1
|
do Prado PFV, Ahrens FM, Liebers M, Ditz N, Braun HP, Pfannschmidt T, Hillen HS. Structure of the multi-subunit chloroplast RNA polymerase. Mol Cell 2024; 84:910-925.e5. [PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.
Collapse
Affiliation(s)
- Paula F V do Prado
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Frederik M Ahrens
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Monique Liebers
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Noah Ditz
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Hans-Peter Braun
- Institute of Plant Genetics, Plant Molecular Biology and Plant Proteomics, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Thomas Pfannschmidt
- Institute of Botany, Plant Physiology, Leibniz University Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Hauke S Hillen
- University Medical Center Göttingen, Department of Cellular Biochemistry, Humboldtallee 23, 37073 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Research Group Structure and Function of Molecular Machines, Am Fassberg 11, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany; Göttingen Center for Molecular Biosciences (GZMB), Research Group Structure and Function of Molecular Machines, University of Göttingen, 37077 Göttingen, Germany.
| |
Collapse
|
2
|
Gracia J, Perumal D, Dhandapani P, Ragunathan P. Systematic identification and repurposing of FDA-approved drugs as antibacterial agents against Streptococcus pyogenes: In silico and in vitro studies. Int J Biol Macromol 2024; 257:128667. [PMID: 38101681 DOI: 10.1016/j.ijbiomac.2023.128667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Streptococcus pyogenes (Group A Streptococcus - GAS) is a human pathogen causing wide range of infections and toxin-mediated diseases in human beings of all age groups with fatality of 10-30 %. The limited success of antibiotics and the non-availability of vaccines makes GAS a global burden. The multi-subunit RNA polymerase (RNAP) is a validated bacterial therapeutic target as it is involved in transcription and can arrest growth. Of the five subunits of this enzyme complex, the β-subunit (RpoC) has attracted specific attention as a drug target, particularly in the switch region. Here we attempt to repurpose non-antimicrobial drugs to act as RpoC inhibitors against S. pyogenes. In this study, 1826 FDA approved drugs have been identified through high-throughput virtual screening. Free Energy Perturbation (FEP) based binding free energy calculations have been performed at the final step of the virtual screening funnel to ensure high accuracy in silico results. Three compounds identified have been tested for susceptibility of S. pyogenes MTCC 442 strain and two antibiotic-resistant clinical isolates of S. pyogenes using microdilution assay. Among the three, two drugs Amlodipine Besylate (Amd) and Ranitidine hydrochloride (Rnt) have shown inhibition against all the tested strains and its mechanism of interaction with RpoC has been studied. The docked complexes were analyzed to understand the binding mode of the drugs to the target. Classical Molecular Dynamics studies for RpoC-Rnt complex and the two stable conformations of RpoC-Amd complex was carried out. Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of Gyration (RoG) and Solvent Accessible Surface Area (SASA) of the complexes were plotted and studied. The thermodynamic parameters of protein-drug were experimentally determined using Isothermal Titration Calorimetry (ITC). Infrared spectroscopic studies and Fluorescence quenching studies provided insights into the secondary structural changes in RpoC on binding to the drugs.
Collapse
Affiliation(s)
- Judith Gracia
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy, India
| | - Damodharan Perumal
- Department of Microbiology, Dr. ALMPG IBMS, University of Madras, Taramani, India
| | - Prabu Dhandapani
- Department of Microbiology, Dr. ALMPG IBMS, University of Madras, Taramani, India
| | - Preethi Ragunathan
- Centre for Advanced Studies in Crystallography and Biophysics, University of Madras, Guindy, India.
| |
Collapse
|
3
|
Mandell ZF, Zemba D, Babitzke P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 2022; 13:96-108. [PMID: 36154805 PMCID: PMC9715273 DOI: 10.1080/21541264.2022.2127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/12/2023] Open
Abstract
Transcription termination is known to occur via two mechanisms in bacteria, intrinsic termination (also frequently referred to as Rho-independent or factor-independent termination) and Rho-dependent termination. Based primarily on in vitro studies using Escherichia coli RNA polymerase, it was generally assumed that intrinsic termination and Rho-dependent termination are distinct mechanisms and that the signals required for intrinsic termination are present primarily within the nucleic acids. In this review, we detail recent findings from studies in Bacillus subtilis showing that intrinsic termination in this organism is highly stimulated by NusA, NusG, and even Rho. In NusA-stimulated intrinsic termination, NusA facilitates the formation of weak terminator hairpins and compensates for distal U-rich tract interruptions. In NusG-stimulated intrinsic termination, NusG stabilizes a sequence-dependent pause at the point of termination, which extends the time frame for RNA hairpins with weak terminal base pairs to form in either a NusA-stimulated or a NusA-independent fashion. In Rho-stimulated intrinsic termination, Rho prevents the formation of antiterminator-like RNA structures that could otherwise compete with the terminator hairpin. Combined, NusA, NusG, and Rho stimulate approximately 97% of all intrinsic terminators in B. subtilis. Thus, the general view that intrinsic termination is primarily a factor-independent process needs to be revised to account for recent findings. Moreover, the historical distinction between Rho-dependent and intrinsic termination is overly simplistic and needs to be modernized.
Collapse
Affiliation(s)
- Zachary F. Mandell
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
- Department of Molecular Biology and Genetics and Department of Biology, Johns Hopkins University, Baltimore, MD, United State
| | - Dani Zemba
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
4
|
Kirsch SH, Haeckl FPJ, Müller R. Beyond the approved: target sites and inhibitors of bacterial RNA polymerase from bacteria and fungi. Nat Prod Rep 2022; 39:1226-1263. [PMID: 35507039 DOI: 10.1039/d1np00067e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.
Collapse
Affiliation(s)
- Susanne H Kirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany.,Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| |
Collapse
|
5
|
Roles of zinc-binding domain of bacterial RNA polymerase in transcription. Trends Biochem Sci 2022; 47:710-724. [DOI: 10.1016/j.tibs.2022.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/27/2022] [Accepted: 03/07/2022] [Indexed: 01/07/2023]
|
6
|
Chen PH, Sung LK, Hegemann JD, Chu J. Disrupting transcription and folate biosynthesis leads to synergistic suppression of Escherichia coli growth. ChemMedChem 2022; 17:e202200075. [PMID: 35201676 PMCID: PMC9314896 DOI: 10.1002/cmdc.202200075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/12/2022]
Abstract
The use of synergistic antibiotic combinations has emerged as a viable approach to contain the rapid spread of antibiotic‐resistant pathogens. Here we report the discovery of a new strongly synergistic pair – microcin J25 and sulfamonomethoxine. The former is a lasso peptide that inhibits the function of RNA polymerase and the latter is a sulfonamide antibacterial agent that disrupts the folate pathway. Key to our discovery was a screening strategy that focuses on an antibiotic (microcin J25) that targets a hub (transcription) in the densely interconnected network of cellular pathways. The rationale was that disrupting such a hub likely weakens the entire network, generating weak links that potentiate the growth inhibitory effect of other antibiotics. We found that MccJ25 potentiates five other antibiotics as well. These results showcase the merit of taking a more targeted approach in the search and study of synergistic antibiotic pairs.
Collapse
Affiliation(s)
- Pei-Hsin Chen
- National Taiwan University, Chemistry, No. 1, Sec. 4, Roosevelt Rd., 10617, Taipei, TAIWAN
| | | | - Julian D Hegemann
- Helmholtz Centre for Infection Research: Helmholtz-Zentrum fur Infektionsforschung GmbH, Helmholtz Institute for Pharmaceutical Research Saarland, GERMANY
| | - John Chu
- National Taiwan University, Chemistry, No.1, Sec.4, Roosevelt Road, Deptartment of Chemistry, Rm A521, 106319, Taipei, TAIWAN
| |
Collapse
|
7
|
Strobel EJ. Preparation and Characterization of Internally Modified DNA Templates for Chemical Transcription Roadblocking. Bio Protoc 2021; 11:e4141. [PMID: 34604447 DOI: 10.21769/bioprotoc.4141] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/18/2021] [Accepted: 05/11/2021] [Indexed: 01/19/2023] Open
Abstract
Site-specific transcription arrest is the basis of emerging technologies that assess nascent RNA structure and function. Cotranscriptionally folded RNA can be displayed from an arrested RNA polymerase (RNAP) for biochemical manipulations by halting transcription elongation at a defined DNA template position. Most transcription "roadblocking" approaches halt transcription elongation using a protein blockade that is non-covalently attached to the template DNA. I previously developed a strategy for halting Escherichia coli RNAP at a chemical lesion, which expands the repertoire of transcription roadblocking technologies and enables sophisticated manipulations of the arrested elongation complexes. To facilitate this chemical transcription roadblocking approach, I developed a sequence-independent method for preparing internally modified dsDNA using PCR and translesion synthesis. Here, I present a detailed protocol for the preparation and characterization of internally modified dsDNA templates for chemical transcription roadblocking experiments. Graphic abstract: Precise transcription roadblocking using functionalized DNA lesions.
Collapse
Affiliation(s)
- Eric J Strobel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
8
|
Kunthavai PC, Kannan M, Ragunathan P. Structural analysis of alternate sigma factor ComX with RpoC, RpoB and its cognate CIN promoter reveals a distinctive promoter melting mechanism. J Biomol Struct Dyn 2021; 40:6272-6285. [PMID: 33554755 DOI: 10.1080/07391102.2021.1882338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Alternate sigma factors play a major role in the survival of pathogenic bacteria such as Streptococcus pyogenes in adverse environment conditions. Stress induced sigma factors mediate gene expression under conditions of pathogenesis, dormancy and unusual environmental cues. In the present work, ComX, an alternate sigma factor from S. pyogenes has been characterized. The structures of ComX, RpoB β subunit and RpoC β' subunit of RNA polymerase have been predicted using comparative and homology modelling respectively and validated. Attempts have been made to study RpoB-RpoC-ComX complex interactions with Double Strand (DS) and Single Strand (SS) promoter regions. Stability of these complexes and the promoter melting mechanism have been analysed using Molecular Dynamic (MD) simulations. This study suggests that ComX, although identifies promoter analogous to the alternate sigma factor SigH of M. tuberculosis, follows a distinctive promoter flip out mechanism.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P C Kunthavai
- Centre of Advanced study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Muthu Kannan
- Department of Biological sciences, National University of Singapore, Singapore, Singapore
| | - Preethi Ragunathan
- Centre of Advanced study in Crystallography and Biophysics, University of Madras, Chennai, India
| |
Collapse
|
9
|
Qian J, Dunlap D, Finzi L. Basic mechanisms and kinetics of pause-interspersed transcript elongation. Nucleic Acids Res 2021; 49:15-24. [PMID: 33330935 PMCID: PMC7797061 DOI: 10.1093/nar/gkaa1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
RNA polymerase pausing during elongation is an important mechanism in the regulation of gene expression. Pausing along DNA templates is thought to be induced by distinct signals encoded in the nucleic acid sequence and halt elongation complexes to allow time for necessary co-transcriptional events. Pausing signals have been classified as those producing short-lived elemental, long-lived backtracked, or hairpin-stabilized pauses. In recent years, structural microbiology and single-molecule studies have significantly advanced our understanding of the paused states, but the dynamics of these states are still uncertain, although several models have been proposed to explain the experimentally observed pausing behaviors. This review summarizes present knowledge about the paused states, discusses key discrepancies among the kinetic models and their basic assumptions, and highlights the importance and challenges in constructing theoretical models that may further our biochemical understanding of transcriptional pausing.
Collapse
Affiliation(s)
- Jin Qian
- Physics, Emory University, Atlanta, GA 30307, USA
| | - David Dunlap
- Physics, Emory University, Atlanta, GA 30307, USA
| | - Laura Finzi
- Physics, Emory University, Atlanta, GA 30307, USA
| |
Collapse
|
10
|
Mutational analysis of Escherichia coli GreA protein reveals new functional activity independent of antipause and lethal when overexpressed. Sci Rep 2020; 10:16074. [PMID: 32999370 PMCID: PMC7527559 DOI: 10.1038/s41598-020-73069-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
There is a growing appreciation for the diverse regulatory consequences of the family of proteins that bind to the secondary channel of E. coli RNA polymerase (RNAP), such as GreA, GreB or DksA. Similar binding sites could suggest a competition between them. GreA is characterised to rescue stalled RNAP complexes due to its antipause activity, but also it is involved in transcription fidelity and proofreading. Here, overexpression of GreA is noted to be lethal independent of its antipause activity. A library of random GreA variants has been used to isolate lethality suppressors to assess important residues for GreA functionality and its interaction with the RNA polymerase. Some mutant defects are inferred to be associated with altered binding competition with DksA, while other variants seem to have antipause activity defects that cannot reverse a GreA-sensitive pause site in a fliC::lacZ reporter system. Surprisingly, apparent binding and cleavage defects are found scattered throughout both the coiled-coil and globular domains. Thus, the coiled-coil of GreA is not just a measuring stick ensuring placement of acidic residues precisely at the catalytic centre but also seems to have binding functions. These lethality suppressor mutants may provide valuable tools for future structural and functional studies.
Collapse
|
11
|
Binas O, Schamber T, Schwalbe H. The conformational landscape of transcription intermediates involved in the regulation of the ZMP-sensing riboswitch from Thermosinus carboxydivorans. Nucleic Acids Res 2020; 48:6970-6979. [PMID: 32479610 PMCID: PMC7337938 DOI: 10.1093/nar/gkaa427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/03/2020] [Accepted: 05/29/2020] [Indexed: 01/30/2023] Open
Abstract
Recently, prokaryotic riboswitches have been identified that regulate transcription in response to change of the concentration of secondary messengers. The ZMP (5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR))-sensing riboswitch from Thermosinus carboxydivorans is a transcriptional ON-switch that is involved in purine and carbon-1 metabolic cycles. Its aptamer domain includes the pfl motif, which features a pseudoknot, impeding rho-independent terminator formation upon stabilization by ZMP interaction. We herein investigate the conformational landscape of transcriptional intermediates including the expression platform of this riboswitch and characterize the formation and unfolding of the important pseudoknot structure in the context of increasing length of RNA transcripts. NMR spectroscopic data show that even surprisingly short pre-terminator stems are able to disrupt ligand binding and thus metabolite sensing. We further show that the pseudoknot structure, a prerequisite for ligand binding, is preformed in transcription intermediates up to a certain length. Our results describe the conformational changes of 13 transcription intermediates of increasing length to delineate the change in structure as mRNA is elongated during transcription. We thus determine the length of the key transcription intermediate to which addition of a single nucleotide leads to a drastic drop in ZMP affinity.
Collapse
Affiliation(s)
- Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
12
|
Belogurov GA, Artsimovitch I. The Mechanisms of Substrate Selection, Catalysis, and Translocation by the Elongating RNA Polymerase. J Mol Biol 2019; 431:3975-4006. [PMID: 31153902 DOI: 10.1016/j.jmb.2019.05.042] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/24/2019] [Accepted: 05/24/2019] [Indexed: 11/15/2022]
Abstract
Multi-subunit DNA-dependent RNA polymerases synthesize all classes of cellular RNAs, ranging from short regulatory transcripts to gigantic messenger RNAs. RNA polymerase has to make each RNA product in just one try, even if it takes millions of successive nucleotide addition steps. During each step, RNA polymerase selects a correct substrate, adds it to a growing chain, and moves one nucleotide forward before repeating the cycle. However, RNA synthesis is anything but monotonous: RNA polymerase frequently pauses upon encountering mechanical, chemical and torsional barriers, sometimes stepping back and cleaving off nucleotides from the growing RNA chain. A picture in which these intermittent dynamics enable processive, accurate, and controllable RNA synthesis is emerging from complementary structural, biochemical, computational, and single-molecule studies. Here, we summarize our current understanding of the mechanism and regulation of the on-pathway transcription elongation. We review the details of substrate selection, catalysis, proofreading, and translocation, focusing on rate-limiting steps, structural elements that modulate them, and accessory proteins that appear to control RNA polymerase translocation.
Collapse
Affiliation(s)
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
13
|
Bellecourt MJ, Ray-Soni A, Harwig A, Mooney RA, Landick R. RNA Polymerase Clamp Movement Aids Dissociation from DNA but Is Not Required for RNA Release at Intrinsic Terminators. J Mol Biol 2019; 431:696-713. [PMID: 30630008 DOI: 10.1016/j.jmb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 10/27/2022]
Abstract
In bacteria, disassembly of elongating transcription complexes (ECs) can occur at intrinsic terminators in a 2- to 3-nucleotide window after transcription of multiple kilobase pairs of DNA. Intrinsic terminators trigger pausing on weak RNA-DNA hybrids followed by formation of a strong, GC-rich stem-loop in the RNA exit channel of RNA polymerase (RNAP), inactivating nucleotide addition and inducing dissociation of RNA and RNAP from DNA. Although the movements of RNA and DNA during intrinsic termination have been studied extensively leading to multiple models, the effects of RNAP conformational changes remain less well defined. RNAP contains a clamp domain that closes around the nucleic acid scaffold during transcription initiation and can be displaced by either swiveling or opening motions. Clamp opening is proposed to promote termination by releasing RNAP-nucleic acid contacts. We developed a cysteine crosslinking assay to constrain clamp movements and study effects on intrinsic termination. We found that biasing the clamp into different conformations perturbed termination efficiency, but that perturbations were due primarily to changes in elongation rate, not the competing rate at which ECs commit to termination. After commitment, however, inhibiting clamp movements slowed release of DNA but not of RNA from the EC. We also found that restricting trigger-loop movements with the RNAP inhibitor microcin J25 prior to commitment inhibits termination, in agreement with a recently proposed multistate-multipath model of intrinsic termination. Together our results support views that termination commitment and DNA release are separate steps and that RNAP may remain associated with DNA after termination.
Collapse
Affiliation(s)
- Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Rusanov T, Kent T, Saeed M, Hoang TM, Thomas C, Rice CM, Pomerantz RT. Identification of a Small Interface between the Methyltransferase and RNA Polymerase of NS5 that is Essential for Zika Virus Replication. Sci Rep 2018; 8:17384. [PMID: 30478404 PMCID: PMC6255901 DOI: 10.1038/s41598-018-35511-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
The spread of Zika virus (ZIKV) has caused an international health emergency due to its ability to cause microcephaly in infants. Yet, our knowledge of how ZIKV replicates at the molecular level is limited. For example, how the non-structural protein 5 (NS5) performs replication, and in particular whether the N-terminal methytransferase (MTase) domain is essential for the function of the C-terminal RNA-dependent RNA polymerase (RdRp) remains unclear. In contrast to previous reports, we find that MTase is absolutely essential for all activities of RdRp in vitro. For instance, the MTase domain confers stability onto the RdRp elongation complex (EC) and and is required for de novo RNA synthesis and nucleotide incorporation by RdRp. Finally, structure function analyses identify key conserved residues at the MTase-RdRp interface that specifically activate RdRp elongation and are essential for ZIKV replication in Huh-7.5 cells. These data demonstrate the requirement for the MTase-RdRp interface in ZIKV replication and identify a specific site within this region as a potential site for therapeutic development.
Collapse
Affiliation(s)
- Timur Rusanov
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mohsan Saeed
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Trung M Hoang
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Crystal Thomas
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
15
|
Kang JY, Mooney RA, Nedialkov Y, Saba J, Mishanina TV, Artsimovitch I, Landick R, Darst SA. Structural Basis for Transcript Elongation Control by NusG Family Universal Regulators. Cell 2018; 173:1650-1662.e14. [PMID: 29887376 PMCID: PMC6003885 DOI: 10.1016/j.cell.2018.05.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
NusG/RfaH/Spt5 transcription elongation factors are the only transcription regulators conserved across all life. Bacterial NusG regulates RNA polymerase (RNAP) elongation complexes (ECs) across most genes, enhancing elongation by suppressing RNAP backtracking and coordinating ρ-dependent termination and translation. The NusG paralog RfaH engages the EC only at operon polarity suppressor (ops) sites and suppresses both backtrack and hairpin-stabilized pausing. We used single-particle cryoelectron microscopy (cryo-EM) to determine structures of ECs at ops with NusG or RfaH. Both factors chaperone base-pairing of the upstream duplex DNA to suppress backtracking, explaining stimulation of elongation genome-wide. The RfaH-opsEC structure reveals how RfaH confers operon specificity through specific recognition of an ops hairpin in the single-stranded nontemplate DNA and tighter binding to the EC to exclude NusG. Tight EC binding by RfaH sterically blocks the swiveled RNAP conformation necessary for hairpin-stabilized pausing. The universal conservation of NusG/RfaH/Spt5 suggests that the molecular mechanisms uncovered here are widespread.
Collapse
Affiliation(s)
- Jin Young Kang
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yuri Nedialkov
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tatiana V Mishanina
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA; The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Seth A Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
Le TT, Yang Y, Tan C, Suhanovsky MM, Fulbright RM, Inman JT, Li M, Lee J, Perelman S, Roberts JW, Deaconescu AM, Wang MD. Mfd Dynamically Regulates Transcription via a Release and Catch-Up Mechanism. Cell 2017; 172:344-357.e15. [PMID: 29224782 DOI: 10.1016/j.cell.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/21/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
The bacterial Mfd ATPase is increasingly recognized as a general transcription factor that participates in the resolution of transcription conflicts with other processes/roadblocks. This function stems from Mfd's ability to preferentially act on stalled RNA polymerases (RNAPs). However, the mechanism underlying this preference and the subsequent coordination between Mfd and RNAP have remained elusive. Here, using a novel real-time translocase assay, we unexpectedly discovered that Mfd translocates autonomously on DNA. The speed and processivity of Mfd dictate a "release and catch-up" mechanism to efficiently patrol DNA for frequently stalled RNAPs. Furthermore, we showed that Mfd prevents RNAP backtracking or rescues a severely backtracked RNAP, allowing RNAP to overcome stronger obstacles. However, if an obstacle's resistance is excessive, Mfd dissociates the RNAP, clearing the DNA for other processes. These findings demonstrate a remarkably delicate coordination between Mfd and RNAP, allowing efficient targeting and recycling of Mfd and expedient conflict resolution.
Collapse
Affiliation(s)
- Tung T Le
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Yi Yang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Chuang Tan
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Margaret M Suhanovsky
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | | | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Ming Li
- Department of Chemistry, Cornell University, Ithaca, NY 14853, USA
| | - Jaeyoon Lee
- Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA
| | - Sarah Perelman
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Jeffrey W Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Alexandra M Deaconescu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02903, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY 14853, USA; Physics Department & LASSP, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
17
|
Mellenius H, Ehrenberg M. Transcriptional accuracy modeling suggests two-step proofreading by RNA polymerase. Nucleic Acids Res 2017; 45:11582-11593. [PMID: 29036494 PMCID: PMC5714138 DOI: 10.1093/nar/gkx849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 01/01/2023] Open
Abstract
We suggest a novel two-step proofreading mechanism with two sequential rounds of proofreading selection in mRNA transcription. It is based on the previous experimental observations that the proofreading RNA polymerase cleaves off transcript fragments of at least 2 nt and that transcript elongation after a nucleotide misincorporation is anomalously slow. Taking these results into account, we extend the description of the accuracy of template guided nucleotide selection beyond previous models of RNA polymerase-dependent DNA transcription. The model derives the accuracy of initial and proofreading base selection from experimentally estimated nearest-neighbor parameters. It is also used to estimate the small accuracy enhancement of polymerase revisiting of previous positions following transcript cleavage.
Collapse
Affiliation(s)
- Harriet Mellenius
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| | - Måns Ehrenberg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 752 37, Sweden
| |
Collapse
|
18
|
Trigger loop dynamics can explain stimulation of intrinsic termination by bacterial RNA polymerase without terminator hairpin contact. Proc Natl Acad Sci U S A 2017; 114:E9233-E9242. [PMID: 29078293 DOI: 10.1073/pnas.1706247114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In bacteria, intrinsic termination signals cause disassembly of the highly stable elongating transcription complex (EC) over windows of two to three nucleotides after kilobases of RNA synthesis. Intrinsic termination is caused by the formation of a nascent RNA hairpin adjacent to a weak RNA-DNA hybrid within RNA polymerase (RNAP). Although the contributions of RNA and DNA sequences to termination are largely understood, the roles of conformational changes in RNAP are less well described. The polymorphous trigger loop (TL), which folds into the trigger helices to promote nucleotide addition, also is proposed to drive termination by folding into the trigger helices and contacting the terminator hairpin after invasion of the hairpin in the RNAP main cleft [Epshtein V, Cardinale CJ, Ruckenstein AE, Borukhov S, Nudler E (2007) Mol Cell 28:991-1001]. To investigate the contribution of the TL to intrinsic termination, we developed a kinetic assay that distinguishes effects of TL alterations on the rate at which ECs terminate from effects of the TL on the nucleotide addition rate that indirectly affect termination efficiency by altering the time window in which termination can occur. We confirmed that the TL stimulates termination rate, but found that stabilizing either the folded or unfolded TL conformation decreased termination rate. We propose that conformational fluctuations of the TL (TL dynamics), not TL-hairpin contact, aid termination by increasing EC conformational diversity and thus access to favorable termination pathways. We also report that the TL and the TL sequence insertion (SI3) increase overall termination efficiency by stimulating pausing, which increases the flux of ECs into the termination pathway.
Collapse
|
19
|
Lehniger MK, Finster S, Melonek J, Oetke S, Krupinska K, Schmitz-Linneweber C. Global RNA association with the transcriptionally active chromosome of chloroplasts. PLANT MOLECULAR BIOLOGY 2017; 95:303-311. [PMID: 28887777 DOI: 10.1007/s11103-017-0649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.
Collapse
Affiliation(s)
- Marie-Kristin Lehniger
- Institute of Biology, Humboldt University of Berlin, Philippstr. 11-13, 10115, Berlin, Germany
| | - Sabrina Finster
- Institute of Biology, Humboldt University of Berlin, Philippstr. 11-13, 10115, Berlin, Germany
| | - Joanna Melonek
- Australian Research Council Centre of Excellence in Plant Energy Biology, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Svenja Oetke
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | | |
Collapse
|
20
|
Appling FD, Lucius AL, Schneider DA. Quantifying the influence of 5'-RNA modifications on RNA polymerase I activity. Biophys Chem 2017; 230:84-88. [PMID: 28893424 DOI: 10.1016/j.bpc.2017.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 11/19/2022]
Abstract
For ensemble and single-molecule analyses of transcription, the use of synthetic transcription elongation complexes has been a versatile and powerful tool. However, structural analyses demonstrate that short RNA substrates, often employed in these assays, would occupy space within the RNA polymerase. Most commercial RNA oligonucleotides do not carry a 5'-triphosphate as would be present on a natural, de novo synthesized RNA. To examine the effects of 5'-moities on transcription kinetics, we measured nucleotide addition and 3'-dinucleotide cleavage by eukaryotic RNA polymerase I using 5'-hydroxyl and 5'-triphosphate RNA substrates. We found that 5' modifications had no discernable effect on the kinetics of nucleotide addition; however, we observed clear, but modest, effects on the rate of backtracking and/or dinucleotide cleavage. These data suggest that the 5'-end may influence RNA polymerase translocation, consistent with previous prokaryotic studies, and these findings may have implications on kinetic barriers that confront RNA polymerases during the transition from initiation to elongation.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
21
|
X-ray crystal structure of a reiterative transcription complex reveals an atypical RNA extension pathway. Proc Natl Acad Sci U S A 2017; 114:8211-8216. [PMID: 28652344 DOI: 10.1073/pnas.1702741114] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reiterative transcription is a noncanonical form of RNA synthesis in which a nucleotide specified by a single base in the DNA template is repetitively added to the nascent transcript. Here we determined the crystal structure of an RNA polymerase, the bacterial enzyme from Thermus thermophilus, engaged in reiterative transcription during transcription initiation at a promoter resembling the pyrG promoter of Bacillus subtilis The structure reveals that the reiterative transcript detours from the dedicated RNA exit channel and extends toward the main channel of the enzyme, thereby allowing RNA extension without displacement of the promoter recognition σ-factor. Nascent transcripts containing reiteratively added G residues are eventually extended by nonreiterative transcription, revealing an atypical pathway for the formation of a transcription elongation complex.
Collapse
|
22
|
Abstract
Transcription-coupled DNA repair (TCR) acts on lesions in the transcribed strand of active genes. Helix distorting adducts and other forms of DNA damage often interfere with the progression of the transcription apparatus. Prolonged stalling of RNA polymerase can promote genome instability and also induce cell cycle arrest and apoptosis. These generally unfavorable events are counteracted by RNA polymerase-mediated recruitment of specific proteins to the sites of DNA damage to perform TCR and eventually restore transcription. In this perspective we discuss the decision-making process to employ TCR and we elucidate the intricate biochemical pathways leading to TCR in E. coli and human cells.
Collapse
Affiliation(s)
- Bibhusita Pani
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Mustaev A, Roberts J, Gottesman M. Transcription elongation. Transcription 2017; 8:150-161. [PMID: 28301288 PMCID: PMC5501382 DOI: 10.1080/21541264.2017.1289294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/23/2022] Open
Abstract
This review is focused on recent progress in understanding how Escherichia coli RNAP polymerase translocates along the DNA template and the factors that affect this movement. We discuss the fundamental aspects of RNAP translocation, template signals that influence forward or backward movement, and host or phage factors that modulate translocation.
Collapse
Affiliation(s)
- Arkady Mustaev
- PHRI Center, NJMS, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Jeffrey Roberts
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Max Gottesman
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
24
|
Wang G, Hauver J, Thomas Z, Darst SA, Pertsinidis A. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry. Cell 2017; 167:1839-1852.e21. [PMID: 27984731 DOI: 10.1016/j.cell.2016.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/02/2016] [Accepted: 11/16/2016] [Indexed: 01/30/2023]
Abstract
Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation.
Collapse
Affiliation(s)
- Guanshi Wang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; BCMB Graduate Program, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Jesse Hauver
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, New York, NY 10065, USA; The Rockefeller University, New York, NY 10065, USA
| | - Zachary Thomas
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Seth A Darst
- The Rockefeller University, New York, NY 10065, USA
| | - Alexandros Pertsinidis
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
25
|
Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nat Commun 2016; 7:13788. [PMID: 27924870 PMCID: PMC5151093 DOI: 10.1038/ncomms13788] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.
Transcriptional bursting is a potential source of cell-to-cell variability but the molecular mechanisms are unclear. Here the authors use single molecule imaging to analyse the kinetics of bursting on DNA and observe that bursting is an intrinsic property of RNA polymerases on DNA.
Collapse
|
26
|
Xu H, Skinner SO, Sokac AM, Golding I. Stochastic Kinetics of Nascent RNA. PHYSICAL REVIEW LETTERS 2016; 117:128101. [PMID: 27667861 PMCID: PMC5033037 DOI: 10.1103/physrevlett.117.128101] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The stochastic kinetics of transcription is typically inferred from the distribution of RNA numbers in individual cells. However, cellular RNA reflects additional processes downstream of transcription, hampering this analysis. In contrast, nascent (actively transcribed) RNA closely reflects the kinetics of transcription. We present a theoretical model for the stochastic kinetics of nascent RNA, which we solve to obtain the probability distribution of nascent RNA per gene. The model allows us to evaluate the kinetic parameters of transcription from single-cell measurements of nascent RNA. The model also predicts surprising discontinuities in the distribution of nascent RNA, a feature which we verify experimentally.
Collapse
Affiliation(s)
- Heng Xu
- Center for Theoretical Biological Physics, Rice University, Houston,
Texas, USA
- Center for the Physics of Living Cells, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA
- Verna & Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Samuel O. Skinner
- Center for Theoretical Biological Physics, Rice University, Houston,
Texas, USA
- Center for the Physics of Living Cells, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA
- Verna & Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Marie Sokac
- Verna & Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ido Golding
- Center for Theoretical Biological Physics, Rice University, Houston,
Texas, USA
- Center for the Physics of Living Cells, University of Illinois at
Urbana-Champaign, Urbana, Illinois, USA
- Verna & Marrs McLean Department of Biochemistry and Molecular
Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
27
|
Probing the structure of Nun transcription arrest factor bound to RNA polymerase. Proc Natl Acad Sci U S A 2016; 113:8693-8. [PMID: 27436904 DOI: 10.1073/pnas.1601056113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The coliphage HK022 protein Nun transcription elongation arrest factor inhibits RNA polymerase translocation. In vivo, Nun acts specifically to block transcription of the coliphage λ chromosome. Using in vitro assays, we demonstrate that Nun cross-links RNA in an RNA:DNA hybrid within a ternary elongation complex (TEC). Both the 5' and the 3' ends of the RNA cross-link Nun, implying that Nun contacts RNA polymerase both at the upstream edge of the RNA:DNA hybrid and in the vicinity of the catalytic center. This finding suggests that Nun may inhibit translocation by more than one mechanism. Transcription elongation factor GreA efficiently blocked Nun cross-linking to the 3' end of the transcript, whereas the highly homologous GreB factor did not. Surprisingly, both factors strongly suppressed Nun cross-linking to the 5' end of the RNA, suggesting that GreA and GreB can enter the RNA exit channel as well as the secondary channel, where they are known to bind. These findings extend the known action mechanism for these ubiquitous cellular factors.
Collapse
|
28
|
Ray-Soni A, Bellecourt MJ, Landick R. Mechanisms of Bacterial Transcription Termination: All Good Things Must End. Annu Rev Biochem 2016; 85:319-47. [PMID: 27023849 DOI: 10.1146/annurev-biochem-060815-014844] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transcript termination is essential for accurate gene expression and the removal of RNA polymerase (RNAP) at the ends of transcription units. In bacteria, two mechanisms are responsible for proper transcript termination: intrinsic termination and Rho-dependent termination. Intrinsic termination is mediated by signals directly encoded within the DNA template and nascent RNA, whereas Rho-dependent termination relies upon the adenosine triphosphate-dependent RNA translocase Rho, which binds nascent RNA and dissociates the elongation complex. Although significant progress has been made in understanding these pathways, fundamental details remain undetermined. Among those that remain unresolved are the existence of an inactivated intermediate in the intrinsic termination pathway, the role of Rho-RNAP interactions in Rho-dependent termination, and the mechanisms by which accessory factors and nucleoid-associated proteins affect termination. We describe current knowledge, discuss key outstanding questions, and highlight the importance of defining the structural rearrangements of RNAP that are involved in the two mechanisms of transcript termination.
Collapse
Affiliation(s)
- Ananya Ray-Soni
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Michael J Bellecourt
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; ,
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706; , .,Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706;
| |
Collapse
|
29
|
Bacterial Transcription as a Target for Antibacterial Drug Development. Microbiol Mol Biol Rev 2016; 80:139-60. [PMID: 26764017 DOI: 10.1128/mmbr.00055-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription, the first step of gene expression, is carried out by the enzyme RNA polymerase (RNAP) and is regulated through interaction with a series of protein transcription factors. RNAP and its associated transcription factors are highly conserved across the bacterial domain and represent excellent targets for broad-spectrum antibacterial agent discovery. Despite the numerous antibiotics on the market, there are only two series currently approved that target transcription. The determination of the three-dimensional structures of RNAP and transcription complexes at high resolution over the last 15 years has led to renewed interest in targeting this essential process for antibiotic development by utilizing rational structure-based approaches. In this review, we describe the inhibition of the bacterial transcription process with respect to structural studies of RNAP, highlight recent progress toward the discovery of novel transcription inhibitors, and suggest additional potential antibacterial targets for rational drug design.
Collapse
|
30
|
Chander M, Lee A, Vallery TK, Thandar M, Jiang Y, Hsu LM. Mechanisms of Very Long Abortive Transcript Release during Promoter Escape. Biochemistry 2015; 54:7393-408. [PMID: 26610896 DOI: 10.1021/acs.biochem.5b00712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A phage T5 N25 promoter variant, DG203, undergoes the escape transition at the +16 to +19 positions after transcription initiation. By specifically examining the abortive activity of the initial transcribing complex at position +19 (ITC19), we observe the production of both GreB-sensitive and GreB-resistant VLAT19. This suggests that ITC19, which is perched on the brink of escape, is highly unstable and can achieve stabilization through either backtracking or forward translocation. Of the forward-tracked fraction, only a small percentage escapes normally (followed by stepwise elongation) to produce full-length RNA; the rest presumably hypertranslocates to release GreB-resistant VLATs. VLAT formation is dependent not only on consensus -35/-10 promoters with 17 bp spacing but also on sequence characteristics of the spacer DNA. Analysis of DG203 promoter variants containing different spacer sequences reveals that AT-rich spacers intrinsically elevate the level of VLAT formation. The AT-rich spacer of DG203 joined to the -10 box presents an UP element sequence capable of interacting with the polymerase α subunit C-terminal domain (αCTD) during the escape transition, which in turn enhances VLAT release. Utilization of the spacer/-10 region UP element by αCTD subunits requires a 10-15 bp hypertranslocation. We document the physical occurrence of hyper forward translocation using ExoIII footprinting analysis.
Collapse
Affiliation(s)
- Monica Chander
- Biology Department, Bryn Mawr College , Bryn Mawr, Pennsylvania 19010, United States
| | - Ahri Lee
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Tenaya K Vallery
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Mya Thandar
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Yunnan Jiang
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Lilian M Hsu
- Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| |
Collapse
|
31
|
Crystal Structure of a Transcribing RNA Polymerase II Complex Reveals a Complete Transcription Bubble. Mol Cell 2015; 59:258-69. [PMID: 26186291 DOI: 10.1016/j.molcel.2015.06.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 05/13/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022]
Abstract
Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.
Collapse
|
32
|
Zhang N, Schäfer J, Sharma A, Rayner L, Zhang X, Tuma R, Stockley P, Buck M. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis. J Mol Biol 2015; 427:3516-3526. [PMID: 26365052 PMCID: PMC4641871 DOI: 10.1016/j.jmb.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022]
Abstract
In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. The bridge helix and switch regions form an intricate network in RNAP. The σ70 and σ54 transcription systems differentially use this interaction network. Transcription factor DksA and σ54 Region I also contribute to this network. Disruption of this network enhances backtracking and intrinsic RNA hydrolysis.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Jorrit Schäfer
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lucy Rayner
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Xiaodong Zhang
- Division of Macromolecular Structure and Function, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
33
|
CBR antimicrobials inhibit RNA polymerase via at least two bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S A 2015; 112:E4178-87. [PMID: 26195788 PMCID: PMC4534225 DOI: 10.1073/pnas.1502368112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
RNA polymerase inhibitors like the CBR class that target the enzyme's complex catalytic center are attractive leads for new antimicrobials. Catalysis by RNA polymerase involves multiple rearrangements of bridge helix, trigger loop, and active-center side chains that isomerize the triphosphate of bound NTP and two Mg(2+) ions from a preinsertion state to a reactive configuration. CBR inhibitors target a crevice between the N-terminal portion of the bridge helix and a surrounding cap region within which the bridge helix is thought to rearrange during the nucleotide addition cycle. We report crystal structures of CBR inhibitor/Escherichia coli RNA polymerase complexes as well as biochemical tests that establish two distinct effects of the inhibitors on the RNA polymerase catalytic site. One effect involves inhibition of trigger-loop folding via the F loop in the cap, which affects both nucleotide addition and hydrolysis of 3'-terminal dinucleotides in certain backtracked complexes. The second effect is trigger-loop independent, affects only nucleotide addition and pyrophosphorolysis, and may involve inhibition of bridge-helix movements that facilitate reactive triphosphate alignment.
Collapse
|
34
|
Wang L, Zhou Y, Xu L, Xiao R, Lu X, Chen L, Chong J, Li H, He C, Fu XD, Wang D. Molecular basis for 5-carboxycytosine recognition by RNA polymerase II elongation complex. Nature 2015; 523:621-5. [PMID: 26123024 PMCID: PMC4521995 DOI: 10.1038/nature14482] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 04/20/2015] [Indexed: 01/24/2023]
Abstract
DNA methylation at selective cytosine residues (5-methylcytosine (5mC)) and their removal by TET-mediated DNA demethylation are critical for setting up pluripotent states in early embryonic development. TET enzymes successively convert 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC), with 5fC and 5caC subject to removal by thymine DNA glycosylase (TDG) in conjunction with base excision repair. Early reports indicate that 5fC and 5caC could be stably detected on enhancers, promoters and gene bodies, with distinct effects on gene expression, but the mechanisms have remained elusive. Here we determined the X-ray crystal structure of yeast elongating RNA polymerase II (Pol II) in complex with a DNA template containing oxidized 5mCs, revealing specific hydrogen bonds between the 5-carboxyl group of 5caC and the conserved epi-DNA recognition loop in the polymerase. This causes a positional shift for incoming nucleoside 5'-triphosphate (NTP), thus compromising nucleotide addition. To test the implication of this structural insight in vivo, we determined the global effect of increased 5fC/5caC levels on transcription, finding that such DNA modifications indeed retarded Pol II elongation on gene bodies. These results demonstrate the functional impact of oxidized 5mCs on gene expression and suggest a novel role for Pol II as a specific and direct epigenetic sensor during transcription elongation.
Collapse
Affiliation(s)
- Lanfeng Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Liang Xu
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Rui Xiao
- Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Xingyu Lu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Liang Chen
- Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Jenny Chong
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
35
|
New Insights into the Functions of Transcription Factors that Bind the RNA Polymerase Secondary Channel. Biomolecules 2015; 5:1195-209. [PMID: 26120903 PMCID: PMC4598747 DOI: 10.3390/biom5031195] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/06/2015] [Accepted: 06/09/2015] [Indexed: 11/25/2022] Open
Abstract
Transcription elongation is regulated at several different levels, including control by various accessory transcription elongation factors. A distinct group of these factors interacts with the RNA polymerase secondary channel, an opening at the enzyme surface that leads to its active center. Despite investigation for several years, the activities and in vivo roles of some of these factors remain obscure. Here, we review the recent progress in understanding the functions of the secondary channel binding factors in bacteria. In particular, we highlight the surprising role of global regulator DksA in fidelity of RNA synthesis and the resolution of RNA polymerase traffic jams by the Gre factor. These findings indicate a potential link between transcription fidelity and collisions of the transcription and replication machineries.
Collapse
|
36
|
Abstract
The immunoglobulin diversification processes of somatic hypermutation and class switch recombination critically rely on transcription-coupled targeting of activation-induced cytidine deaminase (AID) to Ig loci in activated B lymphocytes. AID catalyzes deamination of cytidine deoxynucleotides on exposed single-stranded DNA. In addition to driving immunoglobulin diversity, promiscuous targeting of AID mutagenic activity poses a deleterious threat to genomic stability. Recent genome-wide studies have uncovered pervasive AID activity throughout the B cell genome. It is increasingly apparent that AID activity is frequently targeted to genomic loci undergoing early transcription termination where RNA exosome promotes the resolution of stalled transcription complexes via cotranscriptional RNA degradation mechanisms. Here, we review aspects and consequences of eukaryotic transcription that lead to early termination, RNA exosome recruitment, and ultimately targeting of AID mutagenic activity.
Collapse
Affiliation(s)
- Evangelos Pefanis
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| | - Uttiya Basu
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, USA.
| |
Collapse
|
37
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
38
|
DNA template dependent accuracy variation of nucleotide selection in transcription. PLoS One 2015; 10:e0119588. [PMID: 25799551 PMCID: PMC4370716 DOI: 10.1371/journal.pone.0119588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
It has been commonly assumed that the effect of erroneous transcription of DNA genes into messenger RNAs on peptide sequence errors are masked by much more frequent errors of mRNA translation to protein. We present a theoretical model of transcriptional accuracy. It uses experimentally estimated standard free energies of double-stranded DNA and RNA/DNA hybrids and predicts a DNA template dependent transcriptional accuracy variation spanning several orders of magnitude. The model also identifies high-error as well a high-accuracy transcription motifs. The source of the large accuracy span is the context dependent variation of the stacking free energy of pairs of correct and incorrect base pairs in the ever moving transcription bubble. Our model predictions have direct experimental support from recent single molecule based identifications of transcriptional errors in the C. elegans transcriptome. Our conclusions challenge the general view that amino acid substitution errors in proteins are mainly caused by translational errors. It suggests instead that transcriptional error hotspots are the dominating source of peptide sequence errors in some DNA template contexts, while mRNA translation is the major cause of protein errors in other contexts.
Collapse
|
39
|
Traverso JJ, Manoranjan VS, Bishop AR, Rasmussen KØ, Voulgarakis NK. Allostery through protein-induced DNA bubbles. Sci Rep 2015; 5:9037. [PMID: 25762409 PMCID: PMC4356955 DOI: 10.1038/srep09037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 02/13/2015] [Indexed: 01/03/2023] Open
Abstract
Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resulting melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.
Collapse
Affiliation(s)
- Joseph J Traverso
- 1] Department of Mathematics, Washington State University, Richland, WA 99354, USA [2] Department of Mechanical Engineering, Washington State University, Richland, WA 99354, USA
| | | | - A R Bishop
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Kim Ø Rasmussen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
40
|
Epshtein V. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward. Bioessays 2014; 37:12-9. [PMID: 25345862 DOI: 10.1002/bies.201400106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transcription-coupled repair (TCR) is a phenomenon that exists in a wide variety of organisms from bacteria to humans. This mechanism allows cells to repair the actively transcribed DNA strand much faster than the non-transcribed one. At the sites of bulky DNA damage RNA polymerase stalls, initiating recruitment of the repair machinery. It is a commonly accepted paradigm that bacterial cells utilize a sole coupling factor, called Mfd to initiate TCR. According to that model, Mfd removes transcription complexes stalled at the lesion site and simultaneously recruits repair machinery. However, this model was recently put in doubt by various discrepancies between the proposed universal role of Mfd in the TCR and its biochemical and phenotypical properties. Here, I present a second pathway of bacterial TCR recently discovered in my laboratory, which does not involve Mfd but implicates a common repair factor, UvrD, in a central position in the process.
Collapse
Affiliation(s)
- Vitaliy Epshtein
- Department of Biochemistry, New York University, Langhorn Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Windgassen TA, Mooney RA, Nayak D, Palangat M, Zhang J, Landick R. Trigger-helix folding pathway and SI3 mediate catalysis and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic Acids Res 2014; 42:12707-21. [PMID: 25336618 PMCID: PMC4227799 DOI: 10.1093/nar/gku997] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The conformational dynamics of the polymorphous trigger loop (TL) in RNA polymerase (RNAP) underlie multiple steps in the nucleotide addition cycle and diverse regulatory mechanisms. These mechanisms include nascent RNA hairpin-stabilized pausing, which inhibits TL folding into the trigger helices (TH) required for rapid nucleotide addition. The nascent RNA pause hairpin forms in the RNA exit channel and promotes opening of the RNAP clamp domain, which in turn stabilizes a partially folded, paused TL conformation that disfavors TH formation. We report that inhibiting TH unfolding with a disulfide crosslink slowed multiround nucleotide addition only modestly but eliminated hairpin-stabilized pausing. Conversely, a substitution that disrupts the TH folding pathway and uncouples establishment of key TH–NTP contacts from complete TH formation and clamp movement allowed rapid catalysis and eliminated hairpin-stabilized pausing. We also report that the active-site distal arm of the TH aids TL folding, but that a 188-aa insertion in the Escherichia coli TL (sequence insertion 3; SI3) disfavors TH formation and stimulates pausing. The effect of SI3 depends on the jaw domain, but not on downstream duplex DNA. Our results support the view that both SI3 and the pause hairpin modulate TL folding in a constrained pathway of intermediate states.
Collapse
Affiliation(s)
- Tricia A Windgassen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Rachel Anne Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dhananjaya Nayak
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Murali Palangat
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jinwei Zhang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
42
|
Abbrescia A, Martino PL, Panelli D, Sardanelli AM, Papa S, Alifano P, Palese LL, Gaballo A. The respiratory chains of four strains of the alkaliphilic Bacillus clausii. FEBS Open Bio 2014; 4:714-21. [PMID: 25161879 PMCID: PMC4141192 DOI: 10.1016/j.fob.2014.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022] Open
Abstract
It is important to understand how alkaliphilic prokaryotes thrive at high pH. An interesting issue is their ability to cope with bioenergetics at high pH. We show that four genetically similar strains adopt different biochemical behaviors. Two of the strains show a functional redundancy of the terminal part of the respiratory chain. Biochemical data correlate with the expression of cytochrome c oxidase and quinol oxidase genes (heme-copper types).
A comparative analysis of terminal respiratory enzymes has been performed on four strains of Bacillus clausii used for preparation of a European probiotic. These four strains originated most probably from a common ancestor through early selection of stable clones for industrial propagation. They exhibit a low level of intra-specific diversity and a high degree of genomic conservation, making them an attractive model to study the different bioenergetics behaviors of alkaliphilic bacilli. The analysis of the different bioenergetics responses has been carried out revealing striking differences among the strains. Two out of the four strains have shown a functional redundancy of the terminal part of the respiratory chain. The biochemical data correlate with the expression level of the mRNA of cytochrome c oxidase and quinol oxidase genes (heme-copper type). The consequences of these different bioenergetics behaviors are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - S Papa
- Institute of Biomembranes and Bioenergetics (IBBE), Italian Research Council (CNR), Bari, Italy
| | - P Alifano
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Universita' del Salento, Lecce, Italy
| | | | - A Gaballo
- Nanoscience Institute-CNR, U.O.S. NNL, Lecce, Italy
| |
Collapse
|
43
|
Panjwani A, Strauss M, Gold S, Wenham H, Jackson T, Chou JJ, Rowlands DJ, Stonehouse NJ, Hogle JM, Tuthill TJ. Capsid protein VP4 of human rhinovirus induces membrane permeability by the formation of a size-selective multimeric pore. PLoS Pathog 2014; 10:e1004294. [PMID: 25102288 PMCID: PMC4125281 DOI: 10.1371/journal.ppat.1004294] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 06/24/2014] [Indexed: 01/18/2023] Open
Abstract
Non-enveloped viruses must deliver their viral genome across a cell membrane without the advantage of membrane fusion. The mechanisms used to achieve this remain poorly understood. Human rhinovirus, a frequent cause of the common cold, is a non-enveloped virus of the picornavirus family, which includes other significant pathogens such as poliovirus and foot-and-mouth disease virus. During picornavirus cell entry, the small myristoylated capsid protein VP4 is released from the virus, interacts with the cell membrane and is implicated in the delivery of the viral RNA genome into the cytoplasm to initiate replication. In this study, we have produced recombinant C-terminal histidine-tagged human rhinovirus VP4 and shown it can induce membrane permeability in liposome model membranes. Dextran size-exclusion studies, chemical crosslinking and electron microscopy demonstrated that VP4 forms a multimeric membrane pore, with a channel size consistent with transfer of the single-stranded RNA genome. The membrane permeability induced by recombinant VP4 was influenced by pH and was comparable to permeability induced by infectious virions. These findings present a molecular mechanism for the involvement of VP4 in cell entry and provide a model system which will facilitate exploration of VP4 as a novel antiviral target for the picornavirus family. Human rhinovirus (HRV) is a non-enveloped virus of the picornavirus family and is responsible for respiratory infections (common colds) costing billions of dollars ($) annually. There remains no vaccine or licensed drug to prevent or reduce infection. Related members of the picornavirus family include significant pathogens such as poliovirus, enterovirus 71 and foot-and-mouth disease virus, for which improved control measures are also required. A fundamental step in virus infection is the delivery of the viral genetic material through the barrier of the cellular membrane. Viruses such as HIV and influenza are enveloped in an outer membrane which can fuse with the host cell membrane to allow the viral genome to penetrate into the cytoplasm. However, non-enveloped viruses such as picornaviruses lack a membrane and the mechanisms for penetration of the membrane by these viruses remain poorly understood. The capsid protein VP4 has previously been implicated in the delivery of the picornavirus genome. In this study we demonstrate that HRV VP4 interacts with membranes to make them permeable by the formation of multimeric, size-selective membrane pores with properties consistent with the transport of viral genome through the membrane. This function of VP4 provides a novel antiviral target for this family of viruses.
Collapse
Affiliation(s)
- Anusha Panjwani
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, West Yorkshire, United Kingdom
| | - Mike Strauss
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sarah Gold
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Hannah Wenham
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Terry Jackson
- The Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - James J. Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David J. Rowlands
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, West Yorkshire, United Kingdom
| | - Nicola J. Stonehouse
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, West Yorkshire, United Kingdom
| | - James M. Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | | |
Collapse
|
44
|
Song T, Park Y, Shamputa IC, Seo S, Lee SY, Jeon HS, Choi H, Lee M, Glynne RJ, Barnes SW, Walker JR, Batalov S, Yusim K, Feng S, Tung CS, Theiler J, Via LE, Boshoff HIM, Murakami KS, Korber B, Barry CE, Cho SN. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β' subunit of RNA polymerase. Mol Microbiol 2014; 91:1106-19. [PMID: 24417450 DOI: 10.1111/mmi.12520] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
Rifampicin resistance, a defining attribute of multidrug-resistant tuberculosis, is conferred by mutations in the β subunit of RNA polymerase. Sequencing of rifampicin-resistant (RIF-R) clinical isolates of Mycobacterium tuberculosis revealed, in addition to RIF-R mutations, enrichment of potential compensatory mutations around the double-psi β-barrel domain of the β' subunit comprising the catalytic site and the exit tunnel for newly synthesized RNA. Sequential introduction of the resistance allele followed by the compensatory allele in isogenic Mycobacterium smegmatis showed that these mutations respectively caused and compensated a starvation enhanced growth defect by altering RNA polymerase activity. While specific combinations of resistance and compensatory alleles converged in divergent lineages, other combinations recurred among related isolates suggesting transmission of compensated RIF-R strains. These findings suggest nutrient poor growth conditions impose larger selective pressure on RIF-R organisms that results in the selection of compensatory mutations in a domain involved in catalysis and starvation control of RNA polymerase transcription.
Collapse
Affiliation(s)
- Taeksun Song
- International Tuberculosis Research Center, Changwon, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Epshtein V, Kamarthapu V, McGary K, Svetlov V, Ueberheide B, Proshkin S, Mironov A, Nudler E. UvrD facilitates DNA repair by pulling RNA polymerase backwards. Nature 2014; 505:372-7. [PMID: 24402227 DOI: 10.1038/nature12928] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 12/02/2013] [Indexed: 11/09/2022]
Abstract
UvrD helicase is required for nucleotide excision repair, although its role in this process is not well defined. Here we show that Escherichia coli UvrD binds RNA polymerase during transcription elongation and, using its helicase/translocase activity, forces RNA polymerase to slide backward along DNA. By inducing backtracking, UvrD exposes DNA lesions shielded by blocked RNA polymerase, allowing nucleotide excision repair enzymes to gain access to sites of damage. Our results establish UvrD as a bona fide transcription elongation factor that contributes to genomic integrity by resolving conflicts between transcription and DNA repair complexes. Furthermore, we show that the elongation factor NusA cooperates with UvrD in coupling transcription to DNA repair by promoting backtracking and recruiting nucleotide excision repair enzymes to exposed lesions. Because backtracking is a shared feature of all cellular RNA polymerases, we propose that this mechanism enables RNA polymerases to function as global DNA damage scanners in bacteria and eukaryotes.
Collapse
Affiliation(s)
- Vitaly Epshtein
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2]
| | - Venu Kamarthapu
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA [3]
| | - Katelyn McGary
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Vladimir Svetlov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA
| | - Sergey Proshkin
- State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia
| | - Alexander Mironov
- 1] State Research Institute of Genetics and Selection of Industrial Microorganisms, Moscow 117545, Russia [2] Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow 119991, Russia
| | - Evgeny Nudler
- 1] Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016, USA [2] Howard Hughes Medical Institute, New York University School of Medicine, New York, New York 10016, USA
| |
Collapse
|
46
|
Kozlov M, Nudler E, Nikiforov V, Mustaev A. Reactive rifampicin derivative able to damage transcription complex. Bioconjug Chem 2013; 24:443-7. [PMID: 23425196 DOI: 10.1021/bc3005667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rifampicin (Rif) is powerful broad spectrum antibiotic that targets bacterial RNA polymerase (RNAP) by blocking the transcript exit channel. The performance of the drug can be further enhanced by tagging with active chemical groups that produce collateral damage. We explored this principle by tethering Rif to Fe(2+)-EDTA chelate. Modified drug retained high binding affinity to RNAP and caused localized cleavage of the enzyme and promoter DNA. Analysis of the degradation products revealed the cleavage of RNAP β subunit at the sites involved in the drug binding, while DNA was selectively seized in the vicinity of the transcription start site. The synthesized Rif derivative exemplifies "aggressive" types of drugs that can be especially useful for TB treatment by attacking the nongrowing dormant form of the mycobacterium, which is hardly susceptible to "passive" drugs.
Collapse
Affiliation(s)
- Maxim Kozlov
- PHRI Center and New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, 225 Warren Street, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
47
|
Andrade B, Souza C, Góes-Neto A. Molecular docking between the RNA polymerase of the Moniliophthora perniciosa mitochondrial plasmid and Rifampicin produces a highly stable complex. Theor Biol Med Model 2013; 10:15. [PMID: 23442217 PMCID: PMC3606170 DOI: 10.1186/1742-4682-10-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/21/2013] [Indexed: 11/10/2022] Open
Abstract
Background Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora is the causal agent of witches’ broom disease (WBD) in cacao (Theobroma cacao). When the mitochondrial genome of this fungus had been completely sequenced, an integrated linear-type plasmid that encodes viral-like RNA polymerases was found. The structure of this polymerase was previously constructed using a homology modeling approach. Methods Using a virtual screening process, accessing the Kegg, PubChem and ZINC databases, we selected the eight most probable macrocyclic polymerase inhibitors to test against M. perniciosa RNA polymerase (RPO). AutoDock Vina was used to perform docking calculations for each molecule. This software returned affinity energy values for several ligand conformations. Subsequently, we used PyMOL 1.4 and Ligand Scout 3.1 to check the stereochemistry of chiral carbons, substructure, superstructure, number of rotatable bonds, number of rings, number of donor groups, and hydrogen bond receptors. Results On the basis of this evidence we selected Rifampicin, a bacterial RNA polymerase inhibitor, and then AMBER 12 was used to simulate the behavior of the RPO-Rifampicin complex after a set of 5000 ps and up to 300 K in water. This calculation returned a graph of potential energy against simulation time and showed that the ligand remained inside the active site after the simulation was complete, with an average energy of -15 x 102 Kcal/Mol. Conclusions The results indicate that Rifampicin could be a good inhibitor for testing in vitro and in vivo against M. perniciosa.
Collapse
Affiliation(s)
- Bruno Andrade
- Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil.
| | | | | |
Collapse
|
48
|
RNA polymerase II mutations conferring defects in poly(A) site cleavage and termination in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2013; 3:167-80. [PMID: 23390594 PMCID: PMC3564978 DOI: 10.1534/g3.112.004531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/27/2012] [Indexed: 01/06/2023]
Abstract
Transcription termination by RNA polymerase (Pol) II is an essential but poorly understood process. In eukaryotic nuclei, the 3′ ends of mRNAs are generated by cleavage and polyadenylation, and the same sequence elements that specify that process are required for downstream release of the polymerase from the DNA. Although Pol II is known to bind proteins required for both events, few studies have focused on Pol II mutations as a means to uncover the mechanisms that couple polyadenylation and termination. We performed a genetic screen in the yeast Saccharomyces cerevisiae to isolate mutations in the N-terminal half of Rpb2, the second largest Pol II subunit, that conferred either a decreased or increased response to a well-characterized poly(A) site. Most of the mutant alleles encoded substitutions affecting either surface residues or conserved active site amino acids at positions important for termination by other RNA polymerases. Reverse transcription polymerase chain reaction experiments revealed that transcript cleavage at the poly(A) site was impaired in both classes of increased readthrough mutants. Transcription into downstream sequences beyond where termination normally occurs was also probed. Although most of the tested readthrough mutants showed a reduction in termination concomitant with the reduced poly(A) usage, these processes were uncoupled in at least one mutant strain. Several rpb2 alleles were found to be similar or identical to published mutants associated with defective TFIIF function. Tests of these and additional mutations known to impair Rpb2−TFIIF interactions revealed similar decreased readthrough phenotypes, suggesting that TFIIF may have a role in 3′ end formation and termination.
Collapse
|
49
|
Weixlbaumer A, Leon K, Landick R, Darst SA. Structural basis of transcriptional pausing in bacteria. Cell 2013; 152:431-41. [PMID: 23374340 PMCID: PMC3564060 DOI: 10.1016/j.cell.2012.12.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/08/2012] [Accepted: 12/13/2012] [Indexed: 11/20/2022]
Abstract
Transcriptional pausing by multisubunit RNA polymerases (RNAPs) is a key mechanism for regulating gene expression in both prokaryotes and eukaryotes and is a prerequisite for transcription termination. Pausing and termination states are thought to arise through a common, elemental pause state that is inhibitory for nucleotide addition. We report three crystal structures of Thermus RNAP elemental paused elongation complexes (ePECs). The structures reveal the same relaxed, open-clamp RNAP conformation in the ePEC that may arise by failure to re-establish DNA contacts during translocation. A kinked bridge-helix sterically blocks the RNAP active site, explaining how this conformation inhibits RNAP catalytic activity. Our results provide a framework for understanding how RNA hairpin formation stabilizes the paused state and how the ePEC intermediate facilitates termination.
Collapse
Affiliation(s)
| | - Katherine Leon
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Robert Landick
- Departments of Biochemistry and Bacteriology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Seth A. Darst
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
50
|
Drennan A, Kraemer M, Capp M, Gries T, Ruff E, Sheppard C, Wigneshweraraj S, Artsimovitch I, Record MT. Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation. Biochemistry 2012; 51:9447-59. [PMID: 23116321 PMCID: PMC3517728 DOI: 10.1021/bi301260u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Differences in kinetics of transcription initiation by RNA polymerase (RNAP) at different promoters tailor the pattern of gene expression to cellular needs. After initial binding, large conformational changes occur in promoter DNA and RNAP to form initiation-capable complexes. To understand the mechanism and regulation of transcription initiation, the nature and sequence of these conformational changes must be determined. Escherichia coli RNAP uses binding free energy to unwind and separate 13 base pairs of λP(R) promoter DNA to form the unstable open intermediate I(2), which rapidly converts to much more stable open complexes (I(3), RP(o)). Conversion of I(2) to RP(o) involves folding/assembly of several mobile RNAP domains on downstream duplex DNA. Here, we investigate effects of a 42-residue deletion in the mobile β' jaw (ΔJAW) and truncation of promoter DNA beyond +12 (DT+12) on the steps of initiation. We find that in stable ΔJAW open complexes the downstream boundary of hydroxyl radical protection shortens by 5-10 base pairs, as compared to wild-type (WT) complexes. Dissociation kinetics of open complexes formed with ΔJAW RNAP and/or DT+12 DNA resemble those deduced for the structurally uncharacterized intermediate I(3). Overall rate constants (k(a)) for promoter binding and DNA opening by ΔJAW RNAP are much smaller than for WT RNAP. Values of k(a) for WT RNAP with DT+12 and full-length λP(R) are similar, though contributions of binding and isomerization steps differ. Hence, the jaw plays major roles both early and late in RP(o) formation, while downstream DNA functions primarily as the assembly platform after DNA opening.
Collapse
Affiliation(s)
- Amanda Drennan
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Mark Kraemer
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Capp
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Theodore Gries
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Emily Ruff
- Department of Chemistry, The University of Wisconsin-Madison, Madison, WI 53706
| | - Carol Sheppard
- Department of Microbiology and Centre for Molecular Microbiology and Infection, Imperial College, London, SW7 2AZ
| | - Sivaramesh Wigneshweraraj
- Department of Microbiology and Centre for Molecular Microbiology and Infection, Imperial College, London, SW7 2AZ
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - M. Thomas Record
- Department of Biochemistry, The University of Wisconsin-Madison, Madison, WI 53706
- Department of Chemistry, The University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|