1
|
Zhang J, Li Y, Li L, Li Y, Cao Y, Lei H. Methionine-Specific Bioconjugation for Single-Molecule Force Spectroscopy of Cell Surface Proteins. ACS NANO 2025; 19:14177-14186. [PMID: 40173012 DOI: 10.1021/acsnano.5c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Cell surface proteins play crucial roles in various cellular processes, including intercellular communication, adhesion, and immune responses. However, investigating these proteins using single-molecule force spectroscopy (SMFS) has been hindered by challenges in site-specific protein modification while preserving their native state. Here, we introduce a methionine-specific bioconjugation strategy utilizing a bespoke hypervalent iodine reagent for highly selective, rapid, and robust methionine labeling. Since methionine is often the first amino acid incorporated into proteins via initiator tRNA, this approach enables precise N-terminal labeling and attachment, facilitating more reliable SMFS studies. The resulting covalent linkage remains intact during mechanical unfolding or conformational changes of proteins, with a mechanical stability exceeding 600 pN, allowing accurate measurements before detachment from AFM cantilever tips or cell surfaces. Additionally, this method improves sampling rates and data quality. We successfully applied this technique to light-induced protein printing and natural surface protein studies, demonstrating its potential for advancing protein mechanics research in living cells. This strategy provides significant advantages for SMFS in the study of complex cellular systems.
Collapse
Affiliation(s)
- Junsheng Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yang Li
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Luofei Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Ying Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Hai Lei
- School of Physics, Institute for Advanced Study in Physics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Shin J, Jeong SH, Shon MJ. Advancing membrane biology: single-molecule approaches meet model membrane systems. BMB Rep 2025; 58:33-40. [PMID: 39701026 PMCID: PMC11788532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Model membrane systems have emerged as essential platforms for investigating membrane-associated processes in controlled environments, mimicking biological membranes without the complexity of cellular systems. However, integrating these model systems with single-molecule techniques remains challenging due to the fluidity of lipid membranes, including undulations and the lateral mobility of lipids and proteins. This mini-review explores the evolution of various model membranes ranging from black lipid membranes to nanodiscs and giant unilamellar vesicles as they adapt to accommodate electrophysiology, force spectroscopy, and fluorescence microscopy. We highlight recent advancements, including innovations in force spectroscopy and single-molecule imaging using free-standing lipid bilayers, and the development of membrane platforms with tunable composition and curvature for improving fluorescence-based studies of protein dynamics. These integrated approaches have provided deep insights into ion channel function, membrane fusion, protein mechanics, and protein dynamics. We highlight how the synergy between single-molecule techniques and model membranes enhances our understanding of complex cellular processes, paving the way for future discoveries in membrane biology and biophysics. [BMB Reports 2025; 58(1): 33-40].
Collapse
Affiliation(s)
- Jaehyeon Shin
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sang Hyeok Jeong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
3
|
Shen Y, Czajkowsky DM, Li B, Hu J, Shao Z, Sun J. Atomic Force Microscopy: Mechanosensor and Mechanotransducer for Probing Biological System from Molecules to Tissues. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408387. [PMID: 39614722 DOI: 10.1002/smll.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/01/2024] [Indexed: 12/01/2024]
Abstract
Atomic Force Microscopy (AFM) is a powerful technique with widespread applications in various scientific fields, including biology. It operates by precisely detecting the interaction between a sharp tip and a sample surface, providing high-resolution topographical information and mechanical properties at a nanoscale. Through the years, a deeper understanding of this tip-sample interaction and the mechanisms by which it can be more precisely regulated have invariably led to improvements in AFM imaging. Additionally, AFM can serve not only as a sensor but also as a tool for actively manipulating the mechanical properties of biological systems. By applying controlled forces to the sample surface, AFM allows for a deeper understanding of mechanotransduction pathways, the intricate signaling cascades that convert physical cues into biochemical responses. This review, is an extensive overview of the current status of AFM working either as a mechanosensor or a mechanotransducer to probe biological systems across diverse scales, from individual molecules to entire tissues is presented. Challenges are discussed and potential future research directions are elaborated.
Collapse
Affiliation(s)
- Yi Shen
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Daniel M Czajkowsky
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Bin Li
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Hu
- The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
- Institute of Materiobiology, Shanghai University, Shanghai, 200444, P. R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Zhifeng Shao
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jielin Sun
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
4
|
Sauciuc A, Whittaker J, Tadema M, Tych K, Guskov A, Maglia G. Blobs form during the single-file transport of proteins across nanopores. Proc Natl Acad Sci U S A 2024; 121:e2405018121. [PMID: 39264741 PMCID: PMC11420176 DOI: 10.1073/pnas.2405018121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024] Open
Abstract
The transport of biopolymers across nanopores is an important biological process currently under investigation for the rapid analysis of DNA and proteins. While the transport of DNA is generally understood, methods to induce unfolded protein translocation have only recently been discovered (Yu et al., 2023, Sauciuc et al., 2023). Here, we found that during electroosmotically driven translocation of polypeptides, blob-like structures typically form inside nanopores, often obstructing their transport and preventing addressing individual amino acids. This is in contrast with the electrophoretic transport of DNA, where the formation of such structures has not been reported. Comparisons between different nanopore sizes and shapes and modifications by different surface chemistries allowed formulating a mechanism for blob formation. We also show that single-file transport can be achieved by using 1) nanopores that have an entry and an internal diameter smaller than the persistence length of the polymer, 2) nanopores with a nonsticky (i.e., nonaromatic) inner surface, and 3) moderate translocation velocities. These experiments provide a basis for understanding polypeptide transport under confinement and for improving the design and engineering of nanopores for protein analysis.
Collapse
Affiliation(s)
- Adina Sauciuc
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Jacob Whittaker
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Matthijs Tadema
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Katarzyna Tych
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Albert Guskov
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| | - Giovanni Maglia
- Chemical Biology I, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen9747 AG, The Netherlands
| |
Collapse
|
5
|
Smith RS, Weaver DR, King GM, Kosztin I. Chain-Length Dependence of Peptide-Lipid Bilayer Interaction Strength and Binding Kinetics: A Combined Theoretical and Experimental Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14467-14475. [PMID: 38963062 DOI: 10.1021/acs.langmuir.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Physical interactions between polypeptide chains and lipid membranes underlie critical cellular processes. Yet, despite fundamental importance, key mechanistic aspects of these interactions remain elusive. Bulk experiments have revealed a linear relationship between free energy and peptide chain length in a model system, but does this linearity extend to the interaction strength and to the kinetics of lipid binding? To address these questions, we utilized a combination of coarse-grained molecular dynamics (CG MD) simulations, analytical modeling, and atomic force microscopy (AFM)-based single molecule force spectroscopy. Following previous bulk experiments, we focused on interactions between short hydrophobic peptides (WLn, n = 1, ..., 5) with 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayers, a simple system that probes peptide primary structure effects. Potentials of mean force extracted from CG MD recapitulated the linearity of free energy with the chain length. Simulation results were quantitatively connected to bulk biochemical experiments via a single scaling factor of order unity, corroborating the methodology. Additionally, CG MD revealed an increase in the distance to the transition state, a result that weakens the dependence of the dissociation force on the peptide chain length. AFM experiments elucidated rupture force distributions and, through modeling, intrinsic dissociation rates. Taken together, the analysis indicates a rupture force plateau in the WLn-POPC system, suggesting that the final rupture event involves the last 2 or 3 residues. In contrast, the linear dependence on chain length was preserved in the intrinsic dissociation rate. This study advances the understanding of peptide-lipid interactions and provides potentially useful insights for the design of peptides with tailored membrane-interacting properties.
Collapse
Affiliation(s)
- Ryan S Smith
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dylan R Weaver
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Gavin M King
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Ioan Kosztin
- Department of Physics & Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Yang H, Zhou D, Zhou Z, Duan M, Yu H. Mechanistic Insight into the Mechanical Unfolding of the Integral Membrane Diacylglycerol Kinase. JACS AU 2024; 4:1422-1435. [PMID: 38665647 PMCID: PMC11040704 DOI: 10.1021/jacsau.3c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/28/2024]
Abstract
The essential forces stabilizing membrane proteins and governing their folding and unfolding are difficult to decipher. Single-molecule atomic force spectroscopy mechanically unfolds individual membrane proteins and quantifies their dynamics and energetics. However, it remains challenging to structurally assign unfolding intermediates precisely and to deduce dominant interactions between specific residues that facilitate either the localized stabilization of these intermediates or the global assembly of membrane proteins. Here, we performed force spectroscopy experiments and multiscale molecular dynamics simulations to study the unfolding pathway of diacylglycerol kinase (DGK), a small trimeric multispan transmembrane enzyme. The remarkable agreement between experiments and simulations allowed precise structural assignment and interaction analysis of unfolding intermediates, bypassing existing limitations on structural mapping, and thus provided mechanistic explanations for the formation of these states. DGK unfolding was found to proceed with structural segments varying in size that do not correlate with its secondary structure. We identified intermolecular side-chain packing interactions as one of the major contributions to the stability of unfolding intermediates. Mutagenesis creating packing defects induced a dramatic decrease in the mechano-stability of corresponding intermediates and also in the thermo-stability of DGK trimer, in good agreement with predictions from simulations. Hence, the molecular determinants of the mechano- and thermo-stability of a membrane protein can be identified at residue resolution. The accurate structural assignment established and microscopic mechanism revealed in this work may substantially expand the scope of single-molecule studies of membrane proteins.
Collapse
Affiliation(s)
- Huiying Yang
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Daihong Zhou
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Zhangyi Zhou
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Mojie Duan
- Innovation
Academy for Precision Measurement Science and Technology, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Hao Yu
- School
of Physics, Huazhong University of Science
and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Jacobson DR, Perkins TT. Quantifying a light-induced energetic change in bacteriorhodopsin by force spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2313818121. [PMID: 38324569 PMCID: PMC10873598 DOI: 10.1073/pnas.2313818121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
Ligand-induced conformational changes are critical to the function of many membrane proteins and arise from numerous intramolecular interactions. In the photocycle of the model membrane protein bacteriorhodopsin (bR), absorption of a photon by retinal triggers a conformational cascade that results in pumping a proton across the cell membrane. While decades of spectroscopy and structural studies have probed this photocycle in intricate detail, changes in intramolecular energetics that underlie protein motions have remained elusive to experimental quantification. Here, we measured these energetics on the millisecond time scale using atomic-force-microscopy-based single-molecule force spectroscopy. Precisely, timed light pulses triggered the bR photocycle while we measured the equilibrium unfolding and refolding of the terminal 8-amino-acid region of bR's G-helix. These dynamics changed when the EF-helix pair moved ~9 Å away from this end of the G helix during the "open" portion of bR's photocycle. In ~60% of the data, we observed abrupt light-induced destabilization of 3.4 ± 0.3 kcal/mol, lasting 38 ± 3 ms. The kinetics and pH-dependence of this destabilization were consistent with prior measurements of bR's open phase. The frequency of light-induced destabilization increased with the duration of illumination and was dramatically reduced in the triple mutant (D96G/F171C/F219L) thought to trap bR in its open phase. In the other ~40% of the data, photoexcitation unexpectedly stabilized a longer-lived putative misfolded state. Through this work, we establish a general single-molecule force spectroscopy approach for measuring ligand-induced energetics and lifetimes in membrane proteins.
Collapse
Affiliation(s)
- David R. Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
| | - Thomas T. Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, CO80309
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
8
|
Valbuena A, Strobl K, Gil-Redondo JC, Valiente L, de Pablo PJ, Mateu MG. Single-Molecule Analysis of Genome Uncoating from Individual Human Rhinovirus Particles, and Modulation by Antiviral Drugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304722. [PMID: 37806749 DOI: 10.1002/smll.202304722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Infection of humans by many viruses is typically initiated by the internalization of a single virion in each of a few susceptible cells. Thus, the outcome of the infection process may depend on stochastic single-molecule events. A crucial process for viral infection, and thus a target for developing antiviral drugs, is the uncoating of the viral genome. Here a force spectroscopy procedure using an atomic force microscope is implemented to study uncoating for individual human rhinovirus particles. Application of an increasing mechanical force on a virion led to a high force-induced structural transition that facilitated extrusion of the viral RNA molecule without loss of capsid integrity. Application of force to virions that h ad previously extruded the RNA, or to RNA-free capsids, led to a lower force-induced event associated with capsid disruption. The kinetic parameters are determined for each reaction. The high-force event is a stochastic process governed by a moderate free energy barrier (≈20 kcal mol-1 ), which results in a heterogeneous population of structurally weakened virions in which different fractions of the RNA molecule are externalized. The effects of antiviral compounds or capsid mutation on the kinetics of this reaction reveal a correlation between the reaction rate and virus infectivity.
Collapse
Affiliation(s)
- Alejandro Valbuena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Klara Strobl
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan Carlos Gil-Redondo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Valiente
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro J de Pablo
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Mauricio G Mateu
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
9
|
Yokokura TJ, Duan C, Ding EA, Kumar S, Wang R. Effects of Ionic Strength on the Morphology, Scattering, and Mechanical Response of Neurofilament-Derived Protein Brushes. Biomacromolecules 2024; 25:328-337. [PMID: 38052005 PMCID: PMC10872360 DOI: 10.1021/acs.biomac.3c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Protein brushes not only play a key role in the functionality of neurofilaments but also have wide applications in biomedical materials. Here, we investigate the effect of ionic strength on the morphology of protein brushes using continuous-space self-consistent field theory. A coarse-grained multiblock charged macromolecular model is developed to capture the chemical identity of amino acid sequences. For neurofilament heavy (NFH) brushes at pH 2.4, we predict three morphological regimes: swollen brushes, condensed brushes, and coexisting brushes, which consist of both a dense inner layer and a diffuse outer layer. The brush height predicted by our theory is in good agreement with the experimental data for a wide range of ionic strengths. The dramatic height decrease is a result of the electrostatic screening-induced transition from the overlapping state to the isolated state of the coexisting brushes. We also studied the evolution of the scattering and mechanical responses accompanying the morphological change. The oscillation in the reflectivity spectra characterizes the existence and microstructure of the inner condensed layer, whereas the shoulder in the force spectra signifies a swollen morphology.
Collapse
Affiliation(s)
- Takashi J Yokokura
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Chao Duan
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Erika A Ding
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Rui Wang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Lab, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Yue C, Zhang C, Zhang R, Yuan J. Tethered particle motion of the adaptation enzyme CheR in bacterial chemotaxis. iScience 2023; 26:107950. [PMID: 37817931 PMCID: PMC10561060 DOI: 10.1016/j.isci.2023.107950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/25/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Bacteria perform chemotactic adaptation by sequential modification of multiple modifiable sites on chemoreceptors through stochastic action of tethered adaptation enzymes (CheR and CheB). To study the molecular kinetics of this process, we measured the response to different concentrations of MeAsp for the Tar-only Escherichia coli strain. We found a strong dependence of the methylation rate on the methylation level and established a new mechanism of adaptation kinetics due to tethered particle motion of the methylation enzyme CheR. Experiments with various lengths of the C-terminal flexible chain in the Tar receptor further validated this mechanism. The tethered particle motion resulted in a CheR concentration gradient that ensures encounter-rate matching of the sequential modifiable sites. An analytical model of multisite catalytic reaction showed that this enables robustness of methylation to fluctuations in receptor activity or cell-to-cell variations in the expression of adaptation enzymes and reduces the variation in methylation level among individual receptors.
Collapse
Affiliation(s)
- Caijuan Yue
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongjing Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junhua Yuan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Nirmalraj PN, Rossell MD, Dachraoui W, Thompson D, Mayer M. In Situ Observation of Chemically Induced Protein Denaturation at Solvated Interfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48015-48026. [PMID: 37797325 PMCID: PMC10591235 DOI: 10.1021/acsami.3c10510] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Proteins unfold in chaotropic salt solutions, a process that is difficult to observe at the single protein level. The work presented here demonstrates that a liquid-based atomic force microscope and graphene liquid-cell-based scanning transmission electron microscope make it possible to observe chemically induced protein unfolding. To illustrate this capability, ferritin proteins were deposited on a graphene surface, and the concentration-dependent urea- or guanidinium-induced changes of morphology were monitored for holo-ferritin with its ferrihydrite core as well as apo-ferritin without this core. Depending on the chaotropic agent the liquid-based imaging setup captured an unexpected transformation of natively folded holo-ferritin proteins into rings after urea treatment but not after guanidinium treatment. Urea treatment of apo-ferritin did not result in nanorings, confirming that nanorings are a specific signature of denaturation of holo-ferritins after exposture to sufficiently high urea concentrations. Mapping the in situ images with molecular dynamics simulations of ferritin subunits in urea solutions suggests that electrostatic destabilization triggers denaturation of ferritin as urea makes direct contact with the protein and also disrupts the water H-bonding network in the ferritin solvation shell. Our findings deepen the understanding of protein denaturation studied using label-free techniques operating at the solid-liquid interface.
Collapse
Affiliation(s)
- Peter Niraj Nirmalraj
- Transport
at Nanoscale Interfaces Laboratory, Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Walid Dachraoui
- Electron
Microscopy Center, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
12
|
Senapati S, Park PSH. Understanding the Rhodopsin Worldview Through Atomic Force Microscopy (AFM): Structure, Stability, and Activity Studies. CHEM REC 2023; 23:e202300113. [PMID: 37265335 PMCID: PMC10908267 DOI: 10.1002/tcr.202300113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Rhodopsin is a G protein-coupled receptor (GPCR) present in the rod outer segment (ROS) of photoreceptor cells that initiates the phototransduction cascade required for scotopic vision. Due to the remarkable advancements in technological tools, the chemistry of rhodopsin has begun to unravel especially over the past few decades, but mostly at the ensemble scale. Atomic force microscopy (AFM) is a tool capable of providing critical information from a single-molecule point of view. In this regard, to bolster our understanding of rhodopsin at the nanoscale level, AFM-based imaging, force spectroscopy, and nano-indentation techniques were employed on ROS disc membranes containing rhodopsin, isolated from vertebrate species both in normal and diseased states. These AFM studies on samples from native retinal tissue have provided fundamental insights into the structure and function of rhodopsin under normal and dysfunctional states. We review here the findings from these AFM studies that provide important insights on the supramolecular organization of rhodopsin within the membrane and factors that contribute to this organization, the molecular interactions stabilizing the structure of the receptor and factors that can modify those interactions, and the mechanism underlying constitutive activity in the receptor that can cause disease.
Collapse
Affiliation(s)
- Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
- Prayoga Institute of Education Research, Bengaluru, KA 560116, India
| | - Paul S-H Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Wijesinghe WCB, Min D. Single-Molecule Force Spectroscopy of Membrane Protein Folding. J Mol Biol 2023; 435:167975. [PMID: 37330286 DOI: 10.1016/j.jmb.2023.167975] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 06/19/2023]
Abstract
Single-molecule force spectroscopy is a unique method that can probe the structural changes of single proteins at a high spatiotemporal resolution while mechanically manipulating them over a wide force range. Here, we review the current understanding of membrane protein folding learned by using the force spectroscopy approach. Membrane protein folding in lipid bilayers is one of the most complex biological processes in which diverse lipid molecules and chaperone proteins are intricately involved. The approach of single protein forced unfolding in lipid bilayers has produced important findings and insights into membrane protein folding. This review provides an overview of the forced unfolding approach, including recent achievements and technical advances. Progress in the methods can reveal more interesting cases of membrane protein folding and clarify general mechanisms and principles.
Collapse
Affiliation(s)
- W C Bhashini Wijesinghe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
14
|
Galvanetto N, Ye Z, Marchesi A, Mortal S, Maity S, Laio A, Torre VA. Unfolding and identification of membrane proteins in situ. eLife 2022; 11:77427. [PMID: 36094473 PMCID: PMC9531951 DOI: 10.7554/elife.77427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Single-molecule force spectroscopy (SMFS) uses the cantilever tip of an AFM to apply a force able to unfold a single protein. The obtained force-distance curve encodes the unfolding pathway, and from its analysis it is possible to characterize the folded domains. SMFS has been mostly used to study the unfolding of purified proteins, in solution or reconstituted in a lipid bilayer. Here, we describe a pipeline for analyzing membrane proteins based on SMFS, that involves the isolation of the plasma membrane of single cells and the harvesting of force-distance curves directly from it. We characterized and identified the embedded membrane proteins combining, within a Bayesian framework, the information of the shape of the obtained curves, with the information from Mass Spectrometry and proteomic databases. The pipeline was tested with purified/reconstituted proteins and applied to five cell types where we classified the unfolding of their most abundant membrane proteins. We validated our pipeline by overexpressing 4 constructs, and this allowed us to gather structural insights of the identified proteins, revealing variable elements in the loop regions. Our results set the basis for the investigation of the unfolding of membrane proteins in situ, and for performing proteomics from a membrane fragment.
Collapse
Affiliation(s)
| | - Zhongjie Ye
- International School for Advanced Studies, Trieste, Italy
| | - Arin Marchesi
- Nano Life Science Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Simone Mortal
- International School for Advanced Studies, Trieste, Italy
| | - Sourav Maity
- Moleculaire Biofysica, University of Groningen, Groningen, Netherlands
| | | | | |
Collapse
|
15
|
Choi HK, Kang H, Lee C, Kim HG, Phillips BP, Park S, Tumescheit C, Kim SA, Lee H, Roh SH, Hong H, Steinegger M, Im W, Miller EA, Choi HJ, Yoon TY. Evolutionary balance between foldability and functionality of a glucose transporter. Nat Chem Biol 2022; 18:713-723. [PMID: 35484435 PMCID: PMC7612945 DOI: 10.1038/s41589-022-01002-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/25/2022] [Indexed: 01/03/2023]
Abstract
Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyunook Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Chanwoo Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hyun Gyu Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Ben P. Phillips
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Soohyung Park
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Charlotte Tumescheit
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sang Ah Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Hansol Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Soung-Hun Roh
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Heedeok Hong
- Department of Chemistry and Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Wonpil Im
- Departments of Biological Sciences and Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Elizabeth A. Miller
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK,Correspondence should be addressed to (E.A.M.), (H-J.C.) or (T-Y.Y.)
| | - Hee-Jung Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Correspondence should be addressed to (E.A.M.), (H-J.C.) or (T-Y.Y.)
| | - Tae-Young Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea,Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea,Correspondence should be addressed to (E.A.M.), (H-J.C.) or (T-Y.Y.)
| |
Collapse
|
16
|
Song Y, Ma Z, Zhang W. Manipulation of a Single Polymer Chain: From the Nanomechanical Properties to Dynamic Structure Evolution. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Amara U, Rashid S, Mahmood K, Nawaz MH, Hayat A, Hassan M. Insight into prognostics, diagnostics, and management strategies for SARS CoV-2. RSC Adv 2022; 12:8059-8094. [PMID: 35424750 PMCID: PMC8982343 DOI: 10.1039/d1ra07988c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/04/2022] [Indexed: 01/08/2023] Open
Abstract
The foremost challenge in countering infectious diseases is the shortage of effective therapeutics. The emergence of coronavirus disease (COVID-19) outbreak has posed a great menace to the public health system globally, prompting unprecedented endeavors to contain the virus. Many countries have organized research programs for therapeutics and management development. However, the longstanding process has forced authorities to implement widespread infrastructures for detailed prognostic and diagnostics study of severe acute respiratory syndrome (SARS CoV-2). This review discussed nearly all the globally developed diagnostic methodologies reported for SARS CoV-2 detection. We have highlighted in detail the approaches for evaluating COVID-19 biomarkers along with the most employed nucleic acid- and protein-based detection methodologies and the causes of their severe downfall and rejection. As the variable variants of SARS CoV-2 came into the picture, we captured the breadth of newly integrated digital sensing prototypes comprised of plasmonic and field-effect transistor-based sensors along with commercially available food and drug administration (FDA) approved detection kits. However, more efforts are required to exploit the available resources to manufacture cheap and robust diagnostic methodologies. Likewise, the visualization and characterization tools along with the current challenges associated with waste-water surveillance, food security, contact tracing, and their role during this intense period of the pandemic have also been discussed. We expect that the integrated data will be supportive and aid in the evaluation of sensing technologies not only in current but also future pandemics.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Sidra Rashid
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus 54000 Pakistan
| | - Maria Hassan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 608000 Pakistan
| |
Collapse
|
18
|
Viljoen A, Dufrêne YF. Force-induced unfolding of an antibiotic-bound outer-membrane protein. Structure 2022; 30:321-323. [PMID: 35245432 DOI: 10.1016/j.str.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this issue of Structure, Ritzmann et al. characterize the unfolding of the β-barrel assembly machinery component BamA with single-molecule force spectroscopy and reveal how an antibiotic changes BamA's mechanical properties and inhibits its activity. This work helps us understand the effects antibiotics have on Gram-negative outer membrane proteins.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
19
|
Corin K, Bowie JU. How physical forces drive the process of helical membrane protein folding. EMBO Rep 2022; 23:e53025. [PMID: 35133709 PMCID: PMC8892262 DOI: 10.15252/embr.202153025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/17/2021] [Accepted: 11/24/2021] [Indexed: 11/09/2022] Open
Abstract
Protein folding is a fundamental process of life with important implications throughout biology. Indeed, tens of thousands of mutations have been associated with diseases, and most of these mutations are believed to affect protein folding rather than function. Correct folding is also a key element of design. These factors have motivated decades of research on protein folding. Unfortunately, knowledge of membrane protein folding lags that of soluble proteins. This gap is partly caused by the greater technical challenges associated with membrane protein studies, but also because of additional complexities. While soluble proteins fold in a homogenous water environment, membrane proteins fold in a setting that ranges from bulk water to highly charged to apolar. Thus, the forces that drive folding vary in different regions of the protein, and this complexity needs to be incorporated into our understanding of the folding process. Here, we review our understanding of membrane protein folding biophysics. Despite the greater challenge, better model systems and new experimental techniques are starting to unravel the forces and pathways in membrane protein folding.
Collapse
Affiliation(s)
- Karolina Corin
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| | - James U Bowie
- Department of Chemistry and BiochemistryMolecular Biology InstituteUCLA‐DOE InstituteUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
20
|
Abstract
Single-molecule magnetic tweezers deliver magnetic force and torque to single target molecules, permitting the study of dynamic changes in biomolecular structures and their interactions. Because the magnetic tweezer setups can generate magnetic fields that vary slowly over tens of millimeters-far larger than the nanometer scale of the single molecule events being observed-this technique can maintain essentially constant force levels during biochemical experiments while generating a biologically meaningful force on the order of 1-100 pN. When using bead-tether constructs to pull on single molecules, smaller magnetic beads and shorter submicrometer tethers improve dynamic response times and measurement precision. In addition, employing high-speed cameras, stronger light sources, and a graphics programming unit permits true high-resolution single-molecule magnetic tweezers that can track nanometer changes in target molecules on a millisecond or even submillisecond time scale. The unique force-clamping capacity of the magnetic tweezer technique provides a way to conduct measurements under near-equilibrium conditions and directly map the energy landscapes underlying various molecular phenomena. High-resolution single-molecule magnetic tweezers can thus be used to monitor crucial conformational changes in single-protein molecules, including those involved in mechanotransduction and protein folding. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hyun Gyu Kim
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| | - Min Ju Shon
- Department of Physics and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science & Technology (POSTECH), Pohang, South Korea;
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea;
| |
Collapse
|
21
|
Fang B, Zhao L, Du X, Liu Q, Yang H, Li F, Sheng Y, Zhao W, Zhong H. Studying the
Rhodopsin‐Like
G Protein Coupled Receptors by Atomic Force Microscopy. Cytoskeleton (Hoboken) 2022; 78:400-416. [DOI: 10.1002/cm.21692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bin Fang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Li Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Xiaowei Du
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Qiyuan Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
- School of Basic Medicine Gannan Medical University Ganzhou People's Republic of China
| | - Hui Yang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Fangzuo Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Yaohuan Sheng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Weidong Zhao
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| | - Haijian Zhong
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province Gannan Medical University Ganzhou People's Republic of China
- School of Medical Information Engineering Gannan Medical University Ganzhou People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education Gannan Medical University Ganzhou People's Republic of China
| |
Collapse
|
22
|
Hong H, Choi HK, Yoon TY. Untangling the complexity of membrane protein folding. Curr Opin Struct Biol 2022; 72:237-247. [PMID: 34995926 DOI: 10.1016/j.sbi.2021.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/15/2022]
Abstract
Delineating the folding steps of helical-bundle membrane proteins has been a challenging task. Many questions remain unanswered, including the conformation and stability of the states populated during folding, the shape of the energy barriers between the states, and the role of lipids as a solvent in mediating the folding. Recently, theoretical frames have matured to a point that permits detailed dissection of the folding steps, and advances in experimental techniques at both single-molecule and ensemble levels enable selective modulation of specific steps for quantitative determination of the folding energy landscapes. We also discuss how lipid molecules would play an active role in shaping the folding energy landscape of membrane proteins, and how folding of multi-domain membrane proteins can be understood based on our current knowledge. We conclude this review by offering an outlook for emerging questions in the study of membrane protein folding.
Collapse
Affiliation(s)
- Heedeok Hong
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| | - Hyun-Kyu Choi
- Wallace H. Coulter Department of Biomedical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
23
|
Single-molecule manipulation of macromolecules on GUV or SUV membranes using optical tweezers. Biophys J 2021; 120:5454-5465. [PMID: 34813728 DOI: 10.1016/j.bpj.2021.11.2884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/16/2021] [Accepted: 11/19/2021] [Indexed: 11/23/2022] Open
Abstract
Despite their wide applications in soluble macromolecules, optical tweezers have rarely been used to characterize the dynamics of membrane proteins, mainly due to the lack of model membranes compatible with optical trapping. Here, we examined optical trapping and mechanical properties of two potential model membranes, giant and small unilamellar vesicles (GUVs and SUVs, respectively) for studies of membrane protein dynamics. We found that optical tweezers can stably trap GUVs containing iodixanol with controlled membrane tension. The trapped GUVs with high membrane tension can serve as a force sensor to accurately detect reversible folding of a DNA hairpin or membrane binding of synaptotagmin-1 C2AB domain attached to the GUV. We also observed that SUVs are rigid enough to resist large pulling forces and are suitable for detecting protein conformational changes induced by force. Our methodologies may facilitate single-molecule manipulation studies of membrane proteins using optical tweezers.
Collapse
|
24
|
Pan J, Kmieciak T, Liu YT, Wildenradt M, Chen YS, Zhao Y. Quantifying molecular- to cellular-level forces in living cells. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2021; 54:483001. [PMID: 34866655 PMCID: PMC8635116 DOI: 10.1088/1361-6463/ac2170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical cues have been suggested to play an important role in cell functions and cell fate determination, however, such physical quantities are challenging to directly measure in living cells with single molecule sensitivity and resolution. In this review, we focus on two main technologies that are promising in probing forces at the single molecule level. We review their theoretical fundamentals, recent technical advancements, and future directions, tailored specifically for interrogating mechanosensitive molecules in live cells.
Collapse
Affiliation(s)
- Jason Pan
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Tommy Kmieciak
- Department of Engineering Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yen-Ting Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Matthew Wildenradt
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yun-Sheng Chen
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yang Zhao
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N. Wright Street, Urbana, IL 61801, United States of America
| |
Collapse
|
25
|
Shrestha P, Yang D, Tomov TE, MacDonald JI, Ward A, Bergal HT, Krieg E, Cabi S, Luo Y, Nathwani B, Johnson-Buck A, Shih WM, Wong WP. Single-molecule mechanical fingerprinting with DNA nanoswitch calipers. NATURE NANOTECHNOLOGY 2021; 16:1362-1370. [PMID: 34675411 PMCID: PMC8678201 DOI: 10.1038/s41565-021-00979-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/16/2021] [Indexed: 05/31/2023]
Abstract
Decoding the identity of biomolecules from trace samples is a longstanding goal in the field of biotechnology. Advances in DNA analysis have substantially affected clinical practice and basic research, but corresponding developments for proteins face challenges due to their relative complexity and our inability to amplify them. Despite progress in methods such as mass spectrometry and mass cytometry, single-molecule protein identification remains a highly challenging objective. Towards this end, we combine DNA nanotechnology with single-molecule force spectroscopy to create a mechanically reconfigurable DNA nanoswitch caliper capable of measuring multiple coordinates on single biomolecules with atomic resolution. Using optical tweezers, we demonstrate absolute distance measurements with ångström-level precision for both DNA and peptides, and using multiplexed magnetic tweezers, we demonstrate quantification of relative abundance in mixed samples. Measuring distances between DNA-labelled residues, we perform single-molecule fingerprinting of synthetic and natural peptides, and show discrimination, within a heterogeneous population, between different posttranslational modifications. DNA nanoswitch calipers are a powerful and accessible tool for characterizing distances within nanoscale complexes that will enable new applications in fields such as single-molecule proteomics.
Collapse
Affiliation(s)
- Prakash Shrestha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Darren Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Toma E Tomov
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - James I MacDonald
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Andrew Ward
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Hans T Bergal
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - Elisha Krieg
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Serkan Cabi
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yi Luo
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bhavik Nathwani
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Johnson-Buck
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Biophysics Program, Harvard University, Cambridge, MA, USA
| | - William M Shih
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
26
|
Ritzmann N, Manioglu S, Hiller S, Müller DJ. Monitoring the antibiotic darobactin modulating the β-barrel assembly factor BamA. Structure 2021; 30:350-359.e3. [PMID: 34875215 DOI: 10.1016/j.str.2021.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/30/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) complex is an essential component of Escherichia coli that inserts and folds outer membrane proteins (OMPs). The natural antibiotic compound darobactin inhibits BamA, the central unit of BAM. Here, we employ dynamic single-molecule force spectroscopy (SMFS) to better understand the structure-function relationship of BamA and its inhibition by darobactin. The five N-terminal polypeptide transport (POTRA) domains show low mechanical, kinetic, and energetic stabilities. In contrast, the structural region linking the POTRA domains to the transmembrane β-barrel exposes the highest mechanical stiffness and lowest kinetic stability within BamA, thus indicating a mechano-functional role. Within the β-barrel, the four N-terminal β-hairpins H1-H4 expose the highest mechanical stabilities and stiffnesses, while the four C-terminal β-hairpins H5-H6 show lower stabilities and higher flexibilities. This asymmetry within the β-barrel suggests that substrates funneling into the lateral gate formed by β-hairpins H1 and H8 can force the flexible C-terminal β-hairpins to change conformations.
Collapse
Affiliation(s)
- Noah Ritzmann
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Selen Manioglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
27
|
Liu H, Chen Y, Wang J, Yang Y, Ju H. Tug-of-war: molecular dynamometers against living cells for analyzing sub-piconewton interaction of a specific protein with the cell membrane. Chem Sci 2021; 12:14389-14395. [PMID: 34880990 PMCID: PMC8580102 DOI: 10.1039/d1sc03059k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/01/2021] [Indexed: 11/25/2022] Open
Abstract
Protein–membrane interactions play important roles in signal transductions and functional regulation of membrane proteins. Here, we design a molecular dynamometer (MDM) for analyzing protein–membrane interaction on living cells. The MDM is constructed by assembling an artificial lipid bilayer and alkylated Cy3-DNA azide (azide-Cy3-Cx) on a silica bubble. After a functional aptamer is covalently anchored onto the corresponding target protein on a living cell through UV irradiation, azide-Cy3-Cx is conjugated with the aptamer through a click reaction to produce a “tug-of-war” between the MDM and the cell due to the buoyancy of the silica bubble. This induces the detachment of the protein from the cell membrane or the alkane terminal from the MDM enabling sub-piconewton embedding force measurement by changing the alkane chain length and simple fluorescence analysis. The successful analysis of embedding force variation of a protein on the cell membrane upon post-translational modifications demonstrates the practicability and expansibility of this method for mechanics-related research in biological systems. A molecular dynamometer is designed to analyze the variation of sub-piconewton interaction between a specific protein and the membrane on living cells.![]()
Collapse
Affiliation(s)
- Huipu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yuanjiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
28
|
Structural and thermodynamical insights into the binding and inhibition of FIH-1 by the N-terminal disordered region of Mint3. J Biol Chem 2021; 297:101304. [PMID: 34655613 PMCID: PMC8571082 DOI: 10.1016/j.jbc.2021.101304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
Mint3 is known to enhance aerobic ATP production, known as the Warburg effect, by binding to FIH-1. Since this effect is considered to be beneficial for cancer cells, the interaction is a promising target for cancer therapy. However, previous research has suggested that the interacting region of Mint3 with FIH-1 is intrinsically disordered, which makes investigation of this interaction challenging. Therefore, we adopted thermodynamic and structural studies in solution to clarify the structural and thermodynamical changes of Mint3 binding to FIH-1. First, using a combination of circular dichroism, nuclear magnetic resonance, and hydrogen/deuterium exchange–mass spectrometry (HDX-MS), we confirmed that the N-terminal half, which is the interacting part of Mint3, is mostly disordered. Next, we revealed a large enthalpy and entropy change in the interaction of Mint3 using isothermal titration calorimetry (ITC). The profile is consistent with the model that the flexibility of disordered Mint3 is drastically reduced upon binding to FIH-1. Moreover, we performed a series of ITC experiments with several types of truncated Mint3s, an effective approach since the interacting part of Mint3 is disordered, and identified amino acids 78 to 88 as a novel core site for binding to FIH-1. The truncation study of Mint3 also revealed the thermodynamic contribution of each part of Mint3 to the interaction with FIH-1, where the core sites contribute to the affinity (ΔG), while other sites only affect enthalpy (ΔH), by forming noncovalent bonds. This insight can serve as a foothold for further investigation of intrinsically disordered regions (IDRs) and drug development for cancer therapy.
Collapse
|
29
|
Petrosyan R, Narayan A, Woodside MT. Single-Molecule Force Spectroscopy of Protein Folding. J Mol Biol 2021; 433:167207. [PMID: 34418422 DOI: 10.1016/j.jmb.2021.167207] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
30
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
31
|
Cheng H, Yu J, Wang Z, Ma P, Guo C, Wang B, Zhong W, Xu B. Details of Single-Molecule Force Spectroscopy Data Decoded by a Network-Based Automatic Clustering Algorithm. J Phys Chem B 2021; 125:9660-9667. [PMID: 34425052 DOI: 10.1021/acs.jpcb.1c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic force microscopy-single-molecule force spectroscopy (AFM-SMFS) is a powerful methodology to probe intermolecular and intramolecular interactions in biological systems because of its operability in physiological conditions, facile and rapid sample preparation, versatile molecular manipulation, and combined functionality with high-resolution imaging. Since a huge number of AFM-SMFS force-distance curves are collected to avoid human bias and errors and to save time, numerous algorithms have been developed to analyze the AFM-SMFS curves. Nevertheless, there is still a need to develop new algorithms for the analysis of AFM-SMFS data since the current algorithms cannot specify an unbinding force to a corresponding/each binding site due to the lack of networking functionality to model the relationship between the unbinding forces. To address this challenge, herein, we develop an unsupervised method, i.e., a network-based automatic clustering algorithm (NASA), to decode the details of specific molecules, e.g., the unbinding force of each binding site, given the input of AFM-SMFS curves. Using the interaction of heparan sulfate (HS)-antithrombin (AT) on different endothelial cell surfaces as a model system, we demonstrate that NASA is able to automatically detect the peak and calculate the unbinding force. More importantly, NASA successfully identifies three unbinding force clusters, which could belong to three different binding sites, for both Ext1f/f and Ndst1f/f cell lines. NASA has great potential to be applied either readily or slightly modified to other AFM-based SMFS measurements that result in "saw-tooth"-shaped force-distance curves showing jumps related to the force unbinding, such as antibody-antigen interaction and DNA-protein interaction.
Collapse
Affiliation(s)
- Huimin Cheng
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Jun Yu
- School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Ping Ma
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Cunlan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Bin Wang
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Wenxuan Zhong
- Big Data Analytics Lab, Department of Statistics, University of Georgia, Athens, Georgia 30602, United States
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
32
|
Payam AF, Piantanida L, Voïtchovsky K. Development of a flexure-based nano-actuator for high-frequency high-resolution directional sensing with atomic force microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:093703. [PMID: 34598531 DOI: 10.1063/5.0057032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Scanning probe microscopies typically rely on the high-precision positioning of a nanoscale probe in order to gain local information about the properties of a sample. At a given location, the probe is used to interrogate a minute region of the sample, often relying on dynamical sensing for improved accuracy. This is the case for most force-based measurements in atomic force microscopy (AFM) where sensing occurs with a tip oscillating vertically, typically in the kHz to MHz frequency regime. While this approach is ideal for many applications, restricting dynamical sensing to only one direction (vertical) can become a serious limitation when aiming to quantify the properties of inherently three-dimensional systems, such as a liquid near a wall. Here, we present the design, fabrication, and calibration of a miniature high-speed scanner able to apply controlled fast and directional in-plane vibrations with sub-nanometer precision. The scanner has a resonance frequency of ∼35 kHz and is used in conjunction with a traditional AFM to augment the measurement capabilities. We illustrate its capabilities at a solid-liquid interface where we use it to quantify the preferred lateral flow direction of the liquid around every sample location. The AFM can simultaneously acquire high-resolution images of the interface, which can be superimposed with the directional measurements. Examples of sub-nanometer measurements conducted with the new scanner are also presented.
Collapse
Affiliation(s)
- Amir F Payam
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
33
|
Yan J, Sun B, Xie C, Liu Y, Song Z, Xu H, Wang Z. The influence of different liquid environments on the atomic force microscopy detection of living bEnd.3 cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2384-2390. [PMID: 33970977 DOI: 10.1039/d1ay00567g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic force microscopy (AFM) is one of the most important tools in the field of biomedical science, and it can be used to perform the high-resolution three-dimensional imaging of samples in liquid environments to obtain their physical properties (such as surface potentials and mechanical properties). The influence of the liquid environment on the image quality of the sample and the detection results cannot be ignored. In this work, quantitative imaging (QI) mode AFM imaging and mechanical detection were performed on mouse brain microvascular endothelial (bEnd.3) cells in different liquid environments. The gray-level variance product (SMD2) function was used to evaluate the imaging quality of the cells in liquids with different physical properties, and the variations in cell mechanical properties were quantitatively analyzed. An AFM detection liquid containing less ions and organics compared with the traditional culture medium, which is beneficial for improving the imaging quality, is introduced, and it shows similar mechanical detection results within 3 h. This can greatly reduce the detection costs and could have positive significance in the field of AFM living-cell detection.
Collapse
Affiliation(s)
- Jin Yan
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhuang Y, Bureau HR, Lopez C, Bucher R, Quirk S, Hernandez R. Energetics and structure of alanine-rich α-helices via adaptive steered molecular dynamics. Biophys J 2021; 120:2009-2018. [PMID: 33775636 PMCID: PMC8204395 DOI: 10.1016/j.bpj.2021.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/03/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
The energetics and hydrogen bonding profiles of the helix-to-coil transition were found to be an additive property and to increase linearly with chain length, respectively, in alanine-rich α-helical peptides. A model system of polyalanine repeats was used to establish this hypothesis for the energetic trends and hydrogen bonding profiles. Numerical measurements of a synthesized polypeptide Ac-Y(AEAAKA)kF-NH2 and a natural α-helical peptide a2N (1-17) provide evidence of the hypothesis's generality. Adaptive steered molecular dynamics was employed to investigate the mechanical unfolding of all of these alanine-rich polypeptides. We found that the helix-to-coil transition is primarily dependent on the breaking of the intramolecular backbone hydrogen bonds and independent of specific side-chain interactions and chain length. The mechanical unfolding of the α-helical peptides results in a turnover mechanism in which a 310-helical structure forms during the unfolding, remaining at a near constant population and thereby maintaining additivity in the free energy. The intermediate partially unfolded structures exhibited polyproline II helical structure as previously seen by others. In summary, we found that the average force required to pull alanine-rich α-helical peptides in between the endpoints-namely the native structure and free coil-is nearly independent of the length or the specific primary structure.
Collapse
Affiliation(s)
- Yi Zhuang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Hailey R Bureau
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Christine Lopez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | - Ryan Bucher
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland
| | | | - Rigoberto Hernandez
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Departments of Chemical and Biomolecular Engineering, and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
35
|
Bian K, Gerber C, Heinrich AJ, Müller DJ, Scheuring S, Jiang Y. Scanning probe microscopy. ACTA ACUST UNITED AC 2021. [DOI: 10.1038/s43586-021-00033-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Li M, Xi N, Liu L. Peak force tapping atomic force microscopy for advancing cell and molecular biology. NANOSCALE 2021; 13:8358-8375. [PMID: 33913463 DOI: 10.1039/d1nr01303c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The advent of atomic force microscopy (AFM) provides an exciting tool to detect molecular and cellular behaviors under aqueous conditions. AFM is able to not only visualize the surface topography of the specimens, but also can quantify the mechanical properties of the specimens by force spectroscopy assay. Nevertheless, integrating AFM topographic imaging with force spectroscopy assay has long been limited due to the low spatiotemporal resolution. In recent years, the appearance of a new AFM imaging mode called peak force tapping (PFT) has shattered this limit. PFT allows AFM to simultaneously acquire the topography and mechanical properties of biological samples with unprecedented spatiotemporal resolution. The practical applications of PFT in the field of life sciences in the past decade have demonstrated the excellent capabilities of PFT in characterizing the fine structures and mechanics of living biological systems in their native states, offering novel possibilities to reveal the underlying mechanisms guiding physiological/pathological activities. In this paper, the recent progress in cell and molecular biology that has been made with the utilization of PFT is summarized, and future perspectives for further progression and biomedical applications of PFT are provided.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ning Xi
- Department of Industrial and Manufacturing Systems Engineering, The University of Hong Kong, Hong Kong 999077, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China and Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China and University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2020083118. [PMID: 33753487 DOI: 10.1073/pnas.2020083118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single amino acid mutations provide quantitative insight into the energetics that underlie the dynamics and folding of membrane proteins. Chemical denaturation is the most widely used assay and yields the change in unfolding free energy (ΔΔG). It has been applied to >80 different residues of bacteriorhodopsin (bR), a model membrane protein. However, such experiments have several key limitations: 1) a nonnative lipid environment, 2) a denatured state with significant secondary structure, 3) error introduced by extrapolation to zero denaturant, and 4) the requirement of globally reversible refolding. We overcame these limitations by reversibly unfolding local regions of an individual protein with mechanical force using an atomic-force-microscope assay optimized for 2 μs time resolution and 1 pN force stability. In this assay, bR was unfolded from its native bilayer into a well-defined, stretched state. To measure ΔΔG, we introduced two alanine point mutations into an 8-amino-acid region at the C-terminal end of bR's G helix. For each, we reversibly unfolded and refolded this region hundreds of times while the rest of the protein remained folded. Our single-molecule-derived ΔΔG for mutant L223A (-2.3 ± 0.6 kcal/mol) quantitatively agreed with past chemical denaturation results while our ΔΔG for mutant V217A was 2.2-fold larger (-2.4 ± 0.6 kcal/mol). We attribute the latter result, in part, to contact between Val217 and a natively bound squalene lipid, highlighting the contribution of membrane protein-lipid contacts not present in chemical denaturation assays. More generally, we established a platform for determining ΔΔG for a fully folded membrane protein embedded in its native bilayer.
Collapse
|
38
|
Abstract
Multiple gram-negative bacteria encode type III secretion systems (T3SS) that allow them to inject effector proteins directly into host cells to facilitate colonization. To be secreted, effector proteins must be at least partially unfolded to pass through the narrow needle-like channel (diameter <2 nm) of the T3SS. Fusion of effector proteins to tightly packed proteins-such as GFP, ubiquitin, or dihydrofolate reductase (DHFR)-impairs secretion and results in obstruction of the T3SS. Prior observation that unfolding can become rate-limiting for secretion has led to the model that T3SS effector proteins have low thermodynamic stability, facilitating their secretion. Here, we first show that the unfolding free energy ([Formula: see text]) of two Salmonella effector proteins, SptP and SopE2, are 6.9 and 6.0 kcal/mol, respectively, typical for globular proteins and similar to published [Formula: see text] for GFP, ubiquitin, and DHFR. Next, we mechanically unfolded individual SptP and SopE2 molecules by atomic force microscopy (AFM)-based force spectroscopy. SptP and SopE2 unfolded at low force (F unfold ≤ 17 pN at 100 nm/s), making them among the most mechanically labile proteins studied to date by AFM. Moreover, their mechanical compliance is large, as measured by the distance to the transition state (Δx ‡ = 1.6 and 1.5 nm for SptP and SopE2, respectively). In contrast, prior measurements of GFP, ubiquitin, and DHFR show them to be mechanically robust (F unfold > 80 pN) and brittle (Δx ‡ < 0.4 nm). These results suggest that effector protein unfolding by T3SS is a mechanical process and that mechanical lability facilitates efficient effector protein secretion.
Collapse
|
39
|
Ilieva NI, Galvanetto N, Allegra M, Brucale M, Laio A. Automatic classification of single-molecule force spectroscopy traces from heterogeneous samples. Bioinformatics 2021; 36:5014-5020. [PMID: 32653898 DOI: 10.1093/bioinformatics/btaa626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Single-molecule force spectroscopy (SMFS) experiments pose the challenge of analysing protein unfolding data (traces) coming from preparations with heterogeneous composition (e.g. where different proteins are present in the sample). An automatic procedure able to distinguish the unfolding patterns of the proteins is needed. Here, we introduce a data analysis pipeline able to recognize in such datasets traces with recurrent patterns (clusters). RESULTS We illustrate the performance of our method on two prototypical datasets: ∼50 000 traces from a sample containing tandem GB1 and ∼400 000 traces from a native rod membrane. Despite a daunting signal-to-noise ratio in the data, we are able to identify several unfolding clusters. This work demonstrates how an automatic pattern classification can extract relevant information from SMFS traces from heterogeneous samples without prior knowledge of the sample composition. AVAILABILITY AND IMPLEMENTATION https://github.com/ninailieva/SMFS_clustering. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nina I Ilieva
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy
| | - Nicola Galvanetto
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy
| | - Michele Allegra
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy.,Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, Marseille 13005, France
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Bologna 40129, Italy
| | - Alessandro Laio
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy.,The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste 34151, Italy
| |
Collapse
|
40
|
Li S, Wang X, Li Z, Huang Z, Lin S, Hu J, Tu Y. Research progress of single molecule force spectroscopy technology based on atomic force microscopy in polymer materials: Structure, design strategy and probe modification. NANO SELECT 2021. [DOI: 10.1002/nano.202000235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Shi Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiao Wang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhihua Li
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Zhenzhu Huang
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Shudong Lin
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry Chinese Academy of Sciences Guangzhou 510650 PR China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics Guangzhou 510650 PR China
- CAS Engineering Laboratory for Special Fine Chemicals Guangzhou 510650 PR China
- Incubator of Nanxiong CAS Co., Ltd. Nanxiong 512400 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
41
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
42
|
Casuso I, Redondo-Morata L, Rico F. Biological physics by high-speed atomic force microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190604. [PMID: 33100165 PMCID: PMC7661283 DOI: 10.1098/rsta.2019.0604] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While many fields have contributed to biological physics, nanotechnology offers a new scale of observation. High-speed atomic force microscopy (HS-AFM) provides nanometre structural information and dynamics with subsecond resolution of biological systems. Moreover, HS-AFM allows us to measure piconewton forces within microseconds giving access to unexplored, fast biophysical processes. Thus, HS-AFM provides a tool to nourish biological physics through the observation of emergent physical phenomena in biological systems. In this review, we present an overview of the contribution of HS-AFM, both in imaging and force spectroscopy modes, to the field of biological physics. We focus on examples in which HS-AFM observations on membrane remodelling, molecular motors or the unfolding of proteins have stimulated the development of novel theories or the emergence of new concepts. We finally provide expected applications and developments of HS-AFM that we believe will continue contributing to our understanding of nature, by serving to the dialogue between biology and physics. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Ignacio Casuso
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
| | - Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, 59000 Lille, France
| | - Felix Rico
- Aix-Marseile University, Inserm, CNRS, LAI, 163 Av. de Luminy, 13009 Marseille, France
- e-mail:
| |
Collapse
|
43
|
King GM, Kosztin I. Towards a Quantitative Understanding of Protein-Lipid Bilayer Interactions at the Single Molecule Level: Opportunities and Challenges. J Membr Biol 2020; 254:17-28. [PMID: 33196888 DOI: 10.1007/s00232-020-00151-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Protein-lipid interfaces are among the most fundamental in biology. Yet applying conventional techniques to study the biophysical attributes of these systems is challenging and has left many unknowns. For example, what is the kinetic pathway and energy landscape experienced by a polypeptide chain when in close proximity to a fluid lipid bilayer? Here we review the experimental and theoretical progress we have made in addressing this question from a single molecule perspective. Some remaining impediments are also discussed.
Collapse
Affiliation(s)
- Gavin M King
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA. .,Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| | - Ioan Kosztin
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA.
| |
Collapse
|
44
|
Maikranz E, Spengler C, Thewes N, Thewes A, Nolle F, Jung P, Bischoff M, Santen L, Jacobs K. Different binding mechanisms of Staphylococcus aureus to hydrophobic and hydrophilic surfaces. NANOSCALE 2020; 12:19267-19275. [PMID: 32935690 DOI: 10.1039/d0nr03134h] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial adhesion to surfaces is a crucial step in initial biofilm formation. In a combined experimental and computational approach, we studied the adhesion of the pathogenic bacterium Staphylococcus aureus to hydrophilic and hydrophobic surfaces. We used atomic force microscopy-based single-cell force spectroscopy and Monte Carlo simulations to investigate the similarities and differences of adhesion to hydrophilic and hydrophobic surfaces. Our results reveal that binding to both types of surfaces is mediated by thermally fluctuating cell wall macromolecules that behave differently on each type of substrate: on hydrophobic surfaces, many macromolecules are involved in adhesion, yet only weakly tethered, leading to high variance between individual bacteria, but low variance between repetitions with the same bacterium. On hydrophilic surfaces, however, only few macromolecules tether strongly to the surface. Since during every repetition with the same bacterium different macromolecules bind, we observe a comparable variance between repetitions and different bacteria. We expect these findings to be of importance for the understanding of the adhesion behaviour of many bacterial species as well as other microorganisms and even nanoparticles with soft, macromolecular coatings, used e.g. for biological diagnostics.
Collapse
Affiliation(s)
- Erik Maikranz
- Theoretical Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Grzeszczuk Z, Rosillo A, Owens Ó, Bhattacharjee S. Atomic Force Microscopy (AFM) As a Surface Mapping Tool in Microorganisms Resistant Toward Antimicrobials: A Mini-Review. Front Pharmacol 2020; 11:517165. [PMID: 33123004 PMCID: PMC7567160 DOI: 10.3389/fphar.2020.517165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/14/2020] [Indexed: 12/28/2022] Open
Abstract
The worldwide emergence of antimicrobial resistance (AMR) in pathogenic microorganisms, including bacteria and viruses due to a plethora of reasons, such as genetic mutation and indiscriminate use of antimicrobials, is a major challenge faced by the healthcare sector today. One of the issues at hand is to effectively screen and isolate resistant strains from sensitive ones. Utilizing the distinct nanomechanical properties (e.g., elasticity, intracellular turgor pressure, and Young’s modulus) of microbes can be an intriguing way to achieve this; while atomic force microscopy (AFM), with or without modification of the tips, presents an effective way to investigate such biophysical properties of microbial surfaces or an entire microbial cell. Additionally, advanced AFM instruments, apart from being compatible with aqueous environments—as often is the case for biological samples—can measure the adhesive forces acting between AFM tips/cantilevers (conjugated to bacterium/virion, substrates, and molecules) and target cells/surfaces to develop informative force-distance curves. Moreover, such force spectroscopies provide an idea of the nature of intercellular interactions (e.g., receptor-ligand) or propensity of microbes to aggregate into densely packed layers, that is, the formation of biofilms—a property of resistant strains (e.g., Staphylococcus aureus, Pseudomonas aeruginosa). This mini-review will revisit the use of single-cell force spectroscopy (SCFS) and single-molecule force spectroscopy (SMFS) that are emerging as powerful additions to the arsenal of researchers in the struggle against resistant microbes, identify their strengths and weakness and, finally, prioritize some future directions for research.
Collapse
Affiliation(s)
| | | | - Óisín Owens
- School of Physics, Technological University Dublin, Dublin, Ireland
| | | |
Collapse
|
46
|
Yu H, Jacobson DR, Luo H, Perkins TT. Quantifying the Native Energetics Stabilizing Bacteriorhodopsin by Single-Molecule Force Spectroscopy. PHYSICAL REVIEW LETTERS 2020; 125:068102. [PMID: 32845671 DOI: 10.1103/physrevlett.125.068102] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
We quantified the equilibrium (un)folding free energy ΔG_{0} of an eight-amino-acid region starting from the fully folded state of the model membrane-protein bacteriorhodopsin using single-molecule force spectroscopy. Analysis of equilibrium and nonequilibrium data yielded consistent, high-precision determinations of ΔG_{0} via multiple techniques (force-dependent kinetics, Crooks fluctuation theorem, and inverse Boltzmann analysis). We also deduced the full 1D projection of the free-energy landscape in this region. Importantly, ΔG_{0} was determined in bacteriorhodopsin's native bilayer, an advance over traditional results obtained by chemical denaturation in nonphysiological detergent micelles.
Collapse
Affiliation(s)
- Hao Yu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Hao Luo
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
47
|
Bhalla N, Pan Y, Yang Z, Payam AF. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS NANO 2020; 14:7783-7807. [PMID: 32551559 PMCID: PMC7319134 DOI: 10.1021/acsnano.0c04421] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Biosensors and nanoscale analytical tools have shown huge growth in literature in the past 20 years, with a large number of reports on the topic of 'ultrasensitive', 'cost-effective', and 'early detection' tools with a potential of 'mass-production' cited on the web of science. Yet none of these tools are commercially available in the market or practically viable for mass production and use in pandemic diseases such as coronavirus disease 2019 (COVID-19). In this context, we review the technological challenges and opportunities of current bio/chemical sensors and analytical tools by critically analyzing the bottlenecks which have hindered the implementation of advanced sensing technologies in pandemic diseases. We also describe in brief COVID-19 by comparing it with other pandemic strains such as that of severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) for the identification of features that enable biosensing. Moreover, we discuss visualization and characterization tools that can potentially be used not only for sensing applications but also to assist in speeding up the drug discovery and vaccine development process. Furthermore, we discuss the emerging monitoring mechanism, namely wastewater-based epidemiology, for early warning of the outbreak, focusing on sensors for rapid and on-site analysis of SARS-CoV2 in sewage. To conclude, we provide holistic insights into challenges associated with the quick translation of sensing technologies, policies, ethical issues, technology adoption, and an overall outlook of the role of the sensing technologies in pandemics.
Collapse
Affiliation(s)
- Nikhil Bhalla
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| | - Yuwei Pan
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Zhugen Yang
- Cranfield
Water Science Institute, Cranfield University, Cranfield, Bedfordshire MK43 0AL, United Kingdom
| | - Amir Farokh Payam
- Nanotechnology
and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37
0QB Jordanstown, Northern Ireland, United Kingdom
- Healthcare
Technology Hub, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern
Ireland, United Kingdom
| |
Collapse
|
48
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
49
|
Yang B, Liu Z, Liu H, Nash MA. Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes. Front Mol Biosci 2020; 7:85. [PMID: 32509800 PMCID: PMC7248566 DOI: 10.3389/fmolb.2020.00085] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/16/2020] [Indexed: 12/31/2022] Open
Abstract
Single-molecule force spectroscopy with the atomic force microscope provides molecular level insights into protein function, allowing researchers to reconstruct energy landscapes and understand functional mechanisms in biology. With steadily advancing methods, this technique has greatly accelerated our understanding of force transduction, mechanical deformation, and mechanostability within single- and multi-domain polyproteins, and receptor-ligand complexes. In this focused review, we summarize the state of the art in terms of methodology and highlight recent methodological improvements for AFM-SMFS experiments, including developments in surface chemistry, considerations for protein engineering, as well as theory and algorithms for data analysis. We hope that by condensing and disseminating these methods, they can assist the community in improving data yield, reliability, and throughput and thereby enhance the information that researchers can extract from such experiments. These leading edge methods for AFM-SMFS will serve as a groundwork for researchers cognizant of its current limitations who seek to improve the technique in the future for in-depth studies of molecular biomechanics.
Collapse
Affiliation(s)
- Byeongseon Yang
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Zhaowei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Haipei Liu
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Michael A. Nash
- Department of Chemistry, University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
50
|
Kristi N, Gafur A, Kong L, Ma X, Ye Z, Wang G. Atomic Force Microscopy in Mechanoimmunology Analysis: A New Perspective for Cancer Immunotherapy. Biotechnol J 2020; 15:e1900559. [PMID: 32240578 DOI: 10.1002/biot.201900559] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/08/2020] [Indexed: 01/05/2023]
Abstract
Immunotherapy has remarkable success outcomes against hematological malignancies with high rates of complete remission. To date, many studies have been conducted to increase its effectiveness in other types of cancer. However, it still yields unsatisfying results in solid tumor therapy. This limitation is partly attributed to the lack of understanding of how immunotherapy works in cancer from other perspectives. The traditional studies focus on the biological and chemical perspectives to determine which molecular substrates are involved in the immune system that can eradicate cancer cells. In the last decades, accumulating evidence has shown that physical properties also play important roles in the immune system to combat cancer, which is studied in mechanoimmunology. Mechanoimmunology analysis requires special tools; and herein, atomic force microscopy (AFM) appears as a versatile tool to determine and quantify the mechanical properties of a sample in nanometer precisions. Owing to its multifunctional capabilities, AFM can be used to explore immune system function from the physical perspective. This review paper explains the mechanoimmunology of how immune systems work through AFM, which includes mechanosignaling, mechanosensing, and mechanotransduction, with the aim to deepen the understanding of the mechanistic role of immunotherapy for further development in cancer treatment.
Collapse
Affiliation(s)
- Natalia Kristi
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Alidha Gafur
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Central Hospital of Chongqing University, Chongqing Emergency Medical Center, Chongqing, 400014, P. R. China
| | - Xinshuang Ma
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Zhiyi Ye
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing, 400030, China
| |
Collapse
|