1
|
Hou X, Ga L, Zhang X, Ai J. Advances in the application of logic gates in nanozymes. Anal Bioanal Chem 2024; 416:5893-5914. [PMID: 38488951 DOI: 10.1007/s00216-024-05240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024]
Abstract
Nanozymes are a class of nanomaterials with biocatalytic function and enzyme-like activity, whose advantages include high stability, low cost, and mass production. They can catalyze the substrates of natural enzymes based on specific nanostructures and serve as substitutes for natural enzymes. Their applied research involves a wide range of fields such as biomedicine, environmental governance, agriculture, and food. Molecular logic gates are a new cross-disciplinary discipline, which can simulate the function of silicon circuits on a molecular scale, perform single or multiple input logic operations, and generate logic outputs. A molecular logic gate is a binary operation that converts an input signal into an output signal according to the rules of Boolean logic, generating two signals, a high level, and a low level. The high and low levels represent the "true" and "false" values of the logic gates, and their outputs correspond to "l" and "0" of the molecular logic gates, respectively. The combination of nanozymes and logic gates is a novel and attractive research direction, and the cross-application of the two brings new opportunities and ideas for various fields, such as the construction of efficient biocomputers, intelligent drug delivery systems, and the precise diagnosis of diseases. This review describes the application of logic gates based on nanozymes, which is expected to provide a certain theoretical foundation for researchers' subsequent studies.
Collapse
Affiliation(s)
- Xiangru Hou
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot, 010110, China
| | - Xin Zhang
- College of Chemical Engineering, Inner Mongolia University of Technology, 49 Aimin Road, Hohhot, 010051, China.
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Environmental Chemistry, Inner Mongolia Normal University, 81 zhaowudalu, Hohhot, 010022, China.
| |
Collapse
|
2
|
Nasir L, Gemede HF. Aflatoxin M1 Concentrations, Adulterants, Microbial Loads, and Physicochemical Properties of Raw Milk Collected From Nekemte City, Ethiopia. ScientificWorldJournal 2024; 2024:3796985. [PMID: 39280720 PMCID: PMC11401672 DOI: 10.1155/2024/3796985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 08/07/2024] [Indexed: 09/18/2024] Open
Abstract
Milk is an essential part of the human diet and is a nutrient-rich food that improves nutrition and food security. The aim of this study was to determine the presence and concentration of aflatoxin M1 (AFM1), adulterants, microbial loads, and physicochemical properties of raw cow's milk (CM) in Nekemte City, Ethiopia. A total of 12 samples of fresh CM were purposefully collected from four kebeles in the city (Bake Jama, Burka Jato, Cheleleki, and Bakanisa Kese) based on the potential of each milk production and distributor site. The AFM1 concentration was determined by high-performance liquid chromatography (HPLC) with a Sigma-Aldrich standard (St. Louis, MO, USA). The concentrations of AFM1 in Bake Jama, Burka Jato, Cheleleki, and Bakanisa Kese were found to be 0.01-0.03 g/L, 0.31-0.35 g/L, 0.19-0.21 g/L, and 0.04-0.07 g/L, respectively. The concentrations of AFM1 in the present study varied significantly (p < 0.05) and ranged from 0.01 g/L to 0.35 g/L. These results show that of the 12 samples tested, all were positive for AFM1 and contaminated to varying degrees. The results of this study also revealed that the concentration of AFM1 in 7 (58%) of the 12 milk samples was above the European Union's (EU) maximum tolerance limit (0.05 g/L). The present study also revealed that of the investigated adulterants, only the addition of water had positive effects on three milk samples, while the remaining adulterants were not detected in any of the milk samples. The total bacterial count (TBC) and total coliform count (TCC) were significantly (p < 0.05) different and ranged from 5.53 to 6.82 log10cfumL-1 and from 4.21 to 4.74 log10cfumL-1, respectively. The physicochemical properties of the milk samples in the present study were significantly (p < 0.05) different and ranged from 2.8% to 5.75% fat, 7.03% to 9.75% solid-not-fat (SNF), 2.35% to 3.61% protein, 3.33% to 5.15% lactose, 11.54% to 13.69% total solid, 0.16% to 0.18% titratable acid, 26.7 to 32.1°C, 6.35 to 6.55 pH, and 1.027 to 1.030 specific gravity. The physicochemical parameters of the raw milk in the study area met the required quality standards. Hence, further studies are required to determine the extent of the problem and the factors associated with high levels of AFM1 in raw milk in the study areas, including the detection of aflatoxin B1 (AFB1) in animal feed.
Collapse
Affiliation(s)
- Leila Nasir
- Department of Food Technology and Process Engineering Wollega University, P.O. Box 395, Nekemte, Ethiopia
| | - Habtamu Fekadu Gemede
- Department of Food Technology and Process Engineering Wollega University, P.O. Box 395, Nekemte, Ethiopia
| |
Collapse
|
3
|
Parsain T, Tripathi A, Tiwari A. Detection of milk adulteration using coffee ring effect and convolutional neural network. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:730-741. [PMID: 38814700 DOI: 10.1080/19440049.2024.2358518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
A low-cost and effective method is reported to identify water and synthetic milk adulteration of cow's milk using coffee ring patterns. The cow's milk samples were diluted with tap water (TW), distilled water (DW) and mineral water (MW) and drop cast onto glass slides to observe coffee ring patterns. The area of the ring, total particle area and average particle diameter were extracted from these patterns. For each ring, the ratio of total particle area versus total ring area was calculated. The area ratio, regardless of water adulterants, follows an exponential model with respect to average particle diameter. Unlike TW, the ratio for DW and MW adulterated milk are clustered and classified together with respect to the particle diameter. These results were independent of dilution level and are used for adulterant classification. The ring of milk adulterated using synthetic milk gave multiple concentric rings, flower-like structures, and oil globules throughout the dilution level. An Alexnet model was used to classify water and synthetic milk adulterants in authentic milk. The trained model could achieve 96.7% and 95.8% accuracy for binary and tertiary classification respectively. These results enable us to distinguish synthetic milk from pure milk and segregate DW and MW with respect to TW adulterated milk.
Collapse
Affiliation(s)
- Tapan Parsain
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Tripathi
- Department of Physics, Sikkim University, Gangtok, Sikkim, India
| | - Archana Tiwari
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
4
|
Peng H, Guo J, Gong Q, Zhou Q, Wang X, Liu H, He Y, Li B, Shi W. Recovery of vanadium with melamine in acidic medium. ENVIRONMENTAL TECHNOLOGY 2024; 45:2753-2761. [PMID: 36848240 DOI: 10.1080/09593330.2023.2185912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Many hydro-metallurgical methods are developed to recover vanadium, while ammonium salt precipitation possesses the final step and it has threatened the environment. The key point is to find a new compound to replace ammonium salts without reducing vanadium recovery efficiency. Some compounds with -NH2 function groups have attracted our attention as they have similar function groups with ammonium salts. In this paper, the adsorption of vanadium with melamine is conducted. The results show that high adsorption efficiency can be achieved in a short time and melamine displays great performance in the recovery of all concentrations of vanadium. Response surface methodology (RSM) is used to optimize the reaction conditions and order the parameters: reaction temperature > concentration of vanadium > dosage of melamine > reaction time. 99.63% vanadium is adsorbed under optimized conditions: n(melamine)/n(V) = 0.6, reaction time of 60 min, 10 g/L vanadium solution and reaction temperature of 60°C. The successful application of melamine in the recovery of vanadium provides a new way for the utilization of melamine and also a glorious future for -NH2 compounds in the recovery heavy metals.
Collapse
Affiliation(s)
- Hao Peng
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
- Chongqing Jiulongyuan High-tech Industry Group Co., Ltd., Chongqing, People's Republic of China
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, People's Republic of China
| | - Jing Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Qian Gong
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Qiao Zhou
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Xingxing Wang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Huaping Liu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Yao He
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Bing Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Bayrak S, Gergeroglu H. Graphene-based biosensors in milk analysis: A review of recent developments. Food Chem 2024; 440:138257. [PMID: 38154279 DOI: 10.1016/j.foodchem.2023.138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Cow's milk, an excellent source of fat, protein, amino acids, vitamins and minerals, is currently one of the most consumed products worldwide. Contaminations originating from diverse sources, such as biological, chemical, and physical, cause dairy product quality problems and thus dairy-related disorders, raising public health issues. For this reason, legal authorities have deemed it necessary to classify certain contaminations in commercial milk and keep them within particular limitations; therefore, it is urgent to develop next-generation detection systems that can accurately identify just the contaminants of concern to human health. This review presents a detailed investigation of biosensors based on graphene and its derivatives, which offer superior sensitivity and selectivity, by classifying the contaminants under the headings biological, chemical, and physical, in cow's milk according to their sources. We reviewed the current status of graphene-based biosensor (GBs) technology for milk or dairy analysis, highlighting its strengths and weaknesses with the help of comparative studies, tables, and charts, and we put forward a novel perspective to handle future challenges.
Collapse
Affiliation(s)
- Sule Bayrak
- Department of Food Engineering, Ege University, 35040 Izmir, Turkey.
| | - Hazal Gergeroglu
- CIC nanoGUNE, Tolosa Hiribidea 76, E-20018 Donostia - San Sebastian, Spain
| |
Collapse
|
6
|
Liu S, Wang Y, Liu Z, Yang Z, Chen L, Chen B. Migration of Melamine and Its Derivatives from Melamine/Bamboo/Wheat Straw-Made Tableware Purchased from Internet Markets or Retail Shops in China. TOXICS 2024; 12:143. [PMID: 38393238 PMCID: PMC10892781 DOI: 10.3390/toxics12020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVES The ecofriendly and sustainable concept of bamboo- and wheat straw-made tableware has gained attention in recent years. However, it is necessary to note that these kinds of tableware are composed of melamine (MEL)-formaldehyde resin with the addition of bamboo fibers or wheat straw. This study aims to explore the potential migration of MEL and its derivatives from the tableware and conduct a risk assessment. METHODS The study involved 46 bowls or cups purchased from Internet markets or retail shops in China, whose raw materials included MEL, bamboo, and wheat straw. There were four pieces of glass- or ceramic-made tableware used as the control group. Migration testing was performed according to the test conditions selected from the European Union Reference Laboratory for Food Contact Materials. Considering the realistic worst-case scenario, we measured the concentrations of MEL and its derivatives in food simulants using ultra-performance liquid chromatography-tandem mass spectrometry and estimated the exposure risks for adults and 1-year-old infants. RESULTS MEL and its derivatives could migrate from MEL-, bamboo-, and wheat straw-made tableware with varying concentrations. The total migration was ranked as follows: bamboo-made tableware > MEL-made tableware > wheat straw-made tableware > glass- or ceramic-made tableware (p < 0.001). The primary contributor to the total concentration for MEL- and bamboo-made tableware was MEL, whereas cyanuric acid (CYA) was the main contributor for wheat straw-made tableware. Based on the total concentration of MEL and its derivatives and the strictest TDI value, the proportions of the calculated hazard quotient ≥1 for MEL-, bamboo-, and wheat straw-made tableware in adults were 53.50%, 92.30%, and 1.90%; and the proportions in 1-year-old infants increased to 86.00%, 100.00%, and 7.40%. CONCLUSION The utilization of MEL-, bamboo-, and wheat straw-made tableware could be regarded as a significant source of human exposure to MEL and its derivatives. It is advisable for both adults and infants to refrain from using tableware manufactured with MEL and bamboo fiber, as it may increase the susceptibility to MEL-related diseases.
Collapse
Affiliation(s)
- Shaojie Liu
- School of Public Health, Fujian Medical University, Fuzhou 350122, China;
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; (Y.W.); (Z.L.)
- Department of Clinical Nutrition, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Yifei Wang
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; (Y.W.); (Z.L.)
| | - Zhanren Liu
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; (Y.W.); (Z.L.)
| | - Zhiping Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China;
| | - Liang Chen
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Bo Chen
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200032, China; (Y.W.); (Z.L.)
| |
Collapse
|
7
|
Liu S, Dong R, Wang Y, Yang Z, He G, Chen B. Twenty-four-hour temporal trend of melamine and its derivatives in urine in association with meal consumption: a panel study in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120225-120235. [PMID: 37936050 DOI: 10.1007/s11356-023-30740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Timing of sampling is important for the exposure assessment of melamine (MEL) and its derivatives. This study aimed to investigate whether MEL and its derivatives in spot urine can effectively represent individual exposure levels throughout the day in adults and to explore their temporal trend before and after meal consumption for helping understand the timing of sampling and for assessing the potential exposure risk. This is a 2-day panel study with 43 college students being enrolled to provide urine specimens in 24 h (from the morning of the first day to the second day) and to answer a questionnaire on demographic characteristics, physical measurements, and time of having meal. Spearman correlation and Wilcoxon rank-sum test were used to examine the associations of the urinary concentrations of MEL and its derivatives in different sampled times and compare the concentrations' differences before and after meal consumption. Urinary concentrations of MEL and its derivatives (ammeline (AMN), ammelide (AMD), and cyanuric acid (CYA)) in the first-morning urine at the second day and randomly selected spot urine were positively associated with the average concentrations in the previous 24-h urine (all P ≤ 0.002). Urinary MEL concentration increased rapidly after meal consumption, reaching a maximum at approximately 3 h and then decreased gradually towards baseline (P = 0.006). Two subjects (4.65%) had a cumulative daily intake exceeding the severest tolerable daily intake. MEL and its three derivatives in spot urine can effectively represent the average concentrations in the previous 24-h urine in adults. Meal consumption is still a notable source of exposure to MEL for humans. These findings are important for choosing a better sampling strategy of performing exposure assessment. Meanwhile, the acute elevation in urinary MEL concentration following meal consumption may pose a potential health risk.
Collapse
Affiliation(s)
- Shaojie Liu
- Department of Clinical Nutrition, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Ruihua Dong
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yifei Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhiping Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Gengsheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Bo Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Ansari MTI, Raghuwanshi SK, Kumar S. Recent Advancement in Fiber-Optic-Based SPR Biosensor for Food Adulteration Detection-A Review. IEEE Trans Nanobioscience 2023; 22:978-988. [PMID: 37216266 DOI: 10.1109/tnb.2023.3278468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Food safety is a scientific discipline that requires sophisticated handling, production, and storage. Food is common for microbial development; it acts as a source for growth and contamination. The traditional procedures for food analysis are time-consuming and labor-intensive, but optical sensors overcome these constraints. Biosensors have replaced rigorous lab procedures like chromatography and immunoassays with more precise and quick sensing. It offers quick, nondestructive, and cost-effective food adulteration detection. Over the last few decades, the significant spike in interest in developing surface plasmon resonance (SPR) sensors for the detection and monitoring of pesticides, pathogens, allergens, and other toxic chemicals in foods. This review focuses on fiber-optic SPR (FO-SPR) biosensors for detecting various adulterants in food matrix while also discussing the future perspective and the key challenges encountered by SPR based sensors.
Collapse
|
9
|
Mohammed A, Potdar V, Quaddus M. Exploring Factors and Impact of Blockchain Technology in the Food Supply Chains: An Exploratory Study. Foods 2023; 12:foods12102052. [PMID: 37238870 DOI: 10.3390/foods12102052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Blockchain technology (BCT) has been proven to have the potential to transform food supply chains (FSCs) based on its potential benefits. BCT promises to improve food supply chain processes. Despite its several benefits, little is known about the factors that drive blockchain adoption within the food supply chain and the impact of blockchain technology on the food supply chain, as empirical evidence is scarce. This study, therefore, explores factors, impacts and challenges of blockchain adoption in the FSC. The study adopts an exploratory qualitative interview approach. The data consist of Twenty-one interviews which were analyzed using thematic analysis techniques in NVivo (v12), resulting in identifying nine factors classified under three broad categories (Technology-complexity, compatibility, cost; Organization-organization size, knowledge; Environment-government support, competitive pressure, standardization, and compliance) as the most significant factors driving blockchain adoption in the FSC. In addition, five impacts were identified (visibility, performance, efficiency, trust, and value creation) to blockchain technology adoption. This study also identifies significant challenges of blockchain technology (interoperability, privacy, infrastructure conditions, and lack of knowledge). Based on the findings, the study developed a conceptual framework for blockchain adoption in food supply chains. The study adds to the corpus of knowledge by illuminating the adoption of blockchain technology and its effects on food supply chains and by giving the industry evidence-based guidance for developing its blockchain plans. The study provides full insights and awareness of blockchain adoption challenges among executives, supply chain organizations, and governmental agencies.
Collapse
Affiliation(s)
- Abubakar Mohammed
- School of Management and Marketing, Curtin University, Perth, WA 6845, Australia
| | - Vidyasagar Potdar
- School of Management and Marketing, Curtin University, Perth, WA 6845, Australia
| | - Mohammed Quaddus
- School of Management and Marketing, Curtin University, Perth, WA 6845, Australia
| |
Collapse
|
10
|
Valadas J, Sachett A, Marcon M, Bastos LM, Piato A. Ochratoxin A induces locomotor impairment and oxidative imbalance in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21144-21155. [PMID: 36264473 DOI: 10.1007/s11356-022-23692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of filamentous fungi widely found as a contaminant in food and with high toxic potential. Studies have shown that this toxin causes kidney and liver damage; however, data on the central nervous system effects of exposure to OTA are still scarce. Thus, this study aimed to investigate the effects of exposure to OTA on behavioral and neurochemical parameters in adult zebrafish. The animals were treated with different doses of OTA (1.38, 2.77, and 5.53 mg/kg) with intraperitoneal injections and submitted to behavioral evaluations in the open tank and social interaction tests. Subsequently, they were euthanized, and the brains were used to assess markers associated with oxidative status. In the open tank test, OTA altered distance traveled, absolute turn angle, mean speed, and freezing time. However, no significant effects were observed in the social interaction test. Moreover, OTA also increased glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR) levels and decreased non-protein thiols (NPSH) levels in the zebrafish brain. This study showed that OTA can affect behavior and neurochemical levels in zebrafish.
Collapse
Affiliation(s)
- Jéssica Valadas
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Adrieli Sachett
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
| | - Leonardo M Bastos
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, Prédio UFRGS n° 21116, 6º andar - Campus Saúde, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
11
|
Bhandari SD, Gallegos-Peretz T, Wheat T, Jaudzems G, Kouznetsova N, Petrova K, Shah D, Hengst D, Vacha E, Lu W, Moore JC, Metra P, Xie Z. Amino Acid Fingerprinting of Authentic Nonfat Dry Milk and Skim Milk Powder and Effects of Spiking with Selected Potential Adulterants. Foods 2022; 11:foods11182868. [PMID: 36140996 PMCID: PMC9498471 DOI: 10.3390/foods11182868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
A collaborative study was undertaken in which five international laboratories participated to determine amino acid fingerprints in 39 authentic nonfat dry milk (NFDM)/skim milk powder (SMP) samples. A rapid method of amino acid analysis involving microwave-assisted hydrolysis followed by ultra-high performance liquid chromatography-ultraviolet detection (UHPLC-UV) was used for quantitation of amino acids and to calculate their distribution. The performance of this rapid method of analysis was evaluated and was used to determine the amino acid fingerprint of authentic milk powders. The distribution of different amino acids and their predictable upper and lower tolerance limits in authentic NFDM/SMP samples were established as a reference. Amino acid fingerprints of NFDM/SMP were compared with selected proteins and nitrogen rich compounds (proteins from pea, soy, rice, wheat, whey, and fish gelatin) which can be potential economically motivated adulterants (EMA). The amino acid fingerprints of NFDM/SMP were found to be affected by spiking with pea, soy, rice, whey, fish gelatin and arginine among the investigated adulterants but not by wheat protein and melamine. The study results establish an amino acid fingerprint of authentic NFDM/SMP and demonstrate the utility of this method as a tool in verifying the authenticity of milk powders and detecting their adulteration.
Collapse
Affiliation(s)
- Sneh D. Bhandari
- Merieux NutriSciences, 3600 Eagle Nest Drive, Crete, IL 60417, USA
| | | | - Thomas Wheat
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Gregory Jaudzems
- Nestlé Quality Assurance Center, 6625 Eiterman Rd., Dublin, OH 43017, USA
| | - Natalia Kouznetsova
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Katya Petrova
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Dimple Shah
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Daniel Hengst
- Eurofins Food Integrity and Innovation, Madison, WI 53704, USA
| | - Erika Vacha
- Eurofins Food Integrity and Innovation, Madison, WI 53704, USA
| | - Weiying Lu
- Institute of Food and Nutraceutical Science, Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jeffrey C. Moore
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
| | - Pierre Metra
- Merieux NutriSciences Corporation, 113 Route de Paris, 69160 Tassin la Demi-Lune, France
| | - Zhuohong Xie
- United States Pharmacopeia (USP), 12601 Twinbrook Parkway, Rockville, MD 20852, USA
- Correspondence: ; Tel.: +1-240-221-2052
| |
Collapse
|
12
|
Khanna A, Jain S, Burgio A, Bolshev V, Panchenko V. Blockchain-Enabled Supply Chain platform for Indian Dairy Industry: Safety and Traceability. Foods 2022; 11:foods11172716. [PMID: 36076901 PMCID: PMC9455752 DOI: 10.3390/foods11172716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Conventional food supply chains are centralized in nature and possess challenges pertaining to a single point of failure, product irregularities, quality compromises, and loss of data. Numerous cases of food fraud, contamination, and adulteration are daily reported from multiple parts of India, suggesting the absolute need for an upgraded decentralized supply chain model. A country such as India, where its biggest strength is its demographic dividend, cannot afford to malnutrition a large population of its children by allowing them to consume contaminated and adulterated dairy products. In view of the gravity of the situation, we propose a blockchain-enabled supply chain platform for the dairy industry. With respect to the supply chain platform, the dairy products of choice include milk, cheese, and butter. Blockchain is one of the fastest growing technologies having widespread acceptance across multiple industry verticals. Blockchain possesses the power to transform traditional supply chains into decentralized, robust, transparent, tamper proof, and sustainable supply chains. The proposed supply chain platform goes beyond the aspect of food traceability and focuses on maintaining the nutritional values of dairy products, identification of adulteration and contamination in dairy products, the increasing economic viability of running a dairy farm, preventing counterfeit dairy products, and enhancing the revenue of the dairy company. The paper collates the mentioned functionalities into four distinct impact dimensions: social, economic, operations, and sustainability. The proposed blockchain-enabled dairy supply chain platform combines the use of smart contracts, quick response code (QR code) technology, and IoT and has the potential to redefine the dairy supply chains on socio-economic, operational, and sustainability parameters.
Collapse
Affiliation(s)
- Abhirup Khanna
- Department of Systemics, School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Sapna Jain
- Department of Applied Sciences and Humanities (Chemistry), University of Petroleum and Energy Studies, Bidholi, Energy Acres, Dehradun 248007, India
- Correspondence: (S.J.); (V.B.); Tel.: +91-9990049256 (S.J.); +7-499-174-8595 (V.B.)
| | | | - Vadim Bolshev
- Federal Scientific Agroengineering Center VIM, Moscow 109428, Russia
- Correspondence: (S.J.); (V.B.); Tel.: +91-9990049256 (S.J.); +7-499-174-8595 (V.B.)
| | - Vladimir Panchenko
- Department of Theoretical and Applied Mechanics, Russian University of Transport, Moscow 127994, Russia
| |
Collapse
|
13
|
Hong Y, Birse N, Quinn B, Montgomery H, Wu D, Rosas da Silva G, van Ruth SM, Elliott CT. Identification of milk from different animal and plant sources by desorption electrospray ionisation high-resolution mass spectrometry (DESI-MS). NPJ Sci Food 2022; 6:14. [PMID: 35149683 PMCID: PMC8837636 DOI: 10.1038/s41538-022-00129-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022] Open
Abstract
This study used desorption electrospray ionisation mass spectrometry (DESI-MS) to analyse and detect and classify biomarkers in five different animal and plant sources of milk for the first time. A range of differences in terms of features was observed in the spectra of cow milk, goat milk, camel milk, soya milk, and oat milk. Chemometric modelling was then used to classify the mass spectra data, enabling unique or significant markers for each milk source to be identified. The classification of different milk sources was achieved with a cross-validation percentage rate of 100% through linear discriminate analysis (LDA) with high sensitivity to adulteration (0.1-5% v/v). The DESI-MS results from the milk samples analysed show the methodology to have high classification accuracy, and in the absence of complex sample clean-up which is often associated with authenticity testing, to be a rapid and efficient approach for milk fraud control.
Collapse
Affiliation(s)
- Yunhe Hong
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK.
| | - Nicholas Birse
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Brian Quinn
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Holly Montgomery
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Di Wu
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Gonçalo Rosas da Silva
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| | - Saskia M van Ruth
- Food Quality and Design Group, Wageningen University and Research, western, the Netherlands
| | - Christopher T Elliott
- ASSET Technology Centre, Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Northern Ireland, UK
| |
Collapse
|
14
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
15
|
Liu X, Wang J, Wang Y, Huang C, Wang Z, Liu L. In Situ Functionalization of Silver Nanoparticles by Gallic Acid as a Colorimetric Sensor for Simple Sensitive Determination of Melamine in Milk. ACS OMEGA 2021; 6:23630-23635. [PMID: 34549161 PMCID: PMC8444319 DOI: 10.1021/acsomega.1c03927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 06/12/2023]
Abstract
A simple and green colorimetric sensing assay strategy for highly efficient determination of melamine has been fabricated, which is based on the redox reaction of gallic acid with Ag+. Monodispersed Ag nanoparticles (AgNPs) were obtained using gallic acid as a reducing and stabilizing agent. However, the aggregate behavior of AgNPs was observed, while the melamine was present in the reaction medium. As a result, the color of the solution changed from vivid yellow to brown, and the density of the color was quantitatively correlated with the melamine concentration. The aggregation of AgNPs could be attributable to the formation of hydrogen bonds between melamine and gallic acid. The designed sensor exhibited a good detection limit of 0.099 μM (0.012 ppm), which was much lower than the safety limit in China (1.0 ppm) and EU (2.0 ppm). Additionally, the sensing assay displayed good selectivity toward melamine over other coexisting substances. Consequently, the proposed colorimetric sensor was successfully used for the determination of melamine detection in raw milk samples.
Collapse
Affiliation(s)
- Xuexia Liu
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Juan Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Yinfeng Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Chunfang Huang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Zhijun Wang
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| | - Limin Liu
- School of Chemistry and Chemical
Engineering, Jinggangshan University, Ji’an 343009, China
| |
Collapse
|
16
|
Nagraik R, Sharma A, Kumar D, Chawla P, Kumar AP. Milk adulterant detection: Conventional and biosensor based approaches: A review. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100433] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Liu Z, Zhang Z, Li Y. Highly Sensitive and Selective Detection Toward Melamine in Dairy Product by Turn-On Fluorescence of Ultrathin Graphitic Carbon Nitride Nanosheet. LUMINESCENCE 2021; 36:1885-1890. [PMID: 34032371 DOI: 10.1002/bio.4094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 05/20/2021] [Indexed: 11/06/2022]
Abstract
It is meaningful and promising to develop a practical sensor toward melamine in dairy products with high sensitivity and selectivity. However, complicated composition and environment in milk necessitate stable luminophore as sensor with excellent photophysical properties. Herein, ultrathin graphitic carbon nitride nanosheet (CNNS) is prepared via successive thermal polymerization and acid exfoliation. The photophysical property of CNNS states its strong ultraviolet absorption and intense blue-light emission. Noteworthily, the CNNS could act as a chemo-sensor to detect trace melamine in dairy products. The high stability, eminent sensitivity, powerful selectivity and competitiveness substantiates that this CNNS luminophore is a promising sensor for melamine in dairy products, being of potentially practical value on monitoring milk quality.
Collapse
Affiliation(s)
- Zixuan Liu
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, P. R. China
| |
Collapse
|
18
|
Chen S, Yang W, Zhang X, Jin J, Liang C, Wang J, Zhang J. Melamine induces reproductive dysfunction via down-regulated the phosphorylation of p38 and downstream transcription factors Max and Sap1a in mice testes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:144727. [PMID: 33736362 DOI: 10.1016/j.scitotenv.2020.144727] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Melamine poisoning incidents and potential health risks raise global attention. Recent studies imply that melamine exposure is related to male reproductive dysfunction, however, the underlying mechanisms are unclear. In this study, 32 male Kunming mice were administered with 0, 12.5, 25, and 50 mg/L melamine via drinking water for 13 weeks, respectively. Sperm quality, testicular morphology, and the mRNA expression levels of MAPK family members p38, ERK5, ERK1/2, JNK1/2/3 and their downstream transcription factors GADD153, MAX, MEF2C, CREB, c-Myc, JunD, c-JUN, Sap1a, p53, ATF-2, Elk1, and Nur77 in testes were investigated. The results revealed that low-dose melamine exposure reduced sperm quality, altered the testicular histological structure, and reduced the mRNA expression levels of p38, ERK1/2, MAX and Sap1a in the testes. The p38 and phosphorylated-p38 expressions analysis further suggested that the down-regulated phosphorylation of p38 and downstream transcription factors MAX and Sap1a play key roles in male reproductive dysfunction caused by melamine. Altogether, our study provides a new insight to elucidate the underlying mechanisms by which melamine induces male reproductive toxicity, and to evaluate the health risks of melamine.
Collapse
Affiliation(s)
- Shuming Chen
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Wei Yang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Xiaoyan Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jiyin Jin
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
19
|
Comparison of visual detection of melamine by AuNPs sol prepared in marine and terrestrial plant extracts. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Krämer M, Fry H, Kappenstein O. Development and validation of two analytical methods for urea determination in compound feed, including pet food, and yeast using high-performance liquid chromatography coupled with fluorescence detection and tandem mass spectrometry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:931-942. [PMID: 33784232 DOI: 10.1080/19440049.2021.1901999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Urea is authorised in the European Union (EU) as feed additive for ruminants. Because of its high molecular nitrogen content, it is a substance for potential protein adulteration in non-ruminant feed. The EU defines a spectro-colorimetric method as an official control method for the determination of urea in feed, whereas the Association of Official Analytical Chemists (AOAC) in the United States recommends an enzymatic method. Discrepancies between results obtained by these different approaches have been reported, especially at low concentrations. Therefore, we developed and validated two methods for urea determination in compound feed, including pet food, and yeast (Saccharomyces cerevisiae) over a wide concentration range using high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and fluorescence detection (HPLC-FLD) and compared performance with a commercial enzyme kit. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 3 and 8 mg kg-1 for LC-MS/MS and 2 and 7 mg kg-1 for HPLC-FLD, respectively. For both methods, the variation coefficients ranged between 1.4% and 7.2% in ruminant feed used as reference material as well as spiked samples of complete feed for chicken, pet food for dogs and cats, as well as yeast. Recovery rates for spiked samples ranged from 86% to 105%. For real samples of complete feed for poultry, wet and dry pet food for cats and dogs and yeast amounts of urea between < LOD and 200 mg kg-1 relative to a feedingstuff with a moisture content of 12% were found. In comparison with the enzyme kit, the newly developed methods proved to be less time-consuming in sample preparation and more stable regarding matrix effects.
Collapse
Affiliation(s)
- Marco Krämer
- German Federal Institute for Risk Assessment, National Reference Laboratory for Feed Additives, Berlin, Germany
| | - Hildburg Fry
- German Federal Institute for Risk Assessment, National Reference Laboratory for Feed Additives, Berlin, Germany
| | - Oliver Kappenstein
- German Federal Institute for Risk Assessment, National Reference Laboratory for Feed Additives, Berlin, Germany
| |
Collapse
|
21
|
Picomolar-Level Melamine Detection via ATP Regulated CeO2 Nanorods Tunable Peroxidase-Like Nanozyme-Activity-Based Colorimetric Sensor: Logic Gate Implementation and Real Sample Analysis. CRYSTALS 2021. [DOI: 10.3390/cryst11020178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The capability of functional logic operations is highly intriguing, but far from being realized owing to limited recognition element (RE) and complex readout signals, which limit their applications. In this contribution, for a visual colorimetric sensor for melamine (MEL) we described the construction of two- and three-input AND logic gate by exploiting the intrinsic peroxidase (POD)-like activity of CeO2 nanorods (NRs) (~23.04% Ce3+ fraction and aspect ratio (RTEM) of 3.85 ± 0.18) as RE at acidic pH (4.5). Further ATP piloted catalytic tuning of POD-like activity in CeO2 NRs employed for a functional logic gate-controlled MEL sensing at neutral pH (7.4). AND logic circuit operated MEL sensing record colorimetric response time of 15 min to produce blue color proportionate to MEL concentration. The fabricated nanozyme (CeO2)-based logic gate sensor probe for MEL at pH 4.5 showed a linear response from 0.004 nM to 1.56 nM with a limit of detection (LOD) of 4 pM; while translation from acidic to neutral pH (at 7.4) sensor exhibited linear response ranging from 0.2 nM to 3.12 nM with a LOD value of 17 pM. Through CeO2 POD-like nanozyme behavior under acidic and neutral pH, the fabricated logic gate sensor showed high affinity for MEL, generating prominent visual output with picomolar sensitivity, good reproducibility, and stability with relative standard deviation (RSD) <1% and 2%, respectively. A feasibility study in real samples (raw milk and milk powder) showed good recoveries with negligible matrix effect, an anti-interference experiment revealed sensor selectivity, highlighting robust sensor practical utility. With the merits of high sensitivity, specificity, low cost, and simplified sample processing, the developed logic-controlled colorimetric MEL sensing platform with appropriate modifications can be recognized as a potent methodology for on-site analysis of various food adulterants and related applications.
Collapse
|
22
|
Lou-Franco J, Das B, Elliott C, Cao C. Gold Nanozymes: From Concept to Biomedical Applications. NANO-MICRO LETTERS 2020; 13:10. [PMID: 34138170 PMCID: PMC8187695 DOI: 10.1007/s40820-020-00532-z] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/02/2020] [Indexed: 05/02/2023]
Abstract
In recent years, gold nanoparticles have demonstrated excellent enzyme-mimicking activities which resemble those of peroxidase, oxidase, catalase, superoxide dismutase or reductase. This, merged with their ease of synthesis, tunability, biocompatibility and low cost, makes them excellent candidates when compared with biological enzymes for applications in biomedicine or biochemical analyses. Herein, over 200 research papers have been systematically reviewed to present the recent progress on the fundamentals of gold nanozymes and their potential applications. The review reveals that the morphology and surface chemistry of the nanoparticles play an important role in their catalytic properties, as well as external parameters such as pH or temperature. Yet, real applications often require specific biorecognition elements to be immobilized onto the nanozymes, leading to unexpected positive or negative effects on their activity. Thus, rational design of efficient nanozymes remains a challenge of paramount importance. Different implementation paths have already been explored, including the application of peroxidase-like nanozymes for the development of clinical diagnostics or the regulation of oxidative stress within cells via their catalase and superoxide dismutase activities. The review also indicates that it is essential to understand how external parameters may boost or inhibit each of these activities, as more than one of them could coexist. Likewise, further toxicity studies are required to ensure the applicability of gold nanozymes in vivo. Current challenges and future prospects of gold nanozymes are discussed in this review, whose significance can be anticipated in a diverse range of fields beyond biomedicine, such as food safety, environmental analyses or the chemical industry.
Collapse
Affiliation(s)
- Javier Lou-Franco
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Bhaskar Das
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, India
| | - Christopher Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Cuong Cao
- Institute for Global Food Security, School of Biological Sciences, Queen's University of Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK.
| |
Collapse
|
23
|
Liu CC, Hsieh TJ, Wu CF, Lee CH, Tsai YC, Huang TY, Wen SC, Lee CH, Chien TM, Lee YC, Huang SP, Li CC, Chou YH, Wu WJ, Wu MT. Interrelationship of environmental melamine exposure, biomarkers of oxidative stress and early kidney injury. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122726. [PMID: 32348942 DOI: 10.1016/j.jhazmat.2020.122726] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/30/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
Melamine contamination has remained pervasive in the environment even after the 2008 toxic milk scandal. Exposure to chronic low dosages of melamine is known to induce renal tubular damage, increasing the risk of stone formation and early kidney injury. This damage may come about via increased oxidative stress, but no studies of this possibility have been performed in humans. We conducted two human studies in 80 workers from melamine tableware factories (melamine workers) and 309 adult patients with calcium urolithiasis (stone patients) to evaluate the relationships between urinary melamine levels and two urinary biomarkers of oxidative stress, 8-oxo-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). Both human studies showed urinary melamine levels to be significantly and positively correlated with urinary 8-OHdG and MDA, indicating melamine exposure can increase oxidative stress. Additionally, we used structure equation modeling to evaluate relative contribution of type of melamine-induced oxidative stress on renal tubular injury and found that MDA mediated 36 %-53 % of the total effect of melamine on a biomarker of renal tubular injury, N-Acetyl-β-d Glucosaminidase (NAG). In conclusion, our findings suggest exposure to low-dose melamine can increase oxidative stress and increase the risk of early damage to kidneys in humans.
Collapse
Affiliation(s)
- Chia-Chu Liu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Pingtung Hospital, Ministry of Health and Welfare, Pingtung City, Taiwan.
| | - Tusty-Jiuan Hsieh
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Chien-Hung Lee
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yi-Chun Tsai
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Divisions of Nephrology and General Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Tsung-Yi Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Sheng-Chen Wen
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Cheng-Hsueh Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Tsu-Ming Chien
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yung-Chin Lee
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung City, Taiwan.
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Yii-Her Chou
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City, Taiwan; PhD Program of Environmental and Occupational Medicine and Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
24
|
Yan J, Li X, Shi Y, Sun S, Wang H. The effect of intention analysis-based fraud detection systems in repeated supply Chain quality inspection: A context of learning and contract. INFORMATION & MANAGEMENT 2020. [DOI: 10.1016/j.im.2019.103177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Abd El-Hakim YM, El-Houseiny W, El-Murr AE, Ebraheim LLM, Moustafa AA, Rahman Mohamed AA. Melamine and curcumin enriched diets modulate the haemato-immune response, growth performance, oxidative stress, disease resistance, and cytokine production in oreochromis niloticus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 220:105406. [PMID: 31945653 DOI: 10.1016/j.aquatox.2020.105406] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Currently, feed adulteration and contamination with melamine (MEL) are considered one of the serious issues in the aquatic industry. With the limited studies of MEL exposure alone in fish, its adverse impacts on fish cannot be evaluated well. Accordingly, this study aimed to investigate the effects of MEL containing diets on the immune response, disease resistance to Aeromonas hydrophila, growth performance, chemical composition, immune-related genes expression, and histopathology of both spleen and head kidneys. Also, the efficacy of curcumin (CUR) dietary supplementation to alleviate MEL negative impacts were evaluated. A total of 180 apparently healthy Oreochromis niloticus (O. niloticus) were divided into four groups with three replicates fed the basal diet only, basal diet fortified with 200 mg/kg CUR, basal diet containing 1 % MEL, or a basal diet containing CUR + MEL. The results displayed that MEL significantly reduced growth performance indices and body crude lipid contents. Anemic, leukopenic, lymphocytopenic, heterocytopenic, esonipenic, hypoproteinemic and hypoalbuminic conditions were apparent. Moreover, depleted immune and antioxidant indicators including lysozyme activity, nitric oxide, immunoglobulin M, complement 3, glutathione peroxidase, and superoxide dismutase enzyme activity were recorded. Also, MEL reduced the disease resistance of O. niloticus to bacterial infection. Furthermore, MEL induced downregulation of mRNA levels of interleukin 1β and tumor necrosis factor α in the spleen together with obvious pathological perturbations in both spleen and head kidneys. The CUR addition resulted in a significant enhancement in most indices. These results may conclude that MEL could alter both innate and adaptive immune responses via the negative transcriptional effect on immune-related genes together with the oxidative damage of the immune organs. Furthermore, CUR dietary supplements could be advantageous for mitigating MEL negative impacts, thus offering a favorable aquafeed additive for O. niloticus.
Collapse
Affiliation(s)
- Yasmina M Abd El-Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt.
| | - Walaa El-Houseiny
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt
| | - Abd Elhakeem El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt
| | - Lamiaa L M Ebraheim
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt
| | - Amr A Moustafa
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt
| | - Amany Abdel Rahman Mohamed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 4511, Egypt.
| |
Collapse
|
26
|
Du L, Lu W, Zhang Y, Gao B, Yu L. Detection of milk powder in liquid whole milk using hydrolyzed peptide and intact protein mass spectral fingerprints coupled with data fusion technologies. Food Sci Nutr 2020; 8:1471-1479. [PMID: 32180956 PMCID: PMC7063352 DOI: 10.1002/fsn3.1430] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 01/15/2023] Open
Abstract
Detection of the presence of milk powder in liquid whole milk is challenging due to their similar chemical components. In this study, a sensitive and robust approach has been developed and tested for potential utilization in discriminating adulterated milk from liquid whole milk by analyzing the intact protein and hydrolyzed peptide using ultra‐performance liquid chromatography with quadrupole time‐of‐flight mass spectrometer (UPLC‐QTOF‐MS) fingerprints combined with data fusion. Two different datasets from intact protein and peptide fingerprints were fused to improve the discriminating ability of principle component analysis (PCA). Furthermore, the midlevel data fusion coupled with PCA could completely distinguish liquid whole milk from the milk. The limit of detection of milk powder in liquid whole milk was 0.5% (based on the total protein equivalence). These results suggested that fused data from intact protein and peptide fingerprints created greater synergic effect in detecting milk quality, and the combination of data fusion and PCA analysis could be used for the detection of adulterated milk.
Collapse
Affiliation(s)
- Lijuan Du
- Department of Food Science and Technology School of Agriculture and Biology Institute of Food and Nutraceutical Science Shanghai Jiao Tong University Shanghai China.,China-Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University (BTBU) Beijing China
| | - Weiying Lu
- Department of Food Science and Technology School of Agriculture and Biology Institute of Food and Nutraceutical Science Shanghai Jiao Tong University Shanghai China
| | - Yaqiong Zhang
- Department of Food Science and Technology School of Agriculture and Biology Institute of Food and Nutraceutical Science Shanghai Jiao Tong University Shanghai China
| | - Boyan Gao
- Department of Food Science and Technology School of Agriculture and Biology Institute of Food and Nutraceutical Science Shanghai Jiao Tong University Shanghai China.,China-Canada Joint Lab of Food Nutrition and Health (Beijing) Beijing Technology & Business University (BTBU) Beijing China
| | - Liangli Yu
- Department of Nutrition and Food Science University of Maryland College Park MD USA
| |
Collapse
|
27
|
Dong W, Hu R, Wu Q. A New Discovery of Calcium Phosphate Urinary Stones Formation Induced by Melamine: Nanocrystalline Assembly Mechanism. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wenya Dong
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai 200092 China
| | - Ruiming Hu
- Huashan HospitalFudan University Shanghai 200040 China
| | - Qingsheng Wu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and SustainabilityTongji University Shanghai 200092 China
| |
Collapse
|
28
|
Bergana MM, Adams KM, Harnly J, Moore JC, Xie Z. Non-targeted detection of milk powder adulteration by 1H NMR spectroscopy and conformity index analysis. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.01.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Dong W, Zhang Y, Hu P, Xu H, Fan J, Su J, Li F, Chen Y, Li P, Wang S, Coe FL, Wu Q. Rate-controlled nano-layered assembly mechanism of melamine-induced melamine–uric acid stones and its inhibition and elimination methods. J Mater Chem B 2019. [DOI: 10.1039/c9tb00688e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formation of kidney stones induced by melamine is a rate-controlled nano-scale supramolecular layered assembly process.
Collapse
|
30
|
Wang X, Zhu X, Shi H, Chen Y, Chen Z, Zeng Y, Tang Z, Duan H. Three-Dimensional-Stacked Gold Nanoparticles with Sub-5 nm Gaps on Vertically Aligned TiO 2 Nanosheets for Surface-Enhanced Raman Scattering Detection Down to 10 fM Scale. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35607-35614. [PMID: 30232887 DOI: 10.1021/acsami.8b11713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Seeking for ultrasensitive and low-cost substrates is highly demandable for practical applications of surface-enhanced Raman scattering (SERS) technology. In this work, we report an ultrasensitive SERS-active substrate based on wet-chemistry-synthesized vertically aligned large-area TiO2 nanosheets (NSs) decorated by densely packed gold nanoparticles (Au NPs) with sub-5 nm gaps. Via a multistep successive deposition process, three-dimensional-stacked Au NPs sandwiched by a 3 nm SiO2 layer were assembled onto the TiO2 NS, enabling numerous hotspots due to the formation of both ultratiny plasmonic gaps and semiconductor/metal interfaces. Experimental results show that the fabricated substrate displays a detection limit down to 10 fM (10-14 M) without involving any condensation process by using the crystal violet as probe molecules. Control experiments and electromagnetic simulations indicate that the nanogaps defined by the 3 nm spacer are essential for the obtained excellent SERS performance. With its ultrasensitive detection capability, we demonstrate that the fabricated SERS substrate can be used for the trace analysis of melamine in milk.
Collapse
Affiliation(s)
| | - Xupeng Zhu
- School of Physics Science and Technology , Lingnan Normal University , Zhanjiang 524048 , People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
Karunathilaka SR, Yakes BJ, He K, Brückner L, Mossoba MM. First use of handheld Raman spectroscopic devices and on-board chemometric analysis for the detection of milk powder adulteration. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.04.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Limm W, Karunathilaka SR, Yakes BJ, Mossoba MM. A portable mid-infrared spectrometer and a non-targeted chemometric approach for the rapid screening of economically motivated adulteration of milk powder. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Choudhary S, Arora S, Kumari A, Narwal V, Sharma V. Effect of type and quality of milk on heat induced protein-protein interactions in khoa. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:4321-4329. [PMID: 30228431 PMCID: PMC6133867 DOI: 10.1007/s13197-018-3380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/31/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
Abstract
The present study was carried out to evaluate the effect of developed acidity and subsequent neutralization of milk (cow/buffalo) on heat induced protein-protein interactions occurring at various stages during khoa preparation. Protein-protein interactions were studied in terms of surface hydrophobicity (Fmax), sulfhydryl (-SH) group and SDS PAGE. As milk progressed to boiling stage, increase in Fmax and decrease in -SH content was observed. Khoa prepared from cow milk had comparatively higher values for Fmax and lower values for -SH group. Fmax was observed to be highest in acidic samples followed by neutralized and fresh samples. While considering -SH group, maximum values were observed in neutralized samples followed by acidic and fresh samples of both milk and khoa. However, no visible difference was observed in SDS PAGE patterns of casein fractions isolated from different types of samples. The bands of β-lg and α-la did not resolve clearly in the khoa samples due to high heat treatment involved in its preparation, indicating intense denaturation of whey proteins especially in neutralized samples where an alkaline medium resulted in strong binding between casein and whey proteins. The quality of milk also resulted in altered heat induced protein-protein interactions in khoa.
Collapse
Affiliation(s)
- Sonika Choudhary
- Analyst, Quality Assurance and Product Development, National Dairy Development Board- Dairy Services, Delhi, India
| | - Sumit Arora
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India
| | - Anuradha Kumari
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India
| | - Vikrant Narwal
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India
| | - Vivek Sharma
- Dairy Chemistry Division, National Dairy Research Institute, Karnal, Haryana India
| |
Collapse
|
34
|
Wilson-Frank CR, Hooser SB. Investigative Diagnostic Toxicology and the Role of the Veterinarian in Pet Food-Related Outbreaks: An Update. Vet Clin North Am Small Anim Pract 2018; 48:909-915. [PMID: 30166216 DOI: 10.1016/j.cvsm.2018.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although most commercial pet foods are safe, there have been a few instances in which chemical or bacterial contamination have caused outbreaks of illness in animals. Because of concerns regarding cases of contaminated commercial pet food that have been reported over the past several years, some pet owners may be choosing to feed noncommercial, home-prepared diets. When pet food contamination is suspected, pet owners often seek advice from their veterinarian regarding its health impact and subsequent diagnosis. This article addresses the role of the veterinarians in pet food contamination and highlights recommended approaches to handling pet food outbreaks or recalls.
Collapse
Affiliation(s)
- Christina R Wilson-Frank
- Indiana Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, 406 South University, West Lafayette, IN 47907-1175, USA; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN 47907-1175, USA.
| | - Stephen B Hooser
- Indiana Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Purdue University, 406 South University, West Lafayette, IN 47907-1175, USA; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN 47907-1175, USA
| |
Collapse
|
35
|
Karunathilaka SR, Yakes BJ, He K, Chung JK, Mossoba M. Non-targeted NIR spectroscopy and SIMCA classification for commercial milk powder authentication: A study using eleven potential adulterants. Heliyon 2018; 4:e00806. [PMID: 30258995 PMCID: PMC6151857 DOI: 10.1016/j.heliyon.2018.e00806] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
A non-targeted detection method using near-infrared (NIR) spectroscopy combined with chemometric modeling was developed for the rapid screening of commercial milk powder (MP) products as authentic or potentially mixed with known and unknown adulterants. Two benchtop FT-NIR spectrometers and a handheld NIR device were evaluated for model development. The performance of SIMCA classification models was then validated using an independent test set of genuine MP samples and a set of gravimetrically prepared mixtures consisting of MPs spiked with each of eleven potential adulterants. Classification models yielded 100% sensitivities for the benchtop spectrometers. Better specificity, which was influenced by the nature of the adulterant, was obtained for the benchtop FT-NIR instruments than for the handheld NIR device, which suffered from lower spectral resolution and a narrower spectral range. FT-NIR spectroscopy and SIMCA classification models show promise for the rapid screening of commercial MPs for the detection of potential adulteration.
Collapse
Affiliation(s)
- Sanjeewa R. Karunathilaka
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| | - Betsy Jean Yakes
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| | - Keqin He
- University of Maryland, Joint Institute for Food Safety and Applied Nutrition, 2134 Patapsco Building, College Park, MD 20742, USA
| | - Jin Kyu Chung
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| | - Magdi Mossoba
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Regulatory Science, 5001 Campus Drive, College Park, MD 20740, USA
| |
Collapse
|
36
|
Silva CJ. Food Forensics: Using Mass Spectrometry To Detect Foodborne Protein Contaminants, as Exemplified by Shiga Toxin Variants and Prion Strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8435-8450. [PMID: 29860833 DOI: 10.1021/acs.jafc.8b01517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Food forensicists need a variety of tools to detect the many possible food contaminants. As a result of its analytical flexibility, mass spectrometry is one of those tools. Use of the multiple reaction monitoring (MRM) method expands its use to quantitation as well as detection of infectious proteins (prions) and protein toxins, such as Shiga toxins. The sample processing steps inactivate prions and Shiga toxins; the proteins are digested with proteases to yield peptides suitable for MRM-based analysis. Prions are detected by their distinct physicochemical properties and differential covalent modification. Shiga toxin analysis is based on detecting peptides derived from the five identical binding B subunits comprising the toxin. 15N-labeled internal standards are prepared from cloned proteins. These examples illustrate the power of MRM, in that the same instrument can be used to safely detect and quantitate protein toxins, prions, and small molecules that might contaminate our food.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service , United States Department of Agriculture , Albany , California 94710 , United States
| |
Collapse
|
37
|
Non-targeted analysis of unexpected food contaminants using LC-HRMS. Anal Bioanal Chem 2018; 410:5593-5602. [PMID: 29594430 PMCID: PMC6096699 DOI: 10.1007/s00216-018-1028-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
Abstract
A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as “non-target” are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain “true non-target” analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.
Collapse
|
38
|
Wu LA, Li WE, Lin DZ, Chen YF. Three-Dimensional SERS Substrates Formed with Plasmonic Core-Satellite Nanostructures. Sci Rep 2017; 7:13066. [PMID: 29026173 PMCID: PMC5638830 DOI: 10.1038/s41598-017-13577-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 11/24/2022] Open
Abstract
We demonstrate three-dimensional surface-enhanced Raman spectroscopy (SERS) substrates formed by accumulating plasmonic nanostructures that are synthesized using a DNA-assisted assembly method. We densely immobilize Au nanoparticles (AuNPs) on polymer beads to form core-satellite nanostructures for detecting molecules by SERS. The experimental parameters affecting the AuNP immobilization, including salt concentration and the number ratio of the AuNPs to the polymer beads, are tested to achieve a high density of the immobilized AuNPs. To create electromagnetic hot spots for sensitive SERS sensing, we add a Ag shell to the AuNPs to reduce the interparticle distance further, and we carefully adjust the thickness of the shell to optimize the SERS effects. In addition, to obtain sensitive and reproducible SERS results, instead of using the core-satellite nanostructures dispersed in solution directly, we prepare SERS substrates consisting of closely packed nanostructures by drying nanostructure-containing droplets on hydrophobic surfaces. The densely distributed small and well-controlled nanogaps on the accumulated nanostructures function as three-dimensional SERS hot spots. Our results show that the SERS spectra obtained using the substrates are much stronger and more reproducible than that obtained using the nanostructures dispersed in solution. Sensitive detection of melamine and sodium thiocyanate (NaSCN) are achieved using the SERS substrates.
Collapse
Affiliation(s)
- Li-An Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Wei-En Li
- Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan
| | - Ding-Zheng Lin
- Material and Chemical Research Laboratory, Industrial Technology Research Institute, Hsinchu, 310, Taiwan
| | - Yih-Fan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, 112, Taiwan.
- Biophotonics and Molecular Imaging Research Centre, National Yang-Ming University, Taipei, 112, Taiwan.
| |
Collapse
|
39
|
Gondim CDS, Junqueira RG, Souza SVCD, Ruisánchez I, Callao MP. Detection of several common adulterants in raw milk by MID-infrared spectroscopy and one-class and multi-class multivariate strategies. Food Chem 2017; 230:68-75. [DOI: 10.1016/j.foodchem.2017.03.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 11/22/2016] [Accepted: 03/04/2017] [Indexed: 11/27/2022]
|
40
|
Hong E, Lee SY, Jeong JY, Park JM, Kim BH, Kwon K, Chun HS. Modern analytical methods for the detection of food fraud and adulteration by food category. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:3877-3896. [PMID: 28397254 DOI: 10.1002/jsfa.8364] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/23/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
This review provides current information on the analytical methods used to identify food adulteration in the six most adulterated food categories: animal origin and seafood, oils and fats, beverages, spices and sweet foods (e.g. honey), grain-based food, and others (organic food and dietary supplements). The analytical techniques (both conventional and emerging) used to identify adulteration in these six food categories involve sensory, physicochemical, DNA-based, chromatographic and spectroscopic methods, and have been combined with chemometrics, making these techniques more convenient and effective for the analysis of a broad variety of food products. Despite recent advances, the need remains for suitably sensitive and widely applicable methodologies that encompass all the various aspects of food adulteration. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Eunyoung Hong
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Sang Yoo Lee
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| | - Jae Yun Jeong
- Science and Technology Management Policy, University of Science & Technology, Gyeonggi-do, Republic of Korea
- R&D Strategy, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Jung Min Park
- Science and Technology Management Policy, University of Science & Technology, Gyeonggi-do, Republic of Korea
- R&D Strategy, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | - Byung Hee Kim
- Department of Food Science and Nutrition, Sookmyung Women's University, Seoul, Republic of Korea
| | - Kisung Kwon
- New Hazardous Substances Team, National Institute of Food and Drug Safety Evaluation, Chungcheongbuk-do, Republic of Korea
| | - Hyang Sook Chun
- Advanced Food Safety Research Group, BK21 Plus, School of Food Science and Technology, Chung-Ang University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
41
|
Varun S, Kiruba Daniel S, Gorthi SS. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:253-258. [DOI: 10.1016/j.msec.2016.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 11/27/2022]
|
42
|
Point-of-Care Detection Devices for Food Safety Monitoring: Proactive Disease Prevention. Trends Biotechnol 2017; 35:288-300. [PMID: 28089198 DOI: 10.1016/j.tibtech.2016.12.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/27/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022]
|
43
|
Brignardello J, Holmes E, Garcia-Perez I. Metabolic Phenotyping of Diet and Dietary Intake. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:231-270. [PMID: 28317606 DOI: 10.1016/bs.afnr.2016.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nutrition provides the building blocks for growth, repair, and maintenance of the body and is key to maintaining health. Exposure to fast foods, mass production of dietary components, and wider importation of goods have challenged the balance between diet and health in recent decades, and both scientists and clinicians struggle to characterize the relationship between this changing dietary landscape and human metabolism with its consequent impact on health. Metabolic phenotyping of foods, using high-density data-generating technologies to profile the biochemical composition of foods, meals, and human samples (pre- and postfood intake), can be used to map the complex interaction between the diet and human metabolism and also to assess food quality and safety. Here, we outline some of the techniques currently used for metabolic phenotyping and describe key applications in the food sciences, ending with a broad outlook at some of the newer technologies in the field with a view to exploring their potential to address some of the critical challenges in nutritional science.
Collapse
Affiliation(s)
- J Brignardello
- Computational and Systems Medicine, Imperial College London, London, United Kingdom
| | - E Holmes
- Computational and Systems Medicine, Imperial College London, London, United Kingdom
| | - I Garcia-Perez
- Nutrition and Dietetic Research Group, Imperial College London, London, United Kingdom.
| |
Collapse
|
44
|
Abstract
The 35th Annual Society of Toxicologic Pathology Symposium, held in June 2016 in San Diego, California, focused on "The Basis and Relevance of Variation in Toxicologic Responses." In order to review the basic tenants of toxicology, a "broad brush" interactive talk that gave an overview of the Cornerstones of Toxicology was presented. The presentation focused on the historical milestones and perspectives of toxicology and through many scientific graphs, data, and real-life examples covered the three basic principles of toxicology that can be summarized, as dose matters (as does timing), people differ, and things change (related to metabolism and biotransformation).
Collapse
Affiliation(s)
- A Wallace Hayes
- 1 Harvard University, Cambridge, Massachusetts, USA.,2 Michigan State University, East Lansing, Michigan, USA
| | - Darlene Dixon
- 3 National Institute of Environmental Health Sciences and the National Toxicology Program, National Institutes of Health (NIH), U.S. Department of Health and Human Services (HHS), Research Triangle Park, North Carolina, USA
| |
Collapse
|
45
|
Karunathilaka SR, Farris S, Mossoba MM, Moore JC, Yakes BJ. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:170-182. [DOI: 10.1080/19440049.2016.1260168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sanjeewa R. Karunathilaka
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | - Samantha Farris
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | - Magdi M. Mossoba
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | | | - Betsy Jean Yakes
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| |
Collapse
|
46
|
Azad T, Ahmed S. Common milk adulteration and their detection techniques. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2016. [DOI: 10.1186/s40550-016-0045-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Cohen SM, Arnold LL. Critical role of toxicologic pathology in a short-term screen for carcinogenicity. J Toxicol Pathol 2016; 29:215-227. [PMID: 27821906 PMCID: PMC5097964 DOI: 10.1293/tox.2016-0036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/28/2022] Open
Abstract
Carcinogenic potential of chemicals is currently evaluated using a two year bioassay in rodents. Numerous difficulties are known for this assay, most notably, the lack of information regarding detailed dose response and human relevance of any positive findings. A screen for carcinogenic activity has been proposed based on a 90 day screening assay. Chemicals are first evaluated for proliferative activity in various tissues. If negative, lack of carcinogenic activity can be concluded. If positive, additional evaluation for DNA reactivity, immunosuppression, and estrogenic activity are evaluated. If these are negative, additional efforts are made to determine specific modes of action in the animal model, with a detailed evaluation of the potential relevance to humans. Applications of this approach are presented for liver and urinary bladder. Toxicologic pathology is critical for all of these evaluations, including a detailed histopathologic evaluation of the 90 day assay, immunohistochemical analyses for labeling index, and involvement in a detailed mode of action analysis. Additionally, the toxicologic pathologist needs to be involved with molecular evaluations and evaluations of new molecularly developed animal models. The toxicologic pathologist is uniquely qualified to provide the expertise needed for these evaluations.
Collapse
Affiliation(s)
- Samuel M. Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| | - Lora L. Arnold
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Omaha, NE 68198-3135, USA
| |
Collapse
|
48
|
Inoue K, Tanada C, Hosoya T, Yoshida S, Akiba T, Min JZ, Todoroki K, Yamano Y, Kumazawa S, Toyo'oka T. Principal component analysis of molecularly based signals from infant formula contaminations using LC-MS and NMR in foodomics. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3876-3881. [PMID: 26689721 DOI: 10.1002/jsfa.7584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/20/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND The challenge in developing analytical assessment of unexpected excess contaminations in infant formula has been the most significant project to address the widespread issue of food safety and security. Foodomics based on metabolomics techniques provides powerful tools for the detection of tampering cases with intentional contaminations. However, the safety and risk assessments of infant formula to reveal not only the targeted presence of toxic chemicals, but also molecular changes involving unexpected contaminations, have not been reported. In this study, a huge amount of raw molecularly based signals from infant formula was analysed using reversed phase and hydrophilic interaction chromatography with time-of-flight MS (LC-MS) and (1) H nuclear magnetic resonance (NMR) and then processed by a principal component analysis (PCA). RESULTS PCA plots visualised signature trends in the complex signal-data batches from each excess contamination of detectable chemicals by LC-MS and NMR. These trends in the different batches from a portion of excess chemical contaminations such as pesticides, melamine and heavy metals and out-of-date products can be visualised from spectrally discriminated infant formula samples. CONCLUSION PCA plots provide possible attempts to maximise the covariance between the stable lot-to-lot uniformity and excess exogenous contaminations and/or degradation to discriminate against the molecularly based signals from infant formulas. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Chihiro Tanada
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takahiro Hosoya
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shuhei Yoshida
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Takashi Akiba
- Department of Infant Milk and Analytical Technology, Research and Development Center, Wakodo Co., Ltd, 2-2, Wakaba-cho, Chofu-shi, Tokyo 182-0003, Japan
| | - Jun Zhe Min
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yutaka Yamano
- Department of Infant Milk and Analytical Technology, Research and Development Center, Wakodo Co., Ltd, 2-2, Wakaba-cho, Chofu-shi, Tokyo 182-0003, Japan
| | - Shigenori Kumazawa
- Department of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
49
|
Tang BC, Cai CB, Shi W, Xu L. Rapid Quantification of Melamine in Different Brands/Types of Milk Powders Using Standard Addition Net Analyte Signal and Near-Infrared Spectroscopy. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2016; 2016:9256102. [PMID: 27525154 PMCID: PMC4971385 DOI: 10.1155/2016/9256102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/31/2016] [Accepted: 06/07/2016] [Indexed: 06/06/2023]
Abstract
Multivariate calibration (MVC) and near-infrared (NIR) spectroscopy have demonstrated potential for rapid analysis of melamine in various dairy products. However, the practical application of ordinary MVC can be largely restricted because the prediction of a new sample from an uncalibrated batch would be subject to a significant bias due to matrix effect. In this study, the feasibility of using NIR spectroscopy and the standard addition (SA) net analyte signal (NAS) method (SANAS) for rapid quantification of melamine in different brands/types of milk powders was investigated. In SANAS, the NAS vector of melamine in an unknown sample as well as in a series of samples added with melamine standards was calculated and then the Euclidean norms of series standards were used to build a straightforward univariate regression model. The analysis results of 10 different brands/types of milk powders with melamine levels 0~0.12% (w/w) indicate that SANAS obtained accurate results with the root mean squared error of prediction (RMSEP) values ranging from 0.0012 to 0.0029. An additional advantage of NAS is to visualize and control the possible unwanted variations during standard addition. The proposed method will provide a practically useful tool for rapid and nondestructive quantification of melamine in different brands/types of milk powders.
Collapse
Affiliation(s)
- Bang-Cheng Tang
- Institute of Applied Chemistry, College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou 554300, China
| | - Chen-Bo Cai
- College of Chemistry and Life Science, Chuxiong Normal University, Chuxiong 675000, China
| | - Wei Shi
- Institute of Applied Chemistry, College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou 554300, China
| | - Lu Xu
- Institute of Applied Chemistry, College of Material and Chemical Engineering, Tongren University, Tongren, Guizhou 554300, China
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
50
|
Karunathilaka SR, Farris S, Mossoba MM, Moore JC, Yakes BJ. Characterising variances of milk powder and instrumentation for the development of a non-targeted, Raman spectroscopy and chemometrics detection method for the evaluation of authenticity. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:921-32. [PMID: 27167451 PMCID: PMC4918629 DOI: 10.1080/19440049.2016.1188437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/29/2016] [Indexed: 01/20/2023]
Abstract
There is a need to develop rapid tools to screen milk products for economically motivated adulteration. An understanding of the physiochemical variability within skim milk powder (SMP) and non-fat dry milk (NFDM) is the key to establishing the natural differences of these commodities prior to the development of non-targeted detection methods. This study explored the sources of variance in 71 commercial SMP and NFDM samples using Raman spectroscopy and principal component analysis (PCA) and characterised the largest number of commercial milk powders acquired from a broad number of international manufacturers. Spectral pre-processing using a gap-segment derivative transformation (gap size = 5, segment width = 9, fourth derivative) in combination with sample normalisation was necessary to reduce the fluorescence background of the milk powder samples. PC scores plots revealed no clear trends for various parameters, including day of analysis, powder type, supplier and processing temperatures, while the largest variance was due to irreproducibility in sample positioning. Significant chemical sources of variances were explained by using the spectral features in the PC loadings plots where four samples from the same manufacturer were determined to likely contain an additional component or lactose anomers, and one additional sample was identified as an outlier and likely containing an adulterant or differing quality components. The variance study discussed herein with this large, diverse set of milk powders holds promise for future use as a non-targeted screening method that could be applied to commercial milk powders.
Collapse
Affiliation(s)
- Sanjeewa R. Karunathilaka
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | - Samantha Farris
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | - Magdi M. Mossoba
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| | | | - Betsy Jean Yakes
- US Food and Drug Administration (USFDA), Center for Food Safety and Applied Nutrition, Office of Regulatory Science, College Park, MD, USA
| |
Collapse
|