1
|
Lyu K, Li J, Wu Y, Asselman J, Yang Z. Changes in population fitness and gene co-expression networks reveal the boosted impact of toxic cyanobacteria on Daphnia magna through microplastic exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137225. [PMID: 39823883 DOI: 10.1016/j.jhazmat.2025.137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
The concomitant prevalence of toxic cyanobacteria blooms and plastic pollution in aquatic ecosystems is emerging as a pressing global water pollution dilemma. While toxic cyanobacteria and microplastics (MPs) can each independently exert significant impacts on aquatic biota, the magnitude and trajectory of the combined interactions remains rudimentary. In this study, we evaluated how MPs influences cyanobacterial stress on keystone grazer Daphnia, focusing on population, individual, biochemical and toxicogenomic signatures. We found that toxic Microcystis (TM) adversely affected the fitness of Daphnia populations (intrinsic rate of population increase), and these adverse effects were amplified in the presence of MPs. Through detailed observation, it was ascertained that MPs promoted the ingestion of TM, culminating in enhanced microcystin bioaccumulation. Using the Eco-Evo model, we found that there was potential absence of correlation between the MPs toxicity and the effect size of MPs on the TM. Utilizing gene set enrichment analysis (GSEA), we further identified a marked suppression of molecular pathways and entities crucial to individual growth and development in the TM-MPs consortium compared to exposure to TM alone. The present study provides important insights about the influence of MPs on cyanobacteria toxicity and the prediction the risk of harmful algal blooms in aquatic ecosystems.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiameng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuting Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge Building, Ostend Science Park 1, Ostend 8400, Belgium
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
2
|
Kim K, Piekarz KM, Stolfi A. A gene regulatory network for specification and morphogenesis of a Mauthner Cell homolog in non-vertebrate chordates. Dev Biol 2025; 522:51-63. [PMID: 40096956 DOI: 10.1016/j.ydbio.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Transcriptional regulation of gene expression is an indispensable process in multicellular development, yet we still do not fully understand how the complex networks of transcription factors operating in neuronal precursors coordinately control the expression of effector genes that shape morphogenesis and terminal differentiation. Here we break down in greater detail a provisional regulatory circuit downstream of the transcription factor Pax3/7 operating in the descending decussating neurons (ddNs) of the tunicate Ciona robusta. The ddNs are a pair of hindbrain neurons proposed to be homologous to the Mauthner cells of anamniotes, and Pax3/7 is sufficient and necessary for their specification. We show that different transcription factors downstream of Pax3/7, namely Pou4, Lhx1/5, and Dmbx, regulate distinct "branches" of this ddN network that appear to be dedicated to different developmental tasks. Some of these network branches are shared with other neurons throughout the larva, reinforcing the idea that modularity is likely a key feature of such networks. We discuss these ideas and their evolutionary implications here, including the observation that homologs of all four transcription factors (Pax3/7, Lhx5, Pou4f3, and Dmbx1) are key for the specification of cranial neural crest in vertebrates.
Collapse
Affiliation(s)
- Kwantae Kim
- School of Biological Sciences, Georgia Institute of Technology, USA
| | | | - Alberto Stolfi
- School of Biological Sciences, Georgia Institute of Technology, USA.
| |
Collapse
|
3
|
Öling S, Struck E, Noreen-Thorsen M, Zwahlen M, von Feilitzen K, Odeberg J, Pontén F, Lindskog C, Uhlén M, Dusart P, Butler LM. A human stomach cell type transcriptome atlas. BMC Biol 2024; 22:36. [PMID: 38355543 PMCID: PMC10865703 DOI: 10.1186/s12915-024-01812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND The identification of cell type-specific genes and their modification under different conditions is central to our understanding of human health and disease. The stomach, a hollow organ in the upper gastrointestinal tract, provides an acidic environment that contributes to microbial defence and facilitates the activity of secreted digestive enzymes to process food and nutrients into chyme. In contrast to other sections of the gastrointestinal tract, detailed descriptions of cell type gene enrichment profiles in the stomach are absent from the major single-cell sequencing-based atlases. RESULTS Here, we use an integrative correlation analysis method to predict human stomach cell type transcriptome signatures using unfractionated stomach RNAseq data from 359 individuals. We profile parietal, chief, gastric mucous, gastric enteroendocrine, mitotic, endothelial, fibroblast, macrophage, neutrophil, T-cell, and plasma cells, identifying over 1600 cell type-enriched genes. CONCLUSIONS We uncover the cell type expression profile of several non-coding genes strongly associated with the progression of gastric cancer and, using a sex-based subset analysis, uncover a panel of male-only chief cell-enriched genes. This study provides a roadmap to further understand human stomach biology.
Collapse
Affiliation(s)
- S Öling
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - E Struck
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - M Noreen-Thorsen
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
| | - M Zwahlen
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - K von Feilitzen
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - J Odeberg
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
- The University Hospital of North Norway (UNN), 9019, Tromsø, Norway
- Department of Haematology, Coagulation Unit, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - F Pontén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - C Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, 752 37, Uppsala, Sweden
| | - M Uhlén
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
| | - P Dusart
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - L M Butler
- Department of Clinical Medicine, Translational Vascular Research, The Arctic University of Norway, 9019, Tromsø, Norway.
- Science for Life Laboratory, Department of Protein Science, Royal Institute of Technology (KTH), 171 21, Stockholm, Sweden.
- Clinical Chemistry and Blood Coagulation Research, Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76, Stockholm, Sweden.
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
4
|
Yang X, Wan R, Liu Z, Feng S, Yang J, Jing N, Tang K. The differentiation and integration of the hippocampal dorsoventral axis are controlled by two nuclear receptor genes. eLife 2023; 12:RP86940. [PMID: 37751231 PMCID: PMC10522401 DOI: 10.7554/elife.86940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.
Collapse
Affiliation(s)
- Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Rong Wan
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Zhiwen Liu
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Su Feng
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| | - Naihe Jing
- Guangzhou Laboratory/Bioland LaboratoryGuangzhouChina
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou UniversityGuangzhouChina
| |
Collapse
|
5
|
Johnson ZV, Hegarty BE, Gruenhagen GW, Lancaster TJ, McGrath PT, Streelman JT. Cellular profiling of a recently-evolved social behavior in cichlid fishes. Nat Commun 2023; 14:4891. [PMID: 37580322 PMCID: PMC10425353 DOI: 10.1038/s41467-023-40331-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/21/2023] [Indexed: 08/16/2023] Open
Abstract
Social behaviors are diverse in nature, but it is unclear how conserved genes, brain regions, and cell populations generate this diversity. Here we investigate bower-building, a recently-evolved social behavior in cichlid fishes. We use single nucleus RNA-sequencing in 38 individuals to show signatures of recent behavior in specific neuronal populations, and building-associated rebalancing of neuronal proportions in the putative homolog of the hippocampal formation. Using comparative genomics across 27 species, we trace bower-associated genome evolution to a subpopulation of glia lining the dorsal telencephalon. We show evidence that building-associated neural activity and a departure from quiescence in this glial subpopulation together regulate hippocampal-like neuronal rebalancing. Our work links behavior-associated genomic variation to specific brain cell types and their functions, and suggests a social behavior has evolved through changes in glia.
Collapse
Affiliation(s)
- Zachary V Johnson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA.
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
| | - Brianna E Hegarty
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - George W Gruenhagen
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Tucker J Lancaster
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Jeffrey T Streelman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Fang Y, Ji Z, Zhou W, Abante J, Koldobskiy MA, Ji H, Feinberg A. DNA methylation entropy is associated with DNA sequence features and developmental epigenetic divergence. Nucleic Acids Res 2023; 51:2046-2065. [PMID: 36762477 PMCID: PMC10018346 DOI: 10.1093/nar/gkad050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/02/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Epigenetic information defines tissue identity and is largely inherited in development through DNA methylation. While studied mostly for mean differences, methylation also encodes stochastic change, defined as entropy in information theory. Analyzing allele-specific methylation in 49 human tissue sample datasets, we find that methylation entropy is associated with specific DNA binding motifs, regulatory DNA, and CpG density. Then applying information theory to 42 mouse embryo methylation datasets, we find that the contribution of methylation entropy to time- and tissue-specific patterns of development is comparable to the contribution of methylation mean, and methylation entropy is associated with sequence and chromatin features conserved with human. Moreover, methylation entropy is directly related to gene expression variability in development, suggesting a role for epigenetic entropy in developmental plasticity.
Collapse
Affiliation(s)
- Yuqi Fang
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27708, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Jordi Abante
- Department of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michael A Koldobskiy
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 855 N. Wolfe St., Baltimore, MD 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew P Feinberg
- Center for Epigenetics, Johns Hopkins University, 855 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Gao P, Sun N, Zhao T, Sun Y, Gu J, Ma D, Tian H, Peng Z, Zhang Y, Han F, Qi X. Identification of prognostic indicators, diagnostic markers, and possible therapeutic targets among LIM homeobox transcription factors in breast cancer. CANCER INNOVATION 2022; 1:252-269. [PMID: 38089759 PMCID: PMC10686140 DOI: 10.1002/cai2.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2024]
Abstract
Background Breast cancer (BRCA) is the most common malignant tumor among women worldwide. Despite advances in treatment, many patients still die from a lack of effective diagnostic and prognostic markers and powerful therapeutic targets. LIM homeobox genes (LHXs) play vital roles in regulating the development of various organisms. However, there are limited reports regarding their roles in the diagnosis, prognosis, and treatment of BRCA. Methods UALCAN, Kaplan-Meier plotter, cBioPortal, GeneMANIA, STRING, DAVID 6.8, TRRUST v2, LinkedOmics, and TIMER were utilized to analyze differential expression, prognostic value, genetic alteration, neighbor gene network, transcription factor targets, kinase targets, and immune cell infiltration of LHXs in BRCA patients. Results LHX gene expression patterns are clear in BRCA and its different subtypes. Further analyses indicated that this altered expression is possibly affected by genetic and/or epigenetic changes. The prognostic and diagnostic values of certain LHXs are unique to different BRCA subtypes. LHXs are mainly involved in the regulation of differentiation and development, and their neighbor genes are primarily involved in cancer-related pathways. Moreover, most LHXs are closely correlated with immune cell infiltration. Furthermore, LHXs may exert their functions by regulating a series of transcription factor and kinase targets. Conclusions LHXs are unique diagnostic and prognostic markers and participate in cancer through different signaling pathways and/or regulatory mechanisms in BRCA. This study provides potential applications of LHXs for the diagnosis, prognosis, and treatment of BRCA and its different subtypes.
Collapse
Affiliation(s)
- Pingping Gao
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Na Sun
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Tingting Zhao
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Yuanyuan Sun
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
- Department of Clinical PharmacyJilin University School of Pharmaceutical SciencesJilinChangchunChina
| | - Jing Gu
- Institute of Toxicology, College of Preventive MedicineArmy Medical UniversityChongqingChina
| | - Dandan Ma
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Hao Tian
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Zaihui Peng
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Yi Zhang
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| | - Fei Han
- Department of Toxicology, School of Public HealthChongqing Medical UniversityChongqingChina
- Laboratory of Reproductive BiologyChongqing Medical UniversityChongqingChina
| | - Xiaowei Qi
- Breast and Thyroid Surgery, Southwest HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
8
|
A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A 2022; 119:2111869119. [PMID: 35165149 PMCID: PMC8851557 DOI: 10.1073/pnas.2111869119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 11/18/2022] Open
Abstract
We established an ultra high-resolution diffusion MRI atlas of the embryonic mouse brains from E10.5 to E15.5, which characterizes the continuous changes of brain morphology and microstructures at mesoscopic scale. By integrating gene-expression data into the spatiotemporal continuum, we can navigate the evolving landscape of gene expression and neuroanatomy across both spatial and temporal dimensions to visualize their interactions in normal and abnormal embryonic brain development. We also identified regional clusters with distinct developmental trajectories and identified gene-expression profiles that matched to these regional domains. The diffusion MRI–based continuum of the embryonic brain and the computational techniques presented in this study offer a valuable tool for systematic study of the genetic control of brain development. The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene–neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene–neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.
Collapse
|
9
|
Abstract
The field of molecular embryology started around 1990 by identifying new genes and analyzing their functions in early vertebrate embryogenesis. Those genes encode transcription factors, signaling molecules, their regulators, etc. Most of those genes are relatively highly expressed in specific regions or exhibit dramatic phenotypes when ectopically expressed or mutated. This review focuses on one of those genes, Lim1/Lhx1, which encodes a transcription factor. Lim1/Lhx1 is a member of the LIM homeodomain (LIM-HD) protein family, and its intimate partner, Ldb1/NLI, binds to two tandem LIM domains of LIM-HDs. The most ancient LIM-HD protein and its partnership with Ldb1 were innovated in the metazoan ancestor by gene fusion combining LIM domains and a homeodomain and by creating the LIM domain-interacting domain (LID) in ancestral Ldb, respectively. The LIM domain has multiple interacting interphases, and Ldb1 has a dimerization domain (DD), the LID, and other interacting domains that bind to Ssbp2/3/4 and the boundary factor, CTCF. By means of these domains, LIM-HD-Ldb1 functions as a hub protein complex, enabling more intricate and elaborate gene regulation. The common, ancestral role of LIM-HD proteins is neuron cell-type specification. Additionally, Lim1/Lhx1 serves crucial roles in the gastrula organizer and in kidney development. Recent studies using Xenopus embryos have revealed Lim1/Lhx1 functions and regulatory mechanisms during development and regeneration, providing insight into evolutionary developmental biology, functional genomics, gene regulatory networks, and regenerative medicine. In this review, we also discuss recent progress at unraveling participation of Ldb1, Ssbp, and CTCF in enhanceosomes, long-distance enhancer-promoter interactions, and trans-interactions between chromosomes.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
| | - Masanori Taira
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Fu TY, Ho CR, Lin CH, Lu YT, Lin WC, Tsai MH. Hippocampal Malrotation: A Genetic Developmental Anomaly Related to Epilepsy? Brain Sci 2021; 11:463. [PMID: 33916495 PMCID: PMC8067421 DOI: 10.3390/brainsci11040463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Hippocampal malrotation (HIMAL) is an increasingly recognized neuroimaging feature but the clinical correlation and significance in epilepsies remain under debate. It is characterized by rounded hippocampal shape, deep collateral, or occipitotemporal sulcus, and medial localization of the hippocampus. In this review, we describe the embryonic development of the hippocampus and HIMAL, the qualitative and quantitative diagnosis issues, and the pathological findings of HIMAL. HIMAL can be bilateral or unilateral and more on the left side. Furthermore, the relevance of HIMAL diagnosis in clinical practice, including its role in epileptogenesis and the impact on the pre-surgical decision are reviewed. Finally, the relationship between HIMAL and hippocampal sclerosis (HS) and the possible role of genetics in the etiology of HIMAL are discussed. The evidence so far suggested that HIMAL does not have a significant role in epileptogenesis or surgical decision. HIMAL could be a genetic developmental imaging feature that represents a more diffuse but subtle structural error during brain development. Many questions remain to be explored, such as possible cognitive alteration associated with HIMAL and whether HIMAL predisposes to the development of HS. Further studies using high-quality MRI, unified consensus qualitative and quantitative diagnostic criteria, and comprehensive cognitive assessment are recommended.
Collapse
Affiliation(s)
- Ting-Ying Fu
- Department of Pathology, Yuan’s General Hospital, 162 Cheng Hung 1st Road, Kaohsiung 80249, Taiwan;
| | - Chen-Rui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosung District, Kaohsiung 83301, Taiwan; (C.-R.H.); (C.-H.L.); (Y.-T.L.)
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosung District, Kaohsiung 83301, Taiwan; (C.-R.H.); (C.-H.L.); (Y.-T.L.)
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosung District, Kaohsiung 83301, Taiwan; (C.-R.H.); (C.-H.L.); (Y.-T.L.)
| | - Wei-Che Lin
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, 123 Dapi Road, Niaosung District, Kaohsiung 83301, Taiwan; (C.-R.H.); (C.-H.L.); (Y.-T.L.)
- School of Medicine, Chang Gung University, 259 Wenhau 1st Road, Taoyuan 33302, Taiwan
| |
Collapse
|
11
|
In Search of Molecular Markers for Cerebellar Neurons. Int J Mol Sci 2021; 22:ijms22041850. [PMID: 33673348 PMCID: PMC7918299 DOI: 10.3390/ijms22041850] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.
Collapse
|
12
|
An integrative atlas of chicken long non-coding genes and their annotations across 25 tissues. Sci Rep 2020; 10:20457. [PMID: 33235280 PMCID: PMC7686352 DOI: 10.1038/s41598-020-77586-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (LNC) regulate numerous biological processes. In contrast to human, the identification of LNC in farm species, like chicken, is still lacunar. We propose a catalogue of 52,075 chicken genes enriched in LNC (http://www.fragencode.org/), built from the Ensembl reference extended using novel LNC modelled here from 364 RNA-seq and LNC from four public databases. The Ensembl reference grew from 4,643 to 30,084 LNC, of which 59% and 41% with expression ≥ 0.5 and ≥ 1 TPM respectively. Characterization of these LNC relatively to the closest protein coding genes (PCG) revealed that 79% of LNC are in intergenic regions, as in other species. Expression analysis across 25 tissues revealed an enrichment of co-expressed LNC:PCG pairs, suggesting co-regulation and/or co-function. As expected LNC were more tissue-specific than PCG (25% vs. 10%). Similarly to human, 16% of chicken LNC hosted one or more miRNA. We highlighted a new chicken LNC, hosting miR155, conserved in human, highly expressed in immune tissues like miR155, and correlated with immunity-related PCG in both species. Among LNC:PCG pairs tissue-specific in the same tissue, we revealed an enrichment of divergent pairs with the PCG coding transcription factors, as for example LHX5, HXD3 and TBX4, in both human and chicken.
Collapse
|
13
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
14
|
Huang B, Tian ZF, Li LF, Fan Y, Yin HY, Li Y, Mao Q, You ZL. LHX3 is an advanced-stage prognostic biomarker and metastatic oncogene in hepatocellular carcinoma. Cancer Biomark 2020; 26:31-39. [PMID: 31306102 DOI: 10.3233/cbm-182257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer and exhibits high morbidity and mortality in the world. We recently identified LHX3 as a preferentially expressed gene with a possible involvement in HCC. OBJECTIVE To determine the expression, clinical relevance, prognostic significance and functions of LHX3 in HCC. MATERIALS AND METHODS LHX3 expression was assessed in 190 cancerous and 40 adjacent non-cancerous tissues by PCR, western blot and immunohistochemistry. Associations between LHX3 expression and clinicopathological characteristics of patients were investigated. Correlations between LHX3 expression and overall survival of patients were analyzed by Kaplan-Meier and Cox-regression methods. Functional roles of LHX3 were evaluated by transwell assays. RESULTS LHX3 expression is significantly increased in carcinoma tissues, and associated with clinical stage and metastasis of patients. LHX3 expression is much higher in the advanced-stage patients than the early-stage patients, and is sharply increased in metastasic patients. High LHX3 expression is associated with unfavorable overall survival, and is an independent prognostic factor of patients. Moreover, LHX3 is an unfavorable and independent prognostic factor unique to advanced-stage patients. Knockdown expression of LHX3 obviously inhibits tumor cell migration and invasion. CONCLUSION LHX3 is an advanced-stage prognostic biomarker, and acts as a new potential metastatic oncogene in HCC.
Collapse
Affiliation(s)
- Bo Huang
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Zhan-Fei Tian
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Infectious Diseases, Chinese PLA Central Theater General Hospital, Wuhan, Hubei, China.,The People's Hospital of Shapingba District in Chongqing, Chongqing, China
| | - Lu-Feng Li
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yi Fan
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hao-Yang Yin
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Li
- Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Mao
- Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| | - Zhong-Lan You
- The People's Hospital of Shapingba District in Chongqing, Chongqing, China.,Institute of Infectious Diseases, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Guo H, Tian L, Zhang JZ, Kitani T, Paik DT, Lee WH, Wu JC. Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports 2019; 12:772-786. [PMID: 30827876 PMCID: PMC6449785 DOI: 10.1016/j.stemcr.2019.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotine, the main chemical constituent of tobacco, is highly detrimental to the developing fetus by increasing the risk of gestational complications and organ disorders. The effects of nicotine on human embryonic development and related mechanisms, however, remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of human embryonic stem cell (hESC)-derived embryoid body (EB) in the presence or absence of nicotine. Nicotine-induced lineage-specific responses and dysregulated cell-to-cell communication in EBs, shedding light on the adverse effects of nicotine on human embryonic development. In addition, nicotine reduced cell viability, increased reactive oxygen species (ROS), and altered cell cycling in EBs. Abnormal Ca2+ signaling was found in muscle cells upon nicotine exposure, as verified in hESC-derived cardiomyocytes. Consequently, our scRNA-seq data suggest direct adverse effects of nicotine on hESC differentiation at the single-cell level and offer a new method for evaluating drug and environmental toxicity on human embryonic development in utero.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
LDB1 Is Required for the Early Development of the Dorsal Telencephalon and the Thalamus. eNeuro 2019; 6:eN-NWR-0356-18. [PMID: 30873428 PMCID: PMC6416242 DOI: 10.1523/eneuro.0356-18.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
LIM domain binding protein 1 (LDB1) is a protein cofactor that participates in several multiprotein complexes with transcription factors that regulate mouse forebrain development. Since Ldb1 null mutants display early embryonic lethality, we used a conditional knockout strategy to examine the role of LDB1 in early forebrain development using multiple Cre lines. Loss of Ldb1 from E8.75 using Foxg1Cre caused a disruption of midline boundary structures in the dorsal telencephalon. While this Cre line gave the expected pattern of recombination of the floxed Ldb1 locus, unexpectedly, standard Cre lines that act from embryonic day (E)10.5 (Emx1Cre) and E11.5 (NesCre) did not show efficient or complete recombination in the dorsal telencephalon by E12.5. Intriguingly, this effect was specific to the Ldb1 floxed allele, since three other lines including floxed Ai9 and mTmG reporters, and a floxed Lhx2 line, each displayed the expected spatial patterns of recombination. Furthermore, the incomplete recombination of the floxed Ldb1 locus using NesCre was limited to the dorsal telencephalon, while the ventral telencephalon and the diencephalon displayed the expected loss of Ldb1. This permitted us to examine the requirement for LDB1 in the development of the thalamus in a context wherein the cortex continued to express Ldb1. We report that the somatosensory VB nucleus is profoundly shrunken upon loss of LDB1. Our findings highlight the unusual nature of the Ldb1 locus in terms of recombination efficiency, and also report a novel role for LDB1 during the development of the thalamus.
Collapse
|
17
|
Prajapati B, Fatma M, Maddhesiya P, Sodhi MK, Fatima M, Dargar T, Bhagat R, Seth P, Sinha S. Identification and epigenetic analysis of divergent long non-coding RNAs in multilineage differentiation of human Neural Progenitor Cells. RNA Biol 2018; 16:13-24. [PMID: 30574830 DOI: 10.1080/15476286.2018.1553482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs have emerged as an important regulatory layer in biological systems. Of the various types of lncRNAs, one class (designated as divergent RNAs/XH), which is in head-to-head overlap with the coding genes, has emerged as a critical biotype that regulates development and cellular differentiation. This work aimed to analyze previously published data on differential expression, epigenetic and network analysis in order to demonstrate the association of divergent lncRNAs, a specific biotype with the differentiation of human neural progenitor cells (hNPCs). We have analyzed various available RNAseq databases that address the neuronal and astrocytic differentiation of hNPCs and identified differentially expressed lncRNAs (DELs) during cell-fate determination. Key DELs identified from the databases were experimentally verified by us in our in-vitro hNPC differentiation system. We also analyzed the change in promoter activity using ChIP-seq datasets of the histone markers H3K4me3 (activation) and H3K27me3 (inactivation) of these DELs. Additionally, we explored the change in the euchromatinization state of DELs (by analyzing DNase-seq data) during lineage-specific differentiation of hNPCs and performed their network analysis. We were able to identify differences between neuronal and astrocytic differentiation of hNPCs at the level of divergent DELs epigenetic markers, DNAase hypersensitive sites and gene expression network. Divergent lncRNAs are more involved in neuronal rather than astrocytic differentiation, while the sense downstream lncRNA biotype appears to be more involved in astrocytic differentiation. By studying the lncRNA involvement of distinct biotypes, we have been able to indicate the preferential role of a particular biotype during lineage-specific differentiation.
Collapse
Affiliation(s)
- Bharat Prajapati
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Mena Fatma
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Priya Maddhesiya
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Manjot Kour Sodhi
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Mahar Fatima
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Tanushri Dargar
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Reshma Bhagat
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Pankaj Seth
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India
| | - Subrata Sinha
- a Cellular and Molecular Neuroscience , National Brain Research Centre , Manesar, Gurgaon , Haryana , India.,b Department of Biochemistry , All India Institute of Medical Sciences , New Delhi , India
| |
Collapse
|
18
|
Hatami M, Conrad S, Naghsh P, Alvarez-Bolado G, Skutella T. Cell-Biological Requirements for the Generation of Dentate Gyrus Granule Neurons. Front Cell Neurosci 2018; 12:402. [PMID: 30483057 PMCID: PMC6240695 DOI: 10.3389/fncel.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022] Open
Abstract
The dentate gyrus (DG) receives highly processed information from the associative cortices functionally integrated in the trisynaptic hippocampal circuit, which contributes to the formation of new episodic memories and the spontaneous exploration of novel environments. Remarkably, the DG is the only brain region currently known to have high rates of neurogenesis in adults (Andersen et al., 1966, 1971). The DG is involved in several neurodegenerative disorders, including clinical dementia, schizophrenia, depression, bipolar disorder and temporal lobe epilepsy. The principal neurons of the DG are the granule cells. DG granule cells generated in culture would be an ideal model to investigate their normal development and the causes of the pathologies in which they are involved and as well as possible therapies. Essential to establish such in vitro models is the precise definition of the most important cell-biological requirements for the differentiation of DG granule cells. This requires a deeper understanding of the precise molecular and functional attributes of the DG granule cells in vivo as well as the DG cells derived in vitro. In this review we outline the neuroanatomical, molecular and cell-biological components of the granule cell differentiation pathway, including some growth- and transcription factors essential for their development. We summarize the functional characteristics of DG granule neurons, including the electrophysiological features of immature and mature granule cells and the axonal pathfinding characteristics of DG neurons. Additionally, we discuss landmark studies on the generation of dorsal telencephalic precursors from pluripotent stem cells (PSCs) as well as DG neuron differentiation in culture. Finally, we provide an outlook and comment critical aspects.
Collapse
Affiliation(s)
- Maryam Hatami
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | | | - Pooyan Naghsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | | | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
19
|
Spangler A, Su EY, Craft AM, Cahan P. A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo. Stem Cell Res 2018; 31:201-215. [PMID: 30118958 PMCID: PMC6579609 DOI: 10.1016/j.scr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage.
Collapse
Affiliation(s)
- Abby Spangler
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Pashkovskaia N, Gey U, Rödel G. Mitochondrial ROS direct the differentiation of murine pluripotent P19 cells. Stem Cell Res 2018; 30:180-191. [PMID: 29957443 DOI: 10.1016/j.scr.2018.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/07/2018] [Accepted: 06/10/2018] [Indexed: 01/20/2023] Open
Abstract
ROS are frequently associated with deleterious effects caused by oxidative stress. Despite the harmful effects of non-specific oxidation, ROS also function as signal transduction molecules that regulate various biological processes, including stem cell proliferation and differentiation. Here we show that mitochondrial ROS level determines cell fate during differentiation of the pluripotent stem cell line P19. As stem cells in general, P19 cells are characterized by a low respiration activity, accompanied by a low level of ROS formation. Nevertheless, we found that P19 cells contain fully assembled mitochondrial electron transport chain supercomplexes (respirasomes), suggesting that low respiration activity may serve as a protective mechanism against ROS. Upon elevated mitochondrial ROS formation, the proliferative potential of P19 cells is decreased due to longer S phase of the cell cycle. Our data show that besides being harmful, mitochondrial ROS production regulates the differentiation potential of P19 cells: elevated mitochondrial ROS level favours trophoblast differentiation, whereas preventing neuron differentiation. Therefore, our results suggest that mitochondrial ROS level serves as an important factor that directs differentiation towards certain cell types while preventing others.
Collapse
Affiliation(s)
| | - Uta Gey
- Institute of Genetics, Technische Universität Dresden, Dresden 01217, Germany
| | - Gerhard Rödel
- Institute of Genetics, Technische Universität Dresden, Dresden 01217, Germany
| |
Collapse
|
21
|
Leone DP, Panagiotakos G, Heavner WE, Joshi P, Zhao Y, Westphal H, McConnell SK. Compensatory Actions of Ldb Adaptor Proteins During Corticospinal Motor Neuron Differentiation. Cereb Cortex 2018; 27:1686-1699. [PMID: 26830346 DOI: 10.1093/cercor/bhw003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although many genes that specify neocortical projection neuron subtypes have been identified, the downstream effectors that control differentiation of those subtypes remain largely unknown. Here, we demonstrate that the LIM domain-binding proteins Ldb1 and Ldb2 exhibit dynamic and inversely correlated expression patterns during cerebral cortical development. Ldb1-deficient brains display severe defects in proliferation and changes in regionalization, phenotypes resembling those of Lhx mutants. Ldb2-deficient brains, on the other hand, exhibit striking phenotypes affecting layer 5 pyramidal neurons: Immature neurons have an impaired capacity to segregate into mature callosal and subcerebral projection neurons. The analysis of Ldb2 single-mutant mice reveals a compensatory role of Ldb1 for Ldb2 during corticospinal motor neuron (CSMN) differentiation. Animals lacking both Ldb1 and Ldb2 uncover the requirement for Ldb2 during CSMN differentiation, manifested as incomplete CSMN differentiation, and ultimately leading to a failure of the corticospinal tract.
Collapse
Affiliation(s)
- Dino P Leone
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Georgia Panagiotakos
- Department of Biochemistry and Biophysics, The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
| | | | - Pushkar Joshi
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yangu Zhao
- Laboratory of Mammalian Genes and Development, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Heiner Westphal
- Laboratory of Mammalian Genes and Development, Program in Genomics of Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
22
|
Ruiz-Reig N, Andrés B, Huilgol D, Grove EA, Tissir F, Tole S, Theil T, Herrera E, Fairén A. Lateral Thalamic Eminence: A Novel Origin for mGluR1/Lot Cells. Cereb Cortex 2018; 27:2841-2856. [PMID: 27178193 DOI: 10.1093/cercor/bhw126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A unique population of cells, called "lot cells," circumscribes the path of the lateral olfactory tract (LOT) in the rodent brain and acts to restrict its position at the lateral margin of the telencephalon. Lot cells were believed to originate in the dorsal pallium (DP). We show that Lhx2 null mice that lack a DP show a significant increase in the number of mGluR1/lot cells in the piriform cortex, indicating a non-DP origin of these cells. Since lot cells present common developmental features with Cajal-Retzius (CR) cells, we analyzed Wnt3a- and Dbx1-reporter mouse lines and found that mGluR1/lot cells are not generated in the cortical hem, ventral pallium, or septum, the best characterized sources of CR cells. Finally, we identified a novel origin for the lot cells by combining in utero electroporation assays and histochemical characterization. We show that mGluR1/lot cells are specifically generated in the lateral thalamic eminence and that they express mitral cell markers, although a minority of them express ΔNp73 instead. We conclude that most mGluR1/lot cells are prospective mitral cells migrating to the accessory olfactory bulb (OB), whereas mGluR1+, ΔNp73+ cells are CR cells that migrate through the LOT to the piriform cortex and the OB.
Collapse
Affiliation(s)
- Nuria Ruiz-Reig
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Belén Andrés
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Current address: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Brussels, Belgium
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Thomas Theil
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | - Eloisa Herrera
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| | - Alfonso Fairén
- Instituto de Neurociencias (Consejo Superior de Investigaciones Científicas - Universidad Miguel Hernández, CSIC - UMH), San Juan de Alicante, Spain
| |
Collapse
|
23
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Frade-Pérez MD, Miquelajáuregui A, Varela-Echavarría A. Origin and Migration of Olfactory Cajal-Retzius Cells. Front Neuroanat 2017; 11:97. [PMID: 29163070 PMCID: PMC5671926 DOI: 10.3389/fnana.2017.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
Early telencephalic development involves the migration of diverse cell types that can be identified by specific molecular markers. Most prominent among them are Cajal-Retzius (CR) cells that emanate mainly from the cortical hem and to a lesser extent from rostrolateral, septal and caudo-medial regions. One additional territory proposed to give rise to CR cells that migrate dorsally into the neocortex lies at the ventral pallium, although contradictory results question this notion. With the use of a cell-permeable fluorescent tracer in cultured embryos, we identified novel migratory paths of putative CR cells and other populations that originate from the rostrolateral telencephalon at its olfactory region. Moreover, extensive labeling on the lateral telencephalon along its rostro-caudal extent failed to reveal a dorsally-migrating CR cell population from the ventral pallium at the stages analyzed. Hence, this work reveals a novel olfactory CR cell migration and supports the idea that the ventral pallium, where diverse types of neurons converge, does not actually generate CR cells.
Collapse
Affiliation(s)
| | - Amaya Miquelajáuregui
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | |
Collapse
|
25
|
Lin X, Li Y, Wang J, Han F, Lu S, Wang Y, Luo W, Zhang M. LHX3 is an early stage and radiosensitivity prognostic biomarker in lung adenocarcinoma. Oncol Rep 2017; 38:1482-1490. [PMID: 28731174 PMCID: PMC5549242 DOI: 10.3892/or.2017.5833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 07/03/2017] [Indexed: 12/19/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. We previously identified LHX3 as a new preferentially expressed gene in NSCLC. In the present study, we sought to determine its expression, the clinical relevance and the functional roles in NSCLC. LHX3 expression is sharply increased in carcinoma tissues compared to non-carcinoma tissues. Relational analysis reveals a significant association between LHX3 expression and clinical stage (n=172, P=0.032) or radiotherapy (n=167, P=0.022) of patients. LHX3 expression is much higher in the patients at advanced stages (stage III–IV) than in the patients at early stages (stage I–II, P=0.0304), and LHX3 expression is remarkably increased in the patients with radiotherapy treatment (P=0.0002). Survival analyses indicate that LHX3 is associated with unfavorable survival (n=180, P=0.002) and represents an independent prognostic factor [hazard ratio (HR)=1.834, P=0.004] of the NSCLC patients. Furthermore, LHX3 is associated with unfavorable overall survival (n=866, P=0.004) and represents an independent prognostic factor (HR=2.36, P=0.000) in lung adenocarcinoma (ADC) patients, but is not associated with overall survival of squamous cell carcinoma (SCC) patients (n=524, P=0.27). Further analyses found that LHX3 is an early-stage (n=94, P=0.003) and radiosensitivity (n=45, P=0.002) prognostic factor in ADC patients. The patients without radiotherapy have a significantly prolonged survival compared to those with radiotherapy (P=0.0069). Further functional studies show that forced expression of LHX3 in lung cancer cells obviously promotes cell proliferation and invasion, whereas inhibits cell apoptosis. In summary, LHX3 is an early-stage and radiosensitivity prognostic biomarker, and a novel potential oncogene in ADC.
Collapse
Affiliation(s)
- Xin Lin
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yan Li
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Jin Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, P.R. China
| | - Shuang Lu
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Yu Wang
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Wenjian Luo
- Department of Gerontology, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| | - Mingqian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan, P.R. China
| |
Collapse
|
26
|
Lui NC, Tam WY, Gao C, Huang JD, Wang CC, Jiang L, Yung WH, Kwan KM. Lhx1/5 control dendritogenesis and spine morphogenesis of Purkinje cells via regulation of Espin. Nat Commun 2017; 8:15079. [PMID: 28516904 PMCID: PMC5454373 DOI: 10.1038/ncomms15079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/27/2017] [Indexed: 11/25/2022] Open
Abstract
In the cerebellar cortex, Purkinje cells (PCs) receive signals from different inputs through their extensively branched dendrites and serve as an integration centre. Defects in the dendritic development of PCs thus disrupt cerebellar circuitry and cause ataxia. Here we report that specific inactivation of both Lhx1 and Lhx5 in postnatal PCs results in ataxic mutant mice with abnormal dendritic development. The PCs in the mutants have reduced expression of Espin, an F-actin cytoskeleton regulator. We show that Espin expression is transcriptionally activated by Lhx1/5. Downregulation of Espin leads to F-actin mislocalization, thereby impairing dendritogenesis and dendritic spine maturation in the PCs. The mutant PCs therefore fail to form proper synapses and show aberrant electrophysiological properties. By overexpressing Espin, we can successfully rescue the defects in the mutant PCs. Our findings suggest that Lhx1/5, through regulating Espin expression, control dendritogenesis and spine morphogenesis in postnatal PCs. Purkinje cells (PCs) receive signals from different inputs through their extensively branched dendrites and dysregulation of this process leads to ataxia and other diseases. Here the authors show that the LIM-homeodomain transcription factors Lhx1 and Lhx5 govern dendritogenesis and dendritic spine morphogenesis in postnatal PCs through regulating Espin expression.
Collapse
Affiliation(s)
- Nga Chu Lui
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing Yip Tam
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jian-Dong Huang
- School of Biomedical Sciences, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Center for Cell &Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Wing Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kin Ming Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Center for Cell &Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China.,Partner State Key Laboratory of Agrobiotechnology (CUHK), The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
27
|
Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, van Ijcken WF, Grosveld F, Frommolt P, Bazzi H, Rada-Iglesias A. PRC2 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent Stem Cell Differentiation. Cell Stem Cell 2017; 20:689-705.e9. [DOI: 10.1016/j.stem.2017.02.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/19/2016] [Accepted: 02/07/2017] [Indexed: 01/28/2023]
|
28
|
Hough D, Bellingham M, Haraldsen I, McLaughlin M, Rennie M, Robinson J, Solbakk A, Evans N. Spatial memory is impaired by peripubertal GnRH agonist treatment and testosterone replacement in sheep. Psychoneuroendocrinology 2017; 75:173-182. [PMID: 27837697 PMCID: PMC5140006 DOI: 10.1016/j.psyneuen.2016.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/06/2023]
Abstract
Chronic gonadotropin-releasing hormone agonist (GnRHa) is used therapeutically to block activity within the reproductive axis through down-regulation of GnRH receptors within the pituitary gland. GnRH receptors are also expressed in non-reproductive tissues, including areas of the brain such as the hippocampus and amygdala. The impact of long-term GnRHa-treatment on hippocampus-dependent cognitive functions, such as spatial orientation, learning and memory, is not well studied, particularly when treatment encompasses a critical window of development such as puberty. The current study used an ovine model to assess spatial maze performance and memory of rams that were untreated (Controls), had both GnRH and testosterone signaling blocked (GnRHa-treated), or specifically had GnRH signaling blocked (GnRHa-treated with testosterone replacement) during the peripubertal period (8, 27 and 41 weeks of age). The results demonstrate that emotional reactivity during spatial tasks was compromised by the blockade of gonadal steroid signaling, as seen by the restorative effects of testosterone replacement, while traverse times remained unchanged during assessment of spatial orientation and learning. The blockade of GnRH signaling alone was associated with impaired retention of long-term spatial memory and this effect was not restored with the replacement of testosterone signaling. These results indicate that GnRH signaling is involved in the retention and recollection of spatial information, potentially via alterations to spatial reference memory, and that therapeutic medical treatments using chronic GnRHa may have effects on this aspect of cognitive function.
Collapse
Affiliation(s)
- D. Hough
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Bellingham
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - I.R.H. Haraldsen
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway
| | - M. McLaughlin
- Division of Veterinary Bioscience and Education, School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - M. Rennie
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - J.E. Robinson
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - A.K. Solbakk
- Department of Medical Neurobiology, Division of Clinical Neuroscience, Oslo University Hospital — Rikshospitalet, 0027, Oslo, Norway,Department of Psychology, University of Oslo, Pb 1094 Blindern, 0317 Oslo, Norway,Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - N.P. Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK,Corresponding author.
| |
Collapse
|
29
|
Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun 2015; 6:8896. [PMID: 26573335 PMCID: PMC4660208 DOI: 10.1038/ncomms9896] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 10/14/2015] [Indexed: 12/20/2022] Open
Abstract
The developing dorsomedial telencephalon includes the medial pallium, which goes on to form the hippocampus. Generating a reliable source of human hippocampal tissue is an important step for cell-based research into hippocampus-related diseases. Here we show the generation of functional hippocampal granule- and pyramidal-like neurons from self-organizing dorsomedial telencephalic tissue using human embryonic stem cells (hESCs). First, we develop a hESC culture method that utilizes bone morphogenetic protein (BMP) and Wnt signalling to induce choroid plexus, the most dorsomedial portion of the telencephalon. Then, we find that titrating BMP and Wnt exposure allowed the self-organization of medial pallium tissues. Following long-term dissociation culture, these dorsomedial telencephalic tissues give rise to Zbtb20+/Prox1+ granule neurons and Zbtb20+/KA1+ pyramidal neurons, both of which were electrically functional with network formation. Thus, we have developed an in vitro model that recapitulates human hippocampus development, allowing the generation of functional hippocampal granule- and pyramidal-like neurons. In vitro differentiation of human pluripotent stem cells (hPSCs) has enabled the generation of neuroectodermal tissues. Here, Sakaguchi et al. use a modified neocortical induction method to generate functional hippocampal granule and pyramidal-like neurons, as well as dorsomedial telencephalic tissues from hPSCs.
Collapse
|
30
|
Miquelajáuregui A, Sandoval-Schaefer T, Martínez-Armenta M, Pérez-Martínez L, Cárabez A, Zhao Y, Heide M, Alvarez-Bolado G, Varela-Echavarría A. LIM homeobox protein 5 (Lhx5) is essential for mamillary body development. Front Neuroanat 2015; 9:136. [PMID: 26578897 PMCID: PMC4621302 DOI: 10.3389/fnana.2015.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 02/01/2023] Open
Abstract
The mamillary body (MM) is a group of hypothalamic nuclei related to memory and spatial navigation that interconnects hippocampal, thalamic, and tegmental regions. Here we demonstrate that Lhx5, a LIM-HD domain transcription factor expressed early in the developing posterior hypothalamus, is required for the generation of the MM and its derived tracts. The MM markers Foxb1, Sim2, and Lhx1 are absent in Lhx5 knock-out mice from early embryonic stages, suggesting abnormal specification of this region. This was supported by the absence of Nkx2.1 and expansion of Shh in the prospective mamillary area. Interestingly, we also found an ectopic domain expressing Lhx2 and Lhx9 along the anterio-posterior hypothalamic axis. Our results suggest that Lhx5 controls early aspects of hypothalamic development by regulating gene expression and cellular specification in the prospective MM.
Collapse
Affiliation(s)
- Amaya Miquelajáuregui
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Teresa Sandoval-Schaefer
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Miriam Martínez-Armenta
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| | - Alfonso Cárabez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Yangu Zhao
- Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health Bethesda, MD, USA
| | - Michael Heide
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | | | - Alfredo Varela-Echavarría
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| |
Collapse
|
31
|
Heide M, Zhang Y, Zhou X, Zhao T, Miquelajáuregui A, Varela-Echavarría A, Alvarez-Bolado G. Lhx5 controls mamillary differentiation in the developing hypothalamus of the mouse. Front Neuroanat 2015; 9:113. [PMID: 26321924 PMCID: PMC4536661 DOI: 10.3389/fnana.2015.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 12/30/2022] Open
Abstract
Acquisition of specific neuronal identity by individual brain nuclei is a key step in brain development. However, how the mechanisms that confer neuronal identity are integrated with upstream regional specification networks is still mysterious. Expression of Sonic hedgehog (Shh), is required for hypothalamic specification and is later downregulated by Tbx3 to allow for the differentiation of the tubero-mamillary region. In this region, the mamillary body (MBO), is a large neuronal aggregate essential for memory formation. To clarify how MBO identity is acquired after regional specification, we investigated Lhx5, a transcription factor with restricted MBO expression. We first generated a hypomorph allele of Lhx5—in homozygotes, the MBO disappears after initial specification. Intriguingly, in these mutants, Tbx3 was downregulated and the Shh expression domain abnormally extended. Microarray analysis and chromatin immunoprecipitation indicated that Lhx5 appears to be involved in Shh downregulation through Tbx3 and activates several MBO-specific regulator and effector genes. Finally, by tracing the caudal hypothalamic cell lineage we show that, in the Lhx5 mutant, at least some MBO cells are present but lack characteristic marker expression. Our work shows how the Lhx5 locus contributes to integrate regional specification pathways with downstream acquisition of neuronal identity in the MBO.
Collapse
Affiliation(s)
- Michael Heide
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Yuanfeng Zhang
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Xunlei Zhou
- Institute of Anatomy and Cell Biology, University of Heidelberg Heidelberg, Germany
| | - Tianyu Zhao
- Key Laboratory of Oral Disease and Biomedical Sciences, Stomatological Hospital, Chongqing Medical University Chongqing, China
| | - Amaya Miquelajáuregui
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | - Alfredo Varela-Echavarría
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México Querétaro, Mexico
| | | |
Collapse
|
32
|
Sun L, Chen F, Peng G. Conserved Noncoding Sequences Regulate lhx5 Expression in the Zebrafish Forebrain. PLoS One 2015; 10:e0132525. [PMID: 26147098 PMCID: PMC4492605 DOI: 10.1371/journal.pone.0132525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/15/2015] [Indexed: 01/23/2023] Open
Abstract
The LIM homeobox family protein Lhx5 plays important roles in forebrain development in the vertebrates. The lhx5 gene exhibits complex temporal and spatial expression patterns during early development but its transcriptional regulation mechanisms are not well understood. Here, we have used transgenesis in zebrafish in order to define regulatory elements that drive lhx5 expression in the forebrain. Through comparative genomic analysis we identified 10 non-coding sequences conserved in five teleost species. We next examined the enhancer activities of these conserved non-coding sequences with Tol2 transposon mediated transgenesis. We found a proximately located enhancer gave rise to robust reporter EGFP expression in the forebrain regions. In addition, we identified an enhancer located at approximately 50 kb upstream of lhx5 coding region that is responsible for reporter gene expression in the hypothalamus. We also identify an enhancer located approximately 40 kb upstream of the lhx5 coding region that is required for expression in the prethalamus (ventral thalamus). Together our results suggest discrete enhancer elements control lhx5 expression in different regions of the forebrain.
Collapse
Affiliation(s)
- Liu Sun
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Fengjiao Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
33
|
Control of axon guidance and neurotransmitter phenotype of dB1 hindbrain interneurons by Lim-HD code. J Neurosci 2015; 35:2596-611. [PMID: 25673852 DOI: 10.1523/jneurosci.2699-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hindbrain dorsal interneurons (HDIs) are implicated in receiving, processing, integrating, and transmitting sensory inputs from the periphery and spinal cord, including the vestibular, auditory, and proprioceptive systems. During development, multiple molecularly defined HDI types are set in columns along the dorsoventral axis, before migrating along well-defined trajectories to generate various brainstem nuclei. Major brainstem functions rely on the precise assembly of different interneuron groups and higher brain domains into common circuitries. Yet, knowledge regarding interneuron axonal patterns, synaptic targets, and the transcriptional control that govern their connectivity is sparse. The dB1 class of HDIs is formed in a district dorsomedial position along the hindbrain and gives rise to the inferior olive nuclei, dorsal cochlear nuclei, and vestibular nuclei. dB1 interneurons express various transcription factors (TFs): the pancreatic transcription factor 1a (Ptf1a), the homeobox TF-Lbx1 and the Lim-homeodomain (Lim-HD), and TF Lhx1 and Lhx5. To decipher the axonal and synaptic connectivity of dB1 cells, we have used advanced enhancer tools combined with conditional expression systems and the PiggyBac-mediated DNA transposition system in avian embryos. Multiple ipsilateral and contralateral axonal projections were identified ascending toward higher brain centers, where they formed synapses in the Purkinje cerebellar layer as well as at discrete midbrain auditory and vestibular centers. Decoding the mechanisms that instruct dB1 circuit formation revealed a fundamental role for Lim-HD proteins in regulating their axonal patterns, synaptic targets, and neurotransmitter choice. Together, this study provides new insights into the assembly and heterogeneity of HDIs connectivity and its establishment through the central action of Lim-HD governed programs.
Collapse
|
34
|
Xu HT, Han Z, Gao P, He S, Li Z, Shi W, Kodish O, Shao W, Brown KN, Huang K, Shi SH. Distinct lineage-dependent structural and functional organization of the hippocampus. Cell 2014; 157:1552-64. [PMID: 24949968 DOI: 10.1016/j.cell.2014.03.067] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/21/2014] [Accepted: 03/29/2014] [Indexed: 12/21/2022]
Abstract
The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.
Collapse
Affiliation(s)
- Hua-Tai Xu
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zhi Han
- College of Software, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Peng Gao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Shuijin He
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Zhizhong Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wei Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Oren Kodish
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Wei Shao
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Keith N Brown
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University, 333 West 10(th) Avenue, Columbus, OH 43210, USA
| | - Song-Hai Shi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Graduate Program in Neuroscience, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA; Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
35
|
Abellán A, Desfilis E, Medina L. Combinatorial expression of Lef1, Lhx2, Lhx5, Lhx9, Lmo3, Lmo4, and Prox1 helps to identify comparable subdivisions in the developing hippocampal formation of mouse and chicken. Front Neuroanat 2014; 8:59. [PMID: 25071464 PMCID: PMC4082316 DOI: 10.3389/fnana.2014.00059] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/12/2014] [Indexed: 11/23/2022] Open
Abstract
We carried out a study of the expression patterns of seven developmental regulatory genes (Lef1, Lhx2, Lhx9, Lhx5, Lmo3, Lmo4, and Prox1), in combination with topological position, to identify the medial pallial derivatives, define its major subdivisions, and compare them between mouse and chicken. In both species, the medial pallium is defined as a pallial sector adjacent to the cortical hem and roof plate/choroid tela, showing moderate to strong ventricular zone expression of Lef1, Lhx2, and Lhx9, but not Lhx5. Based on this, the hippocampal formation (indusium griseum, dentate gyrus, Ammon's horn fields, and subiculum), the medial entorhinal cortex, and part of the amygdalo-hippocampal transition area of mouse appeared to derive from the medial pallium. In the chicken, based on the same position and gene expression profile, we propose that the hippocampus (including the V-shaped area), the parahippocampal area (including its caudolateral part), the entorhinal cortex, and the amygdalo-hippocampal transition area are medial pallial derivatives. Moreover, the combinatorial expression of Lef1, Prox1, Lmo4, and Lmo3 allowed the identification of dentate gyrus/CA3-like, CA1/subicular-like, and medial entorhinal-like comparable sectors in mouse and chicken, and point to the existence of mostly conserved molecular networks involved in hippocampal complex development. Notably, while the mouse medial entorhinal cortex derives from the medial pallium (similarly to the hippocampal formation, both being involved in spatial navigation and spatial memory), the lateral entorhinal cortex (involved in processing non-spatial, contextual information) appears to derive from a distinct dorsolateral caudal pallial sector.
Collapse
Affiliation(s)
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Institute of Biomedical Research of Lleida, University of LleidaLleida, Spain
| |
Collapse
|
36
|
Radial Glia, the Keystone of the Development of the Hippocampal Dentate Gyrus. Mol Neurobiol 2014; 51:131-41. [DOI: 10.1007/s12035-014-8692-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
|
37
|
WANG XI, HE CHAO, HU XIAOTONG. LIM homeobox transcription factors, a novel subfamily which plays an important role in cancer (Review). Oncol Rep 2014; 31:1975-85. [DOI: 10.3892/or.2014.3112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 03/13/2014] [Indexed: 11/06/2022] Open
|
38
|
Abstract
LIM homeodomain transcription factors are critical regulators of early development in multiple systems but have yet to be examined for a role in circuit formation. The LIM homeobox gene Lhx2 is expressed in cortical progenitors during development and also in the superficial layers of the neocortex in maturity. However, analysis of Lhx2 function at later stages of cortical development has been hampered by severe phenotypes associated with early loss of function. We identified a particular Cre-recombinase line that acts in the cortical primordium after its specification is complete, permitting an analysis of Lhx2 function in neocortical lamination, regionalization, and circuit formation by selective elimination of Lhx2 in the dorsal telencephalon. We report a profound disruption of cortical neuroanatomical and molecular features upon loss of Lhx2 in the cortex from embryonic day 11.5. A unique feature of cortical circuitry, the somatosensory barrels, is undetectable, and molecular patterning of cortical regions appears disrupted. Surprisingly, thalamocortical afferents innervate the mutant cortex with apparently normal regional specificity. Electrophysiological recordings reveal a loss of responses evoked by stimulation of individual whiskers, but responses to simultaneous stimulation of multiple whiskers were present, suggesting that thalamic afferents are unable to organize the neurocircuitry for barrel formation because of a cortex-specific requirement of Lhx2. We report that Lhx2 is required for the expression of transcription factor paired box gene 6, axon guidance molecule Ephrin A5, and the receptor NMDA receptor 1. These genes may mediate Lhx2 function in the formation of specialized neurocircuitry necessary for neocortical function.
Collapse
|
39
|
Livigni A, Peradziryi H, Sharov AA, Chia G, Hammachi F, Migueles RP, Sukparangsi W, Pernagallo S, Bradley M, Nichols J, Ko MSH, Brickman JM. A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. Curr Biol 2013; 23:2233-2244. [PMID: 24210613 PMCID: PMC4228055 DOI: 10.1016/j.cub.2013.09.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 08/19/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022]
Abstract
BACKGROUND The class V POU domain transcription factor Oct4 (Pou5f1) is a pivotal regulator of embryonic stem cell (ESC) self-renewal and reprogramming of somatic cells to induced pluripotent stem (iPS) cells. Oct4 is also an important evolutionarily conserved regulator of progenitor cell differentiation during embryonic development. RESULTS Here we examine the function of Oct4 homologs in Xenopus embryos and compare this to the role of Oct4 in maintaining mammalian embryo-derived stem cells. Based on a combination of expression profiling of Oct4/POUV-depleted Xenopus embryos and in silico analysis of existing mammalian Oct4 target data sets, we defined a set of evolutionary-conserved Oct4/POUV targets. Most of these targets were regulators of cell adhesion. This is consistent with Oct4/POUV phenotypes observed in the adherens junctions in Xenopus ectoderm, mouse embryonic, and epiblast stem cells. A number of these targets could rescue both Oct4/POUV phenotypes in cellular adhesion and multipotent progenitor cell maintenance, whereas expression of cadherins on their own could only transiently support adhesion and block differentiation in both ESC and Xenopus embryos. CONCLUSIONS Currently, the list of Oct4 transcriptional targets contains thousands of genes. Using evolutionary conservation, we identified a core set of functionally relevant factors that linked the maintenance of adhesion to Oct4/POUV. We found that the regulation of adhesion by the Oct4/POUV network occurred at both transcriptional and posttranslational levels and was required for pluripotency.
Collapse
Affiliation(s)
- Alessandra Livigni
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hanna Peradziryi
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark
| | - Alexei A Sharov
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloryn Chia
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Fella Hammachi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Woranop Sukparangsi
- The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark
| | - Salvatore Pernagallo
- School of Chemistry, Joseph Black Building, King's Buildings, the University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Mark Bradley
- School of Chemistry, Joseph Black Building, King's Buildings, the University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | - Jennifer Nichols
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Minoru S H Ko
- Laboratory of Genetics, National Institute on Aging, NIH Biomedical Research Centre, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; Department of Systems Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160, Japan
| | - Joshua M Brickman
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, 5 Little France Drive, University of Edinburgh, Edinburgh EH16 4UU, UK; The Danish Stem Cell Centre (DanStem), University of Copenhagen, 3B Blegdamsvej, 2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Lakhina V, Subramanian L, Huilgol D, Shetty AS, Vaidya VA, Tole S. Seizure evoked regulation of LIM-HD genes and co-factors in the postnatal and adult hippocampus. F1000Res 2013; 2:205. [PMID: 25110573 PMCID: PMC4111125 DOI: 10.12688/f1000research.2-205.v1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2013] [Indexed: 12/03/2022] Open
Abstract
The LIM-homeodomain (LIM-HD) family of transcription factors is well known for its functions during several developmental processes including cell fate specification, cell migration and axon guidance, and its members play fundamental roles in hippocampal development. The hippocampus is a structure that displays striking activity dependent plasticity. We examined whether LIM-HD genes and their co-factors are regulated during kainic acid induced seizure in the adult rat hippocampus as well as in early postnatal rats, when the hippocampal circuitry is not fully developed. We report a distinct and field-specific regulation of LIM-HD genes
Lhx1,Lhx2, and
Lhx9, LIM-only gene
Lmo4, and cofactor
Clim1a in the adult hippocampus after seizure induction. In contrast none of these genes displayed altered levels upon induction of seizure in postnatal animals. Our results provide evidence of temporal and spatial seizure mediated regulation of LIM-HD family members and suggest that LIM-HD gene function may be involved in activity dependent plasticity in the adult hippocampus
Collapse
Affiliation(s)
- Vanisha Lakhina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Lewis Sigler Institute for Integrative Genomics, Princeton University, NJ, USA
| | - Lakshmi Subramanian
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Department of Neurology, University of California, San Francisco, CA, USA
| | - Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India ; Current affiliation: Cold Spring Harbor Laboratory, NY, USA
| | - Ashwin S Shetty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| |
Collapse
|
41
|
Inoue J, Ueda Y, Bando T, Mito T, Noji S, Ohuchi H. The expression of LIM-homeobox genes,Lhx1andLhx5,in the forebrain is essential for neural retina differentiation. Dev Growth Differ 2013; 55:668-75. [DOI: 10.1111/dgd.12074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 07/22/2013] [Accepted: 07/22/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Junji Inoue
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Yuuki Ueda
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Tetsuya Bando
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| | - Taro Mito
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Sumihare Noji
- Department of Life Systems; Institute of Technology and Science; The University of Tokushima Graduate School; 2-1 Minami-Josanjima-cho; Tokushima; 770-8506; Japan
| | - Hideyo Ohuchi
- Department of Cytology and Histology; Okayama University Graduate School of Medicine; Dentistry and Pharmaceutical Sciences; 2-5-1 Shikata-cho; Okayama; 700-8558; Japan
| |
Collapse
|
42
|
Winchell CJ, Jacobs DK. Expression of the Lhx genes apterous and lim1 in an errant polychaete: implications for bilaterian appendage evolution, neural development, and muscle diversification. EvoDevo 2013; 4:4. [PMID: 23369627 PMCID: PMC3579752 DOI: 10.1186/2041-9139-4-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 12/03/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Arthropod and vertebrate appendages appear to have evolved via parallel co-option of a plesiomorphic gene regulatory network. Our previous work implies that annelids evolved unrelated appendage-forming mechanisms; we therefore found no support for homology of parapodia and arthropodia at the level of the whole appendage. We expand on that study here by asking whether expression of the LIM homeobox (Lhx) genes apterous and lim1 in the annelid Neanthes arenaceodentata supports homology of the dorsal branches as well as the proximodistal axes of parapodia and arthropodia. In addition, we explore whether the neural expression of apterous and lim1 in Neanthes supports the putative ancestral function of the Lhx gene family in regulating the differentiation and maintenance of neuronal subtypes. RESULTS Both genes exhibit continuous expression in specific portions of the developing central nervous system, from hatching to at least the 13-chaetiger stage. For example, nerve cord expression occurs in segmentally iterated patterns consisting of diffuse sets of many lim1-positive cells and comparatively fewer, clustered pairs of apterous-positive cells. Additionally, continuous apterous expression is observed in presumed neurosecretory ganglia of the posterior brain, while lim1 is continuously expressed in stomatogastric ganglia of the anterior brain. apterous is also expressed in the jaw sacs, dorsal parapodial muscles, and a presumed pair of cephalic sensory organs, whereas lim1 is expressed in multiple pharyngeal ganglia, the segmental peripheral nervous system, neuropodial chaetal sac muscles, and parapodial ligules. CONCLUSIONS The early and persistent nervous system expression of apterous and lim1 in Neanthes juveniles supports conservation of Lhx function in bilaterian neural differentiation and maintenance. Our results also suggest that diversification of parapodial muscle precursors involves a complementary LIM code similar to those generating distinct neuronal identities in fly and mouse nerve cords. Expression of apterous and lim1 in discrete components of developing parapodia is intriguing but does not map to comparable expression of these genes in developing arthropod appendages. Thus, annelid and arthropod appendage development apparently evolved, in part, via distinct co-option of the neuronal regulatory architecture. These divergent patterns of apterous and lim1 activity seemingly reflect de novo origins of parapodia and arthropodia, although we discuss alternative hypotheses.
Collapse
Affiliation(s)
- Christopher J Winchell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095-1606, USA
- Present address: Department of Molecular and Cell Biology, University of California, Berkeley, 515 LSA #3200, Berkeley, CA 94720-3200, USA
| | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 621 Charles E Young Drive South, Los Angeles, CA 90095-1606, USA
| |
Collapse
|
43
|
Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream. Nat Neurosci 2013; 16:157-65. [PMID: 23292680 DOI: 10.1038/nn.3297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 12/05/2012] [Indexed: 11/09/2022]
Abstract
The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution.
Collapse
|
44
|
Waite MR, Skidmore JM, Micucci JA, Shiratori H, Hamada H, Martin JF, Martin DM. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Mol Cell Neurosci 2013; 52:128-39. [PMID: 23147109 PMCID: PMC3540135 DOI: 10.1016/j.mcn.2012.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/01/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Suzuki IK, Hirata T. Neocortical neurogenesis is not really “neo”: A new evolutionary model derived from a comparative study of chick pallial development. Dev Growth Differ 2012; 55:173-87. [DOI: 10.1111/dgd.12020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ikuo K. Suzuki
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| | - Tatsumi Hirata
- Division of Brain Function; National Institute of Genetics; Graduate University for Advanced Studies (Sokendai); Yata 1111; Mishima; 411-8540; Japan
| |
Collapse
|
46
|
Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 2012; 219:35-47. [PMID: 23160833 DOI: 10.1007/s00429-012-0482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a(dr-J)) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.
Collapse
|
47
|
Kawaue T, Okamoto M, Matsuyo A, Inoue J, Ueda Y, Tomonari S, Noji S, Ohuchi H. Lhx1 in the proximal region of the optic vesicle permits neural retina development in the chicken. Biol Open 2012; 1:1083-93. [PMID: 23213388 PMCID: PMC3507191 DOI: 10.1242/bio.20121396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/17/2012] [Indexed: 11/25/2022] Open
Abstract
How the eye forms has been one of the fundamental issues in developmental biology. The retinal anlage first appears as the optic vesicle (OV) evaginating from the forebrain. Subsequently, its distal portion invaginates to form the two-walled optic cup, which develops into the outer pigmented and inner neurosensory layers of the retina. Recent work has shown that this optic-cup morphogenesis proceeds as a self-organizing activity without any extrinsic molecules. However, intrinsic factors that regulate this process have not been elucidated. Here we show that a LIM-homeobox gene, Lhx1, normally expressed in the proximal region of the nascent OV, induces a second neurosensory retina formation from the outer pigmented retina when overexpressed in the chicken OV. Lhx2, another LIM-homeobox gene supposed to be involved in early OV formation, could not substitute this function of Lhx1, while Lhx5, closely related to Lhx1, could replace it. Conversely, knockdown of Lhx1 expression by RNA interference resulted in the formation of a small or pigmented vesicle. These results suggest that the proximal region demarcated by Lhx1 expression permits OV development, eventually dividing the two retinal domains.
Collapse
Affiliation(s)
- Takumi Kawaue
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima Graduate School , 2-1 Minami-Josanjima-cho, Tokushima 770-8506 , Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Simmons DK, Pang K, Martindale MQ. Lim homeobox genes in the Ctenophore Mnemiopsis leidyi: the evolution of neural cell type specification. EvoDevo 2012; 3:2. [PMID: 22239757 PMCID: PMC3283466 DOI: 10.1186/2041-9139-3-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nervous systems are thought to be important to the evolutionary success and diversification of metazoans, yet little is known about the origin of simple nervous systems at the base of the animal tree. Recent data suggest that ctenophores, a group of macroscopic pelagic marine invertebrates, are the most ancient group of animals that possess a definitive nervous system consisting of a distributed nerve net and an apical statocyst. This study reports on details of the evolution of the neural cell type specifying transcription factor family of LIM homeobox containing genes (Lhx), which have highly conserved functions in neural specification in bilaterian animals. RESULTS Using next generation sequencing, the first draft of the genome of the ctenophore Mnemiopsis leidyi has been generated. The Lhx genes in all animals are represented by seven subfamilies (Lhx1/5, Lhx3/4, Lmx, Islet, Lhx2/9, Lhx6/8, and LMO) of which four were found to be represented in the ctenophore lineage (Lhx1/5, Lhx3/4, Lmx, and Islet). Interestingly, the ctenophore Lhx gene complement is more similar to the sponge complement (sponges do not possess neurons) than to either the cnidarian-bilaterian or placozoan Lhx complements. Using whole mount in situ hybridization, the Lhx gene expression patterns were examined and found to be expressed around the blastopore and in cells that give rise to the apical organ and putative neural sensory cells. CONCLUSION This research gives us a first look at neural cell type specification in the ctenophore M. leidyi. Within M. leidyi, Lhx genes are expressed in overlapping domains within proposed neural cellular and sensory cell territories. These data suggest that Lhx genes likely played a conserved role in the patterning of sensory cells in the ancestor of sponges and ctenophores, and may provide a link to the expression of Lhx orthologs in sponge larval photoreceptive cells. Lhx genes were later co-opted into patterning more diversified complements of neural and non-neural cell types in later evolving animals.
Collapse
Affiliation(s)
- David K Simmons
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| | - Kevin Pang
- Sars, International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Department of Zoology, University of Hawaii at Manoa, Honolulu, HI, USA, 96813
| |
Collapse
|
49
|
Li Q, Bian S, Hong J, Kawase-Koga Y, Zhu E, Zheng Y, Yang L, Sun T. Timing specific requirement of microRNA function is essential for embryonic and postnatal hippocampal development. PLoS One 2011; 6:e26000. [PMID: 21991391 PMCID: PMC3186801 DOI: 10.1371/journal.pone.0026000] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022] Open
Abstract
The adult hippocampus consists of the dentate gyrus (DG) and the CA1, CA2 and CA3 regions and is essential for learning and memory functions. During embryonic development, hippocampal neurons are derived from hippocampal neuroepithelial cells and dentate granular progenitors. The molecular mechanisms that control hippocampal progenitor proliferation and differentiation are not well understood. Here we show that noncoding microRNAs (miRNAs) are essential for early hippocampal development in mice. Conditionally ablating the RNAase III enzyme Dicer at different embryonic time points utilizing three Cre mouse lines causes abnormal hippocampal morphology and affects the number of hippocampal progenitors due to altered proliferation and increased apoptosis. Lack of miRNAs at earlier stages causes early differentiation of hippocampal neurons, in particular in the CA1 and DG regions. Lack of miRNAs at a later stage specifically affects neuronal production in the CA3 region. Our results reveal a timing requirement of miRNAs for the formation of specific hippocampal regions, with the CA1 and DG developmentally hindered by an early loss of miRNAs and the CA3 region to a late loss of miRNAs. Collectively, our studies indicate the importance of the Dicer-mediated miRNA pathway in hippocampal development and functions.
Collapse
Affiliation(s)
- Qingsong Li
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York, United States of America
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Shan Bian
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Janet Hong
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York, United States of America
| | - Yoko Kawase-Koga
- Department of Oral and Maxillofacial Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Edwin Zhu
- Department of Biology, New York University, New York, New York, United States of America
| | - Yongri Zheng
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Lizhuang Yang
- The 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Sun
- Department of Cell and Developmental Biology, Weill Medical College, Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
50
|
Nicoleau C, Viegas P, Peschanski M, Perrier AL. Human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges. Neurotherapeutics 2011; 8:562-76. [PMID: 21976138 PMCID: PMC3250302 DOI: 10.1007/s13311-011-0079-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra-striatal transplantation of homotypic fetal tissue at the time of peak striatal neurogenesis can provide some functional benefit to patients suffering from Huntington's disease. Currently, the only approach shown to slow down the course of this condition is replacement of the neurons primarily targeted in this disorder, although it has been transient and has only worked with a limited number of patients. Otherwise, this dominantly inherited neurodegenerative disease inevitably results in the progressive decline of motricity, cognition, and behavior, and leads to death within 15 to 20 years of onset. However, fetal neural cell therapy of Huntington's disease, as with a similar approach in Parkinson's disease, is marred with both technical and biological hurdles related to the source of grafting material. This heavily restricts the number of patients who can be treated. A substitute cell source is therefore needed, but must perform at least as well as fetal neural graft in terms of brain recovery and reconstruction, while overcoming its major obstacles. Human pluripotent stem cells (embryonic in origin or induced from adult cells through genetic reprogramming) have the potential to meet those challenges. In this review, the therapeutic potential in view of 4 major issues is identified during fetal cell therapy clinical trials: 1) logistics of graft procurement, 2) quality control of the cell preparation, 3) immunogenicity of the graft, and 4) safety of the procedure.
Collapse
Affiliation(s)
- Camille Nicoleau
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Pedro Viegas
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Marc Peschanski
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| | - Anselme L. Perrier
- INSERM U861, I-STEM, AFM, Evry Cedex, 91030 France
- UEVE U861, I-STEM, AFM, Evry Cedex, 91030 France
| |
Collapse
|