1
|
Coquille S, Pereira CS, Roche J, Santoni G, Engilberge S, Brochier-Armanet C, Girard E, Sterpone F, Madern D. Allostery and Evolution: A Molecular Journey Through the Structural and Dynamical Landscape of an Enzyme Super Family. Mol Biol Evol 2025; 42:msae265. [PMID: 39834309 PMCID: PMC11747225 DOI: 10.1093/molbev/msae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Allosteric regulation is a powerful mechanism for controlling the efficiency of enzymes. Deciphering the evolutionary mechanisms by which allosteric properties have been acquired in enzymes is of fundamental importance. We used the malate (MalDH) and lactate deydrogenases (LDHs) superfamily as model to elucidate this phenomenon. By introducing a few of mutations associated to the emergence of allosteric LDHs into the non-allosteric MalDH from Methanopyrus kandleri, we have gradually shifted its enzymatic profile toward that typical of allosteric LDHs. We first investigated the process triggering homotropic activation. The structures of the resulting mutants show the typical compact organization of the R-active state of LDHs, but a distorted (T-like) catalytic site demonstrating that they corresponds to hybrid states. Molecular dynamics simulations and free energy calculations confirmed the capability of these mutants to sample the T-inactive state. By adding a final single mutation to fine-tune the flexibility of the catalytic site, we obtained an enzyme with both sigmoid (homotropic) and hyperbolic (heterotropic) substrate activation profiles. Its structure shows a typical extended T-state as in LDHs, whereas its catalytic state has as a restored configuration favorable for catalysis. Free energy calculations indicate that the T and R catalytic site configurations are in an equilibrium that depends on solvent conditions. We observed long-range communication between monomers as required for allosteric activation. Our work links the evolution of allosteric regulation in the LDH/MDH superfamily to the ensemble model of allostery at molecular level, and highlights the important role of the underlying protein dynamics.
Collapse
Affiliation(s)
| | - Caroline Simões Pereira
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Jennifer Roche
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Gianluca Santoni
- Structural Biology Group, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Céline Brochier-Armanet
- Université Claude Bernard Lyon1, LBBE, UMR 5558 CNRS, VAS, Villeurbanne, F-69622, France
- Institut Universitaire de France (IUF), France
| | - Eric Girard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, CNRS, Université de Paris, UPR 9080, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
2
|
de Lorenzo L, Stack TMM, Fox KM, Walstrom KM. Catalytic mechanism and kinetics of malate dehydrogenase. Essays Biochem 2024; 68:73-82. [PMID: 38721782 PMCID: PMC11461317 DOI: 10.1042/ebc20230086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 10/04/2024]
Abstract
Malate dehydrogenase (MDH) is a ubiquitous and central enzyme in cellular metabolism, found in all kingdoms of life, where it plays vital roles in the cytoplasm and various organelles. It catalyzes the reversible NAD+-dependent reduction of L-malate to oxaloacetate. This review describes the reaction mechanism for MDH and the effects of mutations in and around the active site on catalytic activity and substrate specificity, with a particular focus on the loop that encloses the active site after the substrates have bound. While MDH exhibits selectivity for its preferred substrates, mutations can alter the specificity of MDH for each cosubstrate. The kinetic characteristics and similarities of a variety of MDH isozymes are summarized, and they illustrate that the KM values are consistent with the relative concentrations of the substrates in cells. As a result of its existence in different cellular environments, MDH properties vary, making it an attractive model enzyme for studying enzyme activity and structure under different conditions.
Collapse
Affiliation(s)
- Laura de Lorenzo
- Department of Biochemistry and Molecular Biology, University of New Mexico, School of Medicine, Albuquerque, NM, U.S.A
| | - Tyler M M Stack
- Department of Chemistry and Biochemistry, Providence College, Providence, RI, U.S.A
| | - Kristin M Fox
- Department of Chemistry, Union College, Schenectady, NY, U.S.A
| | | |
Collapse
|
3
|
Garcia I, Cornely K, Peterson CN, Berkmen MB. Roles of the oncometabolite enantiomers of 2-hydroxyglutarate and their metabolism by diverse dehydrogenases. Essays Biochem 2024; 68:161-171. [PMID: 38919140 DOI: 10.1042/ebc20230077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
2-Hydroxyglutarate (2HG) is an oncometabolite that can contribute to tumor progression. Two enantiomer forms, L-2HG and D-2HG, arise from independent pathways starting from the precursor α-ketoglutarate (αKG). L-2HG production occurs through the promiscuous activities of malate dehydrogenase (MDH) and lactate dehydrogenase (LDH) under acidic and/or hypoxic conditions. D-2HG frequently accumulates by gain-of-function mutations in the genes encoding two isoforms of isocitrate dehydrogenase (IDH1 and IDH2). Cognate metabolite repair enzymes, L- and D-2-hydroxyglutarate dehydrogenases, oxidize the enantiomers and cause abnormally high 2HG accumulation and disease when mutated. Elevated levels of either oncometabolite affect redox homeostasis, metabolism, and immune system functioning. Moreover, the oncometabolites inhibit several α-ketoglutarate-dependent dioxygenases resulting in epigenetic changes such as DNA and histone hypermethylation as well as deficiencies in DNA repair. L-2HG, and D-2HG in some cases, inhibit degradation of hypoxia-inducible factor (HIF1α), a transcription factor that alters gene expression to adapt to hypoxic conditions, favoring tumorigenesis. Patients with the rare disease 2-hydroxyglutaric aciduria (2HGA) have exceedingly high levels of 2HG, which is neurotoxic, causing developmental delays and brain abnormalities. D-2HG also has specific effects on collagen production and NADPH pools. Recently, D-2HG has been targeted in new chemotherapies aimed at disrupting the gain-of-function IDH1 and IDH2 mutants, resulting in successful clinical trials for several cancers.
Collapse
Affiliation(s)
- Ivelitza Garcia
- Department of Chemistry, Allegheny College, Meadville, PA, U.S.A
| | - Kathleen Cornely
- Department of Chemistry and Biochemistry, Providence College, Providence, RI, U.S.A
| | | | - Melanie B Berkmen
- Department of Biochemistry, Chemistry, Environment, and Physics, Suffolk University, Boston, MA, U.S.A
| |
Collapse
|
4
|
Bertrand Q, Coquille S, Iorio A, Sterpone F, Madern D. Biochemical, structural and dynamical characterizations of the lactate dehydrogenase from Selenomonas ruminantium provide information about an intermediate evolutionary step prior to complete allosteric regulation acquisition in the super family of lactate and malate dehydrogenases. J Struct Biol 2023; 215:108039. [PMID: 37884067 DOI: 10.1016/j.jsb.2023.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/26/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
In this work, we investigated the lactate dehydrogenase (LDH) from Selenomonas ruminantium (S. rum), an enzyme that differs at key amino acid positions from canonical allosteric LDHs. The wild type (Wt) of this enzyme recognises pyuvate as all LDHs. However, introducing a single point mutation in the active site loop (I85R) allows S. Rum LDH to recognize the oxaloacetate substrate as a typical malate dehydrogenase (MalDH), whilst maintaining homotropic activation as an LDH. We report the tertiary structure of the Wt and I85RLDH mutant. The Wt S. rum enzyme structure binds NADH and malonate, whilst also resembling the typical compact R-active state of canonical LDHs. The structure of the mutant with I85R was solved in the Apo State (without ligand), and shows no large conformational reorganization such as that observed with canonical allosteric LDHs in Apo state. This is due to a local structural feature typical of S. rum LDH that prevents large-scale conformational reorganization. The S. rum LDH was also studied using Molecular Dynamics simulations, probing specific local deformations of the active site that allow the S. rum LDH to sample the T-inactive state. We propose that, with respect to the LDH/MalDH superfamily, the S. rum enzyme possesses a specificstructural and dynamical way to ensure homotropic activation.
Collapse
Affiliation(s)
- Quentin Bertrand
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France; Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | | | - Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
5
|
Robin AY, Brochier-Armanet C, Bertrand Q, Barette C, Girard E, Madern D. Deciphering Evolutionary Trajectories of Lactate Dehydrogenases Provides New Insights into Allostery. Mol Biol Evol 2023; 40:msad223. [PMID: 37797308 PMCID: PMC10583557 DOI: 10.1093/molbev/msad223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023] Open
Abstract
Lactate dehydrogenase (LDH, EC.1.1.127) is an important enzyme engaged in the anaerobic metabolism of cells, catalyzing the conversion of pyruvate to lactate and NADH to NAD+. LDH is a relevant enzyme to investigate structure-function relationships. The present work provides the missing link in our understanding of the evolution of LDHs. This allows to explain (i) the various evolutionary origins of LDHs in eukaryotic cells and their further diversification and (ii) subtle phenotypic modifications with respect to their regulation capacity. We identified a group of cyanobacterial LDHs displaying eukaryotic-like LDH sequence features. The biochemical and structural characterization of Cyanobacterium aponinum LDH, taken as representative, unexpectedly revealed that it displays homotropic and heterotropic activation, typical of an allosteric enzyme, whereas it harbors a long N-terminal extension, a structural feature considered responsible for the lack of allosteric capacity in eukaryotic LDHs. Its crystallographic structure was solved in 2 different configurations typical of the R-active and T-inactive states encountered in allosteric LDHs. Structural comparisons coupled with our evolutionary analyses helped to identify 2 amino acid positions that could have had a major role in the attenuation and extinction of the allosteric activation in eukaryotic LDHs rather than the presence of the N-terminal extension. We tested this hypothesis by site-directed mutagenesis. The resulting C. aponinum LDH mutants displayed reduced allosteric capacity mimicking those encountered in plants and human LDHs. This study provides a new evolutionary scenario of LDHs that unifies descriptions of regulatory properties with structural and mutational patterns of these important enzymes.
Collapse
Affiliation(s)
- Adeline Y Robin
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Céline Brochier-Armanet
- Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard Lyon 1, CNRS, UMR5558, Villeurbanne F-69622, France
| | - Quentin Bertrand
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
- Laboratory of Biomolecular Research, Biology and Chemistry Division, Paul Scherrer Institut, Villigen, Switzerland
| | - Caroline Barette
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE, Grenoble 38000, France
| | - Eric Girard
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Dominique Madern
- Université Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
6
|
Chatterjee Y, Bhowal B, Gupta KJ, Pareek A, Singla-Pareek SL. Lactate Dehydrogenase Superfamily in Rice and Arabidopsis: Understanding the Molecular Evolution and Structural Diversity. Int J Mol Sci 2023; 24:ijms24065900. [PMID: 36982973 PMCID: PMC10057475 DOI: 10.3390/ijms24065900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 03/30/2023] Open
Abstract
Lactate/malate dehydrogenases (Ldh/Maldh) are ubiquitous enzymes involved in the central metabolic pathway of plants and animals. The role of malate dehydrogenases in the plant system is very well documented. However, the role of its homolog L-lactate dehydrogenases still remains elusive. Though its occurrence is experimentally proven in a few plant species, not much is known about its role in rice. Therefore, a comprehensive genome-wide in silico investigation was carried out to identify all Ldh genes in model plants, rice and Arabidopsis, which revealed Ldh to be a multigene family encoding multiple proteins. Publicly available data suggest its role in a wide range of abiotic stresses such as anoxia, salinity, heat, submergence, cold and heavy metal stress, as also confirmed by our qRT-PCR analysis, especially in salinity and heavy metal mediated stresses. A detailed protein modelling and docking analysis using Schrodinger Suite reveals the presence of three putatively functional L-lactate dehydrogenases in rice, namely OsLdh3, OsLdh7 and OsLdh9. The analysis also highlights the important role of Ser-219, Gly-220 and His-251 in the active site geometry of OsLdh3, OsLdh7 and OsLdh9, respectively. In fact, these three genes have also been found to be highly upregulated under salinity, hypoxia and heavy metal mediated stresses in rice.
Collapse
Affiliation(s)
- Yajnaseni Chatterjee
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
7
|
Yoon NA, Jin S, Kim JD, Liu ZW, Sun Q, Cardone R, Kibbey R, Diano S. UCP2-dependent redox sensing in POMC neurons regulates feeding. Cell Rep 2022; 41:111894. [PMID: 36577374 PMCID: PMC9885759 DOI: 10.1016/j.celrep.2022.111894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/12/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Paradoxically, glucose, the primary driver of satiety, activates a small population of anorexigenic pro-opiomelanocortin (POMC) neurons. Here, we show that lactate levels in the circulation and in the cerebrospinal fluid are elevated in the fed state and the addition of lactate to glucose activates the majority of POMC neurons while increasing cytosolic NADH generation, mitochondrial respiration, and extracellular pyruvate levels. Inhibition of lactate dehydrogenases diminishes mitochondrial respiration, NADH production, and POMC neuronal activity. However, inhibition of the mitochondrial pyruvate carrier has no effect. POMC-specific downregulation of Ucp2 (Ucp2PomcKO), a molecule regulated by fatty acid metabolism and shown to play a role as transporter in the malate-aspartate shuttle, abolishes lactate- and glucose-sensing of POMC neurons. Ucp2PomcKO mice have impaired glucose metabolism and are prone to obesity on a high-fat diet. Altogether, our data show that lactate through redox signaling and blocking mitochondrial glucose utilization activates POMC neurons to regulate feeding and glucose metabolism.
Collapse
Affiliation(s)
- Nal Ae Yoon
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sungho Jin
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jung Dae Kim
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Zhong Wu Liu
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiushi Sun
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Richard Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sabrina Diano
- Institute of Human Nutrition, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
8
|
Iorio A, Brochier-Armanet C, Mas C, Sterpone F, Madern D. Protein Conformational Space at the Edge of Allostery: Turning a Non-allosteric Malate Dehydrogenase into an "Allosterized" Enzyme using Evolution Guided Punctual Mutations. Mol Biol Evol 2022; 39:6691310. [PMID: 36056899 PMCID: PMC9486893 DOI: 10.1093/molbev/msac186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We unveil the intimate relationship between protein dynamics and allostery by following the trajectories of model proteins in their conformational and sequence spaces. Starting from a nonallosteric hyperthermophilic malate dehydrogenase, we have tracked the role of protein dynamics in the evolution of the allosteric capacity. Based on a large phylogenetic analysis of the malate (MalDH) and lactate dehydrogenase (LDH) superfamily, we identified two amino acid positions that could have had a major role for the emergence of allostery in LDHs, which we targeted for investigation by site-directed mutagenesis. Wild-type MalDH and the single and double mutants were tested with respect to their substrate recognition profiles. The double mutant displayed a sigmoid-shaped profile typical of homotropic activation in LDH. By using molecular dynamics simulations, we showed that the mutations induce a drastic change in the protein sampling of its conformational landscape, making transiently T-like (inactive) conformers, typical of allosteric LDHs, accessible. Our data fit well with the seminal key concept linking protein dynamics and evolvability. We showed that the selection of a new phenotype can be achieved by a few key dynamics-enhancing mutations causing the enrichment of low-populated conformational substates.
Collapse
Affiliation(s)
- Antonio Iorio
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622, Villeurbanne, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | |
Collapse
|
9
|
Brochier-Armanet C, Madern D. Phylogenetics and biochemistry elucidate the evolutionary link between l-malate and l-lactate dehydrogenases and disclose an intermediate group of sequences with mix functional properties. Biochimie 2021; 191:140-153. [PMID: 34418486 DOI: 10.1016/j.biochi.2021.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/19/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
Abstract
The NAD(P)-dependent malate dehydrogenases (MDH) (EC 1.1.1.37) and NAD-dependent lactate dehydrogenases (LDH) (EC. 1.1.1.27) form a large superfamily that has been characterized in organisms belonging to the three Domains of Life. MDH catalyzes the reversible conversion of the oxaloacetate into malate, while LDH operates at the late stage of glycolysis by converting pyruvate into lactate. Phylogenetic studies proposed that the LDH/MDH superfamily encompasses five main groups of enzymes. Here, starting from 16,052 reference proteomes, we reinvestigated the relationships between MDH and LDH. We showed that the LDH/MDH superfamily encompasses three main families: MDH1, MDH2, and a large family encompassing MDH3, LDH, and L-2-hydroxyisocaproate dehydrogenases (HicDH) sequences. An in-depth analysis of the phylogeny of the MDH3/LDH/HicDH family and of the nature of three important amino acids, located within the catalytic site and involved in binding and substrate discrimination, revealed a large group of sequences displaying unexpected combinations of amino acids at these three critical positions. This group branched in-between canonical MDH3 and LDH sequences. The functional characterization of several enzymes from this intermediate group disclosed a mix of functional properties, indicating that the MDH3/LDH/HicDH family is much more diverse than previously thought, and blurred the frontier between MDH3 and LDH enzymes. Present-days enzymes of the intermediate group are a valuable material to study the evolutionary steps that led to functional diversity and emergence of allosteric regulation within the LDH/MDH superfamily.
Collapse
Affiliation(s)
- Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR 5558, F-69622, Villeurbanne, France.
| | | |
Collapse
|
10
|
Hofmann J, Bitew MA, Kuba M, De Souza DP, Newton HJ, Sansom FM. Characterisation of putative lactate synthetic pathways of Coxiella burnetii. PLoS One 2021; 16:e0255925. [PMID: 34388185 PMCID: PMC8362950 DOI: 10.1371/journal.pone.0255925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 11/19/2022] Open
Abstract
The zoonotic pathogen Coxiella burnetii, the causative agent of the human disease Q fever, is an ever-present danger to global public health. Investigating novel metabolic pathways necessary for C. burnetii to replicate within its unusual intracellular niche may identify new therapeutic targets. Recent studies employing stable isotope labelling established the ability of C. burnetii to synthesize lactate, despite the absence of an annotated synthetic pathway on its genome. A noncanonical lactate synthesis pathway could provide a novel anti-Coxiella target if it is essential for C. burnetii pathogenesis. In this study, two C. burnetii proteins, CBU1241 and CBU0823, were chosen for analysis based on their similarities to known lactate synthesizing enzymes. Recombinant GST-CBU1241, a putative malate dehydrogenase (MDH), did not produce measurable lactate in in vitro lactate dehydrogenase (LDH) activity assays and was confirmed to function as an MDH. Recombinant 6xHis-CBU0823, a putative NAD+-dependent malic enzyme, was shown to have both malic enzyme activity and MDH activity, however, did not produce measurable lactate in either LDH or malolactic enzyme activity assays in vitro. To examine potential lactate production by CBU0823 more directly, [13C]glucose labelling experiments compared label enrichment within metabolic pathways of a cbu0823 transposon mutant and the parent strain. No difference in lactate production was observed, but the loss of CBU0823 significantly reduced 13C-incorporation into glycolytic and TCA cycle intermediates. This disruption to central carbon metabolism did not have any apparent impact on intracellular replication within THP-1 cells. This research provides new information about the mechanism of lactate biosynthesis within C. burnetii, demonstrating that CBU1241 is not multifunctional, at least in vitro, and that CBU0823 also does not synthesize lactate. Although critical for normal central carbon metabolism of C. burnetii, loss of CBU0823 did not significantly impair replication of the bacterium inside cells.
Collapse
Affiliation(s)
- Janine Hofmann
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| | - Mebratu A. Bitew
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California, United States of America
| | - Miku Kuba
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - David P. De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Faculty of Veterinary and Agricultural Sciences, Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Martin LJ, Cairns EA, Heblinski M, Fletcher C, Krycer JR, Arnold JC, McGregor IS, Bowen MT, Anderson LL. Cannabichromene and Δ 9-Tetrahydrocannabinolic Acid Identified as Lactate Dehydrogenase-A Inhibitors by in Silico and in Vitro Screening. JOURNAL OF NATURAL PRODUCTS 2021; 84:1469-1477. [PMID: 33887133 DOI: 10.1021/acs.jnatprod.0c01281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cannabis sativa contains >120 phytocannabinoids, but our understanding of these compounds is limited. Determining the molecular modes of action of the phytocannabinoids may assist in their therapeutic development. Ligand-based virtual screening was used to suggest novel protein targets for phytocannabinoids. The similarity ensemble approach, a virtual screening tool, was applied to target identification for the phytocannabinoids as a class and predicted a possible interaction with the lactate dehydrogenase (LDH) family of enzymes. In order to evaluate this in silico prediction, a panel of 18 phytocannabinoids was screened against two LDH isozymes (LDHA and LDHB) in vitro. Cannabichromene (CBC) and Δ9-tetrahydrocannabinolic acid (Δ9-THCA) inhibited LDHA via a noncompetitive mode of inhibition with respect to pyruvate, with Ki values of 8.5 and 6.5 μM, respectively. In silico modeling was then used to predict the binding site for CBC and Δ9-THCA. Both were proposed to bind within the nicotinamide pocket, overlapping the binding site of the cofactor NADH, which is consistent with the noncompetitive modes of inhibition. Stemming from our in silico screen, CBC and Δ9-THCA were identified as inhibitors of LDHA, a novel molecular target that may contribute to their therapeutic effects.
Collapse
Affiliation(s)
- Lewis J Martin
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Cairns
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Marika Heblinski
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Charlotte Fletcher
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - James R Krycer
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael T Bowen
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Science, School of Psychology, The University of Sydney, Sydney, NSW 2006, Australia
| | - Lyndsey L Anderson
- Brain and Mind Centre, The Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW 2006, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Faculty of Medicine and Health, Discipline of Pharmacology, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
12
|
Jiang W, Wang Y. Improving Catalytic Efficiency and Changing Substrate Spectrum for Asymmetric Biocatalytic Reductive Amination. J Microbiol Biotechnol 2020; 30:146-154. [PMID: 31546300 PMCID: PMC9728165 DOI: 10.4014/jmb.1907.07015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
With the advantages of biocatalytic method, enzymes have been excavated for the synthesis of chiral amino acids by the reductive amination of ketones, offering a promising way of producing pharmaceutical intermediates. In this work, a robust phenylalanine dehydrogenase (PheDH) with wide substrate spectrum and high catalytic efficiency was constructed through rational design and active-site-targeted, site-specific mutagenesis by using the parent enzyme from Bacillus halodurans. Active sites with bonding substrate and amino acid residues surrounding the substrate binding pocket, 49L-50G-51G, 74M,77K, 122G-123T-124D-125M, 275N, 305L and 308V of the PheDH, were identified. Noticeably, the new mutant PheDH (E113D-N276L) showed approximately 6.06-fold increment of kcat/Km in the oxidative deamination and more than 1.58-fold in the reductive amination compared to that of the wide type. Meanwhile, the PheDHs exhibit high capacity of accepting benzylic and aliphatic ketone substrates. The broad specificity, high catalytic efficiency and selectivity, along with excellent thermal stability, render these broad-spectrum enzymes ideal targets for further development with potential diagnostic reagent and pharmaceutical compounds applications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 3602, P.R. China,Corresponding author Phone: +86-0592-616-2305 Fax: +86-0592-616-2305 E-mail: ;
| | - Yali Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Katava M, Marchi M, Madern D, Sztucki M, Maccarini M, Sterpone F. Temperature Unmasks Allosteric Propensity in a Thermophilic Malate Dehydrogenase via Dewetting and Collapse. J Phys Chem B 2020; 124:1001-1008. [DOI: 10.1021/acs.jpcb.9b10776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M. Katava
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - M. Marchi
- Centre d’Etudes de Saclay, Commissariat à l’Energie Atomique DRF/Joliot/SB2SM, 91191 Gif sur Yvette Cedex, France
| | - D. Madern
- Université Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - M. Sztucki
- ESRF - The European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - M. Maccarini
- Laboratoire TIMC/IMAG UMR CNRS 5525, Université Grenoble Alpes, 38000 Grenoble, France
| | - F. Sterpone
- UPR9080, Laboratoire de Biochimie Théorique, CNRS, Université de Paris, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| |
Collapse
|
14
|
Simple rules govern the diversity of bacterial nicotianamine-like metallophores. Biochem J 2019; 476:2221-2233. [PMID: 31300464 DOI: 10.1042/bcj20190384] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores mainly to face the host's nutritional immunity. This is the case of staphylopine, pseudopaline and yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis, respectively. Depending on the species, these metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH). Here, we explored the substrate specificity of CntM by combining bioinformatic and structural analysis with chemical synthesis and enzymatic studies. We found that NAD(P)H selectivity is mainly due to the amino acid at position 33 (S. aureus numbering) which ensures a preferential binding to NADPH when it is an arginine. Moreover, whereas CntM from P. aeruginosa preferentially uses yNA over xNA, the staphylococcal enzyme is not stereospecific. Most importantly, selectivity toward α-ketoacids is largely governed by a single residue at position 150 of CntM (S. aureus numbering): an aspartate at this position ensures selectivity toward pyruvate, whereas an alanine leads to the consumption of both pyruvate and α-ketoglutarate. Modifying this residue in P. aeruginosa led to a complete reversal of selectivity. Thus, the diversity of opine-type metallophore is governed by the absence/presence of a cntK gene encoding a histidine racemase, and the amino acid residue at position 150 of CntM. These two simple rules predict the production of a fourth metallophore by Paenibacillus mucilaginosus, which was confirmed in vitro and called bacillopaline.
Collapse
|
15
|
Roche J, Girard E, Mas C, Madern D. The archaeal LDH-like malate dehydrogenase from Ignicoccus islandicus displays dual substrate recognition, hidden allostery and a non-canonical tetrameric oligomeric organization. J Struct Biol 2019; 208:7-17. [PMID: 31301348 DOI: 10.1016/j.jsb.2019.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
Abstract
The NAD(P)-dependent malate dehydrogenases (MalDHs) and NAD-dependent lactate dehydrogenases (LDHs) are homologous enzymes involved in central metabolism. They display a common protein fold and the same catalytic mechanism, yet have a stringent capacity to discriminate between their respective substrates. The MalDH/LDH superfamily is divided into several phylogenetically related groups. It has been shown that the canonical LDHs and LDH-like group of MalDHs are primarily tetrameric enzymes that diverged from a common ancestor. In order to gain understanding of the evolutionary history of the LDHs and MalDHs, the biochemical properties and crystallographic structure of the LDH-like MalDH from the hyperthermophilic archaeon Ignicoccus islandicus (I. isl) were determined. I. isl MalDH recognizes oxaloacetate as main substrate, but it is also able to use pyruvate. Surprisingly, with pyruvate, the enzymatic activity profile looks like that of allosteric LDHs, suggesting a hidden allosteric capacity in a MalDH. The I. isl MalDH tetrameric structure in the apo state is considerably different from those of canonical LDH-like MalDHs and LDHs, representing an alternative oligomeric organization. A comparison with MalDH and LDH counterparts provides strong evidence that the divergence between allosteric and non-allosteric members of the superfamily involves homologs with intermediate, atypical properties.
Collapse
Affiliation(s)
- Jennifer Roche
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Eric Girard
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Caroline Mas
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
16
|
Jiang HS, Zhang Y, Lu ZW, Lebrun R, Gontero B, Li W. Interaction between Silver Nanoparticles and Two Dehydrogenases: Role of Thiol Groups. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900860. [PMID: 31111667 DOI: 10.1002/smll.201900860] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Widely used silver nanoparticles (AgNPs) are readily accessible to biological fluids and then surrounded by proteins. However, interactions between AgNPs and proteins are poorly understood. Two dehydrogenases, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and malate dehydrogenase (MDH), are chosen to investigate these interactions. Ag bound to thiol groups of these enzymes significantly decreases the number of free thiols available. Dose-dependent inhibition of enzyme activities is observed in both AgNPs and Ag+ treatments. Based on the concentration required to inhibit 50% activity, GAPDH and MDH are 24-30 fold more sensitive to Ag+ than to AgNPs suggesting that the measured 4.2% Ag+ containing AgNPs can be responsible for the enzymes inhibition. GAPDH, with a thiol group in its active site, is more sensitive to Ag than MDH, displaying many thiol groups but none in its active site, suggesting that thiol groups at the active site strongly determines the sensitivity of enzymes toward AgNPs. In contrast, the dramatic changes of circular dichroism spectra show that the global secondary structure of MDH under AgNPs treatment is more altered than that of GAPDH. In summary, this study shows that the thiol groups and their location on these dehydrogenases are crucial for the AgNPs effects.
Collapse
Affiliation(s)
- Hong Sheng Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Zhen Wei Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China
| | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IMM, FR 3479, CNRS, 31 Chemin J. Aiguier, 13009, Marseille, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP UMR 7281, 31 Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France
| | - Wei Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden and Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| |
Collapse
|
17
|
Masukagami Y, Tivendale KA, Browning GF, Sansom FM. Analysis of the Mycoplasma bovis lactate dehydrogenase reveals typical enzymatic activity despite the presence of an atypical catalytic site motif. MICROBIOLOGY-SGM 2019; 164:186-193. [PMID: 29393016 DOI: 10.1099/mic.0.000600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The lactate dehydrogenase (LDH) of Mycoplasma genitalium has been predicted to also act as a malate dehydrogenase (MDH), but there has been no experimental validation of this hypothesized dual function for any mollicute. Our analysis of the metabolite profile of Mycoplasma bovis using gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/mass spectrometry (LC/MS) detected malate, suggesting that there may be MDH activity in M. bovis. To investigate whether the putative l-LDH enzyme of M. bovis has a dual function (MDH and LDH), we performed bioinformatic and functional biochemical analyses. Although the amino acid sequence and predicted structural analysis of M. bovisl-LDH revealed unusual residues within the catalytic site, suggesting that it may have the flexibility to possess a dual function, our biochemical studies using recombinant M. bovis -LDH did not detect any MDH activity. However, we did show that the enzyme has typical LDH activity that could be inhibited by both MDH substrates oxaloacetate (OAA) and malate, suggesting that these substrates may be able to bind to M. bovis LDH. Inhibition of the conversion of pyruvate to lactate by OAA may be one method the mycoplasma cell uses to reduce the potential for accumulation of intracellular lactate.
Collapse
Affiliation(s)
- Yumiko Masukagami
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Kelly Anne Tivendale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Glenn Francis Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Fiona Margaret Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
18
|
Chang Z. The 2018 Nobel Prize in Chemistry: Engineering proteins (enzymes/peptide/antibodies) towards desired properties via the construction of random libraries. SCIENCE CHINA-LIFE SCIENCES 2019; 62:713-724. [PMID: 30931497 DOI: 10.1007/s11427-019-9498-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Affiliation(s)
- Zengyi Chang
- School of Life Sciences, State Key Laboratory of Protein and Plant Engineering Research, Center for Protein Science, Center of History and Philosophy of Science, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Galindo LJ, Torruella G, Moreira D, Timpano H, Paskerova G, Smirnov A, Nassonova E, López-García P. Evolutionary Genomics of Metchnikovella incurvata (Metchnikovellidae): An Early Branching Microsporidium. Genome Biol Evol 2018; 10:2736-2748. [PMID: 30239727 PMCID: PMC6190962 DOI: 10.1093/gbe/evy205] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2018] [Indexed: 01/30/2023] Open
Abstract
Metchnikovellids are highly specialized hyperparasites, which infect and reproduce inside gregarines (Apicomplexa) inhabiting marine invertebrates. Their phylogenetic affiliation was under constant discussion until recently, when analysis of the first near-complete metchnikovellid genome, that of Amphiamblys sp., placed it in a basal position with respect to most Microsporidia. Microsporidia are a highly diversified lineage of extremely reduced parasites related to Rozellida (Rozellosporidia = Rozellomycota = Cryptomycota) within the Holomycota clade of Opisthokonta. By sequencing DNA from a single-isolated infected gregarine cell we obtained an almost complete genome of a second metchnikovellid species, and the first one of a taxonomically described and well-documented species, Metchnikovella incurvata. Our phylogenomic analyses show that, despite being considerably divergent from each other, M. incurvata forms a monophyletic group with Amphiamplys sp., and confirm that metchnikovellids are one of the deep branches of Microsporidia. Comparative genomic analysis demonstrates that, like most Microsporidia, metchnikovellids lack mitochondrial genes involved in energy transduction and are thus incapable of synthesizing their own ATP via mitochondrial oxidative phosphorylation. They also lack the horizontally acquired ATP transporters widespread in most Microsporidia. We hypothesize that a family of mitochondrial carrier proteins evolved to transport ATP from the host into the metchnikovellid cell. We observe the progressive reduction of genes involved in DNA repair pathways along the evolutionary path of Microsporidia, which might explain, at least partly, the extremely high evolutionary rate of the most derived species. Our data also suggest that genome reduction and acquisition of novel genes co-occurred during the adaptation of Microsporidia to their hosts.
Collapse
Affiliation(s)
- Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Hélène Timpano
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Gita Paskerova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia
| | - Elena Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St Petersburg State University, Russia.,Laboratory of Cytology of Unicellular Organisms, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
20
|
Furukawa N, Miyanaga A, Nakajima M, Taguchi H. Structural Basis of Sequential Allosteric Transitions in Tetrameric d-Lactate Dehydrogenases from Three Gram-Negative Bacteria. Biochemistry 2018; 57:5388-5406. [PMID: 30149697 DOI: 10.1021/acs.biochem.8b00557] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
d-Lactate dehydrogenases (d-LDHs) from Fusobacterium nucleatum (FnLDH) and Escherichia coli (EcLDH) exhibit positive cooperativity in substrate binding, and the Pseudomonas aeruginosa enzyme (PaLDH) shows negatively cooperative substrate binding. The apo and ternary complex structures of FnLDH and PaLDH have been determined together with the apo-EcLDH structure. The three enzymes consistently form homotetrameric structures with three symmetric axes, the P-, Q-, and R-axes, unlike Lactobacillus d-LDHs, P-axis-related dimeric enzymes, although apo-FnLDH and EcLDH form asymmetric and distorted quaternary structures. The tetrameric structure allows apo-FnLDH and EcLDH to form wide intersubunit contact surfaces between the opened catalytic domains of the two Q-axis-related subunits in coordination with their asymmetric and distorted quaternary structures. These contact surfaces comprise intersubunit hydrogen bonds and hydrophobic interactions and likely prevent the domain closure motion during initial substrate binding. In contrast, apo-PaLDH possesses a highly symmetrical quaternary structure and partially closed catalytic domains that are favorable for initial substrate binding and forms virtually no intersubunit contact surface between the catalytic domains, which present their negatively charged surfaces to each other at the subunit interface. Complex FnLDH and PaLDH possess highly symmetrical quaternary structures with closed forms of the catalytic domains, which are separate from each other at the subunit interface. Structure-based mutations successfully converted the three enzymes to their dimeric forms, which exhibited no significant cooperativity in substrate binding. These observations indicate that the three enzymes undergo typical sequential allosteric transitions to exhibit their distinctive allosteric functions through the tetrameric structures.
Collapse
Affiliation(s)
- Nayuta Furukawa
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan.,Department of Applied Life Sciences , Niigata University of Pharmacy and Applied Life Sciences , 265-1 Higashijima , Akiha-ku, Niigata 956-8603 , Japan
| | - Akimasa Miyanaga
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 O-okayama , Meguro-ku, Tokyo 152-8551 , Japan
| | - Masahiro Nakajima
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| | - Hayao Taguchi
- Department of Applied Biological Science, Faculty of Science and Technology , Tokyo University of Science , 2641 Yamazaki , Noda , Chiba 278-8510 , Japan
| |
Collapse
|
21
|
Li JF, Li XQ, Liu Y, Yuan FJ, Zhang T, Wu MC, Zhang JR. Directed modification of l - Lc LDH1, an l -lactate dehydrogenase from Lactobacillus casei , to improve its specific activity and catalytic efficiency towards phenylpyruvic acid. J Biotechnol 2018; 281:193-198. [DOI: 10.1016/j.jbiotec.2018.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 02/06/2023]
|
22
|
Investigating the Central Metabolism of Clostridium thermosuccinogenes. Appl Environ Microbiol 2018; 84:AEM.00363-18. [PMID: 29678919 DOI: 10.1128/aem.00363-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/15/2018] [Indexed: 01/28/2023] Open
Abstract
Clostridium thermosuccinogenes is a thermophilic anaerobic bacterium able to convert various carbohydrates to succinate and acetate as main fermentation products. Genomes of the four publicly available strains have been sequenced, and the genome of the type strain has been closed. The annotated genomes were used to reconstruct the central metabolism, and enzyme assays were used to validate annotations and to determine cofactor specificity. The genes were identified for the pathways to all fermentation products, as well as for the Embden-Meyerhof-Parnas pathway and the pentose phosphate pathway. Notably, a candidate transaldolase was lacking, and transcriptomics during growth on glucose versus that on xylose did not provide any leads to potential transaldolase genes or alternative pathways connecting the C5 with the C3/C6 metabolism. Enzyme assays showed xylulokinase to prefer GTP over ATP, which could be of importance for engineering xylose utilization in related thermophilic species of industrial relevance. Furthermore, the gene responsible for malate dehydrogenase was identified via heterologous expression in Escherichia coli and subsequent assays with the cell extract, which has proven to be a simple and powerful method for the basal characterization of thermophilic enzymes.IMPORTANCE Running industrial fermentation processes at elevated temperatures has several advantages, including reduced cooling requirements, increased reaction rates and solubilities, and a possibility to perform simultaneous saccharification and fermentation of a pretreated biomass. Most studies with thermophiles so far have focused on bioethanol production. Clostridium thermosuccinogenes seems an attractive production organism for organic acids, succinic acid in particular, from lignocellulosic biomass-derived sugars. This study provides valuable insights into its central metabolism and GTP and PPi cofactor utilization.
Collapse
|
23
|
Abstract
Saturation mutagenesis is conveniently located between the two extremes of protein engineering, namely random mutagenesis, and rational design. It involves mutating a confined number of target residues to other amino acids, and hence requires knowledge regarding the sites for mutagenesis, but not their final identity. There are many different strategies for performing and designing such experiments, ranging from simple single degenerate codons to codon collections that code for distinct sets of amino acids. Here, we provide detailed information on the Dynamic Management for Codon Compression (DYNAMCC) approaches that allow us to precisely define the desired amino acid composition to be introduced to a specific target site. DYNAMCC allows us to set usage thresholds and to eliminate undesirable stop and wild-type codons, thus allowing us to control library size and subsequently downstream screening efforts. The DYNAMCC algorithms are free of charge and are implemented in a website for easy access and usage: www.dynamcc.com .
Collapse
Affiliation(s)
- Gur Pines
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA. .,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, CO, USA.,Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
24
|
Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 2017; 6:rsob.160246. [PMID: 27881739 PMCID: PMC5133446 DOI: 10.1098/rsob.160246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 01/19/2023] Open
Abstract
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases.
Collapse
Affiliation(s)
- Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Christopher Nötzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep Sequencing Core Facility, University Medical Center Göttingen, University of Göttingen, 37077 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
25
|
Construction of a synthetic metabolic pathway for biosynthesis of the non-natural methionine precursor 2,4-dihydroxybutyric acid. Nat Commun 2017. [PMID: 28631755 PMCID: PMC5481828 DOI: 10.1038/ncomms15828] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
2,4-Dihydroxybutyric acid (DHB) is a molecule with considerable potential as a versatile chemical synthon. Notably, it may serve as a precursor for chemical synthesis of the methionine analogue 2-hydroxy-4-(methylthio)butyrate, thus, targeting a considerable market in animal nutrition. However, no natural metabolic pathway exists for the biosynthesis of DHB. Here we have therefore conceived a three-step metabolic pathway for the synthesis of DHB starting from the natural metabolite malate. The pathway employs previously unreported malate kinase, malate semialdehyde dehydrogenase and malate semialdehyde reductase activities. The kinase and semialdehyde dehydrogenase activities were obtained by rational design based on structural and mechanistic knowledge of candidate enzymes acting on sterically cognate substrates. Malate semialdehyde reductase activity was identified from an initial screening of several natural enzymes, and was further improved by rational design. The pathway was expressed in a minimally engineered Escherichia coli strain and produces 1.8 g l-1 DHB with a molar yield of 0.15.
Collapse
|
26
|
L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH. Nat Chem Biol 2017; 13:494-500. [PMID: 28263965 PMCID: PMC5516644 DOI: 10.1038/nchembio.2307] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 12/15/2016] [Indexed: 12/18/2022]
Abstract
The metabolite 2-hydroxyglutarate (2HG) can be produced as either a D(R)- or L(S)- enantiomer, each of which inhibits alpha-ketoglutarate (αKG)-dependent enzymes involved in diverse biologic processes. Oncogenic mutations in isocitrate dehydrogenase produce D-2HG, which causes a pathologic blockade in cell differentiation. On the other hand, oxygen limitation leads to accumulation of L-2HG, which can facilitate physiologic adaptation to hypoxic stress in both normal and malignant cells. Here we demonstrate that purified lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) catalyze stereospecific production of L-2HG via ‘promiscuous’ reduction of the alternative substrate αKG. Acidic pH enhances production of L-2HG by promoting a protonated form of αKG that binds to a key residue in the substrate-binding pocket of LDHA. Acid-enhanced production of L-2HG leads to stabilization of hypoxia-inducible factor 1 alpha (HIF-1α) in normoxia. These findings offer insights into mechanisms whereby microenvironmental factors influence production of metabolites that alter cell fate and function.
Collapse
|
27
|
Mikhailov KV, Simdyanov TG, Aleoshin VV. Genomic Survey of a Hyperparasitic Microsporidian Amphiamblys sp. (Metchnikovellidae). Genome Biol Evol 2017; 9:454-467. [PMID: 27694476 PMCID: PMC5381614 DOI: 10.1093/gbe/evw235] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/18/2022] Open
Abstract
Metchnikovellidae are a group of unusual microsporidians that lack some of the defining ultrastructural features characteristic of derived Microsporidia and are thought to be one of their earliest-branching lineages. The basal position of metchnikovellids was never confirmed by molecular phylogeny in published research, and thus far no genomic data for this group were available. In this work, we obtain a partial genome of metchnikovellid Amphiamblys sp. using multiple displacement amplification, next-generation sequencing, and metagenomic binning approaches. The partial genome, which we estimate to be close to 90% complete, displays genome compaction on par with gene-dense microsporidian genomes, but contains an unusual repertoire of unique repeat elements. Phylogenetic analyses of multigene datasets place Amphiamblys sp. as the first branch of the microsporidian lineage following the divergence of a mitochondriate microsporidian Mitosporidium. We find evidence for a mitochondrial remnant presumably functionally equivalent to a mitosome in Amphiamblys sp. and the common enzymatic complement for microsporidian anaerobic metabolism. Comparative genomic analyses identify the conservation of components for clathrin vesicle formation as one of the key features distinguishing the metchnikovellid from its highly derived relatives. The presented data confirm the notion of Metchnikovellidae as a less derived microsporidian group, and provide an additional stepping stone for reconstruction of an evolutionary transition from the early diverging parasitic fungi to derived Microsporidia.
Collapse
Affiliation(s)
- Kirill V. Mikhailov
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Timur G. Simdyanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Vladimir V. Aleoshin
- A.N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
28
|
Teng X, Emmett MJ, Lazar MA, Goldberg E, Rabinowitz JD. Lactate Dehydrogenase C Produces S-2-Hydroxyglutarate in Mouse Testis. ACS Chem Biol 2016; 11:2420-7. [PMID: 27333189 PMCID: PMC5317044 DOI: 10.1021/acschembio.6b00290] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolomics is a valuable tool for studying tissue- and organism-specific metabolism. In normal mouse testis, we found 70 μM S-2-hydroxyglutarate (2HG), more than 10-fold greater than in other tissues. S-2HG is a competitive inhibitor of α-ketoglutarate-dependent demethylation enzymes and can alter histone or DNA methylation. To identify the source of testis S-2HG, we fractionated testis extracts and identified the fractions that actively produced S-2HG. Through a combination of ion exchange and size exclusion chromatography, we enriched a single active protein, the lactate dehydrogenase isozyme LDHC, which is primarily expressed in testis. At neutral pH, recombinant mouse LDHC rapidly converted both pyruvate into lactate and α-ketoglutarate into S-2HG, whereas recombinant human LDHC only produced lactate. Rapid S-2HG production by LDHC depends on amino acids 100-102 being Met-Val-Ser, a sequence that occurs only in the rodent protein. Other mammalian LDH can also produce some S-2HG, but at acidic pH. Thus, polymorphisms in the Ldhc gene control testis levels of S-2HG, and thereby epigenetics, across mammals.
Collapse
Affiliation(s)
- Xin Teng
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew J. Emmett
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mitchell A. Lazar
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Erwin Goldberg
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua D. Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
29
|
Takahashi-Íñiguez T, Aburto-Rodríguez N, Vilchis-González AL, Flores ME. Function, kinetic properties, crystallization, and regulation of microbial malate dehydrogenase *. J Zhejiang Univ Sci B 2016; 17:247-261. [PMCID: PMC4829630 DOI: 10.1631/jzus.b1500219] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/14/2015] [Indexed: 09/12/2023]
Abstract
Malate dehydrogenase (MDH) is an enzyme widely distributed among living organisms and is a key protein in the central oxidative pathway. It catalyzes the interconversion between malate and oxaloacetate using NAD+ or NADP+ as a cofactor. Surprisingly, this enzyme has been extensively studied in eukaryotes but there are few reports about this enzyme in prokaryotes. It is necessary to review the relevant information to gain a better understanding of the function of this enzyme. Our review of the data generated from studies in bacteria shows much diversity in their molecular properties, including weight, oligomeric states, cofactor and substrate binding affinities, as well as differences in the direction of the enzymatic reaction. Furthermore, due to the importance of its function, the transcription and activity of this enzyme are rigorously regulated. Crystal structures of MDH from different bacterial sources led to the identification of the regions involved in substrate and cofactor binding and the residues important for the dimer-dimer interface. This structural information allows one to make direct modifications to improve the enzyme catalysis by increasing its activity, cofactor binding capacity, substrate specificity, and thermostability. A comparative analysis of the phylogenetic reconstruction of MDH reveals interesting facts about its evolutionary history, dividing this superfamily of proteins into two principle clades and establishing relationships between MDHs from different cellular compartments from archaea, bacteria, and eukaryotes.
Collapse
|
30
|
Steindel PA, Chen EH, Wirth JD, Theobald DL. Gradual neofunctionalization in the convergent evolution of trichomonad lactate and malate dehydrogenases. Protein Sci 2016; 25:1319-31. [PMID: 26889885 PMCID: PMC4918429 DOI: 10.1002/pro.2904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/15/2016] [Indexed: 11/18/2022]
Abstract
Lactate and malate dehydrogenases (LDH and MDH) are homologous, core metabolic enzymes common to nearly all living organisms. LDHs have evolved convergently from MDHs at least four times, achieving altered substrate specificity by a different mechanism each time. For instance, the LDH of anaerobic trichomonad parasites recently evolved independently from an ancestral trichomonad MDH by gene duplication. LDH plays a central role in trichomonad metabolism by catalyzing the reduction of pyruvate to lactate, thereby regenerating the NAD+ required for glycolysis. Using ancestral reconstruction methods, we identified the biochemical and evolutionary mechanisms responsible for this convergent event. The last common ancestor of these enzymes was a highly specific MDH, similar to modern trichomonad MDHs. In contrast, the LDH lineage evolved promiscuous activity by relaxing specificity in a gradual process of neofunctionalization involving one highly detrimental substitution at the “specificity residue” (R91L) and many additional mutations of small effect. L91 has different functional consequences in LDHs and in MDHs, indicating a prominent role for epistasis. Crystal structures of modern‐day and ancestral enzymes show that the evolution of substrate specificity paralleled structural changes in dimerization and α‐helix orientation. The relatively small “specificity residue” of the trichomonad LDHs can accommodate a range of substrate sizes and may permit solvent to access the active site, both of which promote substrate promiscuity. The trichomonad LDHs present a multi‐faceted counterpoint to the independent evolution of LDHs in other organisms and illustrate the diverse mechanisms by which protein function, structure, and stability coevolve. PDB Code(s): 4UUL; 4UUM; 4UUN; 4UUO; 4UUP; 5A1T
Collapse
Affiliation(s)
- Phillip A Steindel
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Emily H Chen
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Jacob D Wirth
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| | - Douglas L Theobald
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, 02453
| |
Collapse
|
31
|
Spahich NA, Vitko NP, Thurlow LR, Temple B, Richardson AR. Staphylococcus aureus lactate- and malate-quinone oxidoreductases contribute to nitric oxide resistance and virulence. Mol Microbiol 2016; 100:759-73. [PMID: 26851155 DOI: 10.1111/mmi.13347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 12/27/2022]
Abstract
Staphylococcus aureus is a Gram-positive pathogen that resists many facets of innate immunity including nitric oxide (NO·). Staphylococcus aureus NO-resistance stems from its ability to evoke a metabolic state that circumvents the negative effects of reactive nitrogen species. The combination of l-lactate and peptides promotes S. aureus growth at moderate NO-levels, however, neither nutrient alone suffices. Here, we investigate the staphylococcal malate-quinone and l-lactate-quinone oxidoreductases (Mqo and Lqo), both of which are critical during NO-stress for the combined utilization of peptides and l-lactate. We address the specific contributions of Lqo-mediated l-lactate utilization and Mqo-dependent amino acid consumption during NO-stress. We show that Lqo conversion of l-lactate to pyruvate is required for the formation of ATP, an essential energy source for peptide utilization. Thus, both Lqo and Mqo are essential for growth under these conditions making them attractive candidates for targeted therapeutics. Accordingly, we exploited a modelled Mqo/Lqo structure to define the catalytic and substrate-binding residues.We also compare the S. aureus Mqo/Lqo enzymes to their close relatives throughout the staphylococci and explore the substrate specificities of each enzyme. This study provides the initial characterization of the mechanism of action and the immunometabolic roles for a newly defined staphylococcal enzyme family.
Collapse
Affiliation(s)
- Nicole A Spahich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas P Vitko
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Lance R Thurlow
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Brenda Temple
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anthony R Richardson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
32
|
Tanaka SI, Takahashi T, Koide A, Ishihara S, Koikeda S, Koide S. Monobody-mediated alteration of enzyme specificity. Nat Chem Biol 2015; 11:762-4. [PMID: 26322825 DOI: 10.1038/nchembio.1896] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/11/2015] [Indexed: 12/16/2022]
Abstract
Current methods for engineering enzymes modify enzymes themselves and require a detailed mechanistic understanding or a high-throughput assay. Here, we describe a new approach where catalytic properties are modulated with synthetic binding proteins, termed monobodies, directed to an unmodified enzyme. Using the example of a β-galactosidase from Bacillus circulans, we efficiently identified monobodies that restricted its substrates for its transgalactosylation reaction and selectively enhanced the production of small oligosaccharide prebiotics.
Collapse
Affiliation(s)
- Shun-Ichi Tanaka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.,Frontier Research Department, Gifu R&D Center, Amano Enzyme, Inc., Gifu, Japan
| | - Tetsuya Takahashi
- Frontier Research Department, Gifu R&D Center, Amano Enzyme, Inc., Gifu, Japan
| | - Akiko Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Satoru Ishihara
- Frontier Research Department, Gifu R&D Center, Amano Enzyme, Inc., Gifu, Japan
| | - Satoshi Koikeda
- Frontier Research Department, Gifu R&D Center, Amano Enzyme, Inc., Gifu, Japan
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
Morange M. Synthetic Biology: A Bridge Between Functional and Evolutionary Biology. ACTA ACUST UNITED AC 2015. [DOI: 10.1162/biot_a_00003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Cook WJ, Senkovich O, Hernandez A, Speed H, Chattopadhyay D. Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase. Int J Biol Macromol 2014; 74:608-19. [PMID: 25542170 DOI: 10.1016/j.ijbiomac.2014.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
The protozoan parasite Cryptosporidium parvum causes waterborne diseases worldwide. There is no effective therapy for C. parvum infection. The parasite depends mainly on glycolysis for energy production. Lactate dehydrogenase is a major regulator of glycolysis. This paper describes the biochemical characterization of C. parvum lactate dehydrogenase and high resolution crystal structures of the apo-enzyme and four ternary complexes. The ternary complexes capture the enzyme bound to NAD/NADH or its 3-acetylpyridine analog in the cofactor binding pocket, while the substrate binding site is occupied by one of the following ligands: lactate, pyruvate or oxamate. The results reveal distinctive features of the parasitic enzyme. For example, C. parvum lactate dehydrogenase prefers the acetylpyridine analog of NADH as a cofactor. Moreover, it is slightly less sensitive to gossypol inhibition compared with mammalian lactate dehydrogenases and not inhibited by excess pyruvate. The active site loop and the antigenic loop in C. parvum lactate dehydrogenase are considerably different from those in the human counterpart. Structural features and enzymatic properties of C. parvum lactate dehydrogenase are similar to enzymes from related parasites. Structural comparison with malate dehydrogenase supports a common ancestry for the two genes.
Collapse
Affiliation(s)
- William J Cook
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Olga Senkovich
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Agustin Hernandez
- Instituto de Bioquímica Vegetal y Fotosintesis (CSIC/U. Sevilla), Avda. Americo Vespucio 49, Seville 41092, Spain
| | - Haley Speed
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Debasish Chattopadhyay
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
35
|
Vit A, Misson L, Blankenfeldt W, Seebeck FP. Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis. Chembiochem 2014; 16:119-25. [DOI: 10.1002/cbic.201402522] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Indexed: 01/31/2023]
|
36
|
Jiang W, Chen L, Hu N, Yuan S, Li B, Liu Z. A novel serine hydroxymethyltransferase from Arthrobacter nicotianae: characterization and improving catalytic efficiency by rational design. BMC Biotechnol 2014; 14:93. [PMID: 25394480 PMCID: PMC4260256 DOI: 10.1186/s12896-014-0093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Serine hydroxymethyltransferase (SHMT) is the key enzyme in L-serine enzymatic production, suggesting the importance of obtaining a SHMT with high activity. RESULTS Here, a novel SHMT gene, glyA, was obtained through degenerate oligonucleotide-primed PCR and encoded a novel SHMT with 54.3% similarity to the known SHMT from Escherichia coli. The obtained protein AnSHMT showed the optimal activity at 40 °C and pH 7.5, and was more stable in weakly alkali conditions (pH 6.5-8.5) than Hyphomicrobium methylovorum's SHMT (pH 6.0-7.5), In order to improve the catalytic efficiency of the wild type, the site-directed mutagenesis based on sequences alignment and bioinformatics prediction, was used and the catalytic efficiency of the mutant I249L was found to be 2.78-fold higher than that of the wild-type, with the replacement of isoleucine by leucine at the 249 position. CONCLUSIONS This research provides useful information about the interesting site, and the application of DOP-PCR in cloning a novel glyA gene.
Collapse
Affiliation(s)
- Wei Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Lin Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Nan Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China.
| | - Shaohui Yuan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Bin Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| | - Ziduo Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
37
|
Cueno ME, Kamio N, Imai K, Ohya M, Tamura M, Ochiai K. Structural significance of the β1K396 residue found in the Porphyromonas gingivalis sialidase β-propeller domain: a computational study with implications for novel therapeutics against periodontal disease. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:591-9. [PMID: 25000206 DOI: 10.1089/omi.2013.0152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Porphyromonas gingivalis sialidase activity is associated with virulence and initiated by sialic acid (SA) binding to the β-propeller domain (BPD). Sialidase BPD is structurally conserved in various bacterial species and the protein binding interfaces have the tendency to form salt bridges, whereas uncommitted charged residues may affect binding and protein structure. However, it is not clear whether the sialidase BPD of varying strains of the same bacterial species differ, particularly with regards to salt bridge formation. Here, we determined the P. gingivalis ATCC 33277 and W50 sialidase homology models and sialidase activities, while the putative salt bridge residues found in the sialidase BPDs were compared. We established that both ATCC 33277 and W50 have different sialidase homology models and activities, whereas, the BPD (β1-6) is structurally conserved with most salt bridge-forming residues following a common orientation. Moreover, β2D444-β6K338 distance measurement in ATCC 33277 (5.99 Å) and W50 (3.09 Å) differ, while β1K396A substitution alters the β2D444-β6K338 distance measurements in ATCC 33277 (3.09 Å) and W50 (3.01 Å) consequentially affecting each model. P. gingivalis plays a major role in periodontitis induction and its virulence is greatly influenced by the sialidase enzyme wherein the sialidase BPD is highly conserved. Our results suggest that alterations in the salt bridge formation within the BPD interface may affect the P. gingivalis sialidase structure. This would imply that disrupting the salt bridge formation within the P. gingivalis sialidase BPD could serve as a potential therapeutic strategy for the treatment of P. gingivalis-related periodontitis.
Collapse
Affiliation(s)
- Marni E Cueno
- Department of Microbiology, Nihon University School of Dentistry , Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Boucher JI, Jacobowitz JR, Beckett BC, Classen S, Theobald DL. An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases. eLife 2014; 3:e02304. [PMID: 24966208 PMCID: PMC4109310 DOI: 10.7554/elife.02304] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 06/23/2014] [Indexed: 01/08/2023] Open
Abstract
Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this 'specificity residue' to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.
Collapse
Affiliation(s)
- Jeffrey I Boucher
- Department of Biochemistry, Brandeis University, Waltham, United States
| | | | - Brian C Beckett
- Department of Biochemistry, Brandeis University, Waltham, United States
| | - Scott Classen
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | |
Collapse
|
39
|
Abraham A, Narayanan SP, Philip S, Nair DG, Kochupurackal J. Molecular modelling and docking studies of an α-1,4-amylase from endophyticBacillus amyloliquefaciens. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.852993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Gupta P, Jairajpuri MA, Durani S. Redox specificity of 2-hydroxyacid-coupled NAD(+)/NADH dehydrogenases: a study exploiting "reactive" arginine as a reporter of protein electrostatics. PLoS One 2013; 8:e83505. [PMID: 24391777 PMCID: PMC3877072 DOI: 10.1371/journal.pone.0083505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/19/2022] Open
Abstract
With "reactive" arginine as a kinetic reporter, 2-hydroxyacid dehydrogenases are assessed in basis of their specialization as NAD(+)-reducing or NADH-oxidizing enzymes. Specifically, M4 and H4 lactate dehydrogenases (LDHs) and cytoplasmic and mitochondrial malate dehydrogenases (MDHs) are compared to assess if their coenzyme specificity may involve electrostatics of cationic or neutral nicotinamide structure as the basis. The enzymes from diverse eukaryote and prokaryote sources thus are assessed in "reactivity" of functionally-critical arginine as a function of salt concentration and pH. Electrostatic calculations were performed on "reactive" arginines and found good correspondence with experiment. The reductive and oxidative LDHs and MDHs are assessed in their count over ionizable residues and in placement details of the residues in their structures as proteins. The variants found to be high or low in ΔpKa of "reactive" arginine are found to be also strong or weak cations that preferentially oxidize NADH (neutral nicotinamide structure) or reduce NAD(+) (cationic nicotinamide structure). The ionized groups of protein structure may thus be important to redox specificity of the enzyme on basis of electrostatic preference for the oxidized (cationic nicotinamide) or reduced (neutral nicotinamide) coenzyme. Detailed comparisons of isozymes establish that the residues contributing in their redox specificity are scrambled in structure of the reductive enzyme.
Collapse
Affiliation(s)
- Pooja Gupta
- Department of Chemistry, Indian Institute of Biotechnology Bombay, Mumbai, India
| | - Mohamad Aman Jairajpuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Susheel Durani
- Department of Chemistry, Indian Institute of Biotechnology Bombay, Mumbai, India
| |
Collapse
|
41
|
Meneely KM, Luo Q, Lamb AL. Redesign of MST enzymes to target lyase activity instead promotes mutase and dehydratase activities. Arch Biochem Biophys 2013; 539:70-80. [PMID: 24055536 DOI: 10.1016/j.abb.2013.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 11/20/2022]
Abstract
The isochorismate and salicylate synthases are members of the MST family of enzymes. The isochorismate synthases establish an equilibrium for the conversion chorismate to isochorismate and the reverse reaction. The salicylate synthases convert chorismate to salicylate with an isochorismate intermediate; therefore, the salicylate synthases perform isochorismate synthase and isochorismate-pyruvate lyase activities sequentially. While the active site residues are highly conserved, there are two sites that show trends for lyase-activity and lyase-deficiency. Using steady state kinetics and HPLC progress curves, we tested the "interchange" hypothesis that interconversion of the amino acids at these sites would promote lyase activity in the isochorismate synthases and remove lyase activity from the salicylate synthases. An alternative, "permute" hypothesis, that chorismate-utilizing enzymes are designed to permute the substrate into a variety of products and tampering with the active site may lead to identification of adventitious activities, is tested by more sensitive NMR time course experiments. The latter hypothesis held true. The variant enzymes predominantly catalyzed chorismate mutase-prephenate dehydratase activities, sequentially generating prephenate and phenylpyruvate, augmenting previously debated (mutase) or undocumented (dehydratase) adventitious activities.
Collapse
Affiliation(s)
- Kathleen M Meneely
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, United States
| | | | | |
Collapse
|
42
|
Binay B, Sessions RB, Karagüler NG. A double mutant of highly purified Geobacillus stearothermophilus lactate dehydrogenase recognises l-mandelic acid as a substrate. Enzyme Microb Technol 2013; 52:393-9. [DOI: 10.1016/j.enzmictec.2013.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022]
|
43
|
Whittington AC, Moerland TS. Resurrecting prehistoric parvalbumins to explore the evolution of thermal compensation in extant Antarctic fish parvalbumins. J Exp Biol 2012; 215:3281-92. [PMID: 22693024 DOI: 10.1242/jeb.070615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Parvalbumins (PVs) from Antarctic notothenioid fishes display a pattern of thermal adaptation that likely reflects evolutionary changes in protein conformational flexibility. We have used ancestral sequence reconstruction and homology modeling to identify two amino acid changes that could potentially account for the present thermal sensitivity pattern of Antarctic fish PVs compared with a PV from a theoretical warm-adapted ancestral fish. To test this hypothesis, ancient PVs were resurrected in the lab using PV from the notothenioid Gobionotothen gibberifrons as a platform for introducing mutations comparable to the reconstructed ancestral PV sequences. The wild-type PV (WT) as well as three mutant expression constructs were engineered: lysine 8 to asparagine (K8N), lysine 26 to asparagine (K26N) and a double mutant (DM). Calcium equilibrium dissociation constants (K(d)) versus temperature curves for all mutants were right-shifted, as predicted, relative to that of WT PV. The K(d) values for the K8N and K26N single mutants were virtually identical at all temperatures and showed an intermediate level of thermal sensitivity. The DM construct displayed a full conversion of thermal sensitivity pattern to that of a PV from a warm/temperate-adapted fish. Additionally, the K(d) versus temperature curve for the WT construct revealed greater thermal sensitivity compared with the mutant constructs. Measurements of the rates of Ca(2+) dissociation (k(off)) showed that all mutants generally had slower k(off) values than WT at all temperatures. Calculated rates of Ca(2+) binding (k(on)) for the K8N and K26N mutants were similar to values for the WT PV at all temperatures. In contrast, the calculated k(on) values for the DM PV were faster, providing mechanistic insights into the nature of potentially adaptive changes in Ca(2+) binding in this PV. The overall results suggest that the current thermal phenotype of Antarctic PVs can be recapitulated by just two amino acid substitutions.
Collapse
Affiliation(s)
- A Carl Whittington
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA.
| | | |
Collapse
|
44
|
Colletier JP, Aleksandrov A, Coquelle N, Mraihi S, Mendoza-Barbera E, Field M, Madern D. Sampling the Conformational Energy Landscape of a Hyperthermophilic Protein by Engineering Key Substitutions. Mol Biol Evol 2012; 29:1683-94. [DOI: 10.1093/molbev/mss015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
45
|
Li Y, Tschaplinski TJ, Engle NL, Hamilton CY, Rodriguez M, Liao JC, Schadt CW, Guss AM, Yang Y, Graham DE. Combined inactivation of the Clostridium cellulolyticum lactate and malate dehydrogenase genes substantially increases ethanol yield from cellulose and switchgrass fermentations. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:2. [PMID: 22214220 PMCID: PMC3268733 DOI: 10.1186/1754-6834-5-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 01/04/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND The model bacterium Clostridium cellulolyticum efficiently degrades crystalline cellulose and hemicellulose, using cellulosomes to degrade lignocellulosic biomass. Although it imports and ferments both pentose and hexose sugars to produce a mixture of ethanol, acetate, lactate, H2 and CO2, the proportion of ethanol is low, which impedes its use in consolidated bioprocessing for biofuels production. Therefore genetic engineering will likely be required to improve the ethanol yield. Plasmid transformation, random mutagenesis and heterologous expression systems have previously been developed for C. cellulolyticum, but targeted mutagenesis has not been reported for this organism, hindering genetic engineering. RESULTS The first targeted gene inactivation system was developed for C. cellulolyticum, based on a mobile group II intron originating from the Lactococcus lactis L1.LtrB intron. This markerless mutagenesis system was used to disrupt both the paralogous L-lactate dehydrogenase (Ccel_2485; ldh) and L-malate dehydrogenase (Ccel_0137; mdh) genes, distinguishing the overlapping substrate specificities of these enzymes. Both mutations were then combined in a single strain, resulting in a substantial shift in fermentation toward ethanol production. This double mutant produced 8.5-times more ethanol than wild-type cells growing on crystalline cellulose. Ethanol constituted 93% of the major fermentation products, corresponding to a molar ratio of ethanol to organic acids of 15, versus 0.18 in wild-type cells. During growth on acid-pretreated switchgrass, the double mutant also produced four times as much ethanol as wild-type cells. Detailed metabolomic analyses identified increased flux through the oxidative branch of the mutant's tricarboxylic acid pathway. CONCLUSIONS The efficient intron-based gene inactivation system produced the first non-random, targeted mutations in C. cellulolyticum. As a key component of the genetic toolbox for this bacterium, markerless targeted mutagenesis enables functional genomic research in C. cellulolyticum and rapid genetic engineering to significantly alter the mixture of fermentation products. The initial application of this system successfully engineered a strain with high ethanol productivity from cellobiose, cellulose and switchgrass.
Collapse
Affiliation(s)
- Yongchao Li
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Choo Y Hamilton
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - James C Liao
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yunfeng Yang
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, MS-6038, Oak Ridge, TN 37831-6038, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996-0845, USA
| |
Collapse
|
46
|
Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:339-49. [PMID: 22138634 DOI: 10.1016/j.bbapap.2011.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 11/23/2022]
Abstract
The joint substitution of three active-site residues in Escherichia coli (L)-aspartate aminotransferase increases the ratio of l-cysteine sulfinate desulfinase to transaminase activity 10(5)-fold. This change in reaction specificity results from combining a tyrosine-shift double mutation (Y214Q/R280Y) with a non-conservative substitution of a substrate-binding residue (I33Q). Tyr214 hydrogen bonds with O3 of the cofactor and is close to Arg374 which binds the α-carboxylate group of the substrate; Arg280 interacts with the distal carboxylate group of the substrate; and Ile33 is part of the hydrophobic patch near the entrance to the active site, presumably participating in the domain closure essential for the transamination reaction. In the triple-mutant enzyme, k(cat)' for desulfination of l-cysteine sulfinate increased to 0.5s(-1) (from 0.05s(-1) in wild-type enzyme), whereas k(cat)' for transamination of the same substrate was reduced from 510s(-1) to 0.05s(-1). Similarly, k(cat)' for β-decarboxylation of l-aspartate increased from<0.0001s(-1) to 0.07s(-1), whereas k(cat)' for transamination was reduced from 530s(-1) to 0.13s(-1). l-Aspartate aminotransferase had thus been converted into an l-cysteine sulfinate desulfinase that catalyzes transamination and l-aspartate β-decarboxylation as side reactions. The X-ray structures of the engineered l-cysteine sulfinate desulfinase in its pyridoxal-5'-phosphate and pyridoxamine-5'-phosphate form or liganded with a covalent coenzyme-substrate adduct identified the subtle structural changes that suffice for generating desulfinase activity and concomitantly abolishing transaminase activity toward dicarboxylic amino acids. Apparently, the triple mutation impairs the domain closure thus favoring reprotonation of alternative acceptor sites in coenzyme-substrate intermediates by bulk water.
Collapse
|
47
|
Deu E, Kirsch JF. Engineering homooligomeric proteins to detect weak intersite allosteric communication: aminotransferases, a case study. Protein Sci 2011; 20:1991-2003. [PMID: 21936010 DOI: 10.1002/pro.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/08/2011] [Accepted: 09/12/2011] [Indexed: 11/11/2022]
Abstract
The existence of low levels of intersubunit communication in homooligomeric enzymes is often difficult to discover, as the identical active sites cannot be probed individually to dissect their interdependent contributions. The homodimeric paralogs, E. coli aspartate- (AATase) and tyrosine aminotransferase (TATase), have not been demonstrated to show allostery. To address this question, we engineered a hybrid aminotransferase containing two distinct catalytic pockets: an AATase and a TATase site. The TATase/AATase hybrid was constructed by grafting an engineered TATase active site into one of the catalytic pockets of E. coli AATase. Each active site conserves its specific catalytic and inhibitor binding properties, and the hybrid catalyzes simultaneously each aminotransferase reaction at the respective site. Importantly, association of a selective inhibitor into one of the catalytic pockets decreases the activity of the second active site by up to 25%, thus proving unequivocally the existence of allosteric communication between active sites. The procedure may be applicable to other homologous sets of enzymes.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | |
Collapse
|
48
|
A novel L-aspartate dehydrogenase from the mesophilic bacterium Pseudomonas aeruginosa PAO1: molecular characterization and application for L-aspartate production. Appl Microbiol Biotechnol 2011; 90:1953-62. [PMID: 21468714 DOI: 10.1007/s00253-011-3208-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/14/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
L-aspartate dehydrogenase (EC 1.4.1.21; L: -AspDH) is a rare member of amino acid dehydrogenase superfamily and so far, two thermophilic enzymes have been reported. In our study, an ORF PA3505 encoding for a putative L-AspDH in the mesophilic bacterium Pseudomonas aeruginosa PAO1 was identified, cloned, and overexpressed in Escherichia coli. The homogeneously purified enzyme (PaeAspDH) was a dimeric protein with a molecular mass of about 28 kDa exhibiting a very high specific activity for L-aspartate (L-Asp) and oxaloacetate (OAA) of 127 and 147 U mg(-1), respectively. The enzyme was capable of utilizing both nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) as coenzyme. PaeAspDH showed a T (m) value of 48°C for 20 min that was improved to approximately 60°C by the addition of 0.4 M NaCl or 30% glycerol. The apparent K (m) values for OAA, NADH, and ammonia were 2.12, 0.045, and 10.1 mM, respectively; comparable results were observed with NADPH. The L-Asp production system B consisting of PaeAspDH, Bacillus subtilis malate dehydrogenase and E. coli fumarase, achieved a high level of L-Asp production (625 mM) from fumarate in fed-batch process with a molar conversion yield of 89.4%. Furthermore, the fermentative production system C released 33 mM of L-Asp after 50 h by using succinate as carbon source. This study represented an extensive characterization of the mesophilic AspDH and its potential applicability for efficient and attractive production of L-Asp. Our novel production systems are also hopeful for developing the new processes for other compounds production.
Collapse
|
49
|
Jez JM. Toward protein engineering for phytoremediation: possibilities and challenges. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2011; 13 Suppl 1:77-89. [PMID: 22046752 DOI: 10.1080/15226514.2011.568537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The combination of rational protein engineering and directed evolution techniques allow for the redesign of enzymes with tailored properties for use in environmental remediation. This review summarizes current molecular methods for either altering or improving protein function and highlights examples of how these methods can address bioremediation problems. Although much of the protein engineering applied to environmental clean-up employs microbial systems, there is great potential for and significant challenges to translating these approaches to plant systems for phytoremediation purposes. Protein engineering technologies combined with genomic information and metabolic engineering strategies hold promise for the design of plants and microbes to remediate organic and inorganic pollutants.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA.
| |
Collapse
|
50
|
Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem 2010; 74:2194-201. [PMID: 21071865 DOI: 10.1271/bbb.100357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We identified and characterized a malate dehydrogenase from Streptomyces coelicolor A3(2) (ScMDH). The molecular mass of ScMDH was 73,353.5 Da with two 36,675.0 Da subunits as analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS). The detailed kinetic parameters of recombinant ScMDH are reported here. Heat inactivation studies showed that ScMDH was more thermostable than most MDHs from other organisms, except for a few extremely thermophile bacteria. Recombinant ScMDH was highly NAD(+)-specific and displayed about 400-fold (k(cat)) and 1,050-fold (k(cat)/K(m)) preferences for oxaloacetate reduction over malate oxidation. Substrate inhibition studies showed that ScMDH activity was inhibited by excess oxaloacetate (K(i)=5.8 mM) and excess L-malate (K(i)=12.8 mM). Moreover, ScMDH activity was not affected by most metal ions, but was strongly inhibited by Fe(2+) and Zn(2+). Taken together, our findings indicate that ScMDH is significantly thermostable and presents a remarkably high catalytic efficiency for malate synthesis.
Collapse
|