduced neuronal apoptosis in an
Efemp2-dependent manner. Sevoflurane-exposed mice administered AntimiR-211-5p displayed
reduced cortical apoptosis levels and near-term cognitive impairment. In conclusion,
sevoflurane-induced miR-211-5p promotes neuronal apoptosis via Efemp2 inhibition. Summary
statement: This study revealed the significance of sevoflurane-induced increases in
miR-211-5p on the promotion of neuronal apoptosis via inhibition of Efemp2 and its
downstream targets.
Collapse
Affiliation(s)
- Yousu Shen
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Tao Zhou
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Xiaobing Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yanlong Liu
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Yaqi Li
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Dewu Zeng
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Wensheng Zhong
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| | - Mingsheng Zhang
- Department of Anaesthesiology, 159384Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Jiangxi, China
| |
Collapse
|
7
|
Ehinger R, Kuret A, Matt L, Frank N, Wild K, Kabagema-Bilan C, Bischof H, Malli R, Ruth P, Bausch AE, Lukowski R. Slack K + channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J 2021; 35:e21568. [PMID: 33817875 DOI: 10.1096/fj.202002308rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.
Collapse
Affiliation(s)
- Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Nadine Frank
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Katharina Wild
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Clement Kabagema-Bilan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Tuo QZ, Zhang ST, Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev 2021; 42:259-305. [PMID: 33957000 DOI: 10.1002/med.21817] [Citation(s) in RCA: 280] [Impact Index Per Article: 93.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 04/23/2021] [Indexed: 02/05/2023]
Abstract
Ischemic stroke caused by arterial occlusion is the most common type of stroke, which is among the most frequent causes of disability and death worldwide. Current treatment approaches involve achieving rapid reperfusion either pharmacologically or surgically, both of which are time-sensitive; moreover, blood flow recanalization often causes ischemia/reperfusion injury. However, even though neuroprotective intervention is urgently needed in the event of stroke, the exact mechanisms of neuronal death during ischemic stroke are still unclear, and consequently, the capacity for drug development has remained limited. Multiple cell death pathways are implicated in the pathogenesis of ischemic stroke. Here, we have reviewed these potential neuronal death pathways, including intrinsic and extrinsic apoptosis, necroptosis, autophagy, ferroptosis, parthanatos, phagoptosis, and pyroptosis. We have also reviewed the latest results of pharmacological studies on ischemic stroke and summarized emerging drug targets with a focus on clinical trials. These observations may help to further understand the pathological events in ischemic stroke and bridge the gap between basic and translational research to reveal novel neuroprotective interventions.
Collapse
Affiliation(s)
- Qing-Zhang Tuo
- Department of Geriatrics and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shu-Ting Zhang
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Lei
- Department of Neurology and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
9
|
Combinatrial treatment of anti-High Mobility Group Box-1 monoclonal antibody and epothilone B improves functional recovery after spinal cord contusion injury. Neurosci Res 2021; 172:13-25. [PMID: 33864880 DOI: 10.1016/j.neures.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Spinal cord injury (SCI) causes motor and sensory deficits and is currently considered an incurable disease. We have previously reported that administration of anti-High Mobility Group Box-1 monoclonal antibody (anti-HMGB1 mAb) preserved lesion area and improved locomotion recovery in mouse model of SCI. In order to further enhance the recovery, we here examined combinatorial treatment of anti-HMGB1 mAb and epothilone B (Epo B), which has been reported to promote axon regeneration. This combinatorial treatment significantly increased hindlimb movement compared with anti-HMGB1 mAb alone, although Epo B alone failed to increase functional recovery. These results are in agreement with that anti-HMGB1 mAb alone was able to decrease the lesion area spreading and increase the surviving neuron numbers around the lesion, whereas Epo B facilitated axon outgrowth only in combination with anti-HMGB1 mAb, suggesting that anti-HMGB1 mAb-dependent tissue preservation is necessary for Epo B to exhibit its therapeutic effect. Taken together, the combinatorial treatment can be considered as a novel and clinically applicable strategy for SCI.
Collapse
|
10
|
El-Ansary A, Zayed N, Al-Ayadhi L, Qasem H, Anwar M, Meguid NA, Bhat RS, Doşa MD, Chirumbolo S, Bjørklund G. GABA synaptopathy promotes the elevation of caspases 3 and 9 as pro-apoptotic markers in Egyptian patients with autism spectrum disorder. Acta Neurol Belg 2021; 121:489-501. [PMID: 31673995 DOI: 10.1007/s13760-019-01226-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/10/2019] [Indexed: 12/14/2022]
Abstract
Autism spectrum disorder (ASD) is classified as a neurodevelopmental disorder characterized by reduced social communication as well as repetitive behaviors. Many studies have proved that defective synapses in ASD influence how neurons in the brain connect and communicate with each other. Synaptopathies arise from alterations that affecting the integrity and/or functionality of synapses and can contribute to synaptic pathologies. This study investigated the GABA levels in plasma being an inhibitory neurotransmitter, caspase 3 and 9 as pro-apoptotic proteins in 20 ASD children and 20 neurotypical controls using the ELISA technique. Analysis of receiver-operating characteristic (ROC) of the data that was obtained to evaluate the diagnostic value of the aforementioned evaluated biomarkers. Pearson's correlations and multiple regressions between the measured variables were also done. While GABA level was reduced in ASD patients, levels of caspases 3 and 9 were significantly higher when compared to neurotypical control participants. ROC and predictiveness curves showed that caspases 3, caspases 9, and GABA might be utilized as predictive markers in autism diagnosis. The present study indicates that the presence of GABAergic dysfunction promotes apoptosis in Egyptian ASD children. The obtained GABA synaptopathies and their connection with apoptosis can both relate to neuronal excitation, and imbalance of the inhibition system, which can be used as reliable predictive biomarkers for ASD.
Collapse
|
11
|
Bortner CD, Cidlowski JA. Ions, the Movement of Water and the Apoptotic Volume Decrease. Front Cell Dev Biol 2020; 8:611211. [PMID: 33324655 PMCID: PMC7723978 DOI: 10.3389/fcell.2020.611211] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
The movement of water across the cell membrane is a natural biological process that occurs during growth, cell division, and cell death. Many cells are known to regulate changes in their cell volume through inherent compensatory regulatory mechanisms. Cells can sense an increase or decrease in their cell volume, and compensate through mechanisms known as a regulatory volume increase (RVI) or decrease (RVD) response, respectively. The transport of sodium, potassium along with other ions and osmolytes allows the movement of water in and out of the cell. These compensatory volume regulatory mechanisms maintain a cell at near constant volume. A hallmark of the physiological cell death process known as apoptosis is the loss of cell volume or cell shrinkage. This loss of cell volume is in stark contrast to what occurs during the accidental cell death process known as necrosis. During necrosis, cells swell or gain water, eventually resulting in cell lysis. Thus, whether a cell gains or loses water after injury is a defining feature of the specific mode of cell death. Cell shrinkage or the loss of cell volume during apoptosis has been termed apoptotic volume decrease or AVD. Over the years, this distinguishing feature of apoptosis has been largely ignored and thought to be a passive occurrence or simply a consequence of the cell death process. However, studies on AVD have defined an underlying movement of ions that result in not only the loss of cell volume, but also the activation and execution of the apoptotic process. This review explores the role ions play in controlling not only the movement of water, but the regulation of apoptosis. We will focus on what is known about specific ion channels and transporters identified to be involved in AVD, and how the movement of ions and water change the intracellular environment leading to stages of cell shrinkage and associated apoptotic characteristics. Finally, we will discuss these concepts as they apply to different cell types such as neurons, cardiomyocytes, and corneal epithelial cells.
Collapse
Affiliation(s)
- Carl D. Bortner
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A. Cidlowski
- Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
12
|
Choi DW. Excitotoxicity: Still Hammering the Ischemic Brain in 2020. Front Neurosci 2020; 14:579953. [PMID: 33192266 PMCID: PMC7649323 DOI: 10.3389/fnins.2020.579953] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Interest in excitotoxicity expanded following its implication in the pathogenesis of ischemic brain injury in the 1980s, but waned subsequent to the failure of N-methyl-D-aspartate (NMDA) antagonists in high profile clinical stroke trials. Nonetheless there has been steady progress in elucidating underlying mechanisms. This review will outline the historical path to current understandings of excitotoxicity in the ischemic brain, and suggest that this knowledge should be leveraged now to develop neuroprotective treatments for stroke.
Collapse
Affiliation(s)
- Dennis W Choi
- Department of Neurology, SUNY Stony Brook, Stony Brook, NY, United States
| |
Collapse
|
13
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Thorlacius H, Yadav M. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci Rep 2020; 10:12653. [PMID: 32724079 PMCID: PMC7387347 DOI: 10.1038/s41598-020-69501-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Hemolysin expressing UPEC strains have been associated with severe advanced kidney pathologies, such as cystitis and pyelonephritis, which are associated with an inflammatory response. Macrophages play an important role in regulating an inflammatory response during a urinary tract infection. We have studied the role of purified recombinant α-hemolysin in inducing inflammatory responses and cell death in macrophages. Acylation at lysine residues through HlyC is known to activate proHlyA into a fully functional pore-forming toxin, HlyA. It was observed that active α-hemolysin (HlyA) induced cleavage of caspase-1 leading to the maturation of IL-1β, while inactive α-hemolysin (proHlyA) failed to do so in THP-1 derived macrophages. HlyA also promotes deubiquitination, oligomerization, and activation of the NLRP3 inflammasome, which was found to be dependent on potassium efflux. We have also observed the co-localization of NLRP3 within mitochondria during HlyA stimulations. Moreover, blocking of potassium efflux improved the mitochondrial health in addition to a decreased inflammatory response. Our study demonstrates that HlyA stimulation caused perturbance in potassium homeostasis, which led to the mitochondrial dysfunction followed by an acute inflammatory response, resulting in cell death. However, the repletion of intracellular potassium stores could avoid HlyA induced macrophage cell death. The findings of this study will help to understand the mechanism of α-hemolysin induced inflammatory response and cell death.
Collapse
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Parveen Kumar
- Department of Urology, University of Alabama At Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Rakesh Singh Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Scheelevägen 2, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India.
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
14
|
The Effect of Protein-Rich Extract from Bombyx Batryticatus against Glutamate-Damaged PC12 Cells Via Regulating γ-Aminobutyric Acid Signaling Pathway. Molecules 2020; 25:molecules25030553. [PMID: 32012896 PMCID: PMC7037904 DOI: 10.3390/molecules25030553] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Bombyx Batryticatus (BB) is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, etc. in China for thousands of years. This study is aimed at investigating optimum extraction of protein-rich extracts from BB (BBPs) using response surface methodology (RSM) and exploring the protective effects of BBPs against nerve growth factor (NGF)-induced PC12 cells injured by glutamate (Glu) and their underlying mechanisms. The results indicated optimum process of extraction was as follows: extraction time 1.00 h, ratio of liquid to the raw material 3.80 mL/g and ultrasonic power 230.0 W. The cell viability of PC12 cells stimulated by Glu was determined by CCK-8 assay. The levels of γ-aminobutyric (GABA), interleukin-1β (IL-1β), interleukin-4 (IL-4), tumor necrosis factor-α (TNF-α), 5-hydroxytryptamine (5-HT) and glucocorticoid receptor alpha (GR) in PC12 cells were assayed by ELISA. Furthermore, the Ca2+ levels in PC12 cells were determined by flow cytometry analysis. Protein and mRNA expressions of GABAA-Rα1, NMDAR1, GAD 65, GAD 67, GAT 1 and GAT 3 in PC12 cells were evaluated by real-time polymerase chain reaction (RT-PCR) and Western blotting assays. Results revealed that BBPs decreased toxic effects due to Glu treatment and decreased Ca2+ levels in PC12 cells. After BBPs treatments, levels of GABA and 5-HT were increased and contents of TNF-α, IL-4 and IL-1β were decreased in NGF-induced PC12 cells injured by Glu. Moreover, BBPs up-regulated the expressions of GABAA-Rα1, GAD 65 and GAD 67, whereas down-regulated that of NMDAR1 GAT 1 and GAT 3. These findings suggested that BBPs possessed protective effects on NGF-induced PC12 cells injured by Glu via γ-Aminobutyric Acid (GABA) signaling pathways, which demonstrated that BBPs has potential anti-epileptic effect in vitro. These findings may be useful in the development of novel medicine for the treatment of epilepsy.
Collapse
|
15
|
Zhang C, Li L, Wang Y, Hu X. Enhancement of the ANAMMOX bacteria activity and granule stability through pulsed electric field at a lower temperature (16 ± 1 °C). BIORESOURCE TECHNOLOGY 2019; 292:121960. [PMID: 31437798 DOI: 10.1016/j.biortech.2019.121960] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
The effects of different frequencies of pulsed electric field (PEF) on the ANAMMOX process were investigated. The results showed that the intermediate frequency could dramatically enhance both the ANAMMOX bacterial activity and granule sludge stability at 16 ± 1 °C The nitrogen removal efficiency of R1 (intermediate frequency) was significantly enhanced by 62.24% and 79.51% compared to R2 (lower frequency) and R3 (higher frequency), with a nitrogen loading rate of 6.84 kg Nm-3 d-1. In addition, the intermediate frequency could stimulate cells to secrete more extracellular polymeric substances (EPS) to sustain the granule sludge stability. The granule sludge disintegrated on days 55 and 35 in R2 and R3. The protein (PN)/polysaccharide (PS) ratios of R1 were 28.46% and 54.20% higher than R2 and R3, which was beneficial to granule sludge stability. This study showed that PEF could solve the problem of decreased ANAMMOX bacterial activity and granule stability at lower temperatures.
Collapse
Affiliation(s)
- Chi Zhang
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Liang Li
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University) Ministry of Education, PR China
| | - Yujia Wang
- Shenyang JianZhu Univ, Sch Municipal & Environm Engn, Shenyang 110168, PR China
| | - Xiaomin Hu
- School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
16
|
Shen Y, Wu SY, Rancic V, Aggarwal A, Qian Y, Miyashita SI, Ballanyi K, Campbell RE, Dong M. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol 2019; 2:18. [PMID: 30652129 PMCID: PMC6331434 DOI: 10.1038/s42003-018-0269-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Potassium ion (K+) homeostasis and dynamics play critical roles in biological activities. Here we describe three genetically encoded K+ indicators. KIRIN1 (potassium (K) ion ratiometric indicator) and KIRIN1-GR are Förster resonance energy transfer (FRET)-based indicators with a bacterial K+ binding protein (Kbp) inserting between the fluorescent protein FRET pairs mCerulean3/cp173Venus and Clover/mRuby2, respectively. GINKO1 (green indicator of K+ for optical imaging) is a single fluorescent protein-based K+ indicator constructed by insertion of Kbp into enhanced green fluorescent protein (EGFP). These indicators are suitable for detecting K+ at physiologically relevant concentrations in vitro and in cells. KIRIN1 enabled imaging of cytosolic K+ depletion in live cells and K+ efflux and reuptake in cultured neurons. GINKO1, in conjunction with red fluorescent Ca2+ indicator, enable dual-color imaging of K+ and Ca2+ dynamics in neurons and glial cells. These results demonstrate that KIRIN1 and GINKO1 are useful tools for imaging intracellular K+ dynamics.
Collapse
Affiliation(s)
- Yi Shen
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Vladimir Rancic
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Abhi Aggarwal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|
17
|
Stem Cells: A New Hope for Hearing Loss Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1130:165-180. [PMID: 30915707 DOI: 10.1007/978-981-13-6123-4_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Permanent hearing loss was considered which cannot be cured since cochlear hair cells and primary afferent neurons cannot be regenerated. In recent years, due to the in-depth study of stem cell and its therapeutic potential, regenerating auditory sensory cells is made possible. By using two strategies of endogenous stem cell activation and exogenous stem cell transplantation, researchers hope to find methods to restore hearing function. However, there are complex factors that need to be considered in the in vivo application of stem cell therapy, such as stem cell-type choice, signaling pathway regulations, transplantation approaches, internal environment of the cochlea, and external stimulation. After years of investigations, some theoretic progress has been made in the treatment of hearing loss using stem cells, but there are also many problems which limited its application that need to be solved. Understanding the future perspective of stem cell therapy in hearing loss, solving the encountered problems, and promoting its development are the common goals of audiological researchers. In this review, we present critical experimental findings of stem cell therapy on treatment of hearing loss and intend to bring hope to researchers and patients.
Collapse
|
18
|
Silver BB, Nelson CM. The Bioelectric Code: Reprogramming Cancer and Aging From the Interface of Mechanical and Chemical Microenvironments. Front Cell Dev Biol 2018; 6:21. [PMID: 29560350 PMCID: PMC5845671 DOI: 10.3389/fcell.2018.00021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is a complex, heterogeneous group of diseases that can develop through many routes. Broad treatments such as chemotherapy destroy healthy cells in addition to cancerous ones, but more refined strategies that target specific pathways are usually only effective for a limited number of cancer types. This is largely due to the multitude of physiological variables that differ between cells and their surroundings. It is therefore important to understand how nature coordinates these variables into concerted regulation of growth at the tissue scale. The cellular microenvironment might then be manipulated to drive cells toward a desired outcome at the tissue level. One unexpected parameter, cellular membrane voltage (Vm), has been documented to exert control over cellular behavior both in culture and in vivo. Manipulating this fundamental cellular property influences a remarkable array of organism-wide patterning events, producing striking outcomes in both tumorigenesis as well as regeneration. These studies suggest that Vm is not only a key intrinsic cellular property, but also an integral part of the microenvironment that acts in both space and time to guide cellular behavior. As a result, there is considerable interest in manipulating Vm both to treat cancer as well as to regenerate organs damaged or deteriorated during aging. However, such manipulations have produced conflicting outcomes experimentally, which poses a substantial barrier to understanding the fundamentals of bioelectrical reprogramming. Here, we summarize these inconsistencies and discuss how the mechanical microenvironment may impact bioelectric regulation.
Collapse
Affiliation(s)
- Brian B. Silver
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Celeste M. Nelson
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States
| |
Collapse
|
19
|
Sheu CC, Tsai MJ, Chen FW, Chang KF, Chang WA, Chong IW, Kuo PL, Hsu YL. Identification of novel genetic regulations associated with airway epithelial homeostasis using next-generation sequencing data and bioinformatics approaches. Oncotarget 2017; 8:82674-82688. [PMID: 29137293 PMCID: PMC5669919 DOI: 10.18632/oncotarget.19752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Airway epithelial cells play important roles in airway remodeling. Understanding gene regulations in airway epithelial homeostasis may provide new insights into pathogenesis and treatment of asthma. This study aimed to combine gene expression (GE) microarray, next generation sequencing (NGS), and bioinformatics to explore genetic regulations associated with airway epithelial homeostasis. We analyzed expression profiles of mRNAs (GE microarray) and microRNAs (NGS) in normal and asthmatic bronchial epithelial cells, and identified 9 genes with potential microRNA-mRNA interactions. Of these 9 dysregulated genes, downregulation of MEF2C and MDGA1 were validated in a representative microarray (GSE43696) from the gene expression omnibus (GEO) database. Our findings suggested that upregulated mir-203a may repress MEF2C, a transcription factor, leading to decreased cellular proliferation. In addition, upregulated mir-3065-3p may repress MDGA1, a cell membrane anchor protein, resulting in suppression of cell-cell adhesion. We also found that KCNJ2, a potassium channel, was downregulated in severe asthma and may promote epithelial cell apoptosis. We proposed that aberrant regulations of mir-203a-MEF2C and mir-3065-3p-MDGA1, as well as downregulation of KCNJ2, play important roles in airway epithelial homeostasis in asthma. These findings provide new perspectives on diagnostic or therapeutic strategies targeting bronchial epithelium for asthma. The approach in this study also provides a new aspect of studying asthma.
Collapse
Affiliation(s)
- Chau-Chyun Sheu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Feng-Wei Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Biomarkers and Biotech Drugs, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ling Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Wen RJ, Huang D, Zhang Y, Liu YW. Bis(3)-tacrine inhibits the sustained potassium current in cultured rat hippocampal neurons. Physiol Res 2017; 66:539-544. [PMID: 28248535 DOI: 10.33549/physiolres.933354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bis(3)-tacrine is a dimeric AChE inhibitor derived from tacrine with a potential to treat Alzheimer's disease. It was recently been reported to act as a fast off-rate antagonist of NMDA receptors with moderate affinity. In the present study, we aimed to explore whether bis(3)-tacrine could modulate the function of native sustained potassium current in cultured rat hippocampal neurons using whole-cell patch-clamp technique. We found that bis(3)-tacrine inhibited the amplitude of sustained potassium current in a reversible and concentration-dependent manner, with a potency two orders of magnitude higher than that of tacrine. The inhibition was voltage-independent between 0 to +60 mV. The IC(50) values for bis(3)-tacrine and tacrine inhibition of sustained potassium current were 0.45+/-0.07 and 50.5+/-4.8 microM, respectively. I-V curves showed a more potent inhibition of sustained potassium current by bis(3)-tacrine (1 microM) compared to tacrine at the same concentration. Bis(3)-tacrine hyperpolarized the activation curve of the current by 11.2 mV, albeit leaving the steady-state inactivation of the current unaffected.
Collapse
Affiliation(s)
- R-J Wen
- Department of Physiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China; Department of Anatomy, School of Medicine, Jianghan University, Wuhan, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Bavithra S, Selvakumar K, Sundareswaran L, Arunakaran J. Neuroprotective Effect of Melatonin Against PCBs Induced Behavioural, Molecular and Histological Changes in Cerebral Cortex of Adult Male Wistar Rats. Neurochem Res 2016; 42:428-438. [DOI: 10.1007/s11064-016-2087-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 09/30/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
|
22
|
Ma XL, Zhang F, Wang YX, He CC, Tian K, Wang HG, An D, Heng B, Liu YQ. Genistein inhibition of OGD-induced brain neuron death correlates with its modulation of apoptosis, voltage-gated potassium and sodium currents and glutamate signal pathway. Chem Biol Interact 2016; 254:73-82. [PMID: 27238724 DOI: 10.1016/j.cbi.2016.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/06/2016] [Accepted: 05/25/2016] [Indexed: 01/25/2023]
Abstract
In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2.
Collapse
Affiliation(s)
- Xue-Ling Ma
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Feng Zhang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu-Xiang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cong-Cong He
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kun Tian
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong-Gang Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di An
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bin Heng
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan-Qiang Liu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
23
|
Stoler O, Fleidervish IA. Functional implications of axon initial segment cytoskeletal disruption in stroke. Acta Pharmacol Sin 2016; 37:75-81. [PMID: 26687934 DOI: 10.1038/aps.2015.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Axon initial segment (AIS) is the proximal part of the axon, which is not covered with a myelin sheath and possesses a distinctive, specialized assembly of voltage-gated ion channels and associated proteins. AIS plays critical roles in synaptic integration and action potential generation in central neurons. Recent evidence shows that stroke causes rapid, irreversible calpain-mediated proteolysis of the AIS cytoskeleton of neurons surrounding the ischemic necrotic core. A better understanding of the molecular mechanisms underlying this "non-lethal" neuronal damage might provide new therapeutic strategies for improving stroke outcome. Here, we present a brief overview of the structure and function of the AIS. We then discuss possible mechanisms underlying stroke-induced AIS damage, including the roles of calpains and possible sources of Ca(2+) ions, which are necessary for the activation of calpains. Finally, we discuss the potential functional implications of the loss of the AIS cytoskeleton and ion channel clusters for neuronal excitability.
Collapse
|
24
|
SUN XUEFEI, MIN DONGYU, WANG YAN, HAO LIYING. Potassium aspartate inhibits SH-SY5Y cell damage and apoptosis induced by ouabain and H2O2. Mol Med Rep 2015; 12:2842-8. [DOI: 10.3892/mmr.2015.3741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 03/18/2015] [Indexed: 11/05/2022] Open
|
25
|
Gao J, Wang H, Liu Y, Li YY, Chen C, Liu LM, Wu YM, Li S, Yang C. Glutamate and GABA imbalance promotes neuronal apoptosis in hippocampus after stress. Med Sci Monit 2014; 20:499-512. [PMID: 24675061 PMCID: PMC3976216 DOI: 10.12659/msm.890589] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background People who experience traumatic events have an increased risk of post-traumatic stress disorder (PTSD). However, PTSD-related pathological changes in the hippocampus and prefrontal cortex remain poorly understood. Material/Methods We investigated the effect of a PTSD-like animal model induced by severe stress. The experimental rats received 20 inescapable electric foot shocks in an enclosed box for a total of 6 times in 3 days. The physiological state (body weight and plasma corticosterone concentrations), emotion, cognitive behavior, brain morphology, apoptosis, and balance of gamma-aminobutyric acid (GABA) and glutamate in the hippocampus and prefrontal cortex were observed. Cell damages were examined with histological staining (HE, Nissl, and silver impregnation), while apoptosis was analyzed with flow cytometry using an Annexin V and propidium iodide (PI) binding and terminal deoxynucleotidyl transferase mediated-dUTP nick end labeling (TUNEL) method. Results In comparison with the sham litter-mates, the stressed rats showed decreased body weight, inhibition of hypothalamic-pituitary-adrenal (HPA) axis activation, increase in freezing response to trauma reminder, hypoactivity and anxiety-like behaviors in elevated plus maze and open field test, poor learning in Morris water maze, and shortened latency in hot-plate test. There were significant damages in the hippocampus but not in the prefrontal cortex. Imbalance between glutamate and GABA was more evident in the hippocampus than in the prefrontal cortex. Conclusions These results suggest that neuronal apoptosis in the hippocampus after severe traumatic stress is related to the imbalance between glutamate and GABA. Such modifications may resemble the profound changes observed in PTSD patients.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - He Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Yuan Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Ying-Yu Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Can Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Liang-Ming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Ya-Min Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Sen Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, China (mainland)
| |
Collapse
|
26
|
Frejo MT, del Pino J, Lobo M, García J, Capo MA, Díaz MJ. Liver and kidney damage induced by 4-aminopyridine in a repeated dose (28 days) oral toxicity study in rats: Gene expression profile of hybrid cell death. Toxicol Lett 2014; 225:252-63. [DOI: 10.1016/j.toxlet.2013.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
27
|
Yan J, Sun J, Huang L, Fu Q, Du G. Simvastatin prevents neuroinflammation by inhibiting N-methyl-D-aspartic acid receptor 1 in 6-hydroxydopamine-treated PC12 cells. J Neurosci Res 2014; 92:634-40. [PMID: 24482148 DOI: 10.1002/jnr.23329] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Junqiang Yan
- Department of Neurology; The First Affiliated Hospital of He Nan University of Science and Technology; Henan People's Republic of China
| | - Jiachun Sun
- Department of Oncology; The First Affiliated Hospital of He Nan University of Science and Technology; Henan People's Republic of China
| | - Lina Huang
- Department of Neurology; The First Affiliated Hospital of He Nan University of Science and Technology; Henan People's Republic of China
| | - Qizhi Fu
- Department of Neurology; The First Affiliated Hospital of He Nan University of Science and Technology; Henan People's Republic of China
| | - Ganqin Du
- Department of Neurology; The First Affiliated Hospital of He Nan University of Science and Technology; Henan People's Republic of China
| |
Collapse
|
28
|
Shah NH, Aizenman E. Voltage-gated potassium channels at the crossroads of neuronal function, ischemic tolerance, and neurodegeneration. Transl Stroke Res 2013; 5:38-58. [PMID: 24323720 DOI: 10.1007/s12975-013-0297-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/14/2013] [Accepted: 10/14/2013] [Indexed: 11/29/2022]
Abstract
Voltage-gated potassium (Kv) channels are widely expressed in the central and peripheral nervous system and are crucial mediators of neuronal excitability. Importantly, these channels also actively participate in cellular and molecular signaling pathways that regulate the life and death of neurons. Injury-mediated increased K(+) efflux through Kv2.1 channels promotes neuronal apoptosis, contributing to widespread neuronal loss in neurodegenerative disorders such as Alzheimer's disease and stroke. In contrast, some forms of neuronal activity can dramatically alter Kv2.1 channel phosphorylation levels and influence their localization. These changes are normally accompanied by modifications in channel voltage dependence, which may be neuroprotective within the context of ischemic injury. Kv1 and Kv7 channel dysfunction leads to neuronal hyperexcitability that critically contributes to the pathophysiology of human clinical disorders such as episodic ataxia and epilepsy. This review summarizes the neurotoxic, neuroprotective, and neuroregulatory roles of Kv channels and highlights the consequences of Kv channel dysfunction on neuronal physiology. The studies described in this review thus underscore the importance of normal Kv channel function in neurons and emphasize the therapeutic potential of targeting Kv channels in the treatment of a wide range of neurological diseases.
Collapse
Affiliation(s)
- Niyathi Hegde Shah
- Department of Neurobiology, University of Pittsburgh School of Medicine, 3500 Terrace Street, E1456 BST, Pittsburgh, PA, 15261, USA,
| | | |
Collapse
|
29
|
Induction of thermal hyperalgesia and synaptic long-term potentiation in the spinal cord lamina I by TNF-α and IL-1β is mediated by glial cells. J Neurosci 2013; 33:6540-51. [PMID: 23575851 DOI: 10.1523/jneurosci.5087-12.2013] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Long-term potentiation (LTP) of synaptic strength in nociceptive pathways is a cellular model of hyperalgesia. The emerging literature suggests a role for cytokines released by spinal glial cells for both LTP and hyperalgesia. However, the underlying mechanisms are still not fully understood. In rat lumbar spinal cord slices, we now demonstrate that conditioning high-frequency stimulation of primary afferents activated spinal microglia within <30 min and spinal astrocytes within ~2 s. Activation of spinal glia was indispensible for LTP induction at C-fiber synapses with spinal lamina I neurons. The cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), which are both released by activated glial cells, were individually sufficient and necessary for LTP induction via redundant pathways. They differentially amplified 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)-propanoic acid receptor-mediated and N-methyl-D-aspartic acid receptor-mediated synaptic currents in lamina I neurons. Unexpectedly, the synaptic effects by IL-1β and TNF-α were not mediated directly via activation of neuronal cytokine receptors, but rather, indirectly via IL-1 receptors and TNF receptors being expressed on glial cells in superficial spinal dorsal horn. Bath application of IL-1β or TNF-α led to the release profiles of pro-inflammatory and anti-inflammatory cytokines, chemokines, and growth factors, which overlapped only partially. Heat hyperalgesia induced by spinal application of either IL-1β or TNF-α in naive animals also required activation of spinal glial cells. These results reveal a novel, decisive role of spinal glial cells for the synaptic effects of IL-1β and TNF-α and for some forms of hyperalgesia.
Collapse
|
30
|
Chen M, Sun HY, Hu P, Wang CF, Li BX, Li SJ, Li JJ, Tan HY, Gao TM. Activation of BKCa Channels Mediates Hippocampal Neuronal Death After Reoxygenation and Reperfusion. Mol Neurobiol 2013; 48:794-807. [DOI: 10.1007/s12035-013-8467-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/26/2013] [Indexed: 11/29/2022]
|
31
|
Di Virgilio F. The Therapeutic Potential of Modifying Inflammasomes and NOD-Like Receptors. Pharmacol Rev 2013; 65:872-905. [DOI: 10.1124/pr.112.006171] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
32
|
Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia 2013; 53 Suppl 9:21-31. [PMID: 23216576 DOI: 10.1111/epi.12032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Voltage-gated ion channels are diverse and fundamental determinants of neuronal intrinsic excitability. Voltage-gated K(+) (Kv) and Na(+) (Nav) channels play complex yet fundamentally important roles in determining intrinsic excitability. The Kv and Nav channels located at the axon initial segment (AIS) play a unique and especially important role in generating neuronal output in the form of anterograde axonal and backpropagating action potentials. Aberrant intrinsic excitability in individual neurons within networks contributes to synchronous neuronal activity leading to seizures. Mutations in ion channel genes give rise to a variety of seizure-related "channelopathies," and many of the ion channel subunits associated with epilepsy mutations are localized at the AIS, making this a hotspot for epileptogenesis. Here we review the cellular mechanisms that underlie the trafficking of Kv and Nav channels found at the AIS, and how Kv and Nav channel mutations associated with epilepsy can alter these processes.
Collapse
Affiliation(s)
- Helene Vacher
- CRN2M CNRS UMR7286, Aix-Marseille University, Marseille, France
| | | |
Collapse
|
33
|
Cao N, Yao ZX. Oligodendrocyte N-methyl-D-aspartate receptor signaling: insights into its functions. Mol Neurobiol 2013; 47:845-56. [PMID: 23345133 DOI: 10.1007/s12035-013-8408-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/13/2013] [Indexed: 12/21/2022]
Abstract
Myelination by oligodendrocytes facilitates rapid nerve conduction. Loss of oligodendrocytes and failure of myelination lead to nerve degeneration and numerous demyelinating white matter diseases. N-methyl-D-aspartate (NMDA) receptors, which are key regulators on neuron survival and functions, have been recently identified to express in oligodendrocytes, especially in the myelin sheath. NMDA receptor signaling in oligodendrocytes plays crucial roles in energy metabolism and myelination. In the present review, we highlight the subcellular location-specific impairment of excessive NMDA receptor signaling on oligodendrocyte energy metabolism in soma and myelin, and the mechanisms including Ca(2+) overload, acidotoxicity, mitochondria dysfunction, and impairment of respiratory chains. Conversely, physiological NMDA receptor signaling regulates differentiation and migration of oligodendrocytes. How can we use above knowledge to treat excitotoxic oligodendrocyte loss, congenital myelination deficiency, or postnatal demyelination? A thorough understanding of NMDA receptor signaling-mediated cellular events in oligodendrocytes at the pathophysiological level will no doubt aid in exploring effective therapeutic strategies for demyelinating white matter diseases.
Collapse
Affiliation(s)
- Nian Cao
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | | |
Collapse
|
34
|
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2012; 97:1-13. [PMID: 22387368 DOI: 10.1016/j.pneurobio.2012.02.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Cognitive dysfunction is one of the most typical characteristics in various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (advanced stage). Although several mechanisms like neuronal apoptosis and inflammatory responses have been recognized to be involved in the pathogenesis of cognitive dysfunction in these diseases, recent studies on neurodegeneration and cognitive dysfunction have demonstrated a significant impact of receptor modulation on cognitive changes. The pathological alterations in various receptors appear to contribute to cognitive impairment and/or deterioration with correlation to diversified mechanisms. This article recapitulates the present understandings and concepts underlying the modulation of different receptors in human beings and various experimental models of Alzheimer's disease and Parkinson's disease as well as a conceptual update on the underlying mechanisms. Specific roles of serotonin, adrenaline, acetylcholine, dopamine receptors, and N-methyl-D-aspartate receptors in Alzheimer's disease and Parkinson's disease will be interactively discussed. Complex mechanisms involved in their signaling pathways in the cognitive dysfunction associated with the neurodegenerative diseases will also be addressed. Substantial evidence has suggested that those receptors are crucial neuroregulators contributing to cognitive pathology and complicated correlations exist between those receptors and the expression of cognitive capacities. The pathological alterations in the receptors would, therefore, contribute to cognitive impairments and/or deterioration in Alzheimer's disease and Parkinson's disease. Future research may shed light on new clues for the treatment of cognitive dysfunction in neurodegenerative diseases by targeting specific alterations in these receptors and their signal transduction pathways in the frontal-striatal, fronto-striato-thalamic, and mesolimbic circuitries.
Collapse
Affiliation(s)
- Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | | | | | | | | | | | | |
Collapse
|
35
|
El-Ansary AK, Ben Bacha AG, Al-Ayadhi LY. Proinflammatory and proapoptotic markers in relation to mono and di-cations in plasma of autistic patients from Saudi Arabia. J Neuroinflammation 2011; 8:142. [PMID: 21999440 PMCID: PMC3213048 DOI: 10.1186/1742-2094-8-142] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Accepted: 10/15/2011] [Indexed: 01/30/2023] Open
Abstract
Objectives Autism is a developmental disorder characterized by social and emotional deficits, language impairments and stereotyped behaviors that manifest in early postnatal life. This study aims to clarify the relationship amongst absolute and relative concentrations of K+, Na+, Ca2+, Mg2+ and/or proinflammatory and proapoptotic biomarkers. Materials and methods Na+, K+, Ca2+, Mg2+, Na+/K+, Ca2+/Mg2+ together with IL6, TNFα as proinflammatory cytokines and caspase3 as proapoptotic biomarker were determined in plasma of 25 Saudi autistic male patients and compared to 16 age and gender matching control samples. Results The obtained data recorded that Saudi autistic patients have a remarkable lower plasma caspase3, IL6, TNFα, Ca2+ and a significantly higher K+ compared to age and gender matching controls. On the other hand both Mg2+ and Na+ were non-significantly altered in autistic patients. Pearson correlations revealed that plasma concentrations of the measured cytokines and caspase-3 were positively correlated with Ca2+ and Ca2+/K+ ratio. Reciever Operating Characteristics (ROC) analysis proved that the measured parameters recorded satisfactory levels of specificity and sensitivity. Conclusion Alteration of the selected measured ions confirms that oxidative stress and defective mitochondrial energy production could be contributed in the pathogenesis of autism. Moreover, it highlights the relationship between the measured ions, IL6, TNFα and caspase3 as a set of signalling pathways that might have a role in generating this increasingly prevalent disorder. The role of ions in the possible proinflammation and proapoptic mechanisms of autistics' brains were hypothesized and explained.
Collapse
Affiliation(s)
- Afaf K El-Ansary
- Biochemistry Department, Science College, King Saud University, P,O box 22452, Zip code 11495, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
36
|
Abstract
Excitotoxicity is the major cause of many neurologic disorders including stroke. Potassium currents modulate neuronal excitability and therefore influence the pathological process. A-type potassium current (I(A)) is one of the major voltage-dependent potassium currents, yet its roles in excitotoxic cell death are not well understood. We report that, following ischemic insults, the I(A) increases significantly in large aspiny (LA) neurons but not medium spiny (MS) neurons in the striatum, which correlates with the higher resistance of LA neurons to ischemia. Activation of protein kinase Cα increases I(A) in LA neurons after ischemia. Cultured neurons from transgenic mice lacking both Kv1.4 and Kv4.2 subunits exhibit an increased vulnerability to ischemic insults. Increase of I(A) by recombinant expression of Kv1.4 or Kv4.2 is sufficient in improving the survival of MS neurons against ischemic insults both in vitro and in vivo. These results, taken together, provide compelling evidence for a protective role of I(A) against ischemia.
Collapse
|
37
|
Yan J, Xu Y, Zhu C, Zhang L, Wu A, Yang Y, Xiong Z, Deng C, Huang XF, Yenari MA, Yang YG, Ying W, Wang Q. Simvastatin prevents dopaminergic neurodegeneration in experimental parkinsonian models: the association with anti-inflammatory responses. PLoS One 2011; 6:e20945. [PMID: 21731633 PMCID: PMC3120752 DOI: 10.1371/journal.pone.0020945] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/13/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In addition to their original applications to lowering cholesterol, statins display multiple neuroprotective effects. N-methyl-D-aspartate (NMDA) receptors interact closely with the dopaminergic system and are strongly implicated in therapeutic paradigms of Parkinson's disease (PD). This study aims to investigate how simvastatin impacts on experimental parkinsonian models via regulating NMDA receptors. METHODOLOGY/PRINCIPAL FINDINGS Regional changes in NMDA receptors in the rat brain and anxiolytic-like activity were examined after unilateral medial forebrain bundle lesion by 6-hydroxydopamine via a 3-week administration of simvastatin. NMDA receptor alterations in the post-mortem rat brain were detected by [³H]MK-801(Dizocilpine) binding autoradiography. 6-hydroxydopamine treated PC12 was applied to investigate the neuroprotection of simvastatin, the association with NMDA receptors, and the anti-inflammation. 6-hydroxydopamine induced anxiety and the downregulation of NMDA receptors in the hippocampus, CA1(Cornu Ammonis 1 Area), amygdala and caudate putamen was observed in 6-OHDA(6-hydroxydopamine) lesioned rats whereas simvastatin significantly ameliorated the anxiety-like activity and restored the expression of NMDA receptors in examined brain regions. Significant positive correlations were identified between anxiolytic-like activity and the restoration of expression of NMDA receptors in the hippocampus, amygdala and CA1 following simvastatin administration. Simvastatin exerted neuroprotection in 6-hydroxydopamine-lesioned rat brain and 6-hydroxydopamine treated PC12, partially by regulating NMDA receptors, MMP9 (matrix metalloproteinase-9), and TNF-a (tumour necrosis factor-alpha). CONCLUSIONS/SIGNIFICANCE Our results provide strong evidence that NMDA receptor modulation after simvastatin treatment could partially explain its anxiolytic-like activity and anti-inflammatory mechanisms in experimental parkinsonian models. These findings contribute to a better understanding of the critical roles of simvastatin in treating PD via NMDA receptors.
Collapse
Affiliation(s)
- Junqiang Yan
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Cansheng Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Limin Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Aimin Wu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yu Yang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhaojun Xiong
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chao Deng
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, New South Wales, Australia
| | - Xu-Feng Huang
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, New South Wales, Australia
| | - Midori A. Yenari
- Department of Neurology, University of California San Francisco and the San Francisco Veterans Affairs Medical Center, San Francisco, California, United States of America
| | - Yuan-Guo Yang
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weihai Ying
- Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Qing Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
- Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, New South Wales, Australia
| |
Collapse
|
38
|
Sproul A, Steele SL, Thai TL, Yu S, Klein JD, Sands JM, Bell PD. N-methyl-D-aspartate receptor subunit NR3a expression and function in principal cells of the collecting duct. Am J Physiol Renal Physiol 2011; 301:F44-54. [PMID: 21429969 DOI: 10.1152/ajprenal.00666.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are Ca(2+)-permeable, ligand-gated, nonselective cation channels that function as neuronal synaptic receptors but which are also expressed in multiple peripheral tissues. Here, we show for the first time that NMDAR subunits NR3a and NR3b are highly expressed in the neonatal kidney and that there is continued expression of NR3a in the renal medulla and papilla of the adult mouse. NR3a was also expressed in mIMCD-3 cells, where it was found that hypoxia and hypertonicity upregulated NR3a expression. Using short-hairpin (sh) RNA-based knockdown, a stable inner medullary collecting duct (IMCD) cell line was established that had ∼80% decrease in NR3a. Knockdown cells exhibited an increased basal intracellular calcium concentration, reduced cell proliferation, and increased cell death. In addition, NR3a knockdown cells exhibited reduced water transport in response to the addition of vasopressin, suggesting an alteration in aquaporin-2 (AQP2) expression/function. Consistent with this notion, we demonstrate decreased surface expression of glycosylated AQP2 in IMCD cells transfected with NR3a shRNA. To determine whether this also occurred in vivo, we compared AQP2 levels in wild-type vs. in NR3a(-/-) mice. Total AQP2 protein levels in the outer and inner medulla were significantly reduced in knockout mice compared with control mice. Finally, NR3a(-/-) mice showed a significant delay in their ability to increase urine osmolality during water restriction. Thus NR3a may play a renoprotective role in collecting duct cells. Therefore, under conditions that are associated with high vasopressin levels, NR3a, by maintaining low intracellular calcium levels, protects the function of the principal cells to reabsorb water and thereby increase medullary osmolality.
Collapse
Affiliation(s)
- Adrian Sproul
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Schuettauf F, Stein T, Choragiewicz TJ, Rejdak R, Bolz S, Zurakowski D, Varde MA, Laties AM, Thaler S. Caspase inhibitors protect against NMDA-mediated retinal ganglion cell death. Clin Exp Ophthalmol 2011; 39:545-54. [DOI: 10.1111/j.1442-9071.2010.02486.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Wang M, Qiu J, Mi W, Wang F, Qu J. In vitro effect of altering potassium concentration in artificial endolymph on apoptosis and ultrastructure features of olfactory bulb neural precursor cells. Neurosci Lett 2011; 487:383-8. [DOI: 10.1016/j.neulet.2010.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/22/2010] [Accepted: 10/23/2010] [Indexed: 12/27/2022]
|
41
|
Regulation of WNK1 kinase by extracellular potassium. Clin Exp Nephrol 2010; 15:195-202. [PMID: 21107632 DOI: 10.1007/s10157-010-0378-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 10/26/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Mutations of WNK kinase genes were identified as the cause of a hereditary hypertensive disease, pseudohypoaldosteronism type II; however, little is known about the regulation of WNK kinases. In the present study, we focused on anisosmotic conditions as the initial clues for clarifying a stimulating factor for WNK kinase activity. METHODS Endogenous WNK kinase activity in COS7 cells was monitored by the phosphorylation of its substrate, OSR1. RESULTS Knockdown experiments revealed that WNK1 was a major WNK kinase in COS7 cells. In contrast to the transient increase in WNK1 activity caused by hypertonic medium, hypotonic medium increased the phosphorylation of OSR1 for 24 h, suggesting that the hypotonic medium included a signal for continuously stimulating WNK1 kinase activity. To identify the signal, ion substitution experiments were performed. Surprisingly, even isotonic media with low Cl(-) or low K(+) was found to increase OSR1 phosphorylation as well as the hypotonic medium. Furthermore, WNK1 activation by the hypotonic medium was completely blocked by quinine (500 μM) but not by 5-nitro-2-(3-phenylpropylamino) benzoic acid (100 μM), and this inhibition was closely correlated with the inhibition of (86)Rb(+) (=K(+)) efflux but not with the inhibition of (125)I(-) (=Cl(-)) efflux. These results suggest that K(+), rather than hypotonicity or low Cl(-), may be an important regulator for WNK1 activation. Finally, we confirmed that high K(+) and low K(+) media under the physiological range decreased and increased WNK1 activity, respectively. CONCLUSION Extracellular K(+) is an important regulator of WNK1 kinase activity.
Collapse
|
42
|
Park WS, Firth AL, Han J, Ko EA. Patho-, physiological roles of voltage-dependent K+ channels in pulmonary arterial smooth muscle cells. J Smooth Muscle Res 2010; 46:89-105. [PMID: 20551590 DOI: 10.1540/jsmr.46.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this review, we demonstrate the basic properties, modulation of, and pathological changes in voltage-dependent K+ (Kv) channels that are expressed in pulmonary arterial smooth muscle cells (PASMCs). Pulmonary Kv channels are thought to play a crucial role in the maintenance of resting membrane potentials, and therefore the vascular tone of the pulmonary arteries. Although the molecular identity of pulmonary Kv channels is not clear, Kv1.1, Kv1.2, Kv1.5, Kv2.1, Kv9.3, and Kv3.1 subtypes are expressed in PASMCs. In addition, resistant PASMCs contain greater amount of Kv channels as compared to conduit PASMCs. This heterogenetic expression of Kv channels is consistent with regional differences in the contractile response to hypoxia. Similar to other K+ channels, pulmonary Kv channels can also be modulated by several vasoconstrictors concomitant with the activation of protein kinase C (PKC). Alterations in Kv channel function have several additional and interrelated consequences, including the regulation of cell proliferation and apoptosis, which ultimately lead to pulmonary vascular remodeling. Increased pulmonary vasoconstriction in pulmonary arterial hypertension is attributable to decreased expression and activity of Kv channels in smooth muscle cells. Kv channels play a central role in the maintenance of cellular homeostasis and ion channels, and consequential signaling cascades. Therefore, Kv channels are potential therapeutic targets for the treatment of pulmonary vascular disease.
Collapse
Affiliation(s)
- Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Korea
| | | | | | | |
Collapse
|
43
|
Yao H, Zhou K, Yan D, Li M, Wang Y. The Kv2.1 channels mediate neuronal apoptosis induced by excitotoxicity. J Neurochem 2010. [DOI: 10.1111/j.0022-3042.2008.05834.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010; 120:3255-66. [PMID: 20714104 DOI: 10.1172/jci42957] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 07/07/2010] [Indexed: 01/05/2023] Open
Abstract
The body's capacity to restore damaged neural networks in the injured CNS is severely limited. Although various treatment regimens can partially alleviate spinal cord injury (SCI), the mechanisms responsible for symptomatic improvement remain elusive. Here, using a mouse model of SCI, we have shown that transplantation of neural stem cells (NSCs) together with administration of valproic acid (VPA), a known antiepileptic and histone deacetylase inhibitor, dramatically enhanced the restoration of hind limb function. VPA treatment promoted the differentiation of transplanted NSCs into neurons rather than glial cells. Transsynaptic anterograde corticospinal tract tracing revealed that transplant-derived neurons reconstructed broken neuronal circuits, and electron microscopic analysis revealed that the transplant-derived neurons both received and sent synaptic connections to endogenous neurons. Ablation of the transplanted cells abolished the recovery of hind limb motor function, confirming that NSC transplantation directly contributed to restored motor function. These findings raise the possibility that epigenetic status in transplanted NSCs can be manipulated to provide effective treatment for SCI.
Collapse
Affiliation(s)
- Masahiko Abematsu
- Laboratory of Molecular Neuroscience, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hernández-Enríquez B, Arellano R, Morán J. Role for ionic fluxes on cell death and apoptotic volume decrease in cultured cerebellar granule neurons. Neuroscience 2010; 167:298-311. [DOI: 10.1016/j.neuroscience.2010.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 01/21/2010] [Accepted: 01/22/2010] [Indexed: 01/17/2023]
|
46
|
Chao D, Xia Y. Ionic storm in hypoxic/ischemic stress: can opioid receptors subside it? Prog Neurobiol 2009; 90:439-70. [PMID: 20036308 DOI: 10.1016/j.pneurobio.2009.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 09/10/2009] [Accepted: 12/17/2009] [Indexed: 12/17/2022]
Abstract
Neurons in the mammalian central nervous system are extremely vulnerable to oxygen deprivation and blood supply insufficiency. Indeed, hypoxic/ischemic stress triggers multiple pathophysiological changes in the brain, forming the basis of hypoxic/ischemic encephalopathy. One of the initial and crucial events induced by hypoxia/ischemia is the disruption of ionic homeostasis characterized by enhanced K(+) efflux and Na(+)-, Ca(2+)- and Cl(-)-influx, which causes neuronal injury or even death. Recent data from our laboratory and those of others have shown that activation of opioid receptors, particularly delta-opioid receptors (DOR), is neuroprotective against hypoxic/ischemic insult. This protective mechanism may be one of the key factors that determine neuronal survival under hypoxic/ischemic condition. An important aspect of the DOR-mediated neuroprotection is its action against hypoxic/ischemic disruption of ionic homeostasis. Specially, DOR signal inhibits Na(+) influx through the membrane and reduces the increase in intracellular Ca(2+), thus decreasing the excessive leakage of intracellular K(+). Such protection is dependent on a PKC-dependent and PKA-independent signaling pathway. Furthermore, our novel exploration shows that DOR attenuates hypoxic/ischemic disruption of ionic homeostasis through the inhibitory regulation of Na(+) channels. In this review, we will first update current information regarding the process and features of hypoxic/ischemic disruption of ionic homeostasis and then discuss the opioid-mediated regulation of ionic homeostasis, especially in hypoxic/ischemic condition, and the underlying mechanisms.
Collapse
Affiliation(s)
- Dongman Chao
- Yale University School of Medicine, Department of Pediatrics, New Haven, CT 06520, USA
| | | |
Collapse
|
47
|
Lossi L, Gambino G, Ferrini F, Alasia S, Merighi A. Posttranslational regulation of BCL2 levels in cerebellar granule cells: A mechanism of neuronal survival. Dev Neurobiol 2009; 69:855-70. [PMID: 19672954 DOI: 10.1002/dneu.20744] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Apoptosis can be modulated by K(+) and Ca(2+) inside the cell and/or in the extracellular milieu. In murine organotypic cultures, membrane potential-regulated Ca(2+) signaling through calcineurin phosphatase has a pivotal role in development and maturation of cerebellar granule cells (CGCs). P8 cultures were used to analyze the levels of expression of B cell lymphoma 2 (BCL2) protein, and, after particle-mediated gene transfer in CGCs, to study the posttranslational modifications of BCL2 fused to a fluorescent tag in response to a perturbation of K(+)/Ca(2+) homeostasis. There are no changes in Bcl2 mRNA after real time PCR, whereas the levels of the fusion protein (monitored by calculating the density of transfected CGCs under the fluorescence microscope) and of BCL2 (inWestern blotting) are increased. After using a series of agonists/antagonists for ion channels at the cell membrane or the endoplasmic reticulum (ER), and drugs affecting protein synthesis/degradation, accumulation of BCL2 was related to a reduction in posttranslational cleavage by macroautophagy. The ER functionally links the [K(+)](e) and [Ca(2+)](i) to the BCL2 content in CGCs along two different pathways. The first, triggered by elevated [K(+)](e) under conditions of immaturity, is independent of extracellular Ca(2+) and operates via IP3 channels. The second leads to influx of extracellular Ca(2+) following activation of ryanodine channels in the presence of physiological [K(+)](e), when CGCs are maintained in mature status. This study identifies novel mechanisms of neuroprotection in immature and mature CGCs involving the posttranslational regulation of BCL2.
Collapse
Affiliation(s)
- Laura Lossi
- Dipartimento di Morfofisiologia Veterinaria, Università degli Studi di Torino, Italy.
| | | | | | | | | |
Collapse
|
48
|
Bittner S, Meuth SG, Göbel K, Melzer N, Herrmann AM, Simon OJ, Weishaupt A, Budde T, Bayliss DA, Bendszus M, Wiendl H. TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. ACTA ACUST UNITED AC 2009; 132:2501-16. [PMID: 19570851 DOI: 10.1093/brain/awp163] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We provide evidence that TWIK-related acid-sensitive potassium channel 1 (TASK1), a member of the family of two-pore domain potassium channels relevant for setting the resting membrane potential and balancing neuronal excitability that is expressed on T cells and neurons, is a key modulator of T cell immunity and neurodegeneration in autoimmune central nervous system inflammation. After induction of experimental autoimmune encephalomyelitis, an experimental model mimicking multiple sclerosis, TASK1(-/-) mice showed a significantly reduced clinical severity and markedly reduced axonal degeneration compared with wild-type controls. T cells from TASK1(-/-) mice displayed impaired T cell proliferation and cytokine production, while the immune repertoire is otherwise normal. In addition to these effects on systemic T cell responses, TASK1 exhibits an independent neuroprotective effect which was demonstrated using both a model of acutely prepared brain slices cocultured with activated T cells as well as in vitro cultivation experiments with isolated optic nerves. Anandamide, an endogenous cannabinoid and inhibitor of TASK channels, reduced outward currents and inhibited effector functions of T cells (IFN-gamma production and proliferation); an effect completely abrogated in TASK1(-/-) mice. Accordingly, preventive blockade of TASK1 significantly ameliorated experimental autoimmune encephalomyelitis after immunization. Therapeutic application of anandamide significantly reduced disease severity and was capable of lowering progressive loss of brain parenchymal volume as assessed by magnetic resonance imaging. These data support the identification and characterization of TASK1 as potential molecular target for the therapy of inflammatory and degenerative central nervous system disorders.
Collapse
Affiliation(s)
- Stefan Bittner
- University of Wuerzburg, Department of Neurology, Josef-Schneider-Str. 11, 97080 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hernández-Pinto AM, Puebla-Jiménez L, Arilla-Ferreiro E. alpha-Tocopherol decreases the somatostatin receptor-effector system and increases the cyclic AMP/cyclic AMP response element binding protein pathway in the rat dentate gyrus. Neuroscience 2009; 162:106-17. [PMID: 19393293 DOI: 10.1016/j.neuroscience.2009.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/06/2009] [Accepted: 04/19/2009] [Indexed: 02/07/2023]
Abstract
Neuronal survival has been shown to be enhanced by alpha-tocopherol and modulated by cyclic AMP (cAMP). Somatostatin (SST) receptors couple negatively to adenylyl cyclase (AC), thus leading to decreased cAMP levels. Whether alpha-tocopherol can stimulate neuronal survival via regulation of the somatostatinergic system, however, is unknown. The aim of this study was to investigate the effects of alpha-tocopherol on the SST signaling pathway in the rat dentate gyrus. To that end, 15-week-old male Sprague-Dawley rats were treated daily for 1 week with (+)-alpha-tocopherol or vehicle and sacrificed on the day following the last administration. No changes in either SST-like immunoreactivity (SST-LI) content or SST mRNA levels were detected in the dentate gyrus as a result of alpha-tocopherol treatment. A significant decrease in the density of the SST binding sites and an increase in the dissociation constant, however, were detected. The lower SST receptor density in the alpha-tocopherol-treated rats correlated with a significant decrease in the protein levels of the SST receptor subtypes SSTR1-SSTR4, whereas the corresponding mRNA levels were unaltered. G-protein-coupled-receptor kinase 2 expression was decreased by alpha-tocopherol treatment. This vitamin induced a significant increase in both basal and forskolin-stimulated AC activity, as well as a decrease in the inhibitory effect of SST on AC. Whereas the protein levels of AC type V/VI were not modified by alpha-tocopherol administration, ACVIII expression was significantly enhanced, suggesting it might account for the increase in AC activity. In addition, this treatment led to a reduction in Gialpha1-3 protein levels and in Gi functionality. alpha-Tocopherol did not affect the expression of the regulator of G-protein signaling 6/7 (RGS6/7). Finally, alpha-tocopherol induced an increase in the levels of phosphorylated cAMP response element binding protein (p-CREB) and total CREB in the dentate gyrus. Since CREB synthesis and phosphorylation promote the survival of many cells, including neurons, whereas SST inhibits the cAMP-PKA pathway, which is known to be involved in CREB phosphorylation, the alpha-tocopherol-induced reduction of SSTR observed here might possibly contribute, via increased cAMP levels and CREB activity, to the mechanism by which this vitamin promotes the survival of newborn neurons in the dentate gyrus.
Collapse
Affiliation(s)
- A M Hernández-Pinto
- Grupo de Neurobioquímica, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Crta. Madrid-Barcelona Km. 33.6, Universidad de Alcalá de Henares, E-28871 Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
50
|
Wang Z, Wang W, Shao Z, Gao B, Li J, Ma J, Li J, Che H, Zhang W. Eukaryotic expression and purification of anti-epilepsy peptide of Buthus martensii Karsch and its protein interactions. Mol Cell Biochem 2009; 330:97-104. [PMID: 19370317 DOI: 10.1007/s11010-009-0104-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 03/30/2009] [Indexed: 11/28/2022]
Abstract
The Asian scorpion Buthus martensil Karsch is important in the Chinese traditional medicine where it is used for the treatment of some nervous system diseases. The anti-epilepsy peptide (AEP) is a 61-amino-acid polypeptide extracted from the venom of B. martensil Karsch. Research has confirmed that it has anti-epileptic effects on the rat model of epilepsy. In this experiment, a cDNA library of AEP from the venom of B. martensil Karsch was constructed using RT-PCR; the primer was designed and used for the amplification. An expression vector of AEP was constructed using Pichia pastoris. Vector expression was induced, and protein purification was then performed. Bolting of the interaction molecule of AEP was by His pull down. Experimental results indicate high AEP expression, and the obtained protein was purified and compared with the control group. Four conspicuous protein bands were observed, and mass chromatographic analysis indicated that the four proteins were synaptosomal-associated protein of 25 kDa (SNAP-25), glial fibrillary acidic protein (GFAP), Glutamic acid decarboxylase (GAD) and N-methyl-D: -aspartate (NMDA). Further, the four protein bands were verified by mammalian two-hybrid experiments and co-immunoprecipitation. AEP was found to interact with SNAP2 and NMDA. This provides experimental evidence for the mechanism of AEP's anti-epileptic action and for the manufacture of a novel type anti-epileptic drug.
Collapse
Affiliation(s)
- Zongren Wang
- Department of Traditional Chinese Medicine, Xijing Hospital, The Forth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|