1
|
Qiu H, Wu F, Yuan J, Feng W, Qiu X. Oxygen vacancies in piezo-photocatalysts: synthesis, characterization, effect mechanism and application. Phys Chem Chem Phys 2025; 27:9304-9328. [PMID: 40266274 DOI: 10.1039/d5cp00616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The escalating consumption of fossil fuels and the worsening of environmental pollution have rendered the advancement of sustainable clean energy conversion technologies an urgent priority. Piezo-photocatalytic technology, which integrates piezoelectric and photoexcited properties, provides an efficient means of converting chemical energy by utilizing mechanical and solar energy. Oxygen vacancies (OVs), as a critical type of defect structure, play a significant role in enhancing piezo-photocatalytic performance by modifying the band structure, improving polarization effects, and providing additional active sites. This review comprehensively examines the formation methods and characterization techniques of OVs, alongside their mechanistic roles in piezo-photocatalytic technology. We discuss how OVs influence the band structure, dipole moments, and local electronic configurations. Furthermore, we summarize the applications of OVs in various fields, including water pollution degradation, hydrogen production, nitrogen fixation, and CO2 reduction. Finally, we outline future research directions for OVs, focusing on precise synthesis methods, the development of novel piezoelectric materials, enhancement of stability, and the investigation of interactions between OVs and other local structures. We hope that this review will provide valuable insights for the continued development and application of OVs in piezo-photocatalysis.
Collapse
Affiliation(s)
- Huaibao Qiu
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, 98 Hongshan Road, Changsha, 410022, P. R. China.
| | - Fan Wu
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, 98 Hongshan Road, Changsha, 410022, P. R. China.
| | - Jie Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350116, P. R. China
| | - Wenhui Feng
- Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, 98 Hongshan Road, Changsha, 410022, P. R. China.
| | - Xiaoqing Qiu
- College of Chemistry and Chemical Engineering, Central South University, 932 Lushan South Road, Changsha, 410083, P. R. China.
| |
Collapse
|
2
|
Li W, Chen D, Lou Z, Yuan H, Fu X, Lin HY, Lin M, Hou Y, Qi H, Liu PF, Yang HG, Wang H. Inhibiting Overoxidation of Dynamically Evolved RuO 2 to Achieve a Win-Win in Activity-Stability for Acidic Water Electrolysis. J Am Chem Soc 2025; 147:10446-10458. [PMID: 40018804 DOI: 10.1021/jacs.4c18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Proton exchange membrane (PEM) water electrolysis offers an efficient route to large-scale green hydrogen production, in which the RuO2 catalyst exhibits superior activity but limited stability. Unveiling the atomic-scale structural evolution during operando reaction conditions is critical but remains a grand challenge for enhancing the durability of the RuO2 catalyst in the acidic oxygen evolution reaction (a-OER). This study proposes an adaptive machine learning workflow to elucidate the potential-dependent state-to-state global evolution of the RuO2(110) surface within a complex composition and configuration space, revealing the correlation between structural patterns and stability. We identify the active state with distorted RuO5 units that self-evolve at low potential, which exhibits minor Ru dissolution and an activity self-promotion phenomenon. However, this state exhibits a low potential resistance capacity (PRC) and evolves into inert RuO4 units at elevated potential. To enhance PRC and mitigate the overevolution of the active state, we explore the metal doping engineering and uncover an inverse volcano-type doping rule: the doped metal-oxygen bond strength should significantly differ from the Ru-O bond. This rule provides a theoretical framework for designing stable RuO2-based catalysts and clarifies current discrepancies regarding the roles of different metals in stabilizing RuO2. Applying this rule, we predict and confirm experimentally that Na can effectively stabilize RuO2 in its active state. The synthesized Na-RuO2 operates in a-OER for over 1800 h without any degradation and enables long-term durability in PEM electrolysis. This work enhances our understanding of the operando structural evolution of RuO2 and aids in designing durable catalysts for a-OER.
Collapse
Affiliation(s)
- Wenjing Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dingming Chen
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenxin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaopeng Fu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Miaoyu Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Hou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Qi
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Translational Research Hub, Cardiff University, Maindy Road, Cardiff CF24 4HQ, U.K
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haifeng Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Center for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Zhou D, Chang Y, Tang J, Ou P. Mn 0.75Ru 0.25O 2 with Low Ru Concentration for Active and Durable Acidic Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412265. [PMID: 39955718 DOI: 10.1002/smll.202412265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Ruthenium has emerged as a promising alternative to iridium in water-splitting anodes. However, it becomes overoxidized and dissolves at industry-relevant working conditions. To enhance the activity and stability of electrocatalysts for oxygen evolution reaction, an isostructural rutile MnRu oxide with low Ru concentration (Mn0.75Ru0.25O2) is synthesized and an asymmetric Mn-O-Ru dual-site active center is developed. It exhibits 154 mV overpotential at 10 mA cm-2 and can operate stably at 200 mA cm-2 for 670 h with a degradation rate of 29 uV/h-1. A proton exchange membrane water electrolyzer achieves stable operation at 1 A cm-2 for 700 h with a degradation rate of 53 uV h-1. Structural analysis and isotopic labeling correlate the asymmetric nature of the Mn-O-Ru dual-site active center, which facilitates the oxygen evolution reaction along the radical coupling pathway, with the stabilization of the cations and the lattice oxygen in isostructural rutile Mn0.75Ru0.25O2.
Collapse
Affiliation(s)
- Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuxin Chang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario, M5S 1A4, Canada
| | - Jialun Tang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Pengfei Ou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Fairhurst A, Snyder J, Wang C, Strmcnik D, Stamenkovic VR. Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces. Chem Rev 2025; 125:1332-1419. [PMID: 39873431 PMCID: PMC11826915 DOI: 10.1021/acs.chemrev.4c00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/30/2025]
Abstract
The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena. To make significant strides in materials design, a structured approach based on well-defined surfaces is necessary to selectively control distinct parameters, while complexity is added sequentially through careful application of nanostructured surfaces. In this review, we cover advances made through this approach for key elements in the field, beginning with the simplest hydrogen oxidation and evolution reactions and concluding with more complex organic molecules. In each case, we offer a unique perspective on the contribution of well-defined systems to our understanding of electrochemical energy conversion technologies and how wider deployment can aid intelligent materials design.
Collapse
Affiliation(s)
- Alasdair
R. Fairhurst
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
| | - Joshua Snyder
- Department
of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chao Wang
- Department
of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 United States
| | - Dusan Strmcnik
- National
Institute of Chemistry, SI-1000, Ljubljana, Slovenia
| | - Vojislav R. Stamenkovic
- Department
of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States
- HORIBA
Institute for Mobility and Connectivity, University of California, Irvine, California 92697, United States
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
5
|
Iwanek (nee Wilczkowska) EM, Liotta LF, Pantaleo G, Hu L, Williams S, Kirk DW, Kaszkur Z. Active Probing of a RuO 2/CZ Catalyst Surface as a Tool for Bridging the Gap Between CO Oxidation Catalytic Tests in a Model and Realistic Exhaust Gas Stream. ACS MATERIALS AU 2024; 4:643-653. [PMID: 39554856 PMCID: PMC11565278 DOI: 10.1021/acsmaterialsau.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 11/19/2024]
Abstract
Herein, we present a paper that attempts to bridge the gap between CO oxidation catalytic tests performed in a model stream and a more realistic exhaust gas stream by incorporating characterization methods that allow for active probing of the catalyst surface. The results have shown that it is not just the abundance of a given type of species on the surface that impacts the activity of a system but also the ease of extraction of ions from their surface (time-of-flight secondary ion mass spectrometry) and the response of the support to change in the feed composition (dynamic in situ X-ray diffraction (XRD) with variable atmosphere). The study utilizes the method of doping a catalyst (RuO2/CZ) with a small amount of alkali-metal (K+ or Na+) carbonates in order to slightly modify its surface to gain insight into parameters that may cause discrepancies between model stream activity and complex stream activity. The most pronounced difference is that in the model stream, which contains only CO and O2 in helium, both alkali ions improve the activity of the system at temperatures around 175 °C, whereas in the complex stream, which mimics the exhaust stream from a diesel engine under oxygen lean conditions, the K+-doped catalyst is slightly worse than RuO2 /CZ and RuO2 + Na+/CZ and much worse in propane combustion. The total hydrogen consumption values (temperature-programmed reduction) and the Oads/Olatt ratios (X-ray photoelectron spectroscopy) both place the RuO2 + K+/CZ system between the other two and hence provided no reason for the unusual behavior of the K+-doped catalyst. In contrast, both in situ XRD measurement tests and ToF SIMS results show a pronounced difference between the RuO2 + K+/CZ catalyst and the other two systems, which indicates that the interaction of the surfaces with the reagents might be the cause of the discrepancy. The CO2-TPD results show that this system retains more CO2, i.e., the product, at adsorption sites, which might reduce the adsorption of other reagents, i.e., oxygen ions, CO, and propane, hence lowering the overall activity of the system.
Collapse
Affiliation(s)
| | | | - Giuseppe Pantaleo
- Istituto
per lo Studio di Materiali Nanostrutturati (ISMN)-CNR, Palermo I-90146, Italy
| | - Linje Hu
- DCL
International Inc., Concord, Ontario L4K 4T5, Canada
| | | | - Donald. W. Kirk
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, Ontario M5S3E5, Canada
| | - Zbigniew Kaszkur
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Shao W, Zhang Y, Zhou Z, Li N, Jiao F, Ling Y, Li Y, Zhou Z, Cao Y, Liu Z, Pan X, Fu Q, Wöll C, Liu P, Bao X, Yang F. Dynamic control and quantification of active sites on ceria for CO activation and hydrogenation. Nat Commun 2024; 15:9620. [PMID: 39511175 PMCID: PMC11544136 DOI: 10.1038/s41467-024-53948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Ceria (CeO2) is a widely used oxide catalyst, yet the nature of its active sites remains elusive. This study combines model and powder catalyst studies to elucidate the structure-activity relationships in ceria-catalyzed CO activation and hydrogenation. Well-defined ceria clusters are synthesized on planar CeO2(111) and exhibit dynamic and tunable ranges of Ce coordination numbers, which enhance their interaction with CO. Reduced ceria clusters (e.g., Ce3O3) bind CO strongly and facilitate its dissociation, while near-stoichiometric clusters (e.g., Ce3O7) adsorb CO weakly and promote oxidation via carbonate formation. Unlike planar ceria surfaces, supported ceria clusters exhibit dynamic properties and enhanced catalytic activity, that mimic those of powder ceria catalysts. Insight from model studies provide a method to quantify active sites on powder ceria and guide further optimization of ceria catalysts for syngas conversion. This work marks a leap toward model-guided catalyst design and highlights the importance of site-specific catalysis.
Collapse
Affiliation(s)
- Weipeng Shao
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China
| | - Yi Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Zhiwen Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Na Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Feng Jiao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Yunjian Ling
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Yangsheng Li
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Zeyu Zhou
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China
| | - Yunjun Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Zhi Liu
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China
| | - Xiulian Pan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ping Liu
- Chemistry Division, Brookhaven National Laboratory, Upton, New York, US
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China
| | - Fan Yang
- School of Physical Science and Technology, Center for Transformative Science, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Dalian, China.
| |
Collapse
|
7
|
Zhu B, Huang W, Lin H, Feng H, Palotás K, Lv J, Ren Y, Ouyang R, Yang F. Vacancy Ordering in Ultrathin Copper Oxide Films on Cu(111). J Am Chem Soc 2024; 146:15887-15896. [PMID: 38825776 DOI: 10.1021/jacs.4c02424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Oxide thin films grown on metal surfaces have wide applications in catalysis and beyond owing to their unique surface structures compared to their bulk counterparts. Despite extensive studies, the atomic structures of copper surface oxides on Cu(111), commonly referred to as "44" and "29", have remained elusive. In this work, we demonstrated an approach for the structural determination of oxide surfaces using element-specific scanning tunneling microscopy (STM) imaging enhanced by functionalized tips. This approach enabled us to resolve the atomic structures of "44" and "29" surface oxides, which were further corroborated by noncontact atomic force microscopy (nc-AFM) measurements and Monte Carlo (MC) simulations. The stoichiometry of the "44" and "29" frameworks was identified as Cu23O16 and Cu16O11, respectively. Contrary to the conventional hypothesis, we observed ordered Cu vacancies within the "44" structure manifesting as peanut-shaped cavities in the hexagonal lattice. Similarly, a combination of Cu and O vacancies within the "29" structure leads to bean-shaped cavities within the pentagonal lattice. Our study has thus resolved the decades-long controversy on the atomic structures of "44" and "29" surface oxides, advancing our understanding of copper oxidation processes and introducing a robust framework for the analysis of complex oxide surfaces.
Collapse
Affiliation(s)
- Bowen Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wugen Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Hao Feng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - Jiayu Lv
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihui Ren
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Runhai Ouyang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Fan Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Bai Z, Jiang XZ, Luo KH. Effects of Electric Field on Chemical Looping Combustion: A DFT Study of CO Oxidation on CuO (111) Surface. ACS OMEGA 2024; 9:21082-21088. [PMID: 38764663 PMCID: PMC11097354 DOI: 10.1021/acsomega.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Chemical looping combustion (CLC) is a promising and novel technology for carbon dioxide (CO2) capture with a relatively low energy consumption and cost. CuO, one of the most attractive oxygen carriers (OCs) for carbon dioxide (CO) oxidation, suffers from sintering and agglomeration during the reduction process. Applying an electric field (EF) may promote the CO oxidation process on the CuO surface, which could mitigate sintering and agglomeration by decreasing operating temperatures with negligible combustion efficiency loss. This study performs density functional theory (DFT) simulations to investigate the effects of EF on the oxidation of CO on the CuO (111) surface. The results indicate that both the orientation and strength of the EF can significantly affect the oxidation characteristics of CO on the CuO (111) surface such as total reaction energy, energy barriers of reactions, CO adsorption, and CO2 desorption. For the first time, this study reveals the role of EF in enhancing CO oxidation through CLC processes via first-principle calculations. Such findings could provide new strategies to improve the performance of CLC processes.
Collapse
Affiliation(s)
- Zhongze Bai
- Department
of Mechanical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Xi Zhuo Jiang
- School
of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819, P. R. China
| | - Kai H. Luo
- Department
of Mechanical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
9
|
Noordhoek K, Bartel CJ. Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials. NANOSCALE 2024. [PMID: 38470833 DOI: 10.1039/d3nr06468a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The surface properties of solid-state materials often dictate their functionality, especially for applications where nanoscale effects become important. The relevant surface(s) and their properties are determined, in large part, by the material's synthesis or operating conditions. These conditions dictate thermodynamic driving forces and kinetic rates responsible for yielding the observed surface structure and morphology. Computational surface science methods have long been applied to connect thermochemical conditions to surface phase stability, particularly in the heterogeneous catalysis and thin film growth communities. This review provides a brief introduction to first-principles approaches to compute surface phase diagrams before introducing emerging data-driven approaches. The remainder of the review focuses on the application of machine learning, predominantly in the form of learned interatomic potentials, to study complex surfaces. As machine learning algorithms and large datasets on which to train them become more commonplace in materials science, computational methods are poised to become even more predictive and powerful for modeling the complexities of inorganic surfaces at the nanoscale.
Collapse
Affiliation(s)
- Kyle Noordhoek
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christopher J Bartel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
Rezaei M, Nezamzadeh-Ejhieh A, Massah AR. A Comprehensive Review on the Boosted Effects of Anion Vacancy in the Heterogeneous Photocatalytic Degradation, Part II: Focus on Oxygen Vacancy. ACS OMEGA 2024; 9:6093-6127. [PMID: 38371849 PMCID: PMC10870278 DOI: 10.1021/acsomega.3c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/20/2024]
Abstract
Environmental problems, including the increasingly polluted water and the energy crisis, have led to a need to propose novel strategies/methodologies to contribute to sustainable progress and enhance human well-being. For these goals, heterogeneous semiconducting-based photocatalysis is introduced as a green, eco-friendly, cost-effective, and effective strategy. The introduction of anion vacancies in semiconductors has been well-known as an effective strategy for considerably enhancing the photocatalytic activity of such photocatalytic systems, giving them the advantages of promoting light harvesting, facilitating photogenerated electron-hole pair separation, optimizing the electronic structure, and enhancing the yield of reactive radicals. This Review will introduce the effects of anion vacancy-dominated photodegradation systems. Then, their mechanism will illustrate how an anion vacancy changes the photodegradation pathway to enhance the degradation efficiency toward pollutants and the overall photocatalytic performance. Specifically, the vacancy defect types and the methods of tailoring vacancies will be briefly illustrated, and this part of the Review will focus on the oxygen vacancy (OV) and its recent advances. The challenges and development issues for engineered vacancy defects in photocatalysts will also be discussed for practical applications and to provide a promising research direction. Finally, some prospects for this emerging field will be proposed and suggested. All permission numbers for adopted figures from the literature are summarized in a separate file for the Editor.
Collapse
Affiliation(s)
- Mahdieh Rezaei
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
| | - Alireza Nezamzadeh-Ejhieh
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| | - Ahmad Reza Massah
- Department
of Chemistry, Shahreza Branch, Islamic Azad
University, P.O. Box 311-86145, Shahreza, Isfahan 86139-74183, Iran
- Department
of Chemistry, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Isfahan 81551-39998, Iran
| |
Collapse
|
11
|
Zhao JW, Wang HY, Feng L, Zhu JZ, Liu JX, Li WX. Crystal-Phase Engineering in Heterogeneous Catalysis. Chem Rev 2024; 124:164-209. [PMID: 38044580 DOI: 10.1021/acs.chemrev.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The performance of a chemical reaction is critically dependent on the electronic and/or geometric structures of a material in heterogeneous catalysis. Over the past century, the Sabatier principle has already provided a conceptual framework for optimal catalyst design by adjusting the electronic structure of the catalytic material via a change in composition. Beyond composition, it is essential to recognize that the geometric atomic structures of a catalyst, encompassing terraces, edges, steps, kinks, and corners, have a substantial impact on the activity and selectivity of a chemical reaction. Crystal-phase engineering has the capacity to bring about substantial alterations in the electronic and geometric configurations of a catalyst, enabling control over coordination numbers, morphological features, and the arrangement of surface atoms. Modulating the crystallographic phase is therefore an important strategy for improving the stability, activity, and selectivity of catalytic materials. Nonetheless, a complete understanding of how the performance depends on the crystal phase of a catalyst remains elusive, primarily due to the absence of a molecular-level view of active sites across various crystal phases. In this review, we primarily focus on assessing the dependence of catalytic performance on crystal phases to elucidate the challenges and complexities inherent in heterogeneous catalysis, ultimately aiming for improved catalyst design.
Collapse
Affiliation(s)
- Jian-Wen Zhao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Yue Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Ze Zhu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin-Xun Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Wei-Xue Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, iChem, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
12
|
Liu Y, Lin L, Yu L, Mu R, Fu Q. Spatially Separated Active Sites Enable Selective CO Oxidation Reaction on Oxide Catalyst. J Phys Chem Lett 2023; 14:9780-9786. [PMID: 37882533 DOI: 10.1021/acs.jpclett.3c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The search for efficient non-noble-metal catalysts able to perform selective oxidation reactions is of great importance, with relevance to many catalytic processes. However, this is often hampered because the origin of the selectivity remains controversial, particularly for reactions catalyzed by oxides. Here, combining high-pressure surface imaging techniques and theoretical calculations, we identify that spatially separated active sites for O2 activation and H2 adsorption on an ultrathin Mn3O4 surface enable selective oxidation of CO over H2. Theoretical calculations reveal that Mn-O pairs for H2 dissociation are separated from Mn-Mn pairs for the formation of adsorbed O2* so that H2 has to surmount much higher barriers for both H2 dissociation and H diffusion while CO can directly react with O2* following the Eley-Rideal process. Our study sheds light on the atomic-level understanding of the surface structure-dependent selective oxidation reaction on oxide catalysts.
Collapse
Affiliation(s)
- Yijing Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liang Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
13
|
Zhang K, Wandall LH, Vernieres J, Kibsgaard J, Chorkendorff I. Ultra-high vacuum compatible reactor for model catalyst study of ammonia synthesis at ambient pressure. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:114102. [PMID: 37921521 DOI: 10.1063/5.0160459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023]
Abstract
A high sensitivity reactor was developed to study slow reactions, such as ammonia synthesis over low surface area model catalysts at 1 bar and up to 550 °C. The reactor is connected to an ultra-high vacuum system with a transferable sample design, which allows for cleaning, preparation, and spectroscopic characterization of samples before and after the reaction without exposure to any contaminated environment, such as air. A quasi-closed small volume (250 µl) quartz glass reaction cell is integrated through a capillary with a quartz glass sniffer tube connected to a mass spectrometer. The capillary reduces the 1 bar pressure in the cell to 10-7 mbar in the sniffer tube and mass spectrometer chamber. A quartz fiber-guided laser is used to heat up the sample, and the temperature can be regulated by the proportional-integral-derivative controlled laser power output for fast reaction kinetics research. Proof of principle ammonia synthesis experiments in this reactor at 1 bar, 350-500 °C on Fe(111) single crystal and mass-selected Ru clusters supported on CeO2 thin film yield kinetic parameters that agree very well to those reported in the literature.
Collapse
Affiliation(s)
- K Zhang
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - L H Wandall
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J Vernieres
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - J Kibsgaard
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - I Chorkendorff
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Jung G, Ju S, Choi K, Kim J, Hong S, Park J, Shin W, Jeong Y, Han S, Choi WY, Lee JH. Reconfigurable Manipulation of Oxygen Content on Metal Oxide Surfaces and Applications to Gas Sensing. ACS NANO 2023; 17:17790-17798. [PMID: 37611120 DOI: 10.1021/acsnano.3c03034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Oxygen vacancies and adsorbed oxygen species on metal oxide surfaces play important roles in various fields. However, existing methods for manipulating surface oxygen require severe settings and are ineffective for repetitive manipulation. We present a method to manipulate the amount of surface oxygen by modifying the oxygen adsorption energy by electrically controlling the electron concentration of the metal oxide. The surface oxygen control ability of the method is verified using first-principles calculations based on density functional theory (DFT), X-ray photoelectron spectroscopy (XPS), and electrical resistance analysis. The presented method is implemented by fabricating oxide thin film transistors with embedded microheaters. The method can reconfigure the oxygen vacancies on the In2O3, SnO2, and IGZO surfaces so that specific chemisorption dominates. The method can selectively increase oxidizing (e.g., NO and NO) and reducing gas (e.g., H2S, NH3, and CO) reactions by electrically controlling the metal oxide surface to be oxygen vacancy-rich or adsorbed oxygen species-rich. The proposed method is applied to gas sensors and overcomes their existing limitations. The method makes the sensor insensitive to one gas (e.g., H2S) in mixed-gas environments (e.g., NO2+H2S) and provides a linear response (R2 = 0.998) to the target gas (e.g., NO2) concentration within 3 s. We believe that the proposed method is applicable to applications utilizing metal oxide surfaces.
Collapse
Affiliation(s)
- Gyuweon Jung
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Suyeon Ju
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Kangwook Choi
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyeon Kim
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongbin Hong
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwoo Park
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonjun Shin
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Yujeong Jeong
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwu Han
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Young Choi
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Ho Lee
- Department of Electrical and Computer Engineering and Inter-university Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
- Ministry of Science and ICT, Sejong 30121, Republic of Korea
| |
Collapse
|
15
|
Yao Y, Wu J, Feng Q, Zeng K, Wan J, Zhang J, Mao B, Hu K, Chen L, Zhang H, Gong Y, Yang K, Zhou H, Huang Z, Li H. Spontaneous Internal Electric Field in Heterojunction Boosts Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Theory, Experiment, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302015. [PMID: 37222119 DOI: 10.1002/smll.202302015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Heterojunctions are a promising class of materials for high-efficiency bifunctional oxygen electrocatalysts in both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the conventional theories fail to explain why many catalysts behave differently in ORR and OER, despite a reversible path (* O2 ⇋* OOH⇋* O⇋* OH). This study proposes the electron-/hole-rich catalytic center theory (e/h-CCT) to supplement the existing theories, it suggests that the Fermi level of catalysts determines the direction of electron transfer, which affects the direction of the oxidation/reduction reaction, and the density of states (DOS) near the Fermi level determines the accessibility for injecting electrons and holes. Additionally, heterojunctions with different Fermi levels form electron-/hole-rich catalytic centers near the Fermi levels to promote ORR/OER, respectively. To verify the universality of the e/h-CCT theory, this study reveals the randomly synthesized heterostructural Fe3 N-FeN0.0324 (Fex N@PC with DFT calculations and electrochemical tests. The results show that the heterostructural F3 N-FeN0.0324 facilitates the catalytic activities for ORR and OER simultaneously by forming an internal electron-/hole-rich interface. The rechargeable ZABs with Fex N@PC cathode display a high open circuit potential of 1.504 V, high power density of 223.67 mW cm-2 , high specific capacity of 766.20 mAh g-1 at 5 mA cm-2 , and excellent stability for over 300 h.
Collapse
Affiliation(s)
- Yong Yao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jiexing Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qiaoxia Feng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kui Zeng
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Jing Wan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Jincan Zhang
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Boyang Mao
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| | - Kui Hu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Liming Chen
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hao Zhang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Yi Gong
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kai Yang
- Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Haihui Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhongyuan Huang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huanxin Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| |
Collapse
|
16
|
Liang Q, Brocks G, Bieberle-Hütter A. First-principles study of the magnetic exchange forces between the RuO 2 (110) surface and Fe tip. Chemphyschem 2023; 24:e202200429. [PMID: 36377406 DOI: 10.1002/cphc.202200429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/12/2022] [Indexed: 11/16/2022]
Abstract
Magnetic exchange force microscopy (MExFM) is an important experimental technique for mapping the magnetic structure of surfaces with atomic resolution relying on the spin-dependent short-range exchange interaction between a magnetic tip and a magnetic surface. RuO2 is a significant compound with applications in heterogeneous catalysis and electrocatalysis. It has been characterized recently as an antiferromagnetic (AFM) material, and its magnetism has been predicted somewhat surprisingly to play an important role in its catalytic properties. In the current study, we explore theoretically whether MExFM can visualize the magnetic surface structure of RuO2 . We use density functional theory (DFT) calculations to extract the exchange interactions between a ferromagnetic Fe tip interacting with an AFM RuO2 (110) surface, as a function of tip-surface distance and the position of the tip over the surface. Mimicking the MExFM experiment, these data are then used to calculate the normalized frequency shift of an oscillating cantilever tip versus the minimum tip-surface distance, and construct corrugation height line profiles. It is found that the exchange interaction between tip and surface is strongest for a parallel configuration of the spins of the tip and of the surface; it is weakest for an anti-parallel orientation. In a corrugation profile, this gives rise to a sizable height difference of 25 pm between the spin-up and spin-down Ru atoms in the RuO2 (110) surface at a normalized frequency shift γ ${\gamma }$ =-10.12 fNm1/2 . The O atoms in the surface are not or hardly visible in the corrugation profile.
Collapse
Affiliation(s)
- Qiuhua Liang
- Electrochemical Materials and Interfaces (EMI), Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ, Eindhoven, the, Netherlands.,Materials Simulation and Modeling (MSM), Department of Applied Physics, Eindhoven University Technology, P.O. Box 513, 5600MB, Eindhoven, the, Netherlands
| | - Geert Brocks
- Center for Computational Energy Research (CCER), P.O. Box 513, 5600 MB, Eindhoven, the, Netherlands.,Materials Simulation and Modeling (MSM), Department of Applied Physics, Eindhoven University Technology, P.O. Box 513, 5600MB, Eindhoven, the, Netherlands.,Computational Materials Science, Faculty of Science and Technology and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, the, Netherlands
| | - Anja Bieberle-Hütter
- Electrochemical Materials and Interfaces (EMI), Dutch Institute for Fundamental Energy Research (DIFFER), De Zaale 20, 5612 AJ, Eindhoven, the, Netherlands.,Center for Computational Energy Research (CCER), P.O. Box 513, 5600 MB, Eindhoven, the, Netherlands
| |
Collapse
|
17
|
Hess F, Over H. Coordination Inversion of the Tetrahedrally Coordinated Ru 4f Surface Complex on RuO 2(100) and Its Decisive Role in the Anodic Corrosion Process. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Franziska Hess
- Institute for Chemistry, Technical University Berlin, Straße des 17. Juni 124, D-10623 Berlin, Germany
| | - Herbert Over
- Institute of Physical Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
- Center for Materials Research, Justus Liebig University, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
| |
Collapse
|
18
|
Bui TS, Lovell EC, Daiyan R, Amal R. Defective Metal Oxides: Lessons from CO 2 RR and Applications in NO x RR. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2205814. [PMID: 36813733 DOI: 10.1002/adma.202205814] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/09/2023] [Indexed: 06/09/2023]
Abstract
Sluggish reaction kinetics and the undesired side reactions (hydrogen evolution reaction and self-reduction) are the main bottlenecks of electrochemical conversion reactions, such as the carbon dioxide and nitrate reduction reactions (CO2 RR and NO3 RR). To date, conventional strategies to overcome these challenges involve electronic structure modification and modulation of the charge-transfer behavior. Nonetheless, key aspects of surface modification, focused on boosting the intrinsic activity of active sites on the catalyst surface, are yet to be fully understood. Engingeering of oxygen vacancies (OVs) can tune surface/bulk electronic structure and improve surface active sites of electrocatalysts. The continuous breakthroughs and significant progress in the last decade position engineering of OVs as a potential technique for advancing electrocatalysis. Motivated by this, the state-of-the-art findings of the roles of OVs in both the CO2 RR and the NO3 RR are presented. The review starts with a description of approaches to constructing and techniques for characterizing OVs. This is followed by an overview of the mechanistic understanding of the CO2 RR and a detailed discussion on the roles of OVs in the CO2 RR. Then, insights into the NO3 RR mechanism and the potential of OVs on NO3 RR based on early findings are highlighted. Finally, the challenges in designing CO2 RR/NO3 RR electrocatalysts and perspectives in studying OV engineering are provided.
Collapse
Affiliation(s)
- Thanh Son Bui
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Emma C Lovell
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rahman Daiyan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
19
|
Qu W, Yuan H, Ren Z, Qi J, Xu D, Chen J, Chen L, Yang H, Ma Z, Liu X, Wang H, Tang X. An Atom-Pair Design Strategy for Optimizing the Synergistic Electron Effects of Catalytic Sites in NO Selective Reduction. Angew Chem Int Ed Engl 2022; 61:e202212703. [PMID: 36321806 DOI: 10.1002/anie.202212703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Indexed: 11/30/2022]
Abstract
Effective adsorption and speedy surface reactions are vital requirements for efficient active sites in catalysis, but it remains challenging to maximize these two functions simultaneously. We present a solution to this issue by designing a series of atom-pair catalytic sites with tunable electronic interactions. As a case study, NO selective reduction occurring on V1 -W1 /TiO2 is chosen. Experimental and theoretical results reveal that the synergistic electron effect present between the paired atoms enriches high-energy spin charge around the Fermi level, simultaneously rendering reactant (NH3 or O2 ) adsorption more effective and subsequent surface reactions speedier as compared with single V or W atom alone, and hence higher reaction rates. This strategy enables us to rationally design a high-performance V1 -Mo1 /TiO2 catalyst with optimized vanadium(IV)-molybdenum(V) electronic interactions, which has exceptional activity significantly higher than the commercial or reported catalysts.
Collapse
Affiliation(s)
- Weiye Qu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Haiyang Yuan
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhouhong Ren
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jizhen Qi
- i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China
| | - Dongrun Xu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Junxiao Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China
| | - Liwei Chen
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.,i-Lab, CAS Center for Excellence in Nanoscience Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huagui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xi Liu
- In situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Research Institute of Industrial Catalysis and Centre for Computational Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xingfu Tang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China.,Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
20
|
Small molecule binding to surface-supported single-site transition-metal reaction centres. Nat Commun 2022; 13:7407. [PMID: 36456555 PMCID: PMC9715722 DOI: 10.1038/s41467-022-35193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Despite dominating industrial processes, heterogeneous catalysts remain challenging to characterize and control. This is largely attributable to the diversity of potentially active sites at the catalyst-reactant interface and the complex behaviour that can arise from interactions between active sites. Surface-supported, single-site molecular catalysts aim to bring together benefits of both heterogeneous and homogeneous catalysts, offering easy separability while exploiting molecular design of reactivity, though the presence of a surface is likely to influence reaction mechanisms. Here, we use metal-organic coordination to build reactive Fe-terpyridine sites on the Ag(111) surface and study their activity towards CO and C2H4 gaseous reactants using low-temperature ultrahigh-vacuum scanning tunnelling microscopy, scanning tunnelling spectroscopy, and atomic force microscopy supported by density-functional theory models. Using a site-by-site approach at low temperature to visualize the reaction pathway, we find that reactants bond to the Fe-tpy active sites via surface-bound intermediates, and investigate the role of the substrate in understanding and designing single-site catalysts on metallic supports.
Collapse
|
21
|
Sun B, Li Q, Su G, Meng B, Wu M, Zhang Q, Meng J, Shi B. Insights into Chlorobenzene Catalytic Oxidation over Noble Metal Loading {001}-TiO 2: The Role of NaBH 4 and Subnanometer Ru Undergoing Stable Ru 0↔Ru 4+ Circulation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16292-16302. [PMID: 36168671 DOI: 10.1021/acs.est.2c05981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Catalytic combustion of ubiquitous chlorinated volatile organic compounds (CVOCs) encounters bottlenecks regarding catalyst deactivation by chlorine poisoning and generation of toxic polychlorinated byproducts. Herein, Ru, Pd, and Rh were loaded on {001}-TiO2 for thermal catalytic oxidation of chlorobenzene (CB), with Ru/{001}-TiO2 representing superior reactivity, CO2 selectivity, and stability in the 1000 min on-stream test. Interestingly, both acid sites and reactive active oxygen species (ROS) were remarkably promoted via adding NaBH4. But merely enhancing these active sites of the catalyst in CVOC treatment is insufficient. Continuous deep oxidation of CB with effective Cl desorption is also a core issue successfully tackled through the steady Ru0↔Ru4+ circulation. This circulation was facilitated by the observed higher subnanometer Ru dispersion on {001}-TiO2 than the other two noble metals that was supported by single atom stability DFT calculation. Nearly 88 degradation products in off-gas were detected, with Ru/{001}-TiO2 producing the lowest polychlorinated benzene byproducts. An effective and sustainable CB degradation mechanism boosted by the cooperation of NaBH4 enhanced active sites and Ru circulation was proposed accordingly. Insights gained from this study open a new avenue to the rational design of promising catalysts for the treatment of CVOCs.
Collapse
Affiliation(s)
- Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifan Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhao C, Zhu A, Gao S, Wang L, Wan X, Wang A, Wang WH, Xue T, Yang S, Sun D, Wang W. Phonon Resonance Catalysis in NO Oxidation on Mn-Based Mullite. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunning Zhao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ao Zhu
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Shan Gao
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Lijing Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Xiang Wan
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Ansheng Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Wei-Hua Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Tao Xue
- Analysis and Measurement Center, Tianjin University, Tianjin 300072, P. R. China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Deyan Sun
- Department of Physics, East China Normal University, Shanghai 200062, P. R. China
| | - Weichao Wang
- Shenzhen Research Institute, Renewable Energy Conversion and Storage Center, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
23
|
Yoon S, Seo H, Jin K, Kim HG, Lee SY, Jo J, Cho KH, Ryu J, Yoon A, Kim YW, Zuo JM, Kwon YK, Nam KT, Kim M. Atomic Reconstruction and Oxygen Evolution Reaction of Mn 3O 4 Nanoparticles. J Phys Chem Lett 2022; 13:8336-8343. [PMID: 36040956 DOI: 10.1021/acs.jpclett.2c01638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Understanding the chemical states of individual surface atoms and their arrangements is essential for addressing several current issues such as catalysis, energy stroage/conversion, and environmental protection. Here, we exploit a profile imaging technique to understand the correlation between surface atomic structures and the oxygen evolution reaction (OER) in Mn3O4 nanoparticles. We image surface structures of Mn3O4 nanoparticles and observe surface reconstructions in the (110) and (101) planes. Mn3+ ions at the surface, which are commonly considered as the active sites in OER, disappear from the reconstructed planes, whereas Mn3+ ions are still exposed at the edges of nanoparticles. Our observations suggest that surface reconstructions can deactivate low-index surfaces of Mn oxides in OER. These structural and chemical observations are further validated by density functional theory calculations. This work shows why atomic-scale characterization of surface structures is crucial for a molecular-level understanding of a chemical reaction in oxide nanoparticles.
Collapse
Affiliation(s)
- Sangmoon Yoon
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
- Department of Physics, Gachon University, Seongnam, Gyeonggi-do13120, Republic of Korea
| | - Hongmin Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Kyoungsuk Jin
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul02841, Republic of Korea
| | - Hyoung Gyun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Seung-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul04763, Republic of Korea
| | - Janghyun Jo
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jinseok Ryu
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Aram Yoon
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois61801, United States
| | - Young-Woon Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Jian-Min Zuo
- Department of Materials Science and Engineering, University of Illinois, Urbana-Champaign, Illinois61801, United States
| | - Young-Kyun Kwon
- Department of Physics, Department of Information Display, and Research Institute for Basic Sciences, Kyung Hee University, Seoul02447, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
24
|
Xu J, Zhang T, Fang S, Li J, Wu Z, Wang W, Zhu J, Gao E, Yao S. Exploring the roles of oxygen species in H 2 oxidation at β-MnO 2 surfaces using operando DRIFTS-MS. Commun Chem 2022; 5:97. [PMID: 36697951 PMCID: PMC9814464 DOI: 10.1038/s42004-022-00717-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Understanding of the roles of oxygen species at reducible metal oxide surfaces under real oxidation conditions is important to improve the performance of these catalysts. The present study addresses this issue by applying a combination of operando diffuse reflectance infrared Fourier transform spectroscopy with a temperature-programmed reaction cell and mass spectrometry to explore the behaviors of oxygen species during H2 oxidation in a temperature range of 25-400 °C at β-MnO2 surfaces. It is revealed that O2 is dissociated simultaneously into terminal-type oxygen (M2+-O2-) and bridge-type oxygen (M+-O2--M+) via adsorption at the Mn cation with an oxygen vacancy. O2 adsorption is inhibited if the Mn cation is covered with terminal-adsorbed species (O, OH, or H2O). In a temperature range of 110-150 °C, OH at Mn cation becomes reactive and its reaction product (H2O) can desorb from the Mn cation, resulting in the formation of bare Mn cation for O2 adsorption and dissociation. At a temperature above 150 °C, OH is reactive enough to leave bare Mn cation for O2 adsorption and dissociation. These results suggest that bare metal cations with oxygen vacancies are important to improve the performance of reducible metal oxide catalysts.
Collapse
Affiliation(s)
- Jiacheng Xu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- School of Material Science and Engineering, Changzhou University, Changzhou, China
| | - Tiantian Zhang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Shiyu Fang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
| | - Jing Li
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Zuliang Wu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Wei Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Jiali Zhu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Erhao Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China
| | - Shuiliang Yao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, China.
- School of Material Science and Engineering, Changzhou University, Changzhou, China.
- Advanced Plasma Catalysis Engineering Laboratory for China Petrochemical Industry, Changzhou, China.
| |
Collapse
|
25
|
Deng J, Ben Tayeb K, Dong C, Simon P, Marinova M, Dubois M, Morin JC, Zhou W, Capron M, Ordomsky VV. TEMPO-Ru-BEA Composite Material for the Selective Oxidation of Alcohols to Aldehydes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jianying Deng
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Karima Ben Tayeb
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, UMR CNRS 8516, Université de Lille, Lille F-59000, France
| | - Chunyang Dong
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Pardis Simon
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Maya Marinova
- Institut Michel-Eugène Chevreul, Villeneuve-d’Ascq 59655, France
| | - Melanie Dubois
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Jean-Charles Morin
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Wenjuan Zhou
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS/Solvay, Shanghai 201108, People’s Republic of China
| | - Mickael Capron
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| | - Vitaly V. Ordomsky
- Unité de Catalyse et Chimie du Solide, UMR CNRS 8181, Université de Lille, Lille F-59000, France
| |
Collapse
|
26
|
Chen D, Shang C, Liu ZP. Automated search for optimal surface phases (ASOPs) in grand canonical ensemble powered by machine learning. J Chem Phys 2022; 156:094104. [DOI: 10.1063/5.0084545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The surface of a material often undergoes dramatic structure evolution under a chemical environment, which, in turn, helps determine the different properties of the material. Here, we develop a general-purpose method for the automated search of optimal surface phases (ASOPs) in the grand canonical ensemble, which is facilitated by the stochastic surface walking (SSW) global optimization based on global neural network (G-NN) potential. The ASOP simulation starts by enumerating a series of composition grids, then utilizes SSW-NN to explore the configuration and composition spaces of surface phases, and relies on the Monte Carlo scheme to focus on energetically favorable compositions. The method is applied to silver surface oxide formation under the catalytic ethene epoxidation conditions. The known phases of surface oxides on Ag(111) are reproduced, and new phases on Ag(100) are revealed, which exhibit novel structure features that could be critical for understanding ethene epoxidation. Our results demonstrate that the ASOP method provides an automated and efficient way for probing complex surface structures that are beneficial for designing new functional materials under working conditions.
Collapse
Affiliation(s)
- Dongxiao Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institution, Shanghai 200030, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institution, Shanghai 200030, China
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
27
|
Sánchez-Grande A, Nguyën HC, Lauwaet K, Rodríguez-Fernández J, Carrasco E, Cirera B, Sun Z, Urgel JI, Miranda R, Lauritsen JV, Gallego JM, López N, Écija D. Electrically Tunable Reactivity of Substrate-Supported Cobalt Oxide Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106407. [PMID: 35064636 DOI: 10.1002/smll.202106407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Indexed: 06/14/2023]
Abstract
First-row transition metal oxides are promising materials for catalyzing the oxygen evolution reaction. Surface sensitive techniques provide a unique perspective allowing the study of the structure, adsorption sites, and reactivity of catalysts at the atomic scale, which furnishes rationalization and improves the design of highly efficient catalytic materials. Here, a scanning probe microscopy study complemented by density functional theory on the structural and electronic properties of CoO nanoislands grown on Au(111) is reported. Two distinct phases are observed: The most extended displays a Moiré pattern (α-region), while the less abundant is 1Co:1Au coincidental (β-region). As a result of the surface registry, in the β-region the oxide adlayer is compressed by 9%, increasing the unoccupied local density of states and enhancing the selective water adsorption at low temperature through a cobalt inversion mechanism. Tip-induced voltage pulses irreversibly transform α- into β-regions, thus opening avenues to modify the structure and reactivity of transition metal oxides by external stimuli like electric fields.
Collapse
Affiliation(s)
| | - Huu Chuong Nguyën
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007, Spain
| | | | | | | | | | - Zhaozong Sun
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, DK-8000, Denmark
| | | | - Rodolfo Miranda
- IMDEA Nanociencia., Madrid, 28049, Spain
- Dep. Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | - Jeppe V Lauritsen
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C, DK-8000, Denmark
| | - José M Gallego
- Instituto de Ciencias Materiales - CSIC, Cantoblanco, Madrid, 28049, Spain
| | - Nuria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Tarragona, 43007, Spain
| | | |
Collapse
|
28
|
Refat MS, Saad HA, Gobouri AA, Alsawat M, Belgacem K, Majrashi BM, Adam AMA. RuO2 Nanostructures from Ru(III) Complexes As a New Smart Nanomaterials for Using in the Recycling and Sustainable Wastewater Treatment: Synthesis, Characterization, and Catalytic Activity in the Hydrogen Peroxide Decomposition. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abstract
Even after being in business for at least the last 100 years, research into the field of (heterogeneous) catalysis is still vibrant, both in academia and in industry. One of the reasons for this is that around 90% of all chemicals and materials used in everyday life are produced employing catalysis. In 2020, the global catalyst market size reached $35 billion, and it is still steadily increasing every year. Additionally, catalysts will be the driving force behind the transition toward sustainable energy. However, even after having been investigated for 100 years, we still have not reached the holy grail of developing catalysts from rational design instead of from trial-and-error. There are two main reasons for this, indicated by the two so-called "gaps" between (academic) research and actual catalysis. The first one is the "pressure gap", indicating the 13 orders of magnitude difference in pressure between the ultrahigh vacuum lab conditions and the atmospheric pressures (and higher) of industrial catalysis. The second one is the "materials gap", indicating the difference in complexity between single-crystal model catalysts of academic research and the real catalysts, consisting of metallic nanoparticles on supports, promoters, fillers, and binders. Although over the past decades significant efforts have been made in closing these gaps, many steps still have to be taken. In this Account, I will discuss the steps we have taken at Leiden University to further our fundamental understanding of heterogeneous catalysis at the (near-)atomic scale. I will focus on bridging the pressure gap, though we are also working on closing the materials gap. Over the past years, we developed state-of-the-art equipment that is able to investigate the (near-)atomic-scale structure of the catalyst surface during the chemical reaction using several surface-science-based techniques such as scanning tunneling microscopy, atomic force microscopy, optical microscopy, and X-ray-based techniques (surface X-ray diffraction, grazing-incidence small-angle X-ray scattering, and X-ray reflectivity, in collaboration with ESRF). Simultaneously with imaging the surface, we can investigate the catalyst's performance via mass spectrometry, enabling us to link changes in the catalyst structure to its activity, selectivity, or stability. Although we are currently investigating many industrially relevant catalytic systems, I will here focus the discussion on the oxidation of platinum during, for example, CO and NO oxidation, the NO reduction reaction on platinum, and the growth of graphene on liquid (molten) copper. I will show that to be able to obtain the full picture of heterogeneous catalysis, the ability to investigate the catalyst at the (near-)atomic scale during the chemical reaction is a must.
Collapse
Affiliation(s)
- Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, the Netherlands
| |
Collapse
|
30
|
Creazzo F, Luber S. Water-Assisted Chemical Route Towards the Oxygen Evolution Reaction at the Hydrated (110) Ruthenium Oxide Surface: Heterogeneous Catalysis via DFT-MD and Metadynamics Simulations. Chemistry 2021; 27:17024-17037. [PMID: 34486184 PMCID: PMC9293344 DOI: 10.1002/chem.202102356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/15/2022]
Abstract
Notwithstanding that RuO2 is a promising catalyst for the oxygen evolution reaction (OER), a plethora of fundamental details on its catalytic properties are still elusive, severely limiting its large-scale deployment. It is also established experimentally that corrosion and wettability of metal oxides can, in fact, enhance the catalytic activity for OER owing to the formation of a hydrated surface layer. However, the mechanistic interplay between surface wettability, interfacial water dynamics and OER across RuO2 , and what degree these processes are correlated are still debated. Herein, spin-polarized Density Functional Theory Molecular Dynamics (DFT-MD) simulations, coupled with advanced enhanced sampling methods in the well-tempered metadynamics framework, are applied to gain a global understanding of RuO2 aqueous interface (explicit water solvent) in catalyzing the OER, and hence possibly help in the design of novel catalysts in the context of photochemical water oxidation. The present study quantitatively assesses the free-energy barriers behind the OER at the (110)-RuO2 catalyst surface revealing plausible pathways composing the reaction network of the O2 evolution. In particular, OER is investigated at room temperature when such a surface is exposed to both gas-phase and liquid-phase water. Albeit a unique efficient pathway has been identified in the gas-phase OER, a surprisingly lowest-free-energy-requiring reaction route is possible when (110)-RuO2 is in contact with explicit liquid water. By estimating the free-energy surfaces associated to these processes, we reveal a noticeable water-assisted OER mechanism which involves a crucial proton-transfer-step assisted by the local water environment. These findings pave the way toward the systematic usage of DFT-MD coupled with metadynamics techniques for the fine assessment of the activity of catalysts, considering finite-temperature and explicit-solvent effects.
Collapse
Affiliation(s)
| | - Sandra Luber
- Department of ChemistryUniversity of ZurichZurichSwitzerland
| |
Collapse
|
31
|
Kanti Chattopadhyay P, Ranjan Singha N. MOF and derived materials as aerogels: Structure, property, and performance relations. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Song S, Wei J, He X, Yan G, Jiao M, Zeng W, Dai F, Shi M. Oxygen vacancies generated by Sn-doped ZrO 2 promoting the synthesis of dimethyl carbonate from methanol and CO 2. RSC Adv 2021; 11:35361-35374. [PMID: 35493165 PMCID: PMC9043009 DOI: 10.1039/d1ra07060f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023] Open
Abstract
Oxygen vacancy sites on a catalyst surface have been extensively studied and been proved to promote the adsorption and activation of carbon dioxide. We use Sn-doped ZrO2 to prepare a Zr/Sn catalyst rich in oxygen vacancies (OVs) by co-precipitation. The yield of dimethyl carbonate is 5 times that of ZrO2. Compared with the original ZrO2, Zr/Sn exhibits a higher specific surface area, number of acid–base sites and a lower band gap, which improves the conductivity of electrons and creates more surface. The number of reaction sites greatly enhances the adsorption and activation capacity of CO2 molecules on the catalyst surface. In situ infrared spectroscopy shows that CO2 adsorbs on oxygen vacancies to form monomethyl carbonate, and participates in the reaction as an intermediate species. This work provides new clues for the preparation of ZrO2-based catalysts rich in oxygen vacancies to directly catalyze the synthesis of dimethyl carbonate from methanol and CO2. Oxygen vacancy sites on a catalyst surface have been extensively studied and been proved to promote the adsorption and activation of carbon dioxide.![]()
Collapse
Affiliation(s)
- Shixian Song
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Jinyi Wei
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Xuan He
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Guangfu Yan
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Mengyan Jiao
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Wei Zeng
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| | - Fangfang Dai
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China .,Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Midong Shi
- College of Chemistry and Environmental Science, Hunan Province Key Laboratory of Rare and Precious Metal Compounds, Xiangnan University Chenzhou 423000 Hunan China
| |
Collapse
|
33
|
Single-atom catalyst for high-performance methanol oxidation. Nat Commun 2021; 12:5235. [PMID: 34475400 PMCID: PMC8413426 DOI: 10.1038/s41467-021-25562-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/30/2021] [Indexed: 11/29/2022] Open
Abstract
Single-atom catalysts have been widely investigated for several electrocatalytic reactions except electrochemical alcohol oxidation. Herein, we synthesize atomically dispersed platinum on ruthenium oxide (Pt1/RuO2) using a simple impregnation-adsorption method. We find that Pt1/RuO2 has good electrocatalytic activity towards methanol oxidation in an alkaline media with a mass activity that is 15.3-times higher than that of commercial Pt/C (6766 vs. 441 mA mg‒1Pt). In contrast, single atom Pt on carbon black is inert. Further, the mass activity of Pt1/RuO2 is superior to that of most Pt-based catalysts previously developed. Moreover, Pt1/RuO2 has a high tolerance towards CO poisoning, resulting in excellent catalytic stability. Ab initio simulations and experiments reveal that the presence of Pt‒O3f (3-fold coordinatively bonded O)‒Rucus (coordinatively unsaturated Ru) bonds with the undercoordinated bridging O in Pt1/RuO2 favors the electrochemical dehydrogenation of methanol with lower energy barriers and onset potential than those encountered for Pt‒C and Pt‒Ru. It is still challenging to engineer single-atom catalysts for electrocatalytic methanol oxidation. Here, the authors design Pt single atom supported on RuO2 for highly active methanol oxidation in contrast to the inert Pt single atom supported on carbon.
Collapse
|
34
|
Li WQ, Zhou RY, Wang XT, Hu LY, Chen X, Guan PC, Zhang XG, Zhang H, Dong JC, Tian ZQ, Li JF. Identification of the molecular pathways of RuO2 electroreduction by in-situ electrochemical surface-enhanced Raman spectroscopy. J Catal 2021. [DOI: 10.1016/j.jcat.2021.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Hussain I, Jalil AA, Hamid MYS, Hassan NS. Recent advances in catalytic systems in the prism of physicochemical properties to remediate toxic CO pollutants: A state-of-the-art review. CHEMOSPHERE 2021; 277:130285. [PMID: 33794437 DOI: 10.1016/j.chemosphere.2021.130285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Carbon monoxide (CO) is the most harmful pollutant in the air, causing environmental issues and adversely affecting humans and the vegetation and then raises global warming indirectly. CO oxidation is one of the most effective methods of reducing CO by converting it into carbon dioxide (CO2) using a suitable catalytic system, due to its simplicity and great value for pollution control. The CO oxidation reaction has been widely studied in various applications, including proton-exchange membrane fuel cell technology and catalytic converters. CO oxidation has also been of great academic interest over the last few decades as a model reaction. Many review studies have been produced on catalysts development for CO oxidation, emphasizing noble metal catalysts, the configuration of catalysts, process parameter influence, and the deactivation of catalysts. Nevertheless, there is still some gap in a state of the art knowledge devoted exclusively to synergistic interactions between catalytic activity and physicochemical properties. In an effort to fill this gap, this analysis updates and clarifies innovations for various latest developed catalytic CO oxidation systems with contemporary evaluation and the synergistic relationship between oxygen vacancies, strong metal-support interaction, particle size, metal dispersion, chemical composition acidity/basicity, reducibility, porosity, and surface area. This review study is useful for environmentalists, scientists, and experts working on mitigating the harmful effects of CO on both academic and commercial levels in the research and development sectors.
Collapse
Affiliation(s)
- I Hussain
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Malaysia
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia.
| | - M Y S Hamid
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| |
Collapse
|
36
|
Kim J, Choi H, Kim D, Park JY. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
37
|
Liu H, Fu H, Liu Y, Chen X, Yu K, Wang L. Synthesis, characterization and utilization of oxygen vacancy contained metal oxide semiconductors for energy and environmental catalysis. CHEMOSPHERE 2021; 272:129534. [PMID: 33465617 DOI: 10.1016/j.chemosphere.2021.129534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Developing novel functional materials with promising desired properties in enhancing energy conversion and lowering the catalytic reaction barriers is essential for the demand to solve the increasingly severe energy and environmental crisis nowadays. Metal oxide semiconductors (MOS) are widely used in the field of catalysis because of its excellent catalytic characteristics. Introduction of defects, in addition to the adjustment of composition and atomic arrangement in the materials can effectively improve the materials' catalytic performance. Especially, introducing oxygen vacancies (OVs) into the lattice structure of MOS has been developed as a facile route to improve MOS's optical and electronic transmission characteristics. And a large number of metal oxides with rich OVs have been served in oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2-RR) photo-degradation of organic pollutants, etc. This small review briefly outlines some preparation techniques to introduce OVs into MOS, and the characterization techniques to identify and quantify the OVs in MOS. The applications of OVs contained MOS especially in energy and environmental catalysis areas are also discussed. The effects of OVs types and concentrations on the catalytic performances are deliberated. Finally, the defective structure-catalytic property relationship is highlighted, and the future status and opportunities of MOS containing OVs in the catalytic field are suggested.
Collapse
Affiliation(s)
- Hongjie Liu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Hao Fu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yuchang Liu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China
| | - Xiyong Chen
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| | - Liwei Wang
- School of Marine Sciences, Guangxi University, Nanning, 530004, China; MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China.
| |
Collapse
|
38
|
Ek M, Arnarson L, Georg Moses P, Rasmussen SB, Skoglundh M, Olsson E, Helveg S. Probing surface-sensitive redox properties of VO x/TiO 2 catalyst nanoparticles. NANOSCALE 2021; 13:7266-7272. [PMID: 33889890 DOI: 10.1039/d0nr08943e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Redox processes of oxide materials are fundamental in catalysis. These processes depend on the surface structure and stoichiometry of the oxide and are therefore expected to vary between surface facets. However, there is a lack of direct measurements of redox properties on the nanoscale for analysing the importance of such faceting effects in technical materials. Here, we address the facet-dependent redox properties of vanadium-oxide-covered anatase nanoparticles of relevance to, e.g., selective catalytic reduction of nitrogen oxides. The vanadium oxidation states at individual nanoscale facets are resolved in situ under catalytically relevant conditions by combining transmission electron microscopy imaging and electron energy loss spectroscopy. The measurements reveal that vanadium on {001} facets consistently retain higher oxidation states than on {10l} facets. Insight into such structure-sensitivity of surface redox processes opens prospects of tailoring oxide nanoparticles with enhanced catalytic functionalities.
Collapse
Affiliation(s)
- Martin Ek
- Haldor Topsoe A/S, Haldor Topsøes Allé 1, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhang Q, Kusada K, Kitagawa H. Phase Control of Noble Monometallic and Alloy Nanomaterials by Chemical Reduction Methods. Chempluschem 2021; 86:504-519. [PMID: 33764700 DOI: 10.1002/cplu.202000782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In recent years, the phase control of monometallic and alloy nanomaterials has attracted great attention because of the potential to tune the physical and chemical properties of these species. In this Review, an overview of the latest research progress in phase-controlled monometallic and alloy nanomaterials is first given. Then, the phase-controlled synthesis using a chemical reduction method are discussed, and the formation mechanisms of these nanomaterials are specifically highlighted. Lastly, the challenges and future perspectives in this new research field are discussed.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kohei Kusada
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Kitagawa
- Department of Chemistry, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
40
|
Diemant T, Bansmann J. CO Oxidation on Planar Au/TiO 2 Model Catalysts under Realistic Conditions: A Combined Kinetic and IR Study. Chemphyschem 2021; 22:542-552. [PMID: 33411392 PMCID: PMC8048944 DOI: 10.1002/cphc.202000960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/04/2021] [Indexed: 11/24/2022]
Abstract
The oxidation of CO on planar Au/TiO2 model catalysts was investigated under pressure and temperature conditions similar to those for experiments with more realistic Au/TiO2 powder catalysts. The effects of a change of temperature, pressure, and gold coverage on the CO oxidation activity were studied. Additionally, the reasons for the deactivation of the catalysts were examined in long-term experiments. From kinetic measurements, the activation energy and the reaction order for the CO oxidation reaction were derived and a close correspondence with results of powder catalysts was found, although the overall turnover frequency (TOF) measured in our experiments was around one order of magnitude lower compared to results of powder catalysts under similar conditions. Furthermore, long-term experiments at 80 °C showed a decrease of the activity of the model catalysts after some hours. Simultaneous in-situ IR experiments revealed a decrease of the signal intensity of the CO vibration band, while the tendency for the build-up of side products (e. g. carbonates, carboxylates) of the CO oxidation reaction on the surface of the planar model catalysts was rather low.
Collapse
Affiliation(s)
- Thomas Diemant
- Institut für Oberflächenchemie und Katalyse, Universität UlmAlbert-Einstein-Allee 4789081UlmGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstraße 1189081UlmGermany
| | - Joachim Bansmann
- Institut für Oberflächenchemie und Katalyse, Universität UlmAlbert-Einstein-Allee 4789081UlmGermany
| |
Collapse
|
41
|
Hejral U, Shipilin M, Gustafson J, Stierle A, Lundgren E. High energy surface x-ray diffraction applied to model catalyst surfaces at work. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:073001. [PMID: 33690191 DOI: 10.1088/1361-648x/abb17c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures. In recent years efforts have been made to increasingly develop techniques that allow for investigating model catalyst samples under conditions closer to those of real technical catalysts. One of these techniques is high energy surface x-ray diffraction (HESXRD), which uses x-rays with photon energies typically in the range of 70-80 keV. HESXRD allows a fast data collection of three dimensional reciprocal space for the structure determination of model catalyst samples under operando conditions and has since been used for the investigation of an increasing number of different model catalysts. In this article we will review general considerations of HESXRD including its working principle for different model catalyst samples and the experimental equipment required. An overview over HESXRD investigations performed in recent years will be given, and the advantages of HESXRD with respect to its application to different model catalyst samples will be presented. Moreover, the combination of HESXRD with other operando techniques such as in situ mass spectrometry, planar laser-induced fluorescence and surface optical reflectance will be discussed. The article will close with an outlook on future perspectives and applications of HESXRD.
Collapse
Affiliation(s)
- Uta Hejral
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Mikhail Shipilin
- Department of Physics, Stockholm University, 106 91 Stockholm, Sweden
| | - Johan Gustafson
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| | - Andreas Stierle
- Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany
- Fachbereich Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Edvin Lundgren
- Division of Synchrotron Radiation Research, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
42
|
Sun Y, Xu J, Xi R, Zhang H, Liu L, Xu X, Fang X, Wang X. Unraveling the Intrinsic Reasons Promoting the Reactivity of ZnAl2O4 Spinel by Fe and Co for CO Oxidation. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09324-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Miller BK, Crozier PA. Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benjamin K. Miller
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| | - Peter A. Crozier
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287-6106, United States
| |
Collapse
|
44
|
Chakraborty S, Matson EM. Reductive silylation of polyoxovanadate surfaces using Mashima's reagent. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00920f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mechanistic insights into the reductive silylation of metal oxide surfaces.
Collapse
Affiliation(s)
- Sourav Chakraborty
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
45
|
Saha S, Gayen P, Ramani VK. Facet‐dependent Chlorine and Oxygen Evolution Selectivity on RuO
2
: An
Ab initio
Atomistic Thermodynamic Study. ChemCatChem 2020. [DOI: 10.1002/cctc.202000617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sulay Saha
- Center for Solar Energy and Energy Storage and Department of Energy Environmental and Chemical Engineering Washington University in St. Louis St. Louis MO-63130 USA
| | - Pralay Gayen
- Center for Solar Energy and Energy Storage and Department of Energy Environmental and Chemical Engineering Washington University in St. Louis St. Louis MO-63130 USA
| | - Vijay K. Ramani
- Center for Solar Energy and Energy Storage and Department of Energy Environmental and Chemical Engineering Washington University in St. Louis St. Louis MO-63130 USA
| |
Collapse
|
46
|
Pei W, Dai L, Liu Y, Deng J, Jing L, Zhang K, Hou Z, Han Z, Rastegarpanah A, Dai H. PtRu nanoparticles partially embedded in the 3DOM Ce0.7Zr0.3O2 skeleton: Active and stable catalysts for toluene combustion. J Catal 2020. [DOI: 10.1016/j.jcat.2020.02.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Su HY, Ma X, Sun K, Sun C, Xu Y, Calle-Vallejo F. Trends in C-O and N-O bond scission on rutile oxides described using oxygen vacancy formation energies. Chem Sci 2020; 11:4119-4124. [PMID: 34122877 PMCID: PMC8152721 DOI: 10.1039/d0sc00534g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Reactivity trends on transition metals can generally be understood through the d-band model, but no analogous theory exists for transition metal oxides. This limits the generality of analyses in oxide-based catalysis and surface chemistry and has motivated the appearance of numerous descriptors. Here we show that oxygen vacancy formation energy (ΔE Vac) is an inexpensive yet accurate and general descriptor for trends in transition-state energies, which are usually difficult to assess. For rutile-type oxides (MO2 with M = 3d metals from Ti to Ni), we show that ΔE Vac captures the trends in C-O and N-O bond scission of CO2, CH3OH, N2O, and NH2OH at oxygen vacancies. The proportionality between ΔE Vac and transition-state energies is rationalized by analyzing the oxygen-metal bonds, which change from ionic to covalent from TiO2 to NiO2. ΔE Vac may be used to design oxide catalysts, in particular those where lattice oxygen and/or oxygen vacancies participate in the catalytic cycles.
Collapse
Affiliation(s)
- Hai-Yan Su
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology Dongguan 523808 China.,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian 116023 China
| | - Xiufang Ma
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Keju Sun
- Key Laboratory of Applied Chemistry, College of Environmental and Chemical Engineering, Yanshan University 438 Hebei Avenue Qinhuangdao 066004 China
| | - Chenghua Sun
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology Dongguan 523808 China.,Centre for Translational Atomaterials, Swinburne University of Technology Hawthorn Victoria 3122 Australia
| | - Yongjun Xu
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology Dongguan 523808 China
| | - Federico Calle-Vallejo
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona Martí i Franquès 1 08028 Barcelona Spain
| |
Collapse
|
48
|
Morais E, Ravindranathan Thampi K, Sullivan JA. Photo‐Dissociation of CO
2
over Plasmonic RuO
2
Nanoparticles. ChemistrySelect 2020. [DOI: 10.1002/slct.202000161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eduardo Morais
- School of ChemistryUniversity College Dublin Belfield, Dublin 4 Dublin Ireland
| | - K. Ravindranathan Thampi
- School of Chemical and Bioprocessing EngineeringUniversity College Dublin Belfield, Dublin 4 Dublin Ireland
| | - James A. Sullivan
- School of ChemistryUniversity College Dublin Belfield, Dublin 4 Dublin Ireland
| |
Collapse
|
49
|
Hess F, Smarsly BM, Over H. Catalytic Stability Studies Employing Dedicated Model Catalysts. Acc Chem Res 2020; 53:380-389. [PMID: 31967784 DOI: 10.1021/acs.accounts.9b00467] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Long-term stability of heterogeneous catalysts is an omnipresent and pressing concern in industrial processes. Catalysts with high activity and selectivity can be searched for by high-throughput screening methods based maybe on educated guesses provided by ab initio thermodynamics or scaling relations. However, high-throughput screening is not feasible and is hardly able to identify long-term stable catalyst so that a rational and knowledge-driven approach is called for to identify potentially stable and active catalysts. Unfortunately, our current microscopic understanding on stability issues is quite poor. We propose that this gap in knowledge can be at least partly closed by investigating dedicated model catalyst materials with well-defined morphology that allow for a tight link to theory and the application of standard characterization methods. This topic is highly interdisciplinary, combining sophisticated inorganic synthesis with catalysis research, surface chemistry, and powerful theoretical modeling. In this Account, we focus on the stability issues of Deacon catalysts (RuO2 and CeO2-based materials) for recovering Cl2 from HCl by aerobic oxidation and how to deepen our microscopic insight into the underlying processes. The main stability problems under harsh Deacon reaction conditions concomitant with a substantial loss in activity arise from deep chlorination of the catalyst, leaching of volatile chlorides and oxychlorides, and decrease in active surface area by particle sintering. In general, powder materials with undefined particle shape are not well suited for examining catalyst stability, because changes in the morphology are difficult to recognize, for instance, by electron microscopy. Rather, we focus here on model materials with well-defined starting morphologies, including electrospun nanofibers, shape-controlled nanoparticles, and well-defined ultrathin crystalline layers. CeO2 is able to stabilize shape-controlled particles, exposing a single facet orientation so that comparing activity and stability studies can reveal structure sensitive properties. We develop a quasi-steady-state kinetic approach that allows us to model the catalyst chlorination as a function of temperature and gas feed composition. For the case of pure CeO2 nanocubes, this simple approach predicts chlorination to be efficiently suppressed by addition of little amounts of water in the reaction feed or by keeping the catalyst at higher temperature. Both process parameters have great impact on the actual reactor design. Thermal stabilization of CeO2 by intermixing Zr has been known in automotive exhaust catalysis for decades, but this does not necessarily imply also chemical stabilization of CeO2 against bulk-chlorination since Zr can readily form volatile ZrCl4 and may quickly lose its stabilizing effect. Nevertheless, with model experiments the stabilizing effect of Zr in the Deacon process over mixed CexZr1-xO2 nanorods is clearly evidenced. Even higher stability can be accomplished with ultrathin CeO2 coatings on preformed ZrO2 particles, demonstrating the great promise of atomic layer deposition (ALD) in catalysis synthesis.
Collapse
Affiliation(s)
- Franziska Hess
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Laboratory of Electrochemical Interfaces, Department of Nuclear Science & Engineering, MIT, 77 Massachuetts Avenue, 13-3034, Cambridge, Massachusetts 02139, United States
- Institute of Physical Chemistry, RWTH Aachen, Landoltweg 2, 52074 Aachen, Germany
| | - Bernd M. Smarsly
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Herbert Over
- Physikalisch-Chemisches Institut, Justus Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
50
|
Wu Y, Chen X, Huang D, Zhang L, Ren Y, Tang G, Chen X, Yue B, He H. A study on the acidity of sulfated CuO layers grown by surface reconstruction of Cu 2O with specific exposed facets. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00892c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface reconstruction and sulfation improve the acidity of Cu2O, and moderate Lewis acid sites are the active sites in Pechmann condensation.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Xin Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Daofeng Huang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Li Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yuanhang Ren
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Gangfeng Tang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Xueying Chen
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Bin Yue
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Heyong He
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|