1
|
Kang X, Liu H, Onaitis MW, Liu Z, Owzar K, Han Y, Su L, Wei Y, Hung RJ, Brhane Y, McLaughlin J, Brennan P, Bickeböller H, Rosenberger A, Houlston RS, Caporaso N, Landi MT, Heinrich J, Risch A, Wu X, Ye Y, Christiani DC, Amos CI, Wei Q. Polymorphisms of the centrosomal gene (FGFR1OP) and lung cancer risk: a meta-analysis of 14,463 cases and 44,188 controls. Carcinogenesis 2016; 37:280-289. [PMID: 26905588 PMCID: PMC4804128 DOI: 10.1093/carcin/bgw014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 12/31/2022] Open
Abstract
Centrosome abnormalities are often observed in premalignant lesions and in situ tumors and have been associated with aneuploidy and tumor development. We investigated the associations of 9354 single-nucleotide polymorphisms (SNPs) in 106 centrosomal genes with lung cancer risk by first using the summary data from six published genome-wide association studies (GWASs) of the Transdisciplinary Research in Cancer of the Lung (TRICL) (12,160 cases and 16 838 controls) and then conducted in silico replication in two additional independent lung cancer GWASs of Harvard University (984 cases and 970 controls) and deCODE (1319 cases and 26,380 controls). A total of 44 significant SNPs with false discovery rate (FDR) ≤ 0.05 were mapped to one novel gene FGFR1OP and two previously reported genes (TUBB and BRCA2). After combined the results from TRICL with those from Harvard and deCODE, the most significant association (P combined = 8.032 × 10(-6)) was with rs151606 within FGFR1OP. The rs151606 T>G was associated with an increased risk of lung cancer [odds ratio (OR) = 1.10, 95% confidence interval (95% CI) = 1.05-1.14]. Another significant tagSNP rs12212247 T>C (P combined = 9.589 × 10(-6)) was associated with a decreased risk of lung cancer (OR = 0.93, 95% CI = 0.90-0.96). Further in silico functional analyzes revealed that rs151606 might affect transcriptional regulation and result in decreased FGFR1OP expression (P trend = 0.022). The findings shed some new light on the role of centrosome abnormalities in the susceptibility to lung carcinogenesis.
Collapse
Affiliation(s)
- Xiaozheng Kang
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Hongliang Liu
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mark W. Onaitis
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute and
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
| | - Younghun Han
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Li Su
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yongyue Wei
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Albert Rosenberger
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Richard S. Houlston
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joachim Heinrich
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
| | - Angela Risch
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria and
| | - Xifeng Wu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David C. Christiani
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Christopher I. Amos
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Qingyi Wei
- Duke Cancer Institute and
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Transdisciplinary Research in Cancer of the Lung (TRICL) Research Team
- Duke Cancer Institute and
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, 905 S. LaSalle Street, Durham, NC 27710, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Thoracic Surgery I, Peking University Cancer Hospital and Institute, Beijing 100142, China
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710, USA
- Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
- Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
- Public Health Ontario, Toronto, Ontario M5T 3L9, Canada
- Genetic Epidemiology Group, International Agency for Research on Cancer (IARC), 69372 Lyon, France
- Department of Genetic Epidemiology, University Medical Center, Georg-August-University Göttingen, 37073 Göttingen, Germany
- Division of Genetics and Epidemiology, the Institute of Cancer Research, London SW7 3RP, UK
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Helmholtz Centre Munich, German Research Centre for Environmental Health, Institute of Epidemiology I, 85764 Neuherberg, Germany
- Department of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria and
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Wang B, Li K, Jin M, Qiu R, Liu B, Oakley BR, Xiang X. The Aspergillus nidulans bimC4 mutation provides an excellent tool for identification of kinesin-14 inhibitors. Fungal Genet Biol 2015; 82:51-5. [PMID: 26117688 DOI: 10.1016/j.fgb.2015.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 11/30/2022]
Abstract
Centrosome amplification is a hallmark of many types of cancer cells, and clustering of multiple centrosomes is critical for cancer cell survival and proliferation. Human kinesin-14 HSET/KFIC1 is essential for centrosome clustering, and its inhibition leads to the specific killing of cancer cells with extra centrosomes. Since kinesin-14 motor domains are conserved evolutionarily, we conceived a strategy of obtaining kinesin-14 inhibitors using Aspergillus nidulans, based on the previous result that loss of the kinesin-14 KlpA rescues the non-viability of the bimC4 kinesin-5 mutant at 42 °C. However, it was unclear whether alteration of BimC or any other non-KlpA protein would be a major factor reversing the lethality of the bimC4 mutant. Here we performed a genome-wide screen for bimC4 suppressors and obtained fifteen suppressor strains. None of the suppressor mutations maps to bimC. The vast majority of them contain mutations in the klpA gene, most of which are missense mutations affecting the C-terminal motor domain. Our study confirms that the bimC4 mutant is suitable for a cell-based screen for chemical inhibitors of kinesin-14. Since the selection is based on enhanced growth rather than diminished growth, cytotoxic compounds can be excluded.
Collapse
Affiliation(s)
- Betsy Wang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; Richard Montgomery High School, Rockville, MD, United States
| | - Kristin Li
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; River Hill High School, Clarksville, MD, United States; USU Summer Research Training Program (USRTP), United States
| | - Max Jin
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States; Wootton High School, Rockville, MD, United States
| | - Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | - Bo Liu
- Department of Plant Biology, UC Davis, Davis, CA, United States
| | - Berl R Oakley
- Department of Molecular Biosciences, College of Liberal Arts and Sciences, The University of Kansas, Lawrence, KS, United States
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States.
| |
Collapse
|
3
|
Huston RL. Using the Electromagnetics of Cancer’s Centrosome Clusters to Attract Therapeutic Nanoparticles. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/abb.2015.63017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Abstract
This paper describes the inner workings of centrioles (a pair of small organelles adjacent to the nucleus) as they create cell electropolarity, engage in cell division (mitosis), but in going awry, also promote the development of cancers. The electropolarity arises from vibrations of microtubules composing the centrioles. Mitosis begins as each centrioles duplicates itself by growing a daughter centriole on its side. If during duplication more than one daughter is grown, cancer can occur and the cells divide uncontrollably. Cancer cells with supernumerary centrioles have high electropolarity which can serve as an attractor for charged therapeutic nanoparticles.
Collapse
Affiliation(s)
- Ronald L. Huston
- Life Fellow ASME Department of Mechanical and Materials Engineering, University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 e-mail:
| |
Collapse
|
5
|
Sorino C, Bruno T, Desantis A, Di Certo MG, Iezzi S, De Nicola F, Catena V, Floridi A, Chessa L, Passananti C, Cundari E, Fanciulli M. Centrosomal Che-1 protein is involved in the regulation of mitosis and DNA damage response by mediating pericentrin (PCNT)-dependent Chk1 protein localization. J Biol Chem 2013; 288:23348-57. [PMID: 23798705 DOI: 10.1074/jbc.m113.465302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To combat threats posed by DNA damage, cells have evolved mechanisms, collectively termed DNA damage response (DDR). These mechanisms detect DNA lesions, signal their presence, and promote their repair. Centrosomes integrate G2/M checkpoint control and repair signals in response to genotoxic stress, acting as an efficient control mechanism when G2/M checkpoint function fails and mitosis begins in the presence of damaged DNA. Che-1 is an RNA polymerase II-binding protein involved in the regulation of gene transcription, induction of cell proliferation, and DDR. Here we provide evidence that in addition to its nuclear localization, Che-1 localizes at interphase centrosomes, where it accumulates following DNA damage or spindle poisons. We show that Che-1 depletion generates supernumerary centrosomes, multinucleated cells, and multipolar spindle formation. Notably, Che-1 depletion abolishes the ability of Chk1 to bind pericentrin and to localize at centrosomes, which, in its turn, deregulates the activation of centrosomal cyclin B-Cdk1 and advances entry into mitosis. Our results reinforce the notion that Che-1 plays an important role in DDR and that its contribution seems to be relevant for the spindle assembly checkpoint.
Collapse
Affiliation(s)
- Cristina Sorino
- Laboratory of Epigenetics, Molecular Medicine Area, Regina Elena Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tram E, Savas S, Ozcelik H. Missense variants of uncertain significance (VUS) altering the phosphorylation patterns of BRCA1 and BRCA2. PLoS One 2013; 8:e62468. [PMID: 23704879 PMCID: PMC3660339 DOI: 10.1371/journal.pone.0062468] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 03/21/2013] [Indexed: 12/20/2022] Open
Abstract
Mutations in BRCA1 and BRCA2 are responsible for a large proportion of breast-ovarian cancer families. Protein-truncating mutations have been effectively used in the clinical management of familial breast cancer due to their deleterious impact on protein function. However, the majority of missense variants identified throughout the genes continue to pose an obstacle for predictive informative testing due to low frequency and lack of information on how they affect BRCA1/2 function. Phosphorylation of BRCA1 and BRCA2 play an important role in their function as regulators of DNA repair, transcription and cell cycle in response to DNA damage but whether missense variants of uncertain significance (VUS) are able to disrupt this important process is not known. Here we employed a novel approach using NetworKIN which predicts in vivo kinase-substrate relationship, and evolutionary conservation algorithms SIFT, PolyPhen and Align-GVGD. We evaluated whether 191 BRCA1 and 43 BRCA2 VUS from the Breast Cancer Information Core (BIC) database can functionally alter the consensus phosphorylation motifs and abolish kinase recognition and binding to sites known to be phosphorylated in vivo. Our results show that 13.09% (25/191) BRCA1 and 13.95% (6/43) BRCA2 VUS altered the phosphorylation of BRCA1 and BRCA2. We highlight six BRCA1 (K309T, S632N, S1143F, Q1144H, Q1281P, S1542C) and three BRCA2 (S196I, T207A, P3292L) VUS as potentially clinically significant. These occurred rarely (n<2 in BIC), mutated evolutionarily conserved residues and abolished kinase binding to motifs established in the literature involved in DNA repair, cell cycle regulation, transcription or response to DNA damage. Additionally in vivo phosphorylation sites identified via through-put methods are also affected by VUS and are attractive targets for studying their biological and functional significance. We propose that rare VUS affecting phosphorylation may be a novel and important mechanism for which BRCA1 and BRCA2 functions are disrupted in breast cancer.
Collapse
Affiliation(s)
- Eric Tram
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Sevtap Savas
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Hilmi Ozcelik
- Fred A. Litwin Centre for Cancer Genetics, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
7
|
Sakkiah S, Thangapandian S, Kim YS, Lee KW. Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.3.869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Barnabas N, Xu L, Savera A, Hou Z, Barrack ER. Chromosome 8 markers of metastatic prostate cancer in African American men: gain of the MIR151 gene and loss of the NKX3-1 gene. Prostate 2011; 71:857-71. [PMID: 21456068 DOI: 10.1002/pros.21302] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/05/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Radical prostatectomy (RP) is not curative if patients have undetected metastatic prostate cancer. Markers that indicate the presence of metastatic disease would identify men who may benefit from systemic adjuvant therapy. Our approach was to analyze the primary tumors of men with metastatic disease versus organ-confined disease to identify molecular changes that distinguish between these groups. METHODS Patients were identified based on long-term follow-up of serum prostate specific antigen (PSA) levels following RP. We compared the tumors of African American (AA) men with undetectable serum PSA for >9 year after RP (good outcome) versus those of AA men with a rising PSA and recurrence after radiation or androgen ablation or both (poor outcome). We used real-time quantitative PCR to assay gene copy number alterations in tumor DNA relative to patient-matched non-tumor DNA isolated from paraffin-embedded tissue. We assayed several genes located in the specific regions of chromosome 8p and 8q that frequently undergo loss and/or gain, respectively, in prostate cancer, and the androgen receptor gene at Xq12. RESULTS Gain of the MIR151 gene at 8q24.3 (in 33% of poor outcome vs. 6% of good outcome tumors) and/or loss of the NKX3-1 gene at 8p21.2 (in 39% of poor outcome vs. 11% of good outcome tumors) affected 67% of poor outcome tumors, compared to only 17% of good outcome tumors. CONCLUSIONS Copy number gain of the MIR151 gene and/or loss of the NKX3-1 gene in the primary tumor may indicate the presence of metastatic disease.
Collapse
Affiliation(s)
- Nandita Barnabas
- Vattikuti Urology Institute, Henry Ford Hospital, Detroit, Michigan 48202-3450, USA
| | | | | | | | | |
Collapse
|
9
|
Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2010.08.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Olson JE, Wang X, Pankratz VS, Fredericksen ZS, Vachon CM, Vierkant RA, Cerhan JR, Couch FJ. Centrosome-related genes, genetic variation, and risk of breast cancer. Breast Cancer Res Treat 2010; 125:221-8. [PMID: 20508983 DOI: 10.1007/s10549-010-0950-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 05/11/2010] [Indexed: 12/24/2022]
Abstract
Centrosome amplification has been detected in premalignant lesions and in situ tumors in the breast and in over 70% of invasive breast tumors, and has been associated with aneuploidy and tumor development. Based on these observations, the contribution of commonly inherited genetic variation in candidate genes related to centrosome structure and function to breast cancer risk was evaluated in an association study. Seven-hundred and 82 single nucleotide polymorphisms (SNPs) from 101 centrosomal genes were analyzed in 798 breast cancer cases and 843 controls from the Mayo Clinic Breast Cancer Study to assess the association between these SNPs (both individually and combined) and risk of breast cancer in this population. Eleven SNPs out of 782 from six genes displayed associations with breast cancer risk (P < 0.01). Haplotypes in five genes also displayed significant associations with risk. A two SNP combination of rs10145182 in NIN and rs2134808 in the TUBG1 locus (P-interaction = 0.00001), suggested SNPs in mediators of microtubule nucleation from the centrosome contribute to breast cancer. Evaluation of the simultaneous significance of all SNPs in the centrosome pathway suggested that the centrosome pathway is highly enriched (P = 4.76 × 10(-50)) for SNPs that are associated with breast cancer risk. Collections of weakly associated genetic variants in the centrosome pathway, rather than individual highly significantly associated SNPs, may account for a putative role for the centrosome pathway in predisposition to breast cancer.
Collapse
Affiliation(s)
- J E Olson
- Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Burke BA, Carroll M. BCR-ABL: a multi-faceted promoter of DNA mutation in chronic myelogeneous leukemia. Leukemia 2010; 24:1105-12. [PMID: 20445577 DOI: 10.1038/leu.2010.67] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of the BCR-ABL oncogene in the progression of chronic myeloid leukemia (CML) to blast crisis (BC) is unknown. The appearance of chromosomal aberrations in patients with CML BC has led to many attempts to elucidate a mechanism whereby BCR-ABL affects DNA damage and repair. BCR-ABL-expressing cells have been found to accumulate genetic abnormalities, but the mechanism leading to this genomic instability is controversial. In this study, we review the effects of BCR-ABL on DNA repair mechanisms, centrosomes, checkpoint activation and apoptosis. BCR-ABL has diverse effects on these mechanisms, but which of these effects are necessary for the progression of CML to BC is still unresolved.
Collapse
Affiliation(s)
- B A Burke
- Division of Hematology and Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
12
|
Couch FJ, Wang X, Bamlet WR, de Andrade M, Petersen GM, McWilliams RR. Association of mitotic regulation pathway polymorphisms with pancreatic cancer risk and outcome. Cancer Epidemiol Biomarkers Prev 2010; 19:251-7. [PMID: 20056645 DOI: 10.1158/1055-9965.epi-09-0629] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Mitosis is a highly regulated process that serves to ensure the fidelity of cell division. The disruption of mitotic regulators leading to aneuploidy and polyploidy is commonly observed in cancer cells. Single nucleotide polymorphisms (SNP) in regulators of mitosis may promote chromosome missegregation and influence pancreatic cancer and/or survival. METHODS Thirty-four SNPs, previously associated with breast cancer risk, from 33 genes involved in the regulation of mitosis, were investigated for associations with pancreatic cancer risk in 1,143 Caucasian patients with pancreatic adenocarcinoma and 1,097 unaffected controls from the Mayo Clinic. Associations with survival from pancreatic cancer were also assessed using 1,030 pancreatic cancer cases with known outcome. RESULTS Two SNPs in the APC (rs2431238) and NIN (rs10145182) loci, of 34 examined, were significantly associated with pancreatic cancer risk (P = 0.035 and P = 0.038, respectively). Further analyses of individuals categorized by smoking and body mass index identified several SNPs displaying significant associations (P < 0.05) with pancreatic cancer risk, including APC rs2431238 in individuals with high body mass index (>/=30; P = 0.031) and NIN rs10145182 in ever smokers (P = 0.01). In addition, survival analyses detected significant associations between SNPs in EIF3S10 and overall survival (P = 0.009), SNPs from five genes and survival in resected cancer cases (P < 0.05), and SNPs from two other genes (P < 0.05) and survival of locally advanced cancer cases. CONCLUSION Common variation in genes encoding regulators of mitosis may independently influence pancreatic cancer susceptibility and survival.
Collapse
Affiliation(s)
- Fergus J Couch
- Department of Laboratory Medicine and Pathology, Stabile 2-42, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab (Lond) 2010; 7:7. [PMID: 20181022 PMCID: PMC2845135 DOI: 10.1186/1743-7075-7-7] [Citation(s) in RCA: 382] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 01/27/2010] [Indexed: 01/08/2023] Open
Abstract
Emerging evidence indicates that impaired cellular energy metabolism is the defining characteristic of nearly all cancers regardless of cellular or tissue origin. In contrast to normal cells, which derive most of their usable energy from oxidative phosphorylation, most cancer cells become heavily dependent on substrate level phosphorylation to meet energy demands. Evidence is reviewed supporting a general hypothesis that genomic instability and essentially all hallmarks of cancer, including aerobic glycolysis (Warburg effect), can be linked to impaired mitochondrial function and energy metabolism. A view of cancer as primarily a metabolic disease will impact approaches to cancer management and prevention.
Collapse
|
14
|
Shao S, Liu R, Wang Y, Song Y, Zuo L, Xue L, Lu N, Hou N, Wang M, Yang X, Zhan Q. Centrosomal Nlp is an oncogenic protein that is gene-amplified in human tumors and causes spontaneous tumorigenesis in transgenic mice. J Clin Invest 2010; 120:498-507. [PMID: 20093778 DOI: 10.1172/jci39447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 12/02/2009] [Indexed: 12/22/2022] Open
Abstract
Disruption of mitotic events contributes greatly to genomic instability and results in mutator phenotypes. Indeed, abnormalities of mitotic components are closely associated with malignant transformation and tumorigenesis. Here we show that ninein-like protein (Nlp), a recently identified BRCA1-associated centrosomal protein involved in microtubule nucleation and spindle formation, is an oncogenic protein. Nlp was found to be overexpressed in approximately 80% of human breast and lung carcinomas analyzed. In human lung cancers, this deregulated expression was associated with NLP gene amplification. Further analysis revealed that Nlp exhibited strong oncogenic properties; for example, it conferred to NIH3T3 rodent fibroblasts the capacity for anchorage-independent growth in vitro and tumor formation in nude mice. Consistent with these data, transgenic mice overexpressing Nlp displayed spontaneous tumorigenesis in the breast, ovary, and testicle within 60 weeks. In addition, Nlp overexpression induced more rapid onset of radiation-induced lymphoma. Furthermore, mouse embryonic fibroblasts (MEFs) derived from Nlp transgenic mice showed centrosome amplification, suggesting that Nlp overexpression mimics BRCA1 loss. These findings demonstrate that Nlp abnormalities may contribute to genomic instability and tumorigenesis and suggest that Nlp might serve as a potential biomarker for clinical diagnosis and therapeutic target.
Collapse
Affiliation(s)
- Shujuan Shao
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li Y, Li F, Li-Ling J, Wang X, Xu Z, Sun K. STK15 Gene Overexpression, Centrosomal Amplification, and Chromosomal Instability in the Absence of STK15 Mutations in Laryngeal Carcinoma. Cancer Invest 2009; 23:660-4. [PMID: 16377583 DOI: 10.1080/07357900500359836] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Centrosomes regulate cell division by forming bipolar mitotic spindles and, thus, play an essential role in the maintenance of chromosomal stability. Centrosomal amplification has been found commonly among tumor cells. Previous studies have suggested that a STK15 (serine/threonine kinase 15) gene can induce centrosomal amplification, chromosomal instability, and cell transformation. To investigate the role of STK15 gene abnormalities in the occurrence of centrosomal amplification and chromosomal instability, a combinatory approach has been taken to investigate the expression level and point mutations of the STK15 and centrosomal/chromosomal aberrations among 72 cases of laryngeal squamous cell carcinoma and a representative Hep-2 cell line. Although no mutation was detected within its exons 6 or 7, overexpression of STK15 has been found in 47 cases (65 percent) as well as in the Hep-2 cell line; for the latter apparent centrosomal amplification also has been noted, with the number of centrosomes within a single cell varying between 1 and 7 and the proportion of cells with amplified centrosomes reaching 11 approximately 23 percent. Karyotype analysis of Hep-2 cell line has suggested common occurrence of chromosomal aberrations, with the number of chromosomes ranging between 43 and 84, modal number between 69 and 74, and structural aberrations, represented by 13 marker chromosomes, including translocations, deletions, and isochromosomes found in various subclones. Our results suggest that in Hep-2 cell line overexpression of STK15 gene may cause centrosomal amplification thereby result in chromosomal instability through abnormal mitosis. Detection of STK15 overexpression in laryngeal carcinoma has led us to propose that the above may be one of the mechanisms underlying laryngeal carcinogenesis.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Medical Genetics, China Medical University, Shenyang, China
| | | | | | | | | | | |
Collapse
|
16
|
Jin S, Gao H, Mazzacurati L, Wang Y, Fan W, Chen Q, Yu W, Wang M, Zhu X, Zhang C, Zhan Q. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression. J Biol Chem 2009; 284:22970-7. [PMID: 19509300 DOI: 10.1074/jbc.m109.009134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.
Collapse
Affiliation(s)
- Shunqian Jin
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Giehl M, Fabarius A, Frank O, Erben P, Zheng C, Hafner M, Hochhaus A, Hehlmann R, Seifarth W. Expression of the p210BCR-ABL oncoprotein drives centrosomal hypertrophy and clonal evolution in human U937 cells. Leukemia 2007; 21:1971-6. [PMID: 17597804 DOI: 10.1038/sj.leu.2404834] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Centrosomes play fundamental roles in mitotic spindle organization, chromosome segregation and maintenance of genetic stability. Recently, we have shown that centrosome aberrations occur early in chronic myeloid leukemia (CML) and are induced by imatinib in normal fibroblasts in vitro. To investigate the influence of BCR-ABL on centrosomes, we performed long-term in vitro experiments employing the conditionally p210BCR-ABL-expressing (tetracycline-inducible promoter) human monocytic cell line U937p210BCR-ABL/c6 as a model of CML chronic phase. Centrosome hypertrophy was detectable after 4 weeks of transgene expression onset, increasing up to a rate of 25.7% aberrant cells within 13 weeks of propagation. This concurred with clonal expansion of aneuploid cells displaying a hyperdiploid phenotype with 57 chromosomes. Partial reversibility of centrosome aberrations (26-8%) was achieved under prolonged propagation (14 weeks) after abortion of induction and bcr-abl silencing using small interfering RNA. Therapeutic doses of imatinib did not revert the aberrant phenotype, but counteracted the observed reverting effect of bcr-abl gene expression switch off. Suggesting a mechanistic model that features distinct abl-related tyrosine kinase activity levels as essential determinants of centrosomal integrity, this is the first report mechanistically linking p210BCR-ABL oncoprotein activity to centrosomal hypertrophy.
Collapse
Affiliation(s)
- M Giehl
- III. Medizinische Universitätsklinik, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Davila M, Jhala D, Ghosh D, Grizzle WE, Chakrabarti R. Expression of LIM kinase 1 is associated with reversible G1/S phase arrest, chromosomal instability and prostate cancer. Mol Cancer 2007; 6:40. [PMID: 17559677 PMCID: PMC1913540 DOI: 10.1186/1476-4598-6-40] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Accepted: 06/08/2007] [Indexed: 12/11/2022] Open
Abstract
Background LIM kinase 1 (LIMK1), a LIM domain containing serine/threonine kinase, modulates actin dynamics through inactivation of the actin depolymerizing protein cofilin. Recent studies have indicated an important role of LIMK1 in growth and invasion of prostate and breast cancer cells; however, the molecular mechanism whereby LIMK1 induces tumor progression is unknown. In this study, we investigated the effects of ectopic expression of LIMK1 on cellular morphology, cell cycle progression and expression profile of LIMK1 in prostate tumors. Results Ectopic expression of LIMK1 in benign prostatic hyperplasia cells (BPH), which naturally express low levels of LIMK1, resulted in appearance of abnormal mitotic spindles, multiple centrosomes and smaller chromosomal masses. Furthermore, a transient G1/S phase arrest and delayed G2/M progression was observed in BPH cells expressing LIMK1. When treated with chemotherapeutic agent Taxol, no metaphase arrest was noted in these cells. We have also noted increased nuclear staining of LIMK1 in tumors with higher Gleason Scores and incidence of metastasis. Conclusion Our results show that increased expression of LIMK1 results in chromosomal abnormalities, aberrant cell cycle progression and alteration of normal cellular response to microtubule stabilizing agent Taxol; and that LIMK1 expression may be associated with cancerous phenotype of the prostate.
Collapse
Affiliation(s)
- Monica Davila
- Department of Molecular biology and Microbiology, University of Central Florida, Orlando, Florida, USA
| | - Darshana Jhala
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Debashis Ghosh
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ratna Chakrabarti
- Department of Molecular biology and Microbiology, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
19
|
Neben K, Ott G, Schweizer S, Kalla J, Tews B, Katzenberger T, Hahn M, Rosenwald A, Ho AD, Müller-Hermelink HK, Lichter P, Krämer A. Expression of centrosome-associated gene products is linked to tetraploidization in mantle cell lymphoma. Int J Cancer 2007; 120:1669-77. [PMID: 17236200 DOI: 10.1002/ijc.22404] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In mantle cell lymphoma (MCL), a blastoid variant with a striking tendency to harbor chromosome numbers in the tetraploid range has been identified. Centrosome aberrations have recently been implicated in the induction of aneuploidy in many human malignancies including MCL by malsegregation of chromosomes during anaphase of mitosis. Recently, we showed that centrosome aberrations occur more frequently in tetraploid MCL as compared to their diploid counterparts. To test the hypothesis of an association between tetraploidization and expression of genes coding for centrosomal proteins in MCL, tumor RNA of 33 MCL samples was hybridized to custom-made cDNA microarrays, representing 4,628 distinct human gene-specific fragments, with particular enrichment for cancer-relevant (n = 2,440) and centrosome-associated genes (n = 359). Notably, 4 of the 6 most significant genes (CAMKK2, PCNT2, TUBGCP3, TUBGCP4) discriminating between diploid and near-tetraploid MCL code for centrosomal proteins. As confirmed by quantitative RT-PCR analysis, calcium/calmodulin-dependent protein kinase II (CAMKK2), pericentrin (PCNT2) and gamma-tubulin complex associated protein 3 (TUBGCP3) were all found to be significantly higher expressed in near-tetraploid than in diploid MCL samples. In conclusion, we describe a comprehensive expression signature of a set of genes associated with tetraploidization in MCL. The high expression level of centrosome-associated gene products in blastoid MCL matches the description of more frequent centrosome aberrations in this MCL variant.
Collapse
Affiliation(s)
- Kai Neben
- Molekulare Genetik (B060), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Cao L, Yan X, Wu Y, Hu H, Li Q, Zhou T, Jiang S, Yu L. Survivin mutant (Surv-DD70, 71AA) disrupts the interaction of Survivin with Aurora B and causes multinucleation in HeLa cells. Biochem Biophys Res Commun 2006; 346:400-7. [PMID: 16762323 DOI: 10.1016/j.bbrc.2006.05.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2006] [Accepted: 05/14/2006] [Indexed: 01/18/2023]
Abstract
Survivin is associated with Aurora B, inner centromere protein (INCENP), and borealin to form a chromosomal passenger complex that plays multiple roles during cell division. We used mutational analysis to study interaction of Survivin with Aurora B and the effect of this interaction on cell division. A Survivin mutant with the terminal domain deleted (Survivin 1-107) bound Aurora B as efficiently as Survivin wild type. This indicated that the proximal BIR domain of Survivin was responsible for Survivin binding to Aurora B. Survivin mutants (Surv-R18A, Surv-D53A, and Sur-KK78, and 79AA) all bound to Aurora B efficiently, but mutation in the conserved amino acid residues of the acidic patch on Survivin (Surv-DD70, 71AA) abolished the direct interaction of Survivin and Aurora B. The Survivin mutant (Surv-DD70, 71AA) localized diffusely in metaphase and failed to successfully accumulate in the midbody during cytokinesis. Furthermore, over-expression of the Survivin mutant (Surv-DD70, 71AA) severely disturbed cytokinesis, resulting in multinucleation in HeLa cell. This indicated that the direct interaction of Survivin and Aurora B was critical for the correct location of Survivin and the function of the Survivin complex in cell division.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Piatti S, Venturetti M, Chiroli E, Fraschini R. The spindle position checkpoint in budding yeast: the motherly care of MEN. Cell Div 2006; 1:2. [PMID: 16759408 PMCID: PMC1459270 DOI: 10.1186/1747-1028-1-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 04/03/2006] [Indexed: 11/10/2022] Open
Abstract
Mitotic exit and cytokinesis must be tightly coupled to nuclear division both in time and space in order to preserve genome stability and to ensure that daughter cells inherit the right set of chromosomes after cell division. This is achieved in budding yeast through control over a signal transduction cascade, the mitotic exit network (MEN), which is required for mitotic CDK inactivation in telophase and for cytokinesis. Current models of MEN activation emphasize on the bud as the place where most control is exerted. This review focuses on recent data that instead point to the mother cell as being the residence of key regulators of late mitotic events.
Collapse
Affiliation(s)
- Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Marianna Venturetti
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Elena Chiroli
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Roberta Fraschini
- Dipartimento di Biotecnologie e Bioscienze, Universita' di Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
22
|
Hut HMJ, Rembacz KP, van Waarde MAWH, Lemstra W, van Cappellen WA, Kampinga HH, Sibon OCM. Dysfunctional BRCA1 is only indirectly linked to multiple centrosomes. Oncogene 2005; 24:7619-23. [PMID: 16205648 DOI: 10.1038/sj.onc.1208859] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A remarkable and yet unexplained phenomenon in cancer cells is the presence of multiple centrosomes, organelles required for normal cell division. Previously, it was demonstrated that the tumor suppressor BRCA1 is a component of centrosomes. This observation led to the hypothesis that defective BRCA1 results in malfunctioning centrosomes and faulty centrosomes are a possible cause of cancer. Using EGFP-tagged fusion proteins and BRCA1(-/-) cells we show that although some BRCA1 antibodies do label centrosomes under certain fixation conditions, BRCA1 is not a centrosomal protein. Therefore, it is unlikely that a mutation in BRCA1 directly alters centrosome structure and function. BRCA1 plays an established role in DNA damage repair and in G2/M checkpoint regulation. We present evidence that multiple centrosomes can arise in any cell when G2/M checkpoint fails and entrance into mitosis occurs in the presence of DNA damage.
Collapse
Affiliation(s)
- Henderika M J Hut
- Department of Radiation and Stress Cell Biology, University of Groningen, UMCG, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
23
|
Hameroff SR. A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. Biosystems 2004; 77:119-36. [PMID: 15527951 DOI: 10.1016/j.biosystems.2004.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2004] [Revised: 04/27/2004] [Accepted: 04/28/2004] [Indexed: 11/16/2022]
Abstract
Malignant cells are characterized by abnormal segregation of chromosomes during mitosis ("aneuploidy"), generally considered a result of malignancy originating in genetic mutations. However, recent evidence supports a century-old concept that maldistribution of chromosomes (and resultant genomic instability) due to abnormalities in mitosis itself is the primary cause of malignancy rather than a mere byproduct. In normal mitosis chromosomes replicate into sister chromatids which are then precisely separated and transported into mirror-like sets by structural protein assemblies called mitotic spindles and centrioles, both composed of microtubules. The elegant yet poorly understood ballet-like movements and geometric organization occurring in mitosis have suggested guidance by some type of organizing field, however neither electromagnetic nor chemical gradient fields have been demonstrated or shown to be sufficient. It is proposed here that normal mirror-like mitosis is organized by quantum coherence and quantum entanglement among microtubule-based centrioles and mitotic spindles which ensure precise, complementary duplication of daughter cell genomes and recognition of daughter cell boundaries. Evidence and theory supporting organized quantum states in cytoplasm/nucleoplasm (and quantum optical properties of centrioles in particular) at physiological temperature are presented. Impairment of quantum coherence and/or entanglement among microtubule-based mitotic spindles and centrioles can result in abnormal distribution of chromosomes, abnormal differentiation and uncontrolled growth, and account for all aspects of malignancy. New approaches to cancer therapy and stem cell production are suggested via non-thermal laser-mediated effects aimed at quantum optical states of centrioles.
Collapse
Affiliation(s)
- Stuart R Hameroff
- Department of Anesthesiology, and Center for Consciousness Studies, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
24
|
Zhao X, Li FC, Li YH, Xu ZM, Sun KL. Correlation analysis between STK15 gene and laryngeal carcinoma. Chin J Cancer Res 2004. [DOI: 10.1007/s11670-004-0003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
25
|
Araki K, Nozaki K, Ueba T, Tatsuka M, Hashimoto N. High expression of Aurora-B/Aurora and Ipll-like midbody-associated protein (AIM-1) in astrocytomas. J Neurooncol 2004; 67:53-64. [PMID: 15072448 DOI: 10.1023/b:neon.0000021784.33421.05] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Impaired regulation of Aurora-B/AIM-1 expression in human cells causes chromosomal abnormality and instability, and recent observations of high expression but not mutation of Aurora-B/AIM-1 in human cancers imply that Aurora-B/AIM-1 might be a candidate molecule for cancer progression. We analyzed the effects of modification of Aurora-B/AIM-1 expression on the growth of a human glioma cell line and the expression of Aurora-B/AIM-1 in astrocytomas. METHODS A glioma cell line, U251MG was transfected with wild type (WT) of Aurora-B/AIM-1 or kinase-inactive mutant of Aurora-B/AIM-1 in order to test the effects of overexpression of WT or kinase-inactive Aurora-B/AIM-1 on cell morphology and cell growth. Brain tissue samples were obtained during surgery and processed for reverse transcription-polymerase chain reaction, immunofluorescence in order to analyze the expression of Aurora-B/AIM-1 mRNA and protein. RESULTS Exogenous overexpression of WT of Aurora-B/AIM-1 in cultured cells of U251MG produced multinuclearity and increased ploidy, and inhibited the growth of tumor cells. Exogenous overexpression of kinase-inactive Aurora-B/AIM-1 in a human glioma cell line also suppressed the tumor cell growth without affecting ploidy. Aurora-B/AIM-1 was highly expressed in astrocytomas and U251MG, and mRNA and protein levels of Aurora-B/AIM-1 in tumor tissues well correlated with their histological malignancy (World Health Organization grading). Survival time also negatively correlated with the levels of Aurora-B/AIM-1 mRNA in tumor samples. CONCLUSION Aurora-B/AIM-1 was highly expressed in high-grade gliomas and its expression was well correlated with histological malignancy and clinical outcomes. The modification of the level of Aurora-B/AIM-1 expression might be a new target for glioma therapy.
Collapse
Affiliation(s)
- Kasumi Araki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
26
|
Verschuren EW, Hodgson JG, Gray JW, Kogan S, Jones N, Evan GI. The role of p53 in suppression of KSHV cyclin-induced lymphomagenesis. Cancer Res 2004; 64:581-9. [PMID: 14744772 DOI: 10.1158/0008-5472.can-03-1863] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a cyclin D homolog, K cyclin, that is thought to promote viral oncogenesis. However, expression of K cyclin in cultured cells not only triggers cell cycle progression but also engages the p53 tumor suppressor pathway, which probably restricts the oncogenic potential of K cyclin. Therefore, to assess the tumorigenic properties of K cyclin in vivo, we transgenically targeted expression of K cyclin to the B and T lymphocyte compartments via the E micro promoter/enhancer. Around 17% of E micro -K cyclin animals develop lymphoma by 9 months of age, and all such lymphomas exhibit loss of p53. A critical role of p53 in suppressing K cyclin-induced lymphomagenesis was confirmed by the greatly accelerated onset of B and T lymphomagenesis in all E micro -K cyclin/p53(-/-) mice. However, absence of p53 did not appear to accelerate K cyclin-induced lymphomagenesis by averting apoptosis: E micro -K cyclin/p53(-/-) end-stage lymphomas contained abundant apoptotic cells, and transgenic E micro -K cyclin/p53(-/-) lymphocytes in vitro were not measurably protected from DNA damage-induced apoptosis compared with E micro -K cyclin/p53(wt) cells. Notably, whereas aneuploidy was frequently evident in pre-lymphomatous tissues, end-stage E micro -K cyclin/p53(-/-) tumors showed a near-diploid DNA content with no aberrant centrosome numbers. Nonetheless, such tumor cells did harbor more restricted genomic alterations, such as single-copy chromosome losses or gains or high-level amplifications. Together, our data support a model in which K cyclin-induced genome instability arises early in the pre-tumorigenic lymphocyte population and that loss of p53 licenses subsequent expansion of tumorigenic clones.
Collapse
Affiliation(s)
- Emmy W Verschuren
- Comprehensive Cancer Center and Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
27
|
de Almeida TMB, Leitão RC, Andrade JD, Beçak W, Carrilho FJ, Sonohara S. Detection of micronuclei formation and nuclear anomalies in regenerative nodules of human cirrhotic livers and relationship to hepatocellular carcinoma. ACTA ACUST UNITED AC 2004; 150:16-21. [PMID: 15041218 DOI: 10.1016/j.cancergencyto.2003.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 08/05/2003] [Accepted: 08/05/2003] [Indexed: 12/30/2022]
Abstract
Human cirrhosis is considered an important factor in hepatocarcinogenesis. The lack of substantial genetics and cytogenetics data in human cirrhosis led us to investigate spontaneous micronuclei formation, as an indicator of chromosomal damage. The analysis was performed in hepatocytes of regenerative, macroregenerative, and tumoral nodules from 30 cases of cirrhosis (paraffin-embedded archival material), retrospectively selected: cryptogenic, hepatitis C virus, and hepatitis C virus associated with hepatocellular carcinoma (HCC). Thirteen control liver samples of healthy organ donors were included. Micronucleated hepatocytes were analyzed with Feulgen-fast-green dyeing techniques. The spontaneous frequency of micronucleated hepatocytes in both regenerative and macroregenerative nodules of all cirrhotic patients was significantly higher than for the normal control group. There was no significant difference in frequency of micronucleated hepatocytes in regenerative nodules compared with macroregenerative nodules for all cases analyzed, whereas a significantly higher frequency of micronucleated hepatocytes was detected in tumoral nodules, compared with cirrhotic regenerative nodules and normal parenchyma. A higher frequency of the nuclear anomalies termed broken-eggs was observed in hepatitis C virus-related samples. Chromatinic losses and genotoxicity already existed in the cirrhotic regenerative nodules, which might predispose to development of HCC.
Collapse
|
28
|
Neben K, Tews B, Wrobel G, Hahn M, Kokocinski F, Giesecke C, Krause U, Ho AD, Krämer A, Lichter P. Gene expression patterns in acute myeloid leukemia correlate with centrosome aberrations and numerical chromosome changes. Oncogene 2004; 23:2379-84. [PMID: 14767474 DOI: 10.1038/sj.onc.1207401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes, which mediate accurate chromosome segregation during mitosis, undergo duplication precisely once per cell division at the G1/S boundary. Recently, we described centrosome aberrations as a possible cause of aneuploidy in acute myeloid leukemia (AML) and found a correlation of the percentage of cells carrying abnormal centrosomes to their cytogenetic risk profile. To elucidate the molecular events responsible for the development of centrosome aberrations in AML, tumor RNA of 29 AML samples was hybridized to cDNA microarrays. The microarrays comprised some 2800 different genes with relevance to hematopoiesis, tumorigenesis and mitosis and included a set of 359 centrosome-associated genes. We identified two gene expression signatures, which allowed an accurate classification according to the extent of centrosome aberrations and the ploidy status in 28 of 29 patients each. Specifically, 18 genes were present in both signatures, including genes that code for cell cycle regulatory proteins (cyclin A2, cyclin D3, cyclin H, CDK6, p18INK4c, p21Cip1, PAK1) and centrosome-associated proteins (pericentrin, alpha2-tubulin, NUMA1, TUBGCP2, PRKAR2A). In conclusion, the high expression of centrosome-associated genes matches the description of centrosome aberrations in several tumor types. Moreover, in AML the identification of G1/S-phase stimulatory genes suggests that one mechanism of aneuploidy induction might be the deregulation of centrosome replication at the G1/S boundary.
Collapse
Affiliation(s)
- Kai Neben
- Division of Molecular Genetics (B060), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Krämer A, Schweizer S, Neben K, Giesecke C, Kalla J, Katzenberger T, Benner A, Müller-Hermelink HK, Ho AD, Ott G. Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin's lymphoma. Leukemia 2004; 17:2207-13. [PMID: 14523473 DOI: 10.1038/sj.leu.2403142] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Recently, centrosome aberrations have been described as a possible cause of aneuploidy in many solid tumors. To investigate whether centrosome aberrations occur in non-Hodgkin's lymphoma (NHL) and correlate with histologic subtype, karyotype, and other biological disease features, we examined 24 follicular lymphomas (FL), 18 diffuse large-B-cell lymphomas (DLCL), 33 mantle cell lymphomas (MCL), and 17 extranodal marginal zone B-cell lymphomas (MZBCL), using antibodies to centrosomal proteins. All 92 NHL displayed numerical and structural centrosome aberrations as compared to nonmalignant lymphoid tissue. Centrosome abnormalities were detectable in 32.3% of the cells in NHL, but in only 5.5% of lymphoid cells from 30 control individuals (P<0.0001). Indolent FL and MZBCL contained only 25.8 and 28.8% cells with abnormal centrosomes. In contrast, aggressive DLCL and MCL harbored centrosome aberrations in 41.8 and 35.0% of the cells, respectively (P<0.0001). Centrosomal aberrations correlated to lymphoma grade, mitotic, and proliferation indices, but not to the p53 labeling index. Importantly, diploid MCL contained 31.2% cells with abnormal centrosomes, while tetraploid samples harbored centrosome aberrations in 55.6% of the cells (P<0.0001). These results indicate that centrosome defects are common in NHL and suggest that they may contribute to the acquisition of chromosomal instability typically seen in NHL.
Collapse
Affiliation(s)
- A Krämer
- Medizinische Klinik und Poliklinik V, Universität Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Goshima G, Vale RD. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J Cell Biol 2003; 162:1003-16. [PMID: 12975346 PMCID: PMC2172859 DOI: 10.1083/jcb.200303022] [Citation(s) in RCA: 323] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kinesins and dyneins play important roles during cell division. Using RNA interference (RNAi) to deplete individual (or combinations of) motors followed by immunofluorescence and time-lapse microscopy, we have examined the mitotic functions of cytoplasmic dynein and all 25 kinesins in Drosophila S2 cells. We show that four kinesins are involved in bipolar spindle assembly, four kinesins are involved in metaphase chromosome alignment, dynein plays a role in the metaphase-to-anaphase transition, and one kinesin is needed for cytokinesis. Functional redundancy and alternative pathways for completing mitosis were observed for many single RNAi knockdowns, and failure to complete mitosis was observed for only three kinesins. As an example, inhibition of two microtubule-depolymerizing kinesins initially produced monopolar spindles with abnormally long microtubules, but cells eventually formed bipolar spindles by an acentrosomal pole-focusing mechanism. From our phenotypic data, we construct a model for the distinct roles of molecular motors during mitosis in a single metazoan cell type.
Collapse
Affiliation(s)
- Gohta Goshima
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94107, USA
| | | |
Collapse
|
31
|
Schwerer MJ, Hemmer J, Kraft K, Maier H, Möller P, Barth TFE. Endoreduplication in conjunction with tumor progression in an aneuploid laryngeal squamous cell carcinoma. Virchows Arch 2003; 443:98-103. [PMID: 12750885 DOI: 10.1007/s00428-003-0831-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Accepted: 04/11/2003] [Indexed: 10/26/2022]
Abstract
We report the case of a 58-year-old man who presented with a squamous cell carcinoma pT1a G2 of the left vocal cord. Six months after histologically verified complete resection, the patient experienced an endolaryngeal and extralaryngeal local recurrence pT4 pN2b G2. We applied DNA flow cytometry (FCM) and comparative genomic hybridization (CGH) on both primary and recurrent tumor. The primary tumor and the endolaryngeal compartment of the relapse was an aneuploid cell clone with a FCM DNA index of 1.42 and 1.44, respectively. The extralaryngeal compartment showed a shift featuring a DNA index of 2.78. In the primary tumor and in both compartments of the recurrence there was an identical pattern of complex chromosomal imbalances as detected in CGH (CGH karyotype: rev ish enh [8q24.2-q24.3, 10q26.1-q26.3, 11q24-q25, 12q24.2-q23.33,X], dim [4q, 13q14.3-q31], amp[1p36.1-p36.2]). Hence, the recurrence was not associated with further gains and losses of chromosomal material. However, in the anterior part of the recurrence, the aneuploid tumor cell genome had completely doubled, obviously due to endoreduplication. Immunohistochemical analysis of several cell-cycle regulators revealed altered expression of checkpoint proteins, pointing to a complex disturbance in cell-cycle regulation.
Collapse
Affiliation(s)
- Michael J Schwerer
- Department of Pathology, University of Ulm, Albert Einstein Allee 11, 89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The centrosome, together with the embedded centrioles and connecting filaments, has come to be regarded as the 'brain' of a cell, analogous to the long known brain of an animal or a human being. It is through the 'brain' that different cellular activities are coordinated as a whole. In this article, comparative studies of the principles of life at varying levels and of the new roles of different cellular organelles in maintaining a healthy life for an organism provide further support to this theory, which is discussed based on the latest findings. Hopefully, this new theory can make a great contribution to break the paradigm of nucleus (or genes) as causes of all problems.
Collapse
Affiliation(s)
- Q Kong
- Cell Brain Research Center, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
33
|
Hut HMJ, Lemstra W, Blaauw EH, Van Cappellen GWA, Kampinga HH, Sibon OCM. Centrosomes split in the presence of impaired DNA integrity during mitosis. Mol Biol Cell 2003; 14:1993-2004. [PMID: 12802070 PMCID: PMC165092 DOI: 10.1091/mbc.e02-08-0510] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A well-established function of centrosomes is their role in accomplishing a successful mitosis that gives rise to a pair of identical daughter cells. We recently showed that DNA replication defects and DNA damage in Drosophila embryos trigger centrosomal changes, but it remained unclear whether comparable centrosomal responses can be provoked in somatic mammalian cells. To investigate the centrosomal organization in the presence of impaired DNA integrity, live and ultrastructural analysis was performed on gamma-tubulin-GFP and EGFP-alpha-tubulin-expressing Chinese hamster ovary cells. We have shown that during mitosis in the presence of incompletely replicated or damaged DNA, centrosomes split into fractions containing only one centriole. This results in the formation of multipolar spindles with extra centrosome-like structures. Despite the extra centrosomes and the multipolarity of the spindles, cells do exit from mitosis, resulting in severe division errors. Our data provide evidence of a novel mechanism showing how numerous centrosomes and spindle defects can arise and how this can lead to the formation of aneuploid cells.
Collapse
Affiliation(s)
- Henderika M J Hut
- Department of Radiation and Stress Cell Biology, Faculty of Medical Sciences, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Sperm from mice of the PL/J strain have a high frequency of sperm-head morphology abnormalities. Fluorescence in situ hybridization (FISH) methods revealed that PL/J sperm are also characterized by a high frequency of aneuploidy. The traits of abnormal sperm head morphology and aneuploidy are associated with numerous meiotic abnormalities. Spermatocytes of PL/J mice exhibit chromosome asynapsis during meiotic prophase as well as reduced crossing over, revealed by analysis of both MLH1 foci in pachytene spermatocytes and chiasmata seen at the first meiotic metaphase. During the first meiotic division, roughly one-third of the PL/J spermatocytes exhibit aberrant spindle morphology, with abnormalities including monopolar spindles, split spindle poles, and incomplete spindle formation and centrosomal abnormalities. F1 progeny of a cross between PL/J and C57BL/6J did not exhibit a high frequency of either sperm aneuploidy or sperm head morphology aberrations, as would be expected if the PL/J traits were dominant. Among progeny of a backcross of F1 mice to PL/J, none of 16 males assessed exhibited elevated frequencies of sperm head morphology abnormalities. Four of the individuals exhibited elevated sperm aneuploidy, but not at the levels of the PL/J parents. Thus, it is likely that the aberrant PL/J traits are due to several genes and/or modifiers affecting the generation of both sperm aneuploidy and abnormal sperm head morphology.
Collapse
Affiliation(s)
- April Pyle
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840, USA
| | | |
Collapse
|
35
|
Neben K, Giesecke C, Schweizer S, Ho AD, Krämer A. Centrosome aberrations in acute myeloid leukemia are correlated with cytogenetic risk profile. Blood 2003; 101:289-91. [PMID: 12393441 DOI: 10.1182/blood-2002-04-1188] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Genetic instability is a common feature in acute myeloid leukemia (AML). Centrosome aberrations have been described as a possible cause of aneuploidy in many human tumors. To investigate whether centrosome aberrations correlate with cytogenetic findings in AML, we examined a set of 51 AML samples by using a centrosome-specific antibody to pericentrin. All 51 AML samples analyzed displayed numerical and structural centrosome aberrations (36.0% +/- 16.6%) as compared with peripheral blood mononuclear cells from 21 healthy volunteers (5.2% +/- 2.0%; P <.0001). In comparison to AML samples with normal chromosome count, the extent of numerical and structural centrosome aberrations was higher in samples with numerical chromosome changes (50.5% +/- 14.2% versus 34.3% +/- 12.2%; P <.0001). When the frequency of centrosome aberrations was analyzed within cytogenetically defined risk groups, we found a correlation of the extent of centrosome abnormalities to all 3 risk groups (P =.0015), defined as favorable (22.5% +/- 7.3%), intermediate (35.3% +/- 13.1%), and adverse (50.3% +/- 15.6%). These results indicate that centrosome defects may contribute to the acquisition of chromosome aberrations and thereby to the prognosis in AML.
Collapse
Affiliation(s)
- Kai Neben
- Medizinische Klinik und Poliklinik V, Universität Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Du J, Hannon GJ. The centrosomal kinase Aurora-A/STK15 interacts with a putative tumor suppressor NM23-H1. Nucleic Acids Res 2002; 30:5465-75. [PMID: 12490715 PMCID: PMC140054 DOI: 10.1093/nar/gkf678] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Alterations in the activity of the centrosomal kinase, Aurora-A/STK15, have been implicated in centrosome amplification, genome instability and cellular transformation. How STK15 participates in all of these processes remains largely mysterious. The activity of STK15 is regulated by phosphorylation and ubiquitin-mediated degradation, and physically interacts with protein phosphatase 1 (PP1) and CDC20. However, the precise roles of these modifications and interactions have yet to be fully appreciated. Here we show that STK15 associates with a putative tumor and metastasis suppressor, NM23-H1. STK15 and NM23 were initially found to interact in yeast in a two-hybrid assay. Association of these proteins in human cells was confirmed by co-immunoprecipitation from cell lysates and biochemical fractionation indicating that STK15 and NM23-H1 are present in a stable, physical complex. Notably, SKT15 and NM23 both localize to centrosomes throughout the cell cycle irrespective of the integrity of the microtubule network in normal human fibroblasts.
Collapse
Affiliation(s)
- Jian Du
- Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
37
|
Line A, Slucka Z, Stengrevics A, Li G, Rees RC. Altered splicing pattern of TACC1 mRNA in gastric cancer. CANCER GENETICS AND CYTOGENETICS 2002; 139:78-83. [PMID: 12547166 DOI: 10.1016/s0165-4608(02)00607-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transforming acidic coiled-coil (TACC) proteins are centrosome and microtubule-associated proteins that are essential for mitotic spindle function. We identified TACC1 as an immunogenic protein and a potential tumor antigen by applying serological identification of antigens by recombinant expression cloning (SEREX) technique to screen a gastric cancer cDNA library. The 5'RLM-RACE and reverse transcriptase polymerase chain reaction analyses revealed at least six different transcript variants of TACC1 with variable transcription start sites and alternative exon usage (designated TACC1-A-TACC1-F). All transcripts differ in their 5' ends but share an identical 3' region encoding coiled-coil domain. Four transcripts were universally expressed in all normal tissues analyzed but TACC1-D and TACC1-F showed a restricted expression pattern. TACC1-F, a transcript representing the SEREX-identified cDNA clone, was predominantly expressed in brain and gastric tumors to a similar level. TACC1-D was only weakly detectable in kidney and colon but not in other normal tissues, while a relatively strong expression was observed in 50% of gastric cancer tissue samples analyzed. These transcript variants are generated possibly as a result of alterations in efficiency and pattern of alternative splicing; these isoforms may represent genetic markers, for example TACC1-D for gastric cancer. We also propose that inappropriate expression of the isoforms in gastric cancer cells might result in dysfunction of TACC1 thus contributing to the genetic instability.
Collapse
Affiliation(s)
- Aija Line
- Biomedical Research and Study Center, University of Latvia, Riga, Latvia.
| | | | | | | | | |
Collapse
|
38
|
Hansen DV, Hsu JY, Kaiser BK, Jackson PK, Eldridge AG. Control of the centriole and centrosome cycles by ubiquitination enzymes. Oncogene 2002; 21:6209-21. [PMID: 12214251 DOI: 10.1038/sj.onc.1205824] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David V Hansen
- Programs in Chemical Biology and Cancer Biology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California, CA 94305-5324, USA
| | | | | | | | | |
Collapse
|
39
|
Wunderlich V. JMM---past and present. Chromosomes and cancer: Theodor Boveri's predictions 100 years later. J Mol Med (Berl) 2002; 80:545-8. [PMID: 12226736 DOI: 10.1007/s00109-002-0374-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
40
|
Abstract
It has long been known that tumors become more clinically and biologically aggressive over time. This has been termed 'tumor progression' and includes, among other properties invasion and metastasis, as well as more efficient escape from host immune regulation. Since 1960, first cytogenetics and then molecular techniques have shown that tumors expand as a clone from a single altered cell, and that clinical 'progression' is the result of sequential somatic genetic changes, generating increasingly aggressive subpopulations within the expanding clone. Multiple types of genes have been identified, and they differ in different tumors, but they provide potential specific targets for important new therapies.
Collapse
Affiliation(s)
- Peter C Nowell
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania, M-163 John Morgan Building, 36th and Hamilton Walk, Philadelphia, PA 19104-6082, USA.
| |
Collapse
|
41
|
Dumont JE, Dremier S, Pirson I, Maenhaut C. Cross signaling, cell specificity, and physiology. Am J Physiol Cell Physiol 2002; 283:C2-28. [PMID: 12055068 DOI: 10.1152/ajpcell.00581.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The literature on intracellular signal transduction presents a confusing picture: every regulatory factor appears to be regulated by all signal transduction cascades and to regulate all cell processes. This contrasts with the known exquisite specificity of action of extracellular signals in different cell types in vivo. The confusion of the in vitro literature is shown to arise from several causes: the inevitable artifacts inherent in reductionism, the arguments used to establish causal effect relationships, the use of less than adequate models (cell lines, transfections, acellular systems, etc.), and the implicit assumption that networks of regulations are universal whereas they are in fact cell and stage specific. Cell specificity results from the existence in any cell type of a unique set of proteins and their isoforms at each level of signal transduction cascades, from the space structure of their components, from their combinatorial logic at each level, from the presence of modulators of signal transduction proteins and of modulators of modulators, from the time structure of extracellular signals and of their transduction, and from quantitative differences of expression of similar sets of factors.
Collapse
Affiliation(s)
- J E Dumont
- Institute of Interdisciplinary Research, Free University of Brussels, Campus Erasme, B-1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
42
|
Kato M, Yano KI, Morotomi-Yano K, Saito H, Miki Y. Identification and characterization of the human protein kinase-like gene NTKL: mitosis-specific centrosomal localization of an alternatively spliced isoform. Genomics 2002; 79:760-7. [PMID: 12036289 DOI: 10.1006/geno.2002.6774] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although the centrosome has an essential role in mitosis, its molecular components have not been fully elucidated. Here, we describe the molecular cloning and characterization of the human gene NTKL, which encodes an evolutionarily conserved kinase-like protein. NTKL mRNA is found ubiquitously in human tissues. NTKL is located on 11q13 and is mapped around chromosomal breakpoints found in several carcinomas, suggesting that NTKL dysfunction may be involved in carcinogenesis. Alternative splicing generates two variant forms of NTKL mRNA that encode protein isoforms with internal deletions. When fused to green fluorescent protein, the full-length product and one of the variant proteins are found in cytoplasm. The other variant product also exists in the cytoplasm during interphase, but is found in the centrosomes during mitosis. Endogenous NTKL protein is also localized to the centrosomes during mitosis. This cell-cycle-dependent centrosomal localization suggests that NTKL is involved in centrosome-related cellular functions.
Collapse
Affiliation(s)
- Masahiro Kato
- Department of Molecular Diagnosis, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 170-8455, Japan
| | | | | | | | | |
Collapse
|
43
|
Wang Q, Xie S, Chen J, Fukasawa K, Naik U, Traganos F, Darzynkiewicz Z, Jhanwar-Uniyal M, Dai W. Cell cycle arrest and apoptosis induced by human Polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol Cell Biol 2002; 22:3450-9. [PMID: 11971976 PMCID: PMC133784 DOI: 10.1128/mcb.22.10.3450-3459.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2001] [Revised: 10/07/2001] [Accepted: 02/05/2002] [Indexed: 11/20/2022] Open
Abstract
Human Polo-like kinase 3 (Plk3, previously termed Prk or Fnk) is involved in regulation of cell cycle progression through the M phase (B. Ouyang, H. Pan, L. Lu, J. Li, P. Stambrook, B. Li, and W. Dai, J. Biol. Chem. 272:28646-28651, 1997). Here we report that in most interphase cells endogenous Plk3 was predominantly localized around the nuclear membrane. Double labeling with Plk3 and gamma-tubulin, the latter a major component of pericentriole materials, revealed that Plk3 was closely associated with centrosomes and that its localization to centrosomes was dependent on the integrity of microtubules. Throughout mitosis, Plk3 appeared to be localized to mitotic apparatus such as spindle poles and mitotic spindles. During telophase, a significant amount of Plk3 was also detected in the midbody. Ectopic expression of Plk3 mutants dramatically changed cell morphology primarily due to their effects on microtubule dynamics. Expression of a constitutively active Plk3 (Plk3-A) resulted in rapid cell shrinkage, which led to formation of cells with an elongated, unsevered, and taxol-sensitive midbody. In contrast, cells expressing a kinase-defective Plk3 (Plk3(K52R)) mutant exhibited extended, deformed cytoplasmic structures, the phenotype of which was somewhat refractory to taxol treatment. Expression of both Plk3-A and Plk3(K52R) induced apparent G(2)/M arrest followed by apoptosis, although the kinase-defective mutant was less effective. Taken together, our studies strongly suggest that Plk3 plays an important role in the regulation of microtubule dynamics and centrosomal function in the cell and that deregulated expression of Plk3 results in cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Medicine and Brander Cancer Research Institute, New York Medical College, Hwathorne, 10532, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Leverson JD, Huang HK, Forsburg SL, Hunter T. The Schizosaccharomyces pombe aurora-related kinase Ark1 interacts with the inner centromere protein Pic1 and mediates chromosome segregation and cytokinesis. Mol Biol Cell 2002; 13:1132-43. [PMID: 11950927 PMCID: PMC102257 DOI: 10.1091/mbc.01-07-0330] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The chromosomal passenger proteins aurora-B, survivin, and inner centromere protein (INCENP) have been implicated in coordinating chromosome segregation with cell division. This work describes the interplay between aurora, survivin, and INCENP orthologs in the fission yeast Schizosaccharomyces pombe and defines their roles in regulating chromosome segregation and cytokinesis. We describe the cloning and characterization of the aurora-related kinase gene ark1(+), demonstrating that it is an essential gene required for sister chromatid segregation. Cells lacking Ark1p exhibit the cut phenotype, DNA fragmentation, and other defects in chromosome segregation. Overexpression of a kinase-defective version of Ark1, Ark1-K147R, inhibits cytokinesis, with cells exhibiting an elongated, multiseptate phenotype. Ark1p interacts physically and/or genetically with the survivin and INCENP orthologs Bir1p and Pic1p. We identified Pic1p in a two-hybrid screen for Ark1-K147R interacting partners and went on to map domains in both proteins that mediate their binding. Pic1p residues 925-972 are necessary and sufficient for Ark1p binding, which occurs through the kinase domain. As with Ark1-K147R, overexpression of Ark1p-binding fragments of Pic1p leads to multiseptate phenotypes. We also provide evidence that the dominant-negative effect of Ark1-K147R requires Pic1p binding, indicating that the formation of Ark1p-Pic1p complexes is required for the execution of cytokinesis.
Collapse
Affiliation(s)
- Joel D Leverson
- Molecular and Cell Biology Laboratory, The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037
| | | | | | | |
Collapse
|
45
|
Tanaka M, Ueda A, Kanamori H, Ideguchi H, Yang J, Kitajima S, Ishigatsubo Y. Cell-cycle-dependent regulation of human aurora A transcription is mediated by periodic repression of E4TF1. J Biol Chem 2002; 277:10719-26. [PMID: 11790771 DOI: 10.1074/jbc.m108252200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human aurora A is a serine-threonine kinase that controls various mitotic events. The transcription of aurora A mRNA varies throughout the cell cycle and peaks during G(2)/M. To clarify the transcriptional mechanism, we first cloned the 1.8-kb 5'-flanking region of aurora A including the first exon. Transient expression of aurora A promoter-luciferase constructs containing a series of 5'-truncated sequences or site-directed mutations identified a 7-bp sequence (CTTCCGG) from -85 to -79 as a positive regulatory element. Electromobility shift assays identified the binding of positive regulatory proteins to the CTTCCGG element. Anti-E4TF1-60 antibody generated a supershifted complex. Furthermore, coexpression of E4TF1-60 and E4TF1-53 markedly increased aurora A promoter activity. Synchronized cells transfected with the aurora A promoter-luciferase constructs revealed that the promoter activity of aurora A increased in the S phase and peaked at G(2)/M. In addition, we identified a tandem repressor element, CDE/CHR, just downstream of the CTTCCGG element, and mutation within this element led to a loss of cell cycle regulation. We conclude that the transcription of aurora A is positively regulated by E4TF1, a ubiquitously expressed ETS family protein, and that the CDE/CHR element was essential for the G(2)/M-specific transcription of aurora A.
Collapse
Affiliation(s)
- Masatsugu Tanaka
- First Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama 236-0004, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Matsumoto Y, Maller JL. Calcium, calmodulin, and CaMKII requirement for initiation of centrosome duplication in Xenopus egg extracts. Science 2002; 295:499-502. [PMID: 11799245 DOI: 10.1126/science.1065693] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Aberrant centrosome duplication is observed in many tumor cells and may contribute to genomic instability through the formation of multipolar mitotic spindles. Cyclin-dependent kinase 2 (Cdk2) is required for multiple rounds of centrosome duplication in Xenopus egg extracts but not for the initial round of replication. Egg extracts undergo periodic oscillations in the level of free calcium. We show here that chelation of calcium in egg extracts or specific inactivation of calcium/calmodulin-dependent protein kinase II (CaMKII) blocks even initial centrosome duplication, whereas inactivation of Cdk2 does not. Duplication can be restored to inhibited extracts by addition of CaMKII and calmodulin. These results indicate that calcium, calmodulin, and CaMKII are required for an essential step in initiation of centrosome duplication. Our data suggest that calcium oscillations in the cell cycle may be linked to centrosome duplication.
Collapse
Affiliation(s)
- Yutaka Matsumoto
- Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | |
Collapse
|
47
|
Pereira G, Schiebel E. The role of the yeast spindle pole body and the mammalian centrosome in regulating late mitotic events. Curr Opin Cell Biol 2001; 13:762-9. [PMID: 11698194 DOI: 10.1016/s0955-0674(00)00281-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Centrosomes of vertebrate cells and spindle pole bodies (SPBs) of fungi were first recognized through their ability to organize microtubules. Recent studies suggest that centrosomes and SPBs also have a function in the regulation of cell cycle progression, in particular in controlling late mitotic events. Regulators of mitotic exit and cytokinesis are associated with the SPB of budding and fission yeast. Elucidation of the molecular roles played by these regulators is helping to clarify the function of the SPB in controlling progression though mitosis.
Collapse
Affiliation(s)
- G Pereira
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | |
Collapse
|
48
|
Münger K, Basile JR, Duensing S, Eichten A, Gonzalez SL, Grace M, Zacny VL. Biological activities and molecular targets of the human papillomavirus E7 oncoprotein. Oncogene 2001; 20:7888-98. [PMID: 11753671 DOI: 10.1038/sj.onc.1204860] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human papillomavirus (HPV) E7 protein is one of only two viral proteins that remain expressed in HPV-associated human cancers. HPV E7 proteins share structural and functional similarities with oncoproteins encoded by other small DNA tumor viruses such as adenovirus E1A and SV40 large tumor antigen. The HPV E7 protein plays an important role in the viral life cycle by subverting the tight link between cellular differentiation and proliferation in normal epithelium, thus allowing the virus to replicate in differentiating epithelial cells that would have normally withdrawn from the cell division cycle. The transforming activities of E7 largely reflect this important function.
Collapse
Affiliation(s)
- K Münger
- Department of Pathology and Harvard Center for Cancer Biology, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Pereira G, Tanaka TU, Nasmyth K, Schiebel E. Modes of spindle pole body inheritance and segregation of the Bfa1p-Bub2p checkpoint protein complex. EMBO J 2001; 20:6359-70. [PMID: 11707407 PMCID: PMC125717 DOI: 10.1093/emboj/20.22.6359] [Citation(s) in RCA: 219] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2001] [Revised: 09/14/2001] [Accepted: 09/19/2001] [Indexed: 11/13/2022] Open
Abstract
Yeast spindle pole bodies (SPBs) duplicate once per cell cycle by a conservative mechanism resulting in a pre-existing 'old' and a newly formed SPB. The two SPBs of yeast cells are functionally distinct. It is only the SPB that migrates into the daughter cell, the bud, which carries the Bfa1p-Bub2p GTPase-activating protein (GAP) complex, a component of the spindle positioning checkpoint. We investigated whether the functional difference of the two SPBs correlates with the time of their assembly. We describe that in unperturbed cells the 'old' SPB always migrates into the bud. However, Bfa1p localization is not determined by SPB inheritance. It is the differential interaction of cytoplasmic microtubules with the mother and bud cortex that directs the Bfa1p-Bub2p GAP to the bud-ward-localized SPB. In response to defects of cytoplasmic microtubules to interact with the cell cortex, the Bfa1p-Bub2p complex binds to both SPBs. This may provide a mechanism to delay cell cycle progression when cytoplasmic microtubules fail to orient the spindle. Thus, SPBs are able to sense cytoplasmic microtubule properties and regulate the Bfa1p-Bub2p GAP accordingly.
Collapse
Affiliation(s)
| | - Tomoyuki U. Tanaka
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Kim Nasmyth
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Elmar Schiebel
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Sciences, University of Dundee, MSI/WTB complex, Dundee DD1 5EH, UK and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
50
|
Abstract
Over the past 100 years, the centrosome has risen in status from an enigmatic organelle, located at the focus of microtubules, to a key player in cell-cycle progression and cellular control. A growing body of evidence indicates that centrosomes might not be essential for spindle assembly, whereas recent data indicate that they might be important for initiating S phase and completing cytokinesis. Molecules that regulate centrosome duplication have been identified, and the expanding list of intriguing centrosome-anchored activities, the functions of which have yet to be determined, promises continued discovery.
Collapse
Affiliation(s)
- S Doxsey
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, Massachusetts 01605, USA.
| |
Collapse
|