1
|
Song Z, Tao Y, You J. The potential applications of peptide-loading complex in cancer treatment. Front Immunol 2025; 16:1526137. [PMID: 40098955 PMCID: PMC11911339 DOI: 10.3389/fimmu.2025.1526137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Immunotherapy for cancer has made significant strides in the last several years. The prognosis for cancer patients has significantly improved as a result, particularly in hematological diseases. However, it was discovered that translating these achievements to solid tumors proved challenging. The peptide-loading complex (PLC), a temporary multisubunit membrane assembly in the endoplasmic reticulum (ER), is crucial for initiating a hierarchical immune response. Chaperones calreticulin and tapasin make up the PLC, unique to class I glycoproteins, thiooxido-reductase ERp57, and a transporter associated with antigen processing. The loading and editing of major histocompatibility complex class I (MHC-I) molecules with peptide translocation into the ER are synchronized by the PLC. One of the immune escape strategies revealed for tumors so far is changes in the expression of MHC molecules. This is because MHC antigens are crucial in presenting antigens to T-lymphocytes and controlling NK cell activity. Furthermore, decreased MHC-I expression has been linked to malignancies resistant to T-cell-based cancer immunotherapies (adoptive transfer of antitumor CD8 T-cells or checkpoint inhibition). The PLC is essential for T-cell priming, differentiation, and tumor growth control because it can bind to a wide range of MHC-I allomorphs. In this review, we have looked into PLC's function and effects in all forms of cancer to improve cancer therapy techniques.
Collapse
Affiliation(s)
- Zhidu Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Ying Tao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaxin You
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Goel PN, Katsumata M, Qian W, Mathur S, Ji MQ, Samanta A, Grover P, Sgouros G, Chang JC, Greene MI. Targeting erbB Pathways in Breast Cancer: Dual Kinase Inhibition for Brain Metastasis and Prevention of p185HER2/Neu Tumor Development. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:725-733. [PMID: 39493351 PMCID: PMC11531735 DOI: 10.2147/bctt.s490904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Background Breast cancer predominantly affects women and poses challenges in the treatment of both local and advanced diseases. In a previous study, we reported the effectiveness of ER121, a structurally resolved small compound specifically designed to target human cancers expressing or overexpressing mutant EGFR and HER2. Purpose The objective of this study is to assess the efficacy and toxicity of ER121 in metastatic and triple negative breast cancer (TNBC, HER2+) cells and tumor models. The Herceptin-resistant breast cancer cell line JIMT-1 was used in an in vivo tumor model, and MMTV-erbB2 (Fo5) transgenic mice models were used to evaluate the efficacy and safety of ER121 as neoadjuvant. Methods ER121 treatment focusing on experimental brain metastasis in TNBC, HER2+ model, was quantified by total flux employing the In Vivo Imaging System (IVIS). We also compared the brain tissue from the treated and the controls groups. Additionally, ER121 was evaluated in JIMT-1, a Herceptin-resistant breast cancer cell line, both in vitro and in vivo tumor model. We also administered ER121 orally in neoadjuvant model with the MMTV-erbB2 (Fo5) transgenic mice, the survival rates were compared with the control group. Tumor-free survival of multiple treated groups were analyzed by Kaplan-Meier analysis employing the log-rank test with the Bonferroni correction using R Statistical Software. Results In this study, we present findings indicating that ER121 treatment significantly attenuated breast tumor growth using a TNBC, HER2+ model, focusing on experimental brain metastasis, as quantified by total flux employing IVIS. These observations were further corroborated by analysis of brain tissue from the treatment group compared to controls. Data is presented as Mean ± S.D. statistical significance was calculated using Student t test (*p < 0.05). Additionally, ER121 significantly inhibited JIMT-1, a Herceptin-resistant breast cancer cell line was used in vivo xenograft model. Additionally, we used a neoadjuvant model with the MMTV-erbB2 (Fo5) transgenics and the tumor-free survival rates exhibited a remarkable difference between the control and treated groups when ER121 was administered orally. We found statistically significant p values of 0.048 employing log-rank test with Bonferroni Correction for comparing ER121 high, ER121 Low, Herceptin and PBS groups. All analyses were performed using R Statistical Software. Conclusion ER121 is a non-toxic small-molecule erbB kinase inhibitor and holds promise as an oral and systemic therapeutic agent for treating progressive erbB-driven tumors in therapeutic settings. Moreover, ER121 shows potential as a preventive therapy in neoadjuvant settings for erbB2-associated tumors and when administered systemically can dramatically limit erbB2 brain metastases in animal models.
Collapse
Affiliation(s)
- Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA, 19104-6082, USA
| | - Makoto Katsumata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Wei Qian
- Dr. Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Sunil Mathur
- Dr. Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Mei Q Ji
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Arabinda Samanta
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| | - George Sgouros
- The Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Jenny C Chang
- Dr. Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, USA
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6082, USA
| |
Collapse
|
3
|
Sabatelle RC, Colson YL, Sachdeva U, Grinstaff MW. Drug Delivery Opportunities in Esophageal Cancer: Current Treatments and Future Prospects. Mol Pharm 2024; 21:3103-3120. [PMID: 38888089 PMCID: PMC11331583 DOI: 10.1021/acs.molpharmaceut.4c00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
With one of the highest mortality rates of all malignancies, the 5-year survival rate for esophageal cancer is under 20%. Depending on the stage and extent of the disease, the current standard of care treatment paradigm includes chemotherapy or chemoradiotherapy followed by surgical esophagogastrectomy, with consideration for adjuvant immunotherapy for residual disease. This regimen has high morbidity, due to anatomic changes inherent in surgery, the acuity of surgical complications, and off-target effects of systemic chemotherapy and immunotherapy. We begin with a review of current treatments, then discuss new and emerging targets for therapies and advanced drug delivery systems. Recent and ongoing preclinical and early clinical studies are evaluating traditional tumor targets (e.g., human epidermal growth factor receptor 2), as well as promising new targets such as Yes-associated protein 1 or mammalian target of rapamycin to develop new treatments for this disease. Due the function and location of the esophagus, opportunities also exist to pair these treatments with a drug delivery strategy to increase tumor targeting, bioavailability, and intratumor concentrations, with the two most common delivery platforms being stents and nanoparticles. Finally, early results with antibody drug conjugates and chimeric antigenic receptor T cells show promise as upcoming therapies. This review discusses these innovations in therapeutics and drug delivery in the context of their successes and failures, with the goal of identifying those solutions that demonstrate the most promise to shift the paradigm in treating this deadly disease.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Uma Sachdeva
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
4
|
Zhang H, Finkelman BS, Ettel MG, Velez MJ, Turner BM, Hicks DG. HER2 evaluation for clinical decision making in human solid tumours: pearls and pitfalls. Histopathology 2024; 85:3-19. [PMID: 38443321 DOI: 10.1111/his.15170] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/23/2024] [Accepted: 02/17/2024] [Indexed: 03/07/2024]
Abstract
The significant clinical benefits of human epidermal growth factor receptor 2 (HER2)-targeted therapeutic agents have revolutionized the clinical treatment landscape in a variety of human solid tumours. Accordingly, accurate evaluation of HER2 status in these different tumour types is critical for clinical decision making to select appropriate patients who may benefit from life-saving HER2-targeted therapies. HER2 biomarker scoring criteria is different in different organ systems, and close adherence to the corresponding HER2 biomarker testing guidelines and their updates, if available, is essential for accurate evaluation. In addition, knowing the unusual patterns of HER2 expression is also important to avoid inaccurate evaluation. In this review, we discuss the key considerations when evaluating HER2 status in solid tumours for clinical decision making, including tissue handling and preparation for HER2 biomarker testing, as well as pathologist's readout of HER2 testing results in breast carcinomas, gastroesophageal adenocarcinomas, colorectal adenocarcinomas, gynaecologic carcinomas, and non-small cell lung carcinomas.
Collapse
Affiliation(s)
- Huina Zhang
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Brian S Finkelman
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark G Ettel
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Moises J Velez
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Bradley M Turner
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - David G Hicks
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
5
|
Pan L, Li J, Xu Q, Gao Z, Yang M, Wu X, Li X. HER2/PI3K/AKT pathway in HER2-positive breast cancer: A review. Medicine (Baltimore) 2024; 103:e38508. [PMID: 38875362 PMCID: PMC11175886 DOI: 10.1097/md.0000000000038508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 06/16/2024] Open
Abstract
Breast cancer is currently the most commonly occurring cancer globally. Among breast cancer cases, the human epidermal growth factor receptor 2 (HER2)-positive breast cancer accounts for 15% to 20% and is a crucial focus in the treatment of breast cancer. Common HER2-targeted drugs approved for treating early and/or advanced breast cancer include trastuzumab and pertuzumab, which effectively improve patient prognosis. However, despite treatment, most patients with terminal HER2-positive breast cancer ultimately suffer death from the disease due to primary or acquired drug resistance. The prevalence of aberrantly activated the protein kinase B (AKT) signaling in HER2-positive breast cancer was already observed in previous studies. It is well known that p-AKT expression is linked to an unfavorable prognosis, and the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, as the most common mutated pathway in breast cancer, plays a major role in the mechanism of drug resistance. Therefore, in the current review, we summarize the molecular alterations present in HER2-positive breast cancer, elucidate the relationships between HER2 overexpression and alterations in the PI3K/AKT signaling pathway and the pathways of the alterations in breast cancer, and summarize the resistant mechanism of drugs targeting the HER2-AKT pathway, which will provide an adjunctive therapeutic rationale for subsequent resistance to directed therapy in the future.
Collapse
Affiliation(s)
- Linghui Pan
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jinling Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- Department of Laboratory Medicine, Chonggang General Hospital, Chongqing, China
| | - Qi Xu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Zili Gao
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Mao Yang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaoping Wu
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xuesen Li
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Lasaad S, Crambert G. GDF15, an Emerging Player in Renal Physiology and Pathophysiology. Int J Mol Sci 2024; 25:5956. [PMID: 38892145 PMCID: PMC11172470 DOI: 10.3390/ijms25115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
These last years, the growth factor GDF15 has emerged as a key element in many different biological processes. It has been established as being produced in response to many pathological states and is now referred to as a stress-related hormone. Regarding kidney functions, GDF15 has been involved in different pathologies such as chronic kidney disease, diabetic nephropathy, renal cancer, and so on. Interestingly, recent studies also revealed a role of GDF15 in the renal homeostatic mechanisms allowing to maintain constant, as far as possible, the plasma parameters such as pH and K+ values. In this review, we recapitulate the role of GDF15 in physiological and pathological context by focusing our interest on its renal effect.
Collapse
Affiliation(s)
- Samia Lasaad
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Gilles Crambert
- Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Scientifique (INSERM), Sorbonne Université, Université Paris Cité, Laboratoire de Physiologie Rénale et Tubulopathies, F-75006 Paris, France
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR 8228, F-75006 Paris, France
| |
Collapse
|
7
|
Maekawa M, Tanaka A, Ogawa M, Roehrl MH. Propensity score matching as an effective strategy for biomarker cohort design and omics data analysis. PLoS One 2024; 19:e0302109. [PMID: 38696425 PMCID: PMC11065211 DOI: 10.1371/journal.pone.0302109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/27/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Analysis of omics data that contain multidimensional biological and clinical information can be complex and make it difficult to deduce significance of specific biomarker factors. METHODS We explored the utility of propensity score matching (PSM), a statistical technique for minimizing confounding factors and simplifying the examination of specific factors. We tested two datasets generated from cohorts of colorectal cancer (CRC) patients, one comprised of immunohistochemical analysis of 12 protein markers in 544 CRC tissues and another consisting of RNA-seq profiles of 163 CRC cases. We examined the efficiency of PSM by comparing pre- and post-PSM analytical results. RESULTS Unlike conventional analysis which typically compares randomized cohorts of cancer and normal tissues, PSM enabled direct comparison between patient characteristics uncovering new prognostic biomarkers. By creating optimally matched groups to minimize confounding effects, our study demonstrates that PSM enables robust extraction of significant biomarkers while requiring fewer cancer cases and smaller overall patient cohorts. CONCLUSION PSM may emerge as an efficient and cost-effective strategy for multiomic data analysis and clinical trial design for biomarker discovery.
Collapse
Affiliation(s)
- Masaki Maekawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Makiko Ogawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Michael H. Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
8
|
Shepard HM. Trastuzumab: dreams, desperation and hope. Nat Rev Cancer 2024; 24:287-288. [PMID: 38491271 DOI: 10.1038/s41568-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Affiliation(s)
- H Michael Shepard
- Enosi Therapeutics, Knight Campus Innovation Center, Eugene, OR, USA.
| |
Collapse
|
9
|
Kikuchi Y, Shimada H, Yamasaki F, Yamashita T, Araki K, Horimoto K, Yajima S, Yashiro M, Yokoi K, Cho H, Ehira T, Nakahara K, Yasuda H, Isobe K, Hayashida T, Hatakeyama S, Akakura K, Aoki D, Nomura H, Tada Y, Yoshimatsu Y, Miyachi H, Takebayashi C, Hanamura I, Takahashi H. Clinical practice guidelines for molecular tumor marker, 2nd edition review part 2. Int J Clin Oncol 2024; 29:512-534. [PMID: 38493447 DOI: 10.1007/s10147-024-02497-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024]
Abstract
In recent years, rapid advancement in gene/protein analysis technology has resulted in target molecule identification that may be useful in cancer treatment. Therefore, "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" was published in Japan in September 2021. These guidelines were established to align the clinical usefulness of external diagnostic products with the evaluation criteria of the Pharmaceuticals and Medical Devices Agency. The guidelines were scoped for each tumor, and a clinical questionnaire was developed based on a serious clinical problem. This guideline was based on a careful review of the evidence obtained through a literature search, and recommendations were identified following the recommended grades of the Medical Information Network Distribution Services (Minds). Therefore, this guideline can be a tool for cancer treatment in clinical practice. We have already reported the review portion of "Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition" as Part 1. Here, we present the English version of each part of the Clinical Practice Guidelines for Molecular Tumor Marker, Second Edition.
Collapse
Affiliation(s)
| | - Hideaki Shimada
- Department of Clinical Oncology, Toho University, Tokyo, Japan.
- Department of Surgery, Toho University, Tokyo, Japan.
| | - Fumiyuki Yamasaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology-Head and Neck Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Koji Araki
- Department of Otorhinolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kohei Horimoto
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Masakazu Yashiro
- Department of Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Keigo Yokoi
- Department of Lower Gastrointestinal Surgery, Kitasato University School of Medicine, Kanagawa, Japan
| | - Haruhiko Cho
- Department of Surgery, Tokyo Metropolitan Komagome Hospital, Tokyo, Japan
| | - Takuya Ehira
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazunari Nakahara
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Hiroshi Yasuda
- Department of Gastroenterology, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Kazutoshi Isobe
- Division of Respiratory Medicine, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Aomori, Japan
| | | | - Daisuke Aoki
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Hiroyuki Nomura
- Department of Obstetrics and Gynecology, School of Medicine, Fujita Health University, Aichi, Japan
| | - Yuji Tada
- Department of Pulmonology, School of Medicine, International University of Health and Welfare, Chiba, Japan
| | - Yuki Yoshimatsu
- Department of Patient-Derived Cancer Model, Tochigi Cancer Center Research Institute, Tochigi, Japan
| | - Hayato Miyachi
- Faculty of Clinical Laboratory Sciences, Nitobe Bunka College, Tokyo, Japan
| | - Chiaki Takebayashi
- Division of Hematology and Oncology, Department of Internal Medicine (Omori), Toho University, Tokyo, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | | |
Collapse
|
10
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Nowak KM, Chetty R. Predictive and prognostic biomarkers in gastrointestinal tract tumours. Pathology 2024; 56:205-213. [PMID: 38238239 DOI: 10.1016/j.pathol.2023.12.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/28/2023] [Accepted: 12/30/2023] [Indexed: 02/18/2024]
Abstract
Tumours of the gastrointestinal tract represent nearly a quarter of all newly diagnosed tumours diagnosed in 2019. Various treatment modalities for gastrointestinal cancers exist, some of which may be guided by biomarkers. Biomarkers act as gauges of either normal or pathogenic processes or responses to an exposure or intervention. They come in many forms. This review explores established and potential molecular/immunohistochemical (IHC) predictive and prognostic biomarkers of the gastrointestinal tract.
Collapse
Affiliation(s)
- Klaudia M Nowak
- Laboratory Medicine Program, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada.
| | | |
Collapse
|
12
|
Porebski BT, Balmforth M, Browne G, Riley A, Jamali K, Fürst MJLJ, Velic M, Buchanan A, Minter R, Vaughan T, Holliger P. Rapid discovery of high-affinity antibodies via massively parallel sequencing, ribosome display and affinity screening. Nat Biomed Eng 2024; 8:214-232. [PMID: 37814006 PMCID: PMC10963267 DOI: 10.1038/s41551-023-01093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/23/2023] [Indexed: 10/11/2023]
Abstract
Developing therapeutic antibodies is laborious and costly. Here we report a method for antibody discovery that leverages the Illumina HiSeq platform to, within 3 days, screen in the order of 108 antibody-antigen interactions. The method, which we named 'deep screening', involves the clustering and sequencing of antibody libraries, the conversion of the DNA clusters into complementary RNA clusters covalently linked to the instrument's flow-cell surface on the same location, the in situ translation of the clusters into antibodies tethered via ribosome display, and their screening via fluorescently labelled antigens. By using deep screening, we discovered low-nanomolar nanobodies to a model antigen using 4 × 106 unique variants from yeast-display-enriched libraries, and high-picomolar single-chain antibody fragment leads for human interleukin-7 directly from unselected synthetic repertoires. We also leveraged deep screening of a library of 2.4 × 105 sequences of the third complementarity-determining region of the heavy chain of an anti-human epidermal growth factor receptor 2 (HER2) antibody as input for a large language model that generated new single-chain antibody fragment sequences with higher affinity for HER2 than those in the original library.
Collapse
Affiliation(s)
| | | | | | - Aidan Riley
- Biologics Engineering, AstraZeneca, Cambridge, UK
| | | | - Maximillian J L J Fürst
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | | | | | - Ralph Minter
- Biologics Engineering, AstraZeneca, Cambridge, UK
- Alchemab Therapeutics, London, UK
| | | | | |
Collapse
|
13
|
Marra A, Chandarlapaty S, Modi S. Management of patients with advanced-stage HER2-positive breast cancer: current evidence and future perspectives. Nat Rev Clin Oncol 2024; 21:185-202. [PMID: 38191924 DOI: 10.1038/s41571-023-00849-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Amplification and/or overexpression of ERBB2, the gene encoding HER2, can be found in 15-20% of invasive breast cancers and is associated with an aggressive phenotype and poor clinical outcomes. Relentless research efforts in molecular biology and drug development have led to the implementation of several HER2-targeted therapies, including monoclonal antibodies, tyrosine-kinase inhibitors and antibody-drug conjugates, constituting one of the best examples of bench-to-bedside translation in oncology. Each individual drug class has improved patient outcomes and, importantly, the combinatorial and sequential use of different HER2-targeted therapies has increased cure rates in the early stage disease setting and substantially prolonged survival for patients with advanced-stage disease. In this Review, we describe key steps in the development of the modern paradigm for the treatment of HER2-positive advanced-stage breast cancer, including selecting and sequencing new-generation HER2-targeted therapies, and summarize efficacy and safety outcomes from pivotal studies. We then outline the factors that are currently known to be related to resistance to HER2-targeted therapies, such as HER2 intratumoural heterogeneity, activation of alternative signalling pathways and immune escape mechanisms, as well as potential strategies that might be used in the future to overcome this resistance and further improve patient outcomes.
Collapse
Affiliation(s)
- Antonio Marra
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
14
|
Zhao T, Wang C, Zhao N, Qiao G, Hua J, Meng D, Liu L, Zhong B, Liu M, Wang Y, Bai C, Li Y. CYB561 promotes HER2+ breast cancer proliferation by inhibiting H2AFY degradation. Cell Death Discov 2024; 10:38. [PMID: 38245506 PMCID: PMC10799939 DOI: 10.1038/s41420-024-01804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
Breast cancer (BRCA) has a high incidence and mortality rate among women. Different molecular subtypes of breast cancer have different prognoses and require personalized therapies. It is imperative to find novel therapeutic targets for different molecular subtypes of BRCA. Here, we demonstrated for the first time that Cytochromeb561 (CYB561) is highly expressed in BRCA and correlates with poor prognosis, especially in HER2-positive BRCA. Overexpression of CYB561 could upregulate macroH2A (H2AFY) expression in HER2-positive BRCA cells through inhibition of H2AFY ubiquitination, and high expression of CYB561 in HER2-positive BRCA cells could promote the proliferation and migration of cells. Furthermore, we have demonstrated that CYB561 regulates H2AFY expression, thereby influencing the expression of NF-κB, a downstream molecule of H2AFY. These findings have been validated through in vivo experiments. In conclusion, we propose that CYB561 may represent a novel therapeutic target for the treatment of HER2-positive BRCA. Graphical abstract CYB561 promotes the proliferation of HER2+ BRCA cells: CYB561 enhances the expression of H2AFY by inhibiting its ubiquitination, which leads to an increase expression of NF-κB in the nucleus. H2AFY, together with NF-κB, promotes the proliferation of HER2+ BRCA cells.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chaomin Wang
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Na Zhao
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ge Qiao
- Department of Pathology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jialei Hua
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Donghua Meng
- Department of Radiology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Liming Liu
- Department of Public Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Benfu Zhong
- Department of Pediatric Oncology, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Miao Liu
- Department of Radiotherapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, The First People's Hospital of Xianyang, Xianyang, China.
| | - Changsen Bai
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Yueguo Li
- Department of Clinical Laboratory, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| |
Collapse
|
15
|
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers (Basel) 2023; 15:5490. [PMID: 38001751 PMCID: PMC10670421 DOI: 10.3390/cancers15225490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
The development of therapies for advanced gastric cancer (GC) has made significant progress over the past few years. The identification of new molecules and molecular targets is expanding our understanding of the disease's intricate nature. The end of the classical oncology era, which relied on well-studied chemotherapeutic agents, is giving rise to novel and unexplored challenges, which will cause a significant transformation of the current oncological knowledge in the next few years. The integration of established clinically effective regimens in additional studies will be crucial in managing these innovative aspects of GC. This study aims to present an in-depth and comprehensive review of the clinical advancements in targeted therapy and immunotherapy for advanced GC.
Collapse
|
16
|
Cao D, Xu H, Li L, Ju Z, Zhai B. Molecular characteristics of gastric cancer with ERBB2 amplification. Heliyon 2023; 9:e18654. [PMID: 37554835 PMCID: PMC10405018 DOI: 10.1016/j.heliyon.2023.e18654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Gastric cancer is a prevalent malignancy with a high degree of heterogeneity, which has led to a poor therapeutic response. Though there are numerous HER2-targeted medicines for HER2+ gastric cancer, many trials have not indicated an improvement in overall survival. Here 29 ERBB2 amplification (ERBB2-Amp) type gastric cancer samples with WES and RNA-seq data were selected for investigation, which copy-number aberration (CNA) was +2. Initially, the somatic mutation and copy number variant (CNV) of them, which might cause resistance to HER2-targeted therapies, were systematically investigated evaluated, as well as their mutation signatures. Moreover, 37 modules were identified using weighted gene co-expression network analysis (WGCNA), including the blue module related to DFS status and lightcyan module correlated with ARHGAP26_ARHGAP6_CLDN18 rearrangement. In addition, focal adhesion and ECM-receptor interaction pathways were considerably enriched in the turquoise module with ERBB2 gene. ExportNetworkToCytoscape determined that MIEN1 and GRB7 are tightly connected to ERBB2., Finally, 14 single-cell intestinal gastric cancer samples were investigated, and it was shown that the TFAP2A transcription factor regulon was highly expressed in ERBB2high group, as was the EMT score. Overall, our data provide comprehensive molecular characteristics of ERBB2-Amp type gastric cancer, which offers additional information to improve HER2-targeted gastric cancer treatment.
Collapse
Affiliation(s)
- Dongyan Cao
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technology College, Zhengzhou, 451460, China
| | - Hongping Xu
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technology College, Zhengzhou, 451460, China
| | - Longteng Li
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technology College, Zhengzhou, 451460, China
| | - Zheng Ju
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technology College, Zhengzhou, 451460, China
- The Data Systems Department, 3D Medicines Inc., Shanghai, 201114, China
| | - Baiqiang Zhai
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou Railway Vocational & Technology College, Zhengzhou, 451460, China
| |
Collapse
|
17
|
Goto E, Hata T, Nishihara M, Neo M, Iwamoto M, Kimura K, Goto M, Rikitake Y. Preventive effect of dexamethasone premedication on the development of infusion-related reaction in breast cancer patients receiving trastuzumab. Br J Clin Pharmacol 2023; 89:2102-2112. [PMID: 36709967 DOI: 10.1111/bcp.15675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
AIM To clarify the incidence and risk factors of infusion-related reactions (IRRs) caused by trastuzumab in breast cancer patients and verify the preventive effects of dexamethasone. METHODS All breast cancer patients newly treated with trastuzumab at the Osaka Medical and Pharmaceutical University Hospital from 1 January 2017 to 31 December 2020 were included. The electronic medical records were retrospectively reviewed. The outcome measure was the occurrence of IRRs of grade 1 or higher during trastuzumab infusion. Only dexamethasone and anticancer drugs administered concomitantly before trastuzumab were used as explanatory variables. RESULTS The 176 patients included in the study received 2320 infusions. Fifty-eight patients (33.0%) experienced IRRs, and IRRs occurred in 80 (3.4%) of the total 2320 infusions. Owing to the hierarchical structure of the data, the independence of the observed values was evaluated using the intraclass correlation coefficient. Multivariate multilevel logistic regression analysis showed that premedication with dexamethasone lowered the risk of trastuzumab-induced IRRs (mg, per 1 unit, odds ratio [OR] = 0.61, 95% confidence interval [95% CI] 0.43-0.85, P = .003). In addition, preoperative status (OR = 38.9, 95% CI 5.4-278.7, P < .001) and high-dose trastuzumab (mg/kg, per 1 unit, OR = 60.6, 95% CI 20.1-182.9, P < .001) were independent risk factors for IRRs. CONCLUSION The results of this study suggest that premedication with dexamethasone exhibits preventive effects on trastuzumab-induced IRRs in breast cancer patients. Future studies are needed to determine the optimal dose of dexamethasone to prevent IRRs and the impact of dexamethasone on the efficacy of trastuzumab in breast cancer.
Collapse
Affiliation(s)
- Emi Goto
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| | - Takeo Hata
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
- Department of Hospital Quality and Safety Management, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Masami Nishihara
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
- Department of Hospital Quality and Safety Management, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Masashi Neo
- Department of Pharmacy, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Mitsuhiko Iwamoto
- Department of Breast and Endocrine Surgery, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Kosei Kimura
- Department of Breast and Endocrine Surgery, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Masahiro Goto
- Cancer Chemotherapy Center, Osaka Medical and Pharmaceutical University Hospital, Osaka, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
18
|
Sukov WR, Zhou J, Geiersbach KB, Keeney GL, Carter JM, Schoolmeester JK. Frequency of HER2 protein overexpression and HER2 gene amplification in endometrial clear cell carcinoma. Hum Pathol 2023; 137:94-101. [PMID: 37094656 DOI: 10.1016/j.humpath.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/26/2023]
Abstract
HER2 (ERBB2) overexpression and/or HER2 gene amplification has been well established in several tumors types and when present HER2 directed therapy may be to be efficacious. While recent findings suggests that HER2 overexpression and HER2 amplification are a relatively common in serous endometrial carcinoma, similar data regarding clear cell endometrial carcinoma (CCC) is difficult to interpret due to issues such as diagnostic criteria, sample type and HER2 interpretation criteria. Our goals were to study HER2 expression and HER2 copy number status in hysterectomy specimens from a large series of patients with pure CCC to determine the frequency of HER2 overexpression and HER2 amplification and evaluate applicability of current HER2 interpretation criteria. Pure CCC specimens derived from hysterectomy specimens from 26 patients were identified. All diagnoses were confirmed by two gynecologic pathologists. Immunohistochemistry for HER2 protein and fluorescence in situ hybridization (FISH) studies for HER2 were performed on whole-slide sections from all cases. Results were interpreted according to the 2018 ASO/CAP HER2 guidelines for breast cancer and International Society of Gynecologic Pathologists (ISGyP) HER2 guidelines for serous endometrial carcinoma. Additional testing was performed when indicated by the guidelines. HER2 expression by immunohistochemistry was 3+ in 4% and 0% of cases, and 2+ in 46% and 52% of cases, by 2018 ASCO/CAP and ISGyP criteria, respectively, while the remaining cases were negative. HER2 testing by FISH showed a positive result in 27% of tumors with 2018 ASCO/CAP guidelines, while 23% were positive with the ISGyP criteria. Our findings indicate that HER2 overexpression and HER2 amplification occur in a subset of CCC. Therefore, additional study into the potential benefit of HER2 targeted therapy in patients with CCC is warranted.
Collapse
Affiliation(s)
- William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55906, USA.
| | - Jain Zhou
- Department of Pathology, University of New Mexico Health Sciences Cancer Center, Albuquerque, NM, 87131, USA
| | | | - Gary L Keeney
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55906, USA
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55906, USA
| | | |
Collapse
|
19
|
Zhang XN, Gao Y, Zhang XY, Guo NJ, Hou WQ, Wang SW, Zheng YC, Wang N, Liu HM, Wang B. Detailed curriculum vitae of HER2-targeted therapy. Pharmacol Ther 2023; 245:108417. [PMID: 37075933 DOI: 10.1016/j.pharmthera.2023.108417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
With the booming development of precision medicine, molecular targeted therapy has been widely used in clinical oncology treatment due to a smaller number of side effects and its superior accuracy compared to that of traditional strategies. Among them, human epidermal growth factor receptor 2 (HER2)-targeted therapy has attracted considerable attention and has been used in the clinical treatment of breast and gastric cancer. Despite excellent clinical effects, HER2-targeted therapy remains in its infancy due to its resulting inherent and acquired resistance. Here, a comprehensive overview of HER2 in numerous cancers is presented, including its biological role, involved signaling pathways, and the status of HER2-targeted therapy.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Xi-Ya Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning-Jie Guo
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Wen-Qing Hou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Shu-Wu Wang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| | - Bo Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
20
|
Eklund AS, Jungmann R. Optimized Coiled-Coil Interactions for Multiplexed Peptide-PAINT. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206347. [PMID: 36642829 DOI: 10.1002/smll.202206347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Super-resolution microscopy has revolutionized how researchers characterize samples in the life sciences in the last decades. Amongst methods employing single-molecule localization microscopy, DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a relatively easy-to-implement method that uses the programmable and repetitive binding of dye-labeled DNA imager strands to their respective docking strands. Recently developed Peptide-PAINT replaces the interaction of oligonucleotides by short coiled-coil peptide sequences leading to an improved labeling scheme by reducing linkage errors to target proteins. However, only one coiled-coil pair is currently available for Peptide-PAINT, preventing multiplexed imaging. In this study, the initial Peptide-PAINT E/K coil is improved by modifying its length for optimized binding kinetics leading to improved localization precisions. Additionally, an orthogonal P3/P4 coil pair is introduced, enabling 2-plex Peptide-PAINT imaging and benchmarking its performance and orthogonality using single-molecule and DNA origami assays. Finally, the P3/P4 peptide pair is used to image the human epidermal growth factor receptors 2 (ErbB2/Her2) in 2D and 3D at the single receptor level using genetically encoded peptide tags.
Collapse
Affiliation(s)
- Alexandra S Eklund
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Planegg, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| |
Collapse
|
21
|
Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov 2023; 22:101-126. [PMID: 36344672 PMCID: PMC9640784 DOI: 10.1038/s41573-022-00579-0] [Citation(s) in RCA: 428] [Impact Index Per Article: 214.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
The long-sought discovery of HER2 as an actionable and highly sensitive therapeutic target was a major breakthrough for the treatment of highly aggressive HER2-positive breast cancer, leading to approval of the first HER2-targeted drug - the monoclonal antibody trastuzumab - almost 25 years ago. Since then, progress has been swift and the impressive clinical activity across multiple trials with monoclonal antibodies, tyrosine kinase inhibitors and antibody-drug conjugates that target HER2 has spawned extensive efforts to develop newer platforms and more targeted therapies. This Review discusses the current standards of care for HER2-positive breast cancer, mechanisms of resistance to HER2-targeted therapy and new therapeutic approaches and agents, including strategies to harness the immune system.
Collapse
Affiliation(s)
- Sandra M Swain
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center and MedStar Health, Washington, DC, USA.
| | | | - Erika Hamilton
- Sarah Cannon Research Institute, Nashville, TN, USA
- Tennessee Oncology, Nashville, TN, USA
| |
Collapse
|
22
|
Collins SJ, Guo J, Rizzo RC, Miller WT. Inhibition of mutationally activated HER2. Chem Biol Drug Des 2023; 101:87-102. [PMID: 36029027 PMCID: PMC9879383 DOI: 10.1111/cbdd.14125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/24/2022] [Accepted: 07/30/2022] [Indexed: 01/28/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2) is an oncogenic driver and key therapeutic target for human cancers. Current therapies targeting HER2 are primarily based on overexpression of the wild-type form of HER2. However, kinase domain mutations have been identified that can increase the activity of HER2 even when expressed at basal levels. Using purified enzymes, we confirmed the hyperactivity of two HER2 mutants (D769Y and P780insGSP). To identify small molecule inhibitors against these cancer-associated variants, we used a combined approach consisting of biochemical testing, similarity-based searching, and in silico modeling. These approaches resulted in the identification of a candidate molecule that inhibits mutant forms of HER2 in vitro and in cell-based assays. Our structural model predicts that the compound takes advantage of water-mediated interactions in the HER2 kinase binding pocket.
Collapse
Affiliation(s)
- Stephen J. Collins
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Jiaye Guo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Robert C. Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA,Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, USA,Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA,Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA,Department of Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
23
|
Yang R, Han Y, Yi W, Long Q. Autoantibodies as biomarkers for breast cancer diagnosis and prognosis. Front Immunol 2022; 13:1035402. [PMID: 36451832 PMCID: PMC9701846 DOI: 10.3389/fimmu.2022.1035402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 10/07/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide and is a substantial public health problem. Screening for breast cancer mainly relies on mammography, which leads to false positives and missed diagnoses and is especially non-sensitive for patients with small tumors and dense breasts. The prognosis of breast cancer is mainly classified by tumor, node, and metastasis (TNM) staging, but this method does not consider the molecular characteristics of the tumor. As the product of the immune response to tumor-associated antigens, autoantibodies can be detected in peripheral blood and can be used as noninvasive, presymptomatic, and low-cost biomarkers. Therefore, autoantibodies can provide a possible supplementary method for breast cancer screening and prognosis classification. This article introduces the methods used to detect peripheral blood autoantibodies and the research progress in the screening and prognosis of breast cancer made in recent years to provide a potential direction for the examination and treatment of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
24
|
Augustin JE, Soussan P, Bass AJ. Targeting the complexity of ERBB2 biology in gastroesophageal carcinoma. Ann Oncol 2022; 33:1134-1148. [PMID: 35963482 DOI: 10.1016/j.annonc.2022.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 12/20/2022] Open
Abstract
ERBB2 is the most prominent therapeutic target in gastroesophageal adenocarcinoma (GEA). For two decades, trastuzumab was the only treatment available for GEA overexpressing ERBB2. Several drugs showing evidence of efficacy over or in complement to trastuzumab in breast cancer failed to show clinical benefit in GEA. This resistance to anti-ERBB2 therapy is peculiarly recurrent in GEA and is mostly due to tumor heterogeneity with the existence of low expressing ERBB2 tumor clones and loss of ERBB2 over time. The development of new ERBB2 testing strategies and the use of antibody-drug conjugates having a bystander effect are providing new tools to fight heterogeneity in ERBB2-positive GEA. Co-amplifications of tyrosine kinase receptors, alterations in mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) signaling pathways and in proteins controlling cell cycle are well known to contribute resistance to anti-ERBB2 therapy, and they can be targeted by dual therapy. Recently described, NF1 mutations are responsible for Ras phosphorylation and activation and can also be targeted by MEK/ERK inhibition along with anti-ERBB2 therapy. Multiple lines of evidence suggest that immune mechanisms involving antibody-dependent cell-mediated cytotoxicity are preponderant over intracellular signaling in anti-ERBB2 therapy action. A better comprehension of these mechanisms could leverage immune action of anti-ERBB2 therapy and elucidate efficacy of combinations associating immunotherapy and anti-ERBB2 therapy, as suggested by the recent intermediate positive results of the KEYNOTE-811 trial.
Collapse
Affiliation(s)
- J E Augustin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA; Department of Pathology, Henri Mondor University Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; INSERM U955 Team 18, Université Paris Est Créteil - Faculté de Médecine, Créteil, France
| | - P Soussan
- Institut National de la Santé et de la Recherche Médicale U938, Centre de Recherche Saint-Antoine, Sorbonne Université - Faculté Saint Antoine, Paris, France; Department of Virology, GHU Paris-Est, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - A J Bass
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA.
| |
Collapse
|
25
|
Gholami M, Elyasigorji Z, Amoli AD, Farzaneh P. Effects of Alkanna bracteosa extract on the expression level of HSP90α and HER2 genes in human gastric cancer cell line. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9473469 DOI: 10.1007/s13596-022-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gastric cancer was classified as the third most deadly cancer among all other cancer types. The HSP90 and HER2 genes play essential roles in the stability and function of high-expression proteins that cause malignancy. The aim of this research was to investigate the influence of the alcoholic Alkanna bracteosa extract on the expression of HSP90α and HER2 genes in AGS cell line. Therefore, the methanolic extraction was isolated from aerial parts of the plant and AGS and HuGu cell lines were analyzed using 102.4–0.05 mg ml−1 dose concentrations in serial dilution; to measure the cell toxicity by MTT assay. Furthermore, real-time PCR analysis measured the expression level of HSP90α and HER2 genes using the IC50 dose concentrations. Quantification of apoptosis was analyzed by Annexin/PI kit in flow cytometry and DNA fragmentation tests. The results of MTT assay represented the IC50 dose concentration of 0.8 and 3.2 mg ml−1 for AGS and HuGu respectively. The rate of HER2 gene expression was significantly decreased in AGS cells treated with 0.8 mg ml−1 dose concentration compared to control. The exposure of AGS treated cells with 0.8 mg ml−1 dose concentration after 24 h represented 24.3% apoptosis and 13.3% necrosis. The agarose gel represented the DNA fragmentation pattern of apoptosis. This study demonstrated the significant differences between the cell viability rate, gene expression level, and apoptosis of the Alkanna bracteosa extract on AGS cells. These results demonstrated the first report of which the Alkanna braceteosa would be an effective candidate for possible treatment of Gastric cancer.
Collapse
Affiliation(s)
- Mina Gholami
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
- Department of Molecular and Cellular Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Zahra Elyasigorji
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | | | - Parvaneh Farzaneh
- Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| |
Collapse
|
26
|
Ki-67 Index Provides Long-Term Survival Information for Early-Stage HER2-Low-Positive Breast Cancer: A Single-Institute Retrospective Analysis. JOURNAL OF ONCOLOGY 2022; 2022:4364151. [PMID: 36147446 PMCID: PMC9489376 DOI: 10.1155/2022/4364151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/14/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Aim It has been reported that more than half of breast cancer (BC) could be identified as HER2-low-positive, which might be a distinct subtype. But the results are controversial. We aim to compare the survival outcomes between HER2-low-positive and HER2-0 BC with Asian women based on HR status or Ki-67 index. Methods Between January 2009 and December 2017, HER2-nonamplified BC in our single institute was identified. Patients were classified as HER2-low and HER2-0 cohort. Clinical characteristics were compared between these two groups and survival outcomes were calculated by the Kaplan–Meier method. We also performed subgroup analysis according to Ki-67 index and hormone-receptor (HR) status. Results Of the 2,230 included patients, 536 presented with HER2-0, and 1,694 with HER2-low positive. After a median follow-up of 85 months (range: 1–152 months), the 8-year OS, BCSS, and RFS of the overall cohort were 91%, 95%, and 89%, respectively. In comparison with the HER2-0 cohort, majority of HER2-low-expression BC concurrently presented with HR positive (82.3% vs. 69%, P < 0.001). There was no significant survival difference between the two groups in terms of OS, BCSS, and RFS (all p > 0.05). We then performed subgroup analysis according to HR status and Ki-67 index (<14% vs. ≥14%). Our results indicated that there was no significant survival difference between HER2-low-positive and HER2-0 tumors regardless of HR status (p > 0.05), while OS (p=0.026) and BCSS (p=0.052) of HER2-0 BC with high Ki-67 index were significantly poorer than that of HER2-low positive with high Ki-67, but not for RFS (p=0.17). Conclusion Among early stage HER2-nonamplified BC, no significant survival difference could be found between HER2-low positive and HER2-0 cohort regardless of HR status. Survival outcomes of HER2-low positive with high Ki-67 seem to be poorer than that of HER2-0 tumors with high Ki-67 index.
Collapse
|
27
|
Abstract
ABSTRACT Work over the past several decades has identified that aberrations in the ErbB signaling pathways are key drivers of oncogenesis, and concurrent efforts to discover targetable vulnerabilities to counter this aberrant oncogenic signaling offer tremendous promise in treating a host of human cancers. These efforts have been centered primarily on EGFR (also known as HER1), leading to the discovery of the first targeted therapies approved for head and neck cancer. More recently, HER2 and HER3 signaling pathways have been identified as highly dysregulated in head and neck cancer. This review highlights the HER2 and HER3 signaling pathways and clinical efforts to target these receptors and their aberrant signaling to treat head and neck squamous cell carcinomas and other head and neck malignancies, including salivary gland carcinomas. This includes the use of small molecule inhibitors and blocking antibodies, both as single agents or as part of multimodal precision targeted and immunotherapies.
Collapse
Affiliation(s)
- Robert Saddawi-Konefka
- Department of Otolaryngology-Head and Neck Surgery, UC San Diego School of Medicine; San Diego, CA, United States
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
| | - Shiruyeh Schokrpur
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Medicine, Division of Hematology-Oncology, UC San Diego School of Medicine; San Diego, CA, United States
| | - Asona J. Lui
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, UC San Diego School of Medicine; San Diego, CA, United States
| | - J. Silvio Gutkind
- Moores Cancer Center, UC San Diego; La Jolla, CA, United States
- Gleiberman Head and Neck Cancer Center, UC San Diego; La Jolla, CA, United States
- Department of Pharmacology, UC San Diego; La Jolla, CA, United States
| |
Collapse
|
28
|
Hingorani P, Zhang W, Zhang Z, Xu Z, Wang WL, Roth ME, Wang Y, Gill JB, Harrison DJ, Teicher BA, Erickson SW, Gatto G, Kolb EA, Smith MA, Kurmasheva RT, Houghton PJ, Gorlick R. Trastuzumab Deruxtecan, Antibody-Drug Conjugate Targeting HER2, Is Effective in Pediatric Malignancies: A Report by the Pediatric Preclinical Testing Consortium. Mol Cancer Ther 2022; 21:1318-1325. [PMID: 35657346 DOI: 10.1158/1535-7163.mct-21-0758] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
HER2 is expressed in many pediatric solid tumors and is a target for innovative immune therapies including CAR-T cells and antibody-drug conjugates (ADC). We evaluated the preclinical efficacy of trastuzumab deruxtecan (T-DXd, DS-8201a), a humanized monoclonal HER2-targeting antibody conjugated to a topoisomerase 1 inhibitor, DXd, in patient- and cell line-derived xenograft (PDX/CDX) models. HER2 mRNA expression was determined using RNA-seq and protein expression via IHC across multiple pediatric tumor PDX models. Osteosarcoma (OS), malignant rhabdoid tumor (MRT), and Wilms tumor (WT) models with varying HER2 expression were tested using 10 mice per group. Additional histologies such as Ewing sarcoma (EWS), rhabdomyosarcoma (RMS), neuroblastoma (NB), and brain tumors were evaluated using single mouse testing (SMT) experiments. T-DXd or vehicle control was administered intravenously to mice harboring established flank tumors at a dose of 5 mg/kg on day 1. Event-free survival (EFS) and objective response were compared between treatment and control groups. HER2 mRNA expression was observed across histologies, with the highest expression in WT (median = 22 FPKM), followed by MRT, OS, and EWS. The relationship between HER2 protein and mRNA expression was inconsistent. T-DXd significantly prolonged EFS in 6/7 OS, 2/2 MRT, and 3/3 WT PDX models. Complete response (CR) or maintained CR (MCR) were observed for 4/5 WT and MRT models, whereas stable disease was the best response among OS models. SMT experiments also demonstrated activity across multiple solid tumors. Clinical trials assessing the efficacy of a HER2-directed ADC in pediatric patients with HER2-expressing tumors should be considered.
Collapse
Affiliation(s)
- Pooja Hingorani
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wendong Zhang
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhongting Zhang
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhaohui Xu
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei-Lien Wang
- Division of Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael E Roth
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yifei Wang
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan B Gill
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Douglas J Harrison
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Gregory Gatto
- Global Health Technologies, RTI International, Durham, NC, USA
| | - Edward A Kolb
- Division of Pediatric Hematology/Oncology, Nemours/Alfred I. duPont Hospital for Children, Wilmington, Delaware
| | - Malcolm A Smith
- Cancer Therapeutics Evaluation Program, NCI, Bethesda, Maryland
| | | | - Peter J Houghton
- Greehey Children's Research Cancer Institute, San Antonio, Texas
| | - Richard Gorlick
- Division of Pediatrics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
29
|
Torres-Jiménez J, Esteban-Villarrubia J, Ferreiro-Monteagudo R. Precision Medicine in Metastatic Colorectal Cancer: Targeting ERBB2 (HER-2) Oncogene. Cancers (Basel) 2022; 14:3718. [PMID: 35954382 PMCID: PMC9367374 DOI: 10.3390/cancers14153718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in terms of incidence rate in adults and the second most common cause of cancer-related death in Europe. The treatment of metastatic CRC (mCRC) is based on the use of chemotherapy, anti-vascular endothelial growth factor (VEGF), and anti-epidermal growth factor receptor (EGFR) for RAS wild-type tumors. Precision medicine tries to identify molecular alterations that could be treated with targeted therapies. ERBB2 amplification (also known as HER-2) has been identified in 2-3% of patients with mCRC, but there are currently no approved ERBB2-targeted therapies for mCRC. The purpose of this review is to describe the molecular structure of ERBB2, clinical features of these patients, diagnosis of ERBB2 alterations, and the most relevant clinical trials with ERBB2-targeted therapies in mCRC.
Collapse
Affiliation(s)
- Javier Torres-Jiménez
- Medical Oncology Department, MD Anderson Cancer Center Madrid, 28033 Madrid, Spain
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| | - Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
- Medical Oncology Department, University Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Reyes Ferreiro-Monteagudo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (R.F.-M.)
| |
Collapse
|
30
|
Yang L, Li W, Lu Z, Lu M, Zhou J, Peng Z, Zhang X, Wang X, Shen L, Li J. Clinicopathological features of HER2 positive metastatic colorectal cancer and survival analysis of anti-HER2 treatment. BMC Cancer 2022; 22:355. [PMID: 35365123 PMCID: PMC8976320 DOI: 10.1186/s12885-022-09447-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Background We aimed to investigate response and prognostic factors in patients with human epidermal growth factor receptor 2 (HER2) positive metastatic colorectal cancer (mCRC) and compare the curative effect on patients who received different therapy regimens (including chemotherapy and chemotherapy combined with targeted drugs). Methods We retrospectively analyzed all HER2 positive mCRC patients treated at Peking University Cancer Hospital between September 2011 and February 2021. We divided 63 HER2 positive mCRC into group A and group B according to the use of trastuzumab or not. Besides, we assigned four subgroups according to the first-line therapies of KRAS/NRAS/BRAF WT patients. The Kaplan–Meier estimator was used to calculate PFS and OS. Univariable analysis and Cox proportional hazards models were used to analyze the association between clinicopathological features and survival outcomes. Results Among 63 patients, 54 (85.7%) were KRAS/NRAS/BRAF wild-type (WT). Univariate analysis showed that the male sex, primary lesions in the right colon, simultaneous metastasis, and unresectable primary lesions were significant risk factors for poor survival of HER2 positive mCRC (P < 0.05). Using Cox proportional hazards models, we found that the two factors of gender and resection of primary lesions were independent prognostic factors (P < 0.05). The median PFS and median OS of HER2-positive patients with mCRC who received first-line treatment were 8.4 months [95% confidence interval (CI): 5.0–11.7] and 48.2 months (95% CI: 23.5–72.8), respectively. The log-rank test revealed a significant difference in median OS survival between group A and group B (χ2 = 5.852, P = 0.016), and the two groups were divided according to the use or absence of trastuzumab treatment. In KRAS/NRAS/BRAF WT patients, there was a significant difference in median PFS and median OS between the fourth group patients (chemotherapy plus trastuzumab) and each of the other three groups (P < 0.05). Conclusions The two factors of gender and resection for primary lesion may be independent prognostic factors of advanced HER2 positive colorectal cancer patients. For patients with HER2-positive mCRC, patients in the chemotherapy combined with trastuzumab group have better efficacy than those without trastuzumab.
Collapse
Affiliation(s)
- Liu Yang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.,Department of oncology, People's Hospital of Zhongmu, Zhengzhou, 451450, Henan Province, China
| | - Wenfei Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Ming Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jun Zhou
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Xicheng Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Fu-Cheng Road 52, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
31
|
Venetis K, Crimini E, Sajjadi E, Corti C, Guerini-Rocco E, Viale G, Curigliano G, Criscitiello C, Fusco N. HER2 Low, Ultra-low, and Novel Complementary Biomarkers: Expanding the Spectrum of HER2 Positivity in Breast Cancer. Front Mol Biosci 2022; 9:834651. [PMID: 35372498 PMCID: PMC8965450 DOI: 10.3389/fmolb.2022.834651] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2022] [Indexed: 12/16/2022] Open
Abstract
HER2 status in breast cancer is assessed to select patients eligible for targeted therapy with anti-HER2 therapies. According to the American Society of Clinical Oncology (ASCO) and College of American Pathologists (CAP), the HER2 test positivity is defined by protein overexpression (score 3+) at immunohistochemistry (IHC) and/or gene amplification at in situ hybridization (ISH). The introduction of novel anti-HER2 compounds, however, is changing this paradigm because some breast cancers with lower levels of protein expression (i.e. score 1+/2+ with no gene amplification) benefited from HER2 antibody-drug conjugates (ADC). Recently, a potential for HER2 targeting in HER2 "ultra-low" (i.e. score 0 with incomplete and faint staining in ≤10% of tumor cells) and MutL-deficient estrogen receptor (estrogen receptor)-positive/HER2-negative breast cancers has been highlighted. All these novel findings are transforming the traditional dichotomy of HER2 status and have dramatically raised the expectations in this field. Still, a more aware HER2 status assessment coupled with the comprehensive characterization of the clinical and molecular features of these tumors is required. Here, we seek to provide an overview of the current state of HER2 targeting in breast cancers beyond the canonical HER2 positivity and to discuss the practical implications for pathologists and oncologists.
Collapse
Affiliation(s)
- Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Edoardo Crimini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elham Sajjadi
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Chiara Corti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Viale
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Carmen Criscitiello
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Division of Early Drug Development for Innovative Therapy, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Zhang X, Wang W, Tian B, Wang Y, Jing J. The Relationship Between D-dimer and Prognosis in the Patients with Serum Alpha-Fetoprotein-Positive Gastric Cancer: A Retrospective Cohort Study. CLINICAL MEDICINE INSIGHTS: ONCOLOGY 2022; 16:11795549221120158. [PMID: 36104997 PMCID: PMC9465609 DOI: 10.1177/11795549221120158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Alpha-fetoprotein-positive gastric cancer (AFPGC) is a subtype of gastric
cancer that is rare in clinical practice and extremely malignant. Malignant
tumors are often associated with hemorrhage, thrombosis, and even
disseminated intravascular coagulation (DIC). The D-dimer test is used as a
sensitive index in the diagnosis of DIC and fresh thrombosis in malignant
tumors. Therefore, this study aims to investigate the relationship between
D-dimer values and the clinical characteristics and prognosis of patients
with serum AFPGC (AFP ⩾ 15 μg/L) patients. Methods: Overall, 120 healthy subjects and 120 AFP-negative gastric cancer (AFP <
15μg/L) patients from May 2017 to July 2018 at the Shanxi Cancer Hospital
served as the control group in this retrospective cohort study.
Additionally, 120 patients with pretreatment advanced serum AFP were chosen
to analyze clinicopathologic features and factors that affect prognosis. The
predictor was the D-dimer, and the outcome variable was overall survival
(OS). Other variables included age, sex, tumor site, T-stage, distant
metastasis, and preoperative serum tumor biomarkers. Differences in OS rate
were analyzed by GraphPad Prism 9.2.0.332. The Cox regression model was used
for univariate and multivariate analysis. Results: In comparison to AFP-negative gastric cancer, we discovered that D-dimer had
a meaningfully higher presentation in patients with AFPGC
(P < .001). Based on D-dimer median levels, the
AFPGC patients were divided into two groups, including 39 patients with low
D-dimer (<1000 ng/mL) and 81 patients with high D-dimer (⩾1000 ng/mL).
The variables, including T-stage, distant metastasis, and expression of
HER2, were associated with the value of D-dimer. The
D-dimer levels were weakly related to the levels of tumor markers. The
differences in AFPGC patients, with an OS rate of 30.76% for patients with
low D-dimer (<1000) and 12.30% with high D-dimer (⩾1000;
P = .0027), were statistically significant. Cox
multivariate analysis of various parameters indicated that T-stage, distant
metastasis, vascular embolism, level of D-dimer, and tumor biomarkers of AFP
were independent risk factors for survival. Conclusion: Serum D-dimer levels may be a valuable indicator for predicting AFPGC
metastasis and progression.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Etiology and tumor marker
laboratory, Shanxi Province Cancer Hospital, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
- Cancer Hospital Affiliated to Shanxi
Medical University, Taiyuan, China
| | - Weigang Wang
- Department of Etiology and tumor marker
laboratory, Shanxi Province Cancer Hospital, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
- Cancer Hospital Affiliated to Shanxi
Medical University, Taiyuan, China
| | - Baoguo Tian
- Department of Etiology and tumor marker
laboratory, Shanxi Province Cancer Hospital, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
- Cancer Hospital Affiliated to Shanxi
Medical University, Taiyuan, China
| | - Yan Wang
- Department of Etiology and tumor marker
laboratory, Shanxi Province Cancer Hospital, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
- Cancer Hospital Affiliated to Shanxi
Medical University, Taiyuan, China
| | - Jiexian Jing
- Department of Etiology and tumor marker
laboratory, Shanxi Province Cancer Hospital, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer
Hospital, Chinese Academy of Medical Sciences, Taiyuan, China
- Cancer Hospital Affiliated to Shanxi
Medical University, Taiyuan, China
- Jiexian Jing, Department of Etiology and
tumor marker laboratory, Shanxi Province Cancer Hospital, Shanxi Province,
030013 Taiyuan, China.
| |
Collapse
|
33
|
Karmakar S, Purkayastha K, Dhar R, Pethusamy K, Srivastava T, Shankar A, Rath G. The issues and challenges with cancer biomarkers. J Cancer Res Ther 2022; 19:S20-S35. [PMID: 37147979 DOI: 10.4103/jcrt.jcrt_384_22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A biomarker is a measurable indicator used to distinguish precisely/objectively either normal biological state/pathological condition/response to a specific therapeutic intervention. The use of novel molecular biomarkers within evidence-based medicine may improve the diagnosis/treatment of disease, improve health outcomes, and reduce the disease's socio-economic impact. Presently cancer biomarkers are the backbone of therapy, with greater efficacy and better survival rates. Cancer biomarkers are extensively used to treat cancer and monitor the disease's progress, drug response, relapses, and drug resistance. The highest percent of all biomarkers explored are in the domain of cancer. Extensive research using various methods/tissues is carried out for identifying biomarkers for early detection, which has been mostly unsuccessful. The quantitative/qualitative detection of various biomarkers in different tissues should ideally be done in accordance with qualification rules laid down by the Early Detection Research Network (EDRN), Program for the Assessment of Clinical Cancer Tests (PACCT), and National Academy of Clinical Biochemistry. Many biomarkers are presently under investigation, but lacunae lie in the biomarker's sensitivity and specificity. An ideal biomarker should be quantifiable, reliable, of considerable high/low expression, correlate with the outcome progression, cost-effective, and consistent across gender and ethnic groups. Further, we also highlight that these biomarkers' application remains questionable in childhood malignancies due to the lack of reference values in the pediatric population. The development of a cancer biomarker stands very challenging due to its complexity and sensitivity/resistance to the therapy. In past decades, the cross-talks between molecular pathways have been targeted to study the nature of cancer. To generate sensitive and specific biomarkers representing the pathogenesis of specific cancer, predicting the treatment responses and outcomes would necessitate inclusion of multiple biomarkers.
Collapse
|
34
|
Abstract
Background: Previous studies have shown that bufalin exerts antitumor effects through various mechanisms. This study aimed to determine the antineoplastic mechanism of bufalin, an extract of traditional Chinese medicine toad venom, in ovarian cancer. Methods: The 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were used to investigate the antiproliferative effect of bufalin on the ovarian cancer cell line SK-OV-3. Molecular docking was used to investigate the combination of bufalin and epidermal growth factor receptor (EGFR) protein. Western blotting was performed to detect the expression of EGFR protein and its downstream targets. Results: Bufalin inhibited the proliferation of SK-OV-3 cells in a dose- and time-dependent manner. Bufalin was confirmed to combine with EGFR protein using molecular docking and downregulate expression of EGFR. Bufalin inhibited phosphorylation of EGFR, protein kinase B (AKT), and extracellular signal-regulated kinase (ERK). Conclusion: Bufalin suppresses the proliferation of ovarian cancer cells through the EGFR/AKT/ERK signaling pathway.
Collapse
|
35
|
Kubota S, Hara H, Hiroi Y. Current status and future perspectives of onco-cardiology: Importance of early detection and intervention for cardiotoxicity, and cardiovascular complication of novel cancer treatment. Glob Health Med 2021; 3:214-225. [PMID: 34532602 DOI: 10.35772/ghm.2021.01024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022]
Abstract
The prognosis has improved remarkably in recent years with the development of cancer treatment. With the increase in the number of cancer survivors, complications of cardiovascular disease have become a problem. Therefore, the field of onco-cardiology has been attracting attention. The field of onco-cardiology covers a wide range of areas. In the past, cardiac dysfunction caused by cardiotoxic drug therapies such as doxorubicin (Adriamycin) was the most common cause of cardiac dysfunction, but nowadays, cardiovascular complications caused by aging cancer survivors, atherosclerotic disease in cardiovascular risk carriers, thromboembolism, and new drugs (e.g., myocarditis caused by immune checkpoint inhibitors and hypertension caused by angiogenesis) are becoming more common. In this review, we summarize the latest findings of cardiotoxicity of cancer therapy, appropriate treatment and prevention, and cardiovascular complications of novel chemotherapy, which will increase in demand in the near future.
Collapse
Affiliation(s)
- Shuji Kubota
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hisao Hara
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukio Hiroi
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
36
|
Grieb BC, Agarwal R. HER2-Directed Therapy in Advanced Gastric and Gastroesophageal Adenocarcinoma: Triumphs and Troubles. Curr Treat Options Oncol 2021; 22:88. [PMID: 34424404 PMCID: PMC8436174 DOI: 10.1007/s11864-021-00884-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
OPINION STATEMENT Gastric and gastroesophageal junction (GEJ) cancers represent the third leading cause of malignancy-associated death worldwide. Approximately 15-20% of these adenocarcinomas overexpress the human epidermal growth factor receptor 2 (HER2), a pro-proliferative receptor tyrosine kinase that has been therapeutically exploited in other disease contexts. The landmark ToGA trial demonstrated that trastuzumab, an anti-HER2 antibody, could improve overall survival for patients with HER2 overexpressing advanced gastric and GEJ adenocarcinomas. In the ensuing decade, great effort has been made to refine and expand this therapeutic strategy through a variety of avenues including optimization of chemotherapy backbones, identifying potential synergy with immune checkpoint inhibition, deployment of alternative HER2-targeted antibodies, use of small molecule inhibitors, and development of HER2-directed antibody drug conjugates. While the results of these efforts have had variable success, they have led to a greater understanding of the mechanisms of both primary and acquired resistance to HER2-directed therapies, laying the groundwork for future investigations. Recently, KEYNOTE-811 and DESTINY-Gastric01 have led to the FDA approvals of pembrolizumab in combination with trastuzumab and chemotherapy in the 1st-line advanced setting and trastuzumab deruxtecan (fam-trastuzumab deruxtecan-nxki) in the 2nd-line setting, respectively. Herein, we review these significant works as well as discuss the ongoing investigations they have inspired, which aim to find and utilize additional means for targeting HER2 in gastric and GEJ cancers.
Collapse
Affiliation(s)
- Brian C Grieb
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Rajiv Agarwal
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
37
|
Cowling P, Bradley M, Lilienkampf A. Attaching palladium catalysts to antibodies. Bioorg Med Chem 2021; 44:116298. [PMID: 34243043 DOI: 10.1016/j.bmc.2021.116298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 01/03/2023]
Abstract
Antibody-directed enzyme prodrug therapy (ADEPT) is a powerful concept in which antibody targeting is linked to enzymatic prodrug activation. The work herein describes the first steps in the development of a technology analogous to ADEPT but in which a palladium catalyst is attached of an antibody rather than an enzyme. Antibody-metal conjugates have been used in a variety of contexts including for radiotherapy; however, none of the metals attached to the antibodies have been used for catalytic purposes. This work represents the first example a metal being attached to an antibody for the purposes of carrying a functional catalyst.
Collapse
Affiliation(s)
- Paul Cowling
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK
| | - Mark Bradley
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| | - Annamaria Lilienkampf
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, UK.
| |
Collapse
|
38
|
Swamy MMM, Murai Y, Monde K, Tsuboi S, Jin T. Shortwave-Infrared Fluorescent Molecular Imaging Probes Based on π-Conjugation Extended Indocyanine Green. Bioconjug Chem 2021; 32:1541-1547. [PMID: 34309379 DOI: 10.1021/acs.bioconjchem.1c00253] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, shortwave-infrared (SWIR) fluorescence imaging for the optical diagnostics of diseases has attracted much attention as a new noninvasive imaging modality. For this application, the development of SWIR molecular imaging probes with high biocompatibility is crucial. Although many types of biocompatible SWIR fluorescent probes based on organic dyes have been reported, there are no SWIR-emitting molecular imaging probes that can be used for the detection of specific biomolecules in vivo. To apply SWIR-emitting molecular imaging probes to biomedical fields, we developed a biocompatible SWIR fluorescent dye based on π-conjugation extended indocyanine green (ICG), where ICG is the only approved near-infrared dye by the US Food and Drug Administration (FDA) for use in the clinic. Using the π-conjugation extended ICG, we prepared SWIR molecular imaging probes that can be used for in vivo tumor imaging. Herein, we demonstrate noninvasive SWIR fluorescence imaging of human epidermal growth factor receptor 2 (HER2)-positive and epidermal growth factor receptor (EGFR)-positive breast tumors using π-conjugation extended ICG and monoclonal antibody conjugates. The presented π-conjugation extended ICG analog probes will be a breakthrough to apply SWIR fluorescence imaging in biomedical fields.
Collapse
Affiliation(s)
- Mahadeva M M Swamy
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| | - Yuta Murai
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Kenji Monde
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan.,Faculty of Advanced Life Science, Hokkaido University, Kita 21 Nishi 11, Sapporo, Hokkaido 001-0021, Japan
| | - Setsuko Tsuboi
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| | - Takashi Jin
- Center for Biosystems Dynamics Research, RIKEN, Furuedai 6-2-3, Suita, Osaka 565-0864, Japan
| |
Collapse
|
39
|
Maadi H, Soheilifar MH, Choi WS, Moshtaghian A, Wang Z. Trastuzumab Mechanism of Action; 20 Years of Research to Unravel a Dilemma. Cancers (Basel) 2021; 13:cancers13143540. [PMID: 34298754 PMCID: PMC8303665 DOI: 10.3390/cancers13143540] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab as a first HER2-targeted therapy for the treatment of HER2-positive breast cancer patients was introduced in 1998. Although trastuzumab has opened a new avenue to treat patients with HER2-positive breast cancer and other types of cancer, some patients are not responsive or become resistant to this treatment. So far, several mechanisms have been suggested for the mode of action of trastuzumab; however, the findings regarding these mechanisms are controversial. In this review, we aimed to provide a detailed insight into the various mechanisms of action of trastuzumab.
Collapse
Affiliation(s)
- Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran 1315795613, Iran;
| | - Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (H.M.); (W.-S.C.)
| | - Abdolvahab Moshtaghian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar 4741695447, Iran;
- Deputy of Research and Technology, Semnan University of Medical Sciences, Semnan 3514799442, Iran
| | - Zhixiang Wang
- Department of Medical Genetics and Signal, Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence:
| |
Collapse
|
40
|
Sheykhhasan M, Kalhor N, Sheikholeslami A, Dolati M, Amini E, Fazaeli H. Exosomes of Mesenchymal Stem Cells as a Proper Vehicle for Transfecting miR-145 into the Breast Cancer Cell Line and Its Effect on Metastasis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5516078. [PMID: 34307654 PMCID: PMC8263260 DOI: 10.1155/2021/5516078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Despite recent advances in scientific knowledge and clinical practice, management, and treatment of breast cancer, as one of the leading causes of female mortality, breast cancer remains a major burden. Recently, methods employing stem cells and their derivatives, i.e., exosomes, in gene-based therapies hold great promise. Since these natural nanovesicles are able to transmit crucial cellular information which can be engineered to have robust delivery and targeting capacity, they are considered one of the modes of intercellular communication. miR-145, one of the downregulated microRNAs (miRNAs) in various cancers, can regulate tumor cell invasion, metastasis, apoptosis, and proliferation and stem cell differentiation. OBJECTIVES The aim of this study was to investigate the role of exosomes secreted from adipose tissue-derived mesenchymal stem cells (MSCs) for miR-145 transfection into breast cancer cells in order to weaken their expansion and metastasis. METHODS Here, we exploited the exosomes from adipose tissue-derived mesenchymal stem cells (MSC-Exo) to deliver miR-145 in the T-47D breast cancer cell line. Lentiviral vectors of miR-145-pLenti-III-enhanced green fluorescent protein (eGFP) and empty pLenti-III-eGFP as the backbone were used to transfect MSCs and T-47D cells. In order to find the efficiency of exosomes as a delivery vehicle, the expression level of some miR-145 target genes, including Rho-Associated Coiled-Coil Containing Protein Kinase 1 (ROCK1), Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), Matrix Metalloproteinase 9 (MMP9), and Tumor Protein p53 (TP53), was compared in all treatment groups (T-47D cells treated by miR-145-transfected MSCs and their derivatives or their backbone) and control group (untransfected T-47D cells) using real-time PCR. RESULTS The obtained data represented the inhibitory effect of miR-145 on apoptosis induction and metastasis in both direct miR-treated groups. However, exosome-mediated delivery caused an improved anticancer property of miR-145. CONCLUSION Restoration of miR-145 using MSC-Exo can be considered a potential novel therapeutic strategy in breast cancer in the future.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Azar Sheikholeslami
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| | - Masoumeh Dolati
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elaheh Amini
- Department of Cellular & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Hoda Fazaeli
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research (ACECR), Qom Branch, Qom, Iran
| |
Collapse
|
41
|
Parsons HA, Macrae ER, Guo H, Li T, Barry WT, Tayob N, Wulf GM, Isakoff SJ, Krop IE. Phase II Single-Arm Study to Assess Trastuzumab and Vinorelbine in Advanced Breast Cancer Patients With HER2-Negative Tumors and HER2-Positive Circulating Tumor Cells. JCO Precis Oncol 2021; 5:896-903. [PMID: 34994617 PMCID: PMC9848583 DOI: 10.1200/po.20.00461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Human epidermal growth factor receptor 2 (HER2)-directed treatments improve outcomes for patients with HER2-positive metastatic breast cancer (MBC). Current identification of patients with HER2-positive disease relies on tumor tissue testing, which can be inaccurate because of tumor heterogeneity or tumor evolution. Circulating tumor cells (CTCs) are often present in patients with cancer. We hypothesized that HER2 assessment of CTCs in patients with HER2-negative breast cancer could identify a subset of patients with HER2-positive CTCs who could benefit from HER2-directed treatments. METHODS This was a single-arm, two-stage, phase II trial. Patients with HER2-negative progressive MBC with HER2-positive CTC (defined as HER2/CEP17 ratio ≥ 2.0 by fluorescence in situ hybridization), ≥ 1 prior chemotherapy regimen for MBC, and no prior vinorelbine received trastuzumab in combination with vinorelbine on days 1, 8, and 15 of a 21-day cycle. The primary end point was objective response rate. RESULTS From January 2013 to June 2014, we prospectively screened CTCs from patients with HER2-negative MBC. CTCs were detected in 201 of 311 patients (65%). The median number of CTCs was 10 (interquartile range, 3-57). Sixty-nine of 311 patients (22%) had HER2+ CTCs, with a median of three HER2+ CTCs (range 1-21). Twenty patients with HER2+ CTCs were treated on study. At data cutoff (January 13, 2017), no patients remained on study therapy. The objective response rate was 5% (95% CI, 0.1 to 24.9), with one of 20 patients experiencing a partial response. The clinical benefit rate was 20.0% (1 partial response and 3 stable diseases > 24 weeks, 95% CI, 5.7% to 43.7%). The median progression-free survival was 2.7 months. CONCLUSION CTC analysis of patients with HER2-negative MBC identifies a subset with HER2-amplified CTCs. However, clinical activity of an HER2-directed regimen in this population was low. The functional significance of HER2-positive CTCs remains uncertain.
Collapse
Affiliation(s)
- Heather A. Parsons
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Erin R. Macrae
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Hao Guo
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Tianyu Li
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - William T. Barry
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | - Nabihah Tayob
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC
| | | | | | - Ian E. Krop
- Dana-Farber Cancer Institute, Boston, MA.
Currently Hao Guo at IQVIA Biotech, Morrisville, NC; Currently William T. Barry
at Rho Inc, Durham, NC,Ian E. Krop, MD, PhD, Dana-Farber Cancer Institute, 450 Brookline
Ave, Boston, MA 02215; e-mail:
| |
Collapse
|
42
|
Crimini E, Repetto M, Aftimos P, Botticelli A, Marchetti P, Curigliano G. Precision medicine in breast cancer: From clinical trials to clinical practice. Cancer Treat Rev 2021; 98:102223. [PMID: 34049187 DOI: 10.1016/j.ctrv.2021.102223] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Breast cancer (BC) is the most common cancer in women and, despite the undeniable improvements in the outcome of these patients obtained in the last decade, the discovery and the validation of new actionable molecular targets represent a priority. ESCAT permits to rank molecular alterations in different classes according to their evidence of actionability in a specific cancer type, assisting clinicians in their therapeutical decisions. MAIN: ERBB2, PIK3CA and germline BRCA1/2 alterations are biomarkers prospectively validated in BC, driving the selection of targeted therapies, and are therefore classified in the highest level of evidence (Ia). Agnostic biomarkers, namely microsatellite instability, NTRK fusions and high tumor mutational burden, demonstrated similar activity across different tumor types and are consequently ranked in tier Ic. In tier II are classified alterations that still need confirmatory prospective studies but for which evidence of efficacy is available. Somatic BRCA1/2 mutations, germline PALB2 mutations, HER2-low expression, ERBB2 mutations, PTEN deletions, AKT1 mutations, ESR1 resistance mutations satisfy the requirements to be classified in this tier. In tier III are ranked various molecular alterations for which there is evidence of actionability in other tumors (IIIa) or that have similar functional impact in the same gene or pathway of a tier I alteration, without clinical data (IIIb). In tier IV are listed the molecular alterations for which only preclinical studies are available. CONCLUSION In this review we report the most relevant molecular targets in BC, ordered pursuant to their pathway and classified in concordance with ESCAT.
Collapse
Affiliation(s)
- Edoardo Crimini
- European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Matteo Repetto
- European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy
| | - Philippe Aftimos
- Institut Jules Bordet - Université Libre de Bruxelles, Brussels Belgium
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, 20141 Milan, Italy; Department of Oncology and Hematology (DIPO), University of Milan, 20122 Milan, Italy.
| |
Collapse
|
43
|
Li Q, Xiao Q, Yang M, Chai Q, Huang Y, Wu PY, Niu Q, Gu Y. Histogram analysis of quantitative parameters from synthetic MRI: Correlations with prognostic factors and molecular subtypes in invasive ductal breast cancer. Eur J Radiol 2021; 139:109697. [PMID: 33857828 DOI: 10.1016/j.ejrad.2021.109697] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/04/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To evaluate intra-tumoral heterogeneity through a histogram analysis of quantitative parameters obtained from synthetic MRI (magnetic resonance imaging), and determine correlations of these histogram characteristics with prognostic factors and molecular subtypes of invasive ductal carcinoma (IDC). METHODS A total of 122 IDC from 122 women who underwent preoperative synthetic MRI and DCE (dynamic contrast enhancement)-MRI were investigated. The synthetic MRI parameters (T1, T2, and PD (proton density)) were obtained. For each parameter, the minimum, 10th percentile, mean, median, 90th percentile, maximum, skewness, and kurtosis values of tumor were calculated, and correlations with prognostic factors and subtypes were assessed. The Mann-Whitney U test or the Student's t test were utilized to analyze the association between the histogram features of synthetic MRI parameters and prognostic factors. The Kruskal-Wallis test followed by the post-hoc test was used to analyze differences of synthetic MRI parameters among molecular subtypes. RESULTS IDC with high histopathologic grade showed statistically higher PDmaxium, T1mean and T1median values than those with low grade (p = 0.003, p = 0.007, p = 0.003). The T110th were significantly higher in cancers with PR (progesterone receptor) negativity than those with PR positivity (p = 0.005). ER-negative cancers had significant higher values of T210th, T2mean, and T2median than ER-positive cancers (p = 0.006, 0.002, and 0.006, respectively). The values of PDmedian were significantly higher in IDC with HER2 (human epidermal growth factor receptor 2) positivity than those with HER2 negativity (p = 0.001). When discriminating molecular subtypes of IDC, the T2mean achieved the highest performance. The T2mean values of TN (triple-negative), luminal B and luminal A types are arranged in descending order (p < 0.0001). CONCLUSIONS Histogram features derived from synthetic MRI quantifies the distributions of tissue relaxation time and proton density, and may serve as a potential biomarker for discriminating histopathological grade, hormone receptor status, HER2 expression status and breast cancer subtypes.
Collapse
Affiliation(s)
- Qin Li
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qin Xiao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Meng Yang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghuan Chai
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Huang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Qingliang Niu
- Department of Radiology, WeiFang Traditional Chinese Hospital, Weizhou Road No. 1055, Weifang, Shandong, China.
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
44
|
Nakamura K, Aimono E, Oba J, Hayashi H, Tanishima S, Hayashida T, Chiyoda T, Kosaka T, Hishida T, Kawakubo H, Kitago M, Okabayashi K, Funakoshi T, Okita H, Ikeda S, Takaishi H, Nishihara H. Estimating copy number using next-generation sequencing to determine ERBB2 amplification status. Med Oncol 2021; 38:36. [PMID: 33710417 PMCID: PMC7954749 DOI: 10.1007/s12032-021-01482-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/13/2021] [Indexed: 01/23/2023]
Abstract
Assessing Erb-b2 receptor tyrosine kinase 2 (ERBB2) amplification status in breast and gastric cancer is necessary for deciding the best therapeutic strategy. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) are currently used for assessing protein levels and gene copy number (CN), respectively. The use of next-generation sequencing (NGS) to measure ERBB2 CN in breast cancer is approved by the United States Federal Drug Administration as a companion diagnostic. However, a CN of less than 8 is evaluated as “equivocal”, which means that some ERBB2 amplification cases diagnosed as “HER2 negative” might be false-negative cases. We reviewed the results of gene profiling targeting 160 cancer-related genes in breast (N = 90) and non-breast (N = 19) cancer tissue, and compared the ERBB2 CN results with the IHC/FISH scores. We obtained an estimated CN from the measured CN by factoring in the histological proportion of tumor cells and found that an ERBB2-estimated CN of 3.2 or higher was concordant with the combined IHC/FISH outcome in 98.4% (88/90) of breast cancer cases, while this was not always evident among non-breast cancer cases. Therefore, NGS-estimated ERBB2 CN could be considered a diagnostic test for anti-HER2 therapy after the completion of adequate prospective clinical trials.
Collapse
Affiliation(s)
- Kohei Nakamura
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan. .,Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd, Tokyo, Japan. .,Department of Obstetrics and Gynecology, Kumagaya General Hospital, Saitama, 360-8657, Japan.
| | - Eriko Aimono
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Junna Oba
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hideyuki Hayashi
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Shigeki Tanishima
- Department of Biomedical Informatics, Kansai Division, Mitsubishi Space Software Co., Ltd, Tokyo, Japan
| | - Tetsu Hayashida
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Tatsuyuki Chiyoda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hirohumi Kawakubo
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hajime Okita
- Department of Diagnostic Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Sadakatsu Ikeda
- Cancer Center, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 110-8510, Japan
| | - Hiromasa Takaishi
- Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| | - Hiroshi Nishihara
- Genomics Unit, Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
45
|
Liu Z, Shi M, Li X, Song S, Liu N, Du H, Ye J, Li H, Zhang Z, Zhang L. HER2 copy number as predictor of disease-free survival in HER2-positive resectable gastric adenocarcinoma. J Cancer Res Clin Oncol 2021; 147:1315-1324. [PMID: 33543328 PMCID: PMC8021510 DOI: 10.1007/s00432-021-03522-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 01/10/2021] [Indexed: 01/28/2023]
Abstract
Purpose The identification of HER2 overexpression in a subset of gastric adenocarcinoma (GA) patients represents a significant step forward in unveiling the molecular complexity of this disease. The predictive and prognostic value of HER2 amplification in advanced HER2 inhibitor-treated GA patients has been investigated. However, its predictive value in resectable patients remains elusive. Methods We enrolled 98 treatment-naïve resectable Chinese GA patients with HER2 overexpression assessed using IHC. Capture-based targeted sequencing using a panel consisting of 41 gastrointestinal cancer-related genes was performed on tumor tissues. Furthermore, we also investigated the correlation between HER2 copy number (CN) and survival outcomes. Results Of the 98 HER2-overexpressed patients, 90 had HER2 CN amplification assessed using next-generation sequencing, achieving 92% concordance. The most commonly seen concurrent mutations were occurring in TP53, EGFR and PIK3CA. We found HER2 CN as a continuous variable was an independent predictor associated with DFS (p = 0.029). Our study revealed HER2 CN-high patients showed a trend of intestinal-type GA predominant (p = 0.075) and older age (p = 0.07). The median HER2 CN was 15.34, which was used to divide the cohort into CN-high and CN-low groups. Patients with high HER2 CN had a significantly shorter DFS than patients with low HER2 CN (p = 0.002). Furthermore, HER2 CN as a categorical variable was also an independent predictor associated with DFS in patients. Conclusion We elucidated the mutation spectrum of HER2-positive resectable Chinese GA patients and the association between HER2 CN and DFS. Our work revealed HER2 CN as an independent risk factor predicted unfavorable prognosis in HER2-positive GA patients and allowed us to further stratify HER2-positive resectable GA patients for disease management.
Collapse
Affiliation(s)
- Zimin Liu
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Mingpeng Shi
- Operating Room of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoxiao Li
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Shanai Song
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Ning Liu
- Oncology Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Haiwei Du
- Burning Rock Biotech, Guangzhou, China
| | - Junyi Ye
- Burning Rock Biotech, Guangzhou, China
| | - Haiyan Li
- Burning Rock Biotech, Guangzhou, China
| | | | - Lu Zhang
- Burning Rock Biotech, Guangzhou, China
| |
Collapse
|
46
|
Hwang K, Yoon JH, Lee JH, Lee S. Recent Advances in Monoclonal Antibody Therapy for Colorectal Cancers. Biomedicines 2021; 9:39. [PMID: 33466394 PMCID: PMC7824816 DOI: 10.3390/biomedicines9010039] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer deaths worldwide. Recent advances in recombinant DNA technology have led to the development of numerous therapeutic antibodies as major sources of blockbuster drugs for CRC therapy. Simultaneously, increasing numbers of therapeutic targets in CRC have been identified. In this review, we first highlight the physiological and pathophysiological roles and signaling mechanisms of currently known and emerging therapeutic targets, including growth factors and their receptors as well as immune checkpoint proteins, in CRC. Additionally, we discuss the current status of monoclonal antibodies in clinical development and approved by US Food and Drug Administration for CRC therapy.
Collapse
Affiliation(s)
| | | | | | - Sukmook Lee
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Korea; (K.H.); (J.H.Y.); (J.H.L.)
| |
Collapse
|
47
|
Palle J, Rochand A, Pernot S, Gallois C, Taïeb J, Zaanan A. Human Epidermal Growth Factor Receptor 2 (HER2) in Advanced Gastric Cancer: Current Knowledge and Future Perspectives. Drugs 2020; 80:401-415. [PMID: 32077003 DOI: 10.1007/s40265-020-01272-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The discovery of human epidermal growth factor receptor 2 (HER2) overexpression in 15-20% of gastric adenocarcinomas has been a key advance in the global care of this disease. Validated by the ToGA trial in the first-line setting of advanced HER2-positive (+) gastric cancer (GC), trastuzumab, an anti-HER2 monoclonal antibody (mAb), was the first therapeutic agent to significantly improve the prognosis of these patients. Since these results, many attempts have been made to improve the clinical outcomes of patients with HER2+ GC. However, all the other HER2-targeting molecules have failed to show a survival benefit in large phase III studies. The value of continuing trastuzumab after disease progression has been suggested by several retrospective studies. However, recent results of a randomized phase II trial showed no benefit from this strategy. On the other hand, novel therapeutic methods, such as immunotherapy, are emerging as new tools in the strategy of care of advanced GC, even if their benefit in the specific HER2+ population remains undetermined. Furthermore, substantial progress has been made in the understanding of the mechanisms leading to resistance to anti-HER2 therapies, and in the screening methods to detect them, thus opening new perspectives. The aim of this review was firstly to summarize the existing data on the specific strategy of care of HER2+ advanced GC, and secondly, to describe current knowledge regarding the potential mechanisms of resistance to HER2-targeting therapies. Lastly, we report the prospects for overcoming these potential obstacles, from future therapeutic strategies to new detection methods.
Collapse
Affiliation(s)
- Juliette Palle
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris Descartes University, 20 rue Leblanc, 75015, Paris, France
| | - Adrien Rochand
- Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France
| | - Simon Pernot
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris Descartes University, 20 rue Leblanc, 75015, Paris, France
| | - Claire Gallois
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris Descartes University, 20 rue Leblanc, 75015, Paris, France
| | - Julien Taïeb
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris Descartes University, 20 rue Leblanc, 75015, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, European Georges Pompidou Hospital, AP-HP, Paris Descartes University, 20 rue Leblanc, 75015, Paris, France. .,Centre de Recherche des Cordeliers, INSERM, CNRS, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75006, Paris, France.
| |
Collapse
|
48
|
Prognostic Value and Molecular Landscape of HER2 Low-Expressing Metastatic Colorectal Cancer. Clin Colorectal Cancer 2020; 20:113-120.e1. [PMID: 33384243 DOI: 10.1016/j.clcc.2020.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The prognostic value and molecular landscape of human epidermal growth factor receptor 2 (HER2) low-expressing (HER2-L) metastatic colorectal cancer (mCRC) remain unclear. PATIENTS AND METHODS This study enrolled patients with mCRC who had undergone surgical resection of primary tumor. Using the specimen, we evaluated HER2 expression by immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). HER2 positivity was defined as follows: HER2 positivity (HER2-Pos) as IHC 3 + or IHC 2+/FISH positive, HER2-L as IHC 2+/FISH negative or IHC 1+, and HER2 negativity (HER2-Neg) as IHC 0+. Gene alterations were determined by next-generation sequencing. RESULTS Between 2005 and 2015, a total of 370 patients were analyzed, comprising 15 patients (4%) with HER2-Pos, 21 (6%) with HER2-L, and 334 (90%) with HER2-Neg disease. The clinicopathologic characteristics among groups had no differences. HER2-L had a significantly higher proportion of coaltered RAS mutation than HER2-Pos (P = .037). With a median follow-up of 101.8 months, HER2-L had a significantly better median overall survival than HER2-Pos (P = .029) (18.2 months in HER2-Pos vs. 33.3 in HER2-L vs. 27.9 in HER2-Neg). In 58 patients harboring wild-type RAS and receiving anti-EGFR antibody therapy, HER2-L had a better median progression-free survival tendency than HER2-Pos, with 2.2 months in HER2-Pos, 7.8 in HER2-L, and 5.1 in HER2-Neg (P = .036). CONCLUSION HER2-L mCRC showed a better prognosis than HER2-Pos mCRC, and it is similar to HER2-Neg mCRC. Hence, HER2-L mCRC might have different biologic behavior in terms of prognostic value and molecular landscape of mCRC, suggesting the possibility of implementation of HER2-guided clinical development against HER2-expressing mCRC.
Collapse
|
49
|
Porcheri C, Meisel CT, Mitsiadis TA. Molecular and Cellular Modelling of Salivary Gland Tumors Open New Landscapes in Diagnosis and Treatment. Cancers (Basel) 2020; 12:E3107. [PMID: 33114321 PMCID: PMC7690880 DOI: 10.3390/cancers12113107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
Salivary gland tumors are neoplasms affecting the major and minor salivary glands of the oral cavity. Their complex pathological appearance and overlapping morphological features between subtypes, pose major challenges in the identification, classification, and staging of the tumor. Recently developed techniques of three-dimensional culture and organotypic modelling provide useful platforms for the clinical and biological characterization of these malignancies. Additionally, new advances in genetic and molecular screenings allow precise diagnosis and monitoring of tumor progression. Finally, novel therapeutic tools with increased efficiency and accuracy are emerging. In this review, we summarize the most common salivary gland neoplasms and provide an overview of the state-of-the-art tools to model, diagnose, and treat salivary gland tumors.
Collapse
Affiliation(s)
- Cristina Porcheri
- Orofacial Development and Regeneration, Institute of Oral Biology, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland; (C.T.M.); (T.A.M.)
| | | | | |
Collapse
|
50
|
Chen Y, Yang W, Shi X, Zhang C, Song G, Huang D. The Factors and Pathways Regulating the Activation of Mammalian Primordial Follicles in vivo. Front Cell Dev Biol 2020; 8:575706. [PMID: 33102482 PMCID: PMC7554314 DOI: 10.3389/fcell.2020.575706] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Mammalian ovaries consist of follicles as basic functional units. Each follicle comprised an innermost oocyte and several surrounding flattened granulosa cells. Unlike males, according to the initial size of the primordial follicle pool and the rate of its activation and depletion, a female's reproductive life has been determined early in life. Primordial follicles, once activated, will get into an irreversible process of development. Most follicles undergo atretic degeneration, and only a few of them could mature and ovulate. Although there are a lot of researches contributing to exploring the activation of primordial follicles, little is known about its underlying mechanisms. Thus, in this review, we collected the latest papers and summarized the signaling pathways as well as some factors involved in the activation of primordial follicles, hoping to lead to a more profound understanding of the cellular and molecular mechanisms of primordial follicle activation.
Collapse
Affiliation(s)
- Yao Chen
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Yang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Shi
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenlu Zhang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Song
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, China
| | - Donghui Huang
- Institute of Reproduction Health Research (Institute of Family Planning Research), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|