1
|
Krishnan A, Waheed SO, Melayikandy S, LaRouche C, Paik M, Schofield CJ, Karabencheva-Christova TG. Effects of Clinical Mutations in the Second Coordination Sphere and Remote Regions on the Catalytic Mechanism of Non-Heme Fe(II)/2-Oxoglutarate-Dependent Aspartyl Hydroxylase AspH. Chemphyschem 2024; 25:e202400303. [PMID: 38839574 DOI: 10.1002/cphc.202400303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Aspartyl/asparaginyl hydroxylase (AspH) catalyzes the post-translational hydroxylations of vital human proteins, playing an essential role in maintaining their biological functions. Single-point mutations in the Second Coordination Sphere (SCS) and long-range (LR) residues of AspH have been linked to pathological conditions such as the ophthalmologic condition Traboulsi syndrome and chronic kidney disease (CKD). Although the clinical impacts of these mutations are established, there is a critical knowledge gap regarding their specific atomistic effects on the catalytic mechanism of AspH. In this study, we report integrated computational investigations on the potential mechanistic implications of four mutant forms of human AspH with clinical importance: R735W, R735Q, R688Q, and G434V. All the mutant forms exhibited altered binding interactions with the co-substrate 2-oxoglutarate (2OG) and the main substrate in the ferric-superoxo and ferryl complexes, which are critical for catalysis, compared to the wild-type (WT). Importantly, the mutations strongly influence the energetics of the frontier molecular orbitals (FMOs) and, thereby, the activation energies for the hydrogen atom transfer (HAT) step compared to the WT AspH. Insights from our study can contribute to enzyme engineering and the development of selective modulators for WT and mutants of AspH, ultimately aiding in treating cancers, Traboulsi syndrome and, CKD.
Collapse
Affiliation(s)
- Anandhu Krishnan
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Sodiq O Waheed
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Sreerag Melayikandy
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Ciara LaRouche
- Department of Chemical Engineering, Michigan Techno, Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Meredith Paik
- Department of Chemistry, Michigan Technological University, Houghton, MI-49931, USA
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, OX1 3TA, United Kingdom
| | | |
Collapse
|
2
|
Gantz M, Mathis SV, Nintzel FEH, Lio P, Hollfelder F. On synergy between ultrahigh throughput screening and machine learning in biocatalyst engineering. Faraday Discuss 2024; 252:89-114. [PMID: 39133073 PMCID: PMC11318516 DOI: 10.1039/d4fd00065j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 08/13/2024]
Abstract
Protein design and directed evolution have separately contributed enormously to protein engineering. Without being mutually exclusive, the former relies on computation from first principles, while the latter is a combinatorial approach based on chance. Advances in ultrahigh throughput (uHT) screening, next generation sequencing and machine learning may create alternative routes to engineered proteins, where functional information linked to specific sequences is interpreted and extrapolated in silico. In particular, the miniaturisation of functional tests in water-in-oil emulsion droplets with picoliter volumes and their rapid generation and analysis (>1 kHz) allows screening of >107-membered libraries in a day. Subsequently, decoding the selected clones by short or long-read sequencing methods leads to large sequence-function datasets that may allow extrapolation from experimental directed evolution to further improved mutants beyond the observed hits. In this work, we explore experimental strategies for how to draw up 'fitness landscapes' in sequence space with uHT droplet microfluidics, review the current state of AI/ML in enzyme engineering and discuss how uHT datasets may be combined with AI/ML to make meaningful predictions and accelerate biocatalyst engineering.
Collapse
Affiliation(s)
- Maximilian Gantz
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Simon V Mathis
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Friederike E H Nintzel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Pietro Lio
- Department of Computer Science, University of Cambridge, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
3
|
Appadurai R, Koneru JK, Bonomi M, Robustelli P, Srivastava A. Clustering Heterogeneous Conformational Ensembles of Intrinsically Disordered Proteins with t-Distributed Stochastic Neighbor Embedding. J Chem Theory Comput 2023; 19:4711-4727. [PMID: 37338049 PMCID: PMC11108026 DOI: 10.1021/acs.jctc.3c00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) populate a range of conformations that are best described by a heterogeneous ensemble. Grouping an IDP ensemble into "structurally similar" clusters for visualization, interpretation, and analysis purposes is a much-desired but formidable task, as the conformational space of IDPs is inherently high-dimensional and reduction techniques often result in ambiguous classifications. Here, we employ the t-distributed stochastic neighbor embedding (t-SNE) technique to generate homogeneous clusters of IDP conformations from the full heterogeneous ensemble. We illustrate the utility of t-SNE by clustering conformations of two disordered proteins, Aβ42, and α-synuclein, in their APO states and when bound to small molecule ligands. Our results shed light on ordered substates within disordered ensembles and provide structural and mechanistic insights into binding modes that confer specificity and affinity in IDP ligand binding. t-SNE projections preserve the local neighborhood information, provide interpretable visualizations of the conformational heterogeneity within each ensemble, and enable the quantification of cluster populations and their relative shifts upon ligand binding. Our approach provides a new framework for detailed investigations of the thermodynamics and kinetics of IDP ligand binding and will aid rational drug design for IDPs.
Collapse
Affiliation(s)
- Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | | | - Massimiliano Bonomi
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry. CNRS UMR 3528, C3BI, CNRS USR 3756, Institut Pasteur, Paris, France
| | - Paul Robustelli
- Dartmouth College, Department of Chemistry, Hanover, NH, 03755, USA
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
4
|
Magalhães ÁF, Powner MW. Prebiotic triose glycolysis promoted by co-catalytic proline and phosphate in neutral water. Chem Commun (Camb) 2022; 58:13519-13522. [PMID: 36398592 DOI: 10.1039/d2cc05466c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proline and phosphate promote a near-quantitative aldol reaction between glycolaldehyde phosphate and formaldehyde at neutral pH in water. Our results demonstrate the important role of general acid-base catalysis in water and underscore the essential role that amino acid catalysis may have played in early evolution of life's core metabolic pathways.
Collapse
Affiliation(s)
- Álvaro F Magalhães
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Matthew W Powner
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
5
|
Esteve F, Altava B, Luis SV, García-Verdugo E. Basically, nucleophilicity matters little: towards unravelling the supramolecular driving forces in enzyme-like CO 2 conversion. Org Biomol Chem 2022; 20:6637-6645. [PMID: 35929502 DOI: 10.1039/d2ob00948j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism for the cycloaddition of CO2 to styrene oxide in the presence of macrocyclic pseudopeptides has been studied using DFT methods. Computational calculations indicate that the unprecedented catalytic behaviour previously observed experimentally, in which the most reactive species was not the most nucleophilic but the most basic one, can be associated to the tight cooperativity between several supramolecular interactions promoted by simple peptidomimetics able to display a synzymatic behaviour. This bizarre catalytic performance afforded remarkable conversions of a sluggish substrate like styrene oxide into the desired cyclic carbonate, even under relatively mild reaction conditions, opening the way for the practical use of CO2 as a raw material in the preparation of valuable chemicals. Furthermore, the remote modification of essential structural features of the macrocycle (synzyme engineering) permitted the driving forces of the synzymatic system to be analyzed, stressing the crucial synergic effect between an elegantly preorganized oxyanion hole and additional aromatic interactions.
Collapse
Affiliation(s)
- Ferran Esteve
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Belén Altava
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Santiago V Luis
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| | - Eduardo García-Verdugo
- Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, Castellón, 12071, Spain.
| |
Collapse
|
6
|
Zahradník J, Schreiber G. Protein Engineering in the Design of Protein-Protein Interactions: SARS-CoV-2 Inhibitors as a Test Case. Biochemistry 2021; 60:3429-3435. [PMID: 34196543 PMCID: PMC8613841 DOI: 10.1021/acs.biochem.1c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/01/2021] [Indexed: 11/28/2022]
Abstract
The formation of specific protein-protein interactions (PPIs) drive most biological processes. Malfunction of such interactions is the molecular driver of many diseases. Our ability to engineer existing PPIs or create new ones has become a vital research tool. In addition, engineered proteins with new or altered interactions are among the most critical drugs that have been developed in recent years. These include antibodies, cytokines, inhibitors, and others. Here, we provide a perspective on the current status of the methods used to engineer new or altered PPIs. The emergence of the COVID-19 pandemic, which resulted in a worldwide quest to develop specific PPI inhibitors as drugs, provided an up-to-date and state-of-the-art status report on the methodologies for engineering PPIs targeting the interaction of the viral spike protein with its cellular target, ACE2. Multiple, very high affinity binders were generated within a few months using in vitro evolution by itself, or in combination with computational design. The different experimental and computational methods used to block this interaction provide a road map for the future of PPI engineering.
Collapse
Affiliation(s)
- Jiří Zahradník
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
7
|
Hartrampf N, Saebi A, Poskus M, Gates ZP, Callahan AJ, Cowfer AE, Hanna S, Antilla S, Schissel CK, Quartararo AJ, Ye X, Mijalis AJ, Simon MD, Loas A, Liu S, Jessen C, Nielsen TE, Pentelute BL. Synthesis of proteins by automated flow chemistry. Science 2020; 368:980-987. [PMID: 32467387 DOI: 10.1126/science.abb2491] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
Ribosomes can produce proteins in minutes and are largely constrained to proteinogenic amino acids. Here, we report highly efficient chemistry matched with an automated fast-flow instrument for the direct manufacturing of peptide chains up to 164 amino acids long over 327 consecutive reactions. The machine is rapid: Peptide chain elongation is complete in hours. We demonstrate the utility of this approach by the chemical synthesis of nine different protein chains that represent enzymes, structural units, and regulatory factors. After purification and folding, the synthetic materials display biophysical and enzymatic properties comparable to the biologically expressed proteins. High-fidelity automated flow chemistry is an alternative for producing single-domain proteins without the ribosome.
Collapse
Affiliation(s)
- N Hartrampf
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Saebi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M Poskus
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Z P Gates
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Callahan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A E Cowfer
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Hanna
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Antilla
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Quartararo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - X Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A J Mijalis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - M D Simon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - A Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - S Liu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - C Jessen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - T E Nielsen
- Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Måløv, Denmark
| | - B L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
8
|
Ressler VT, Mix KA, Raines RT. Esterification Delivers a Functional Enzyme into a Human Cell. ACS Chem Biol 2019; 14:599-602. [PMID: 30830748 DOI: 10.1021/acschembio.9b00033] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A major hurdle in chemical biology is the delivery of native proteins into the cytosol of mammalian cells. Herein, we report that esterification of the carboxyl groups of an enzyme with a diazo compound enables not only its passage into the cytosol but also the retention of its catalytic activity there. This scenario is demonstrated with human ribonuclease 1, which manifests ribonucleolytic activity that can be cytotoxic. After internalization, the nascent esters are hydrolyzed in situ by endogenous esterases, making the process traceless. This strategy provides unprecedented opportunities for the delivery of functional enzymes into human cells.
Collapse
Affiliation(s)
- Valerie T. Ressler
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kalie A. Mix
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Affiliation(s)
- Dominic J. Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dawei Xu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Tripathi R, Noetzel J, Marx D. Exposing catalytic versatility of GTPases: taking reaction detours in mutants of hGBP1 enzyme without additional energetic cost. Phys Chem Chem Phys 2019; 21:859-867. [DOI: 10.1039/c8cp06343e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Our study reveals that the replacement of catalytically competent residues by the inert amino acid alanine, S73A and E99A, in hGBP1 opens a plethora of molecularly different reaction pathways featuring very similar energy barriers as the wild type.
Collapse
Affiliation(s)
- Ravi Tripathi
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
11
|
Arnold U, Raines RT. Replacing a single atom accelerates the folding of a protein and increases its thermostability. Org Biomol Chem 2018; 14:6780-5. [PMID: 27336677 DOI: 10.1039/c6ob00980h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational attributes of proline can have a substantial effect on the folding of polypeptide chains into a native structure and on the stability of that structure. Replacing the 4S hydrogen of a proline residue with fluorine is known to elicit stereoelectronic effects that favor a cis peptide bond. Here, semisynthesis is used to replace a cis-proline residue in ribonuclease A with (2S,4S)-4-fluoroproline. This subtle substitution accelerates the folding of the polypeptide chain into its three-dimensional structure and increases the thermostability of that structure without compromising its catalytic activity. Thus, an appropriately situated fluorine can serve as a prosthetic atom in the context of a protein.
Collapse
Affiliation(s)
- Ulrich Arnold
- Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
12
|
Grünenfelder CE, Kisunzu JK, Trapp N, Kastl R, Wennemers H. Crystal structures of peptidic catalysts of the H-d
Pro-Pro-Xaa type. Biopolymers 2017; 108. [DOI: 10.1002/bip.22912] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Claudio E. Grünenfelder
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Jessica K. Kisunzu
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Robert Kastl
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratory of Organic Chemistry, D-CHAB, ETH Zürich; Vladimir-Prelog-Weg 3 CH-8093 Zürich Switzerland
| |
Collapse
|
13
|
Schnitzer T, Wiesner M, Krattiger P, Revell JD, Wennemers H. Is more better? A comparison of tri- and tetrapeptidic catalysts. Org Biomol Chem 2017; 15:5877-5881. [DOI: 10.1039/c7ob01039g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
From an enzymatic perspective, there is a general notion that the bigger and more complex a catalytically active peptide is the more enzyme-like and the better it should become. But is this really true?
Collapse
Affiliation(s)
- Tobias Schnitzer
- Laboratory of Organic Chemistry
- D-CHAB
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| | - Markus Wiesner
- Laboratory of Organic Chemistry
- D-CHAB
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| | - Philipp Krattiger
- Laboratory of Organic Chemistry
- D-CHAB
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| | | | - Helma Wennemers
- Laboratory of Organic Chemistry
- D-CHAB
- ETH Zurich
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
14
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
15
|
Lamba V, Yabukarski F, Pinney M, Herschlag D. Evaluation of the Catalytic Contribution from a Positioned General Base in Ketosteroid Isomerase. J Am Chem Soc 2016; 138:9902-9. [PMID: 27410422 DOI: 10.1021/jacs.6b04796] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Proton transfer reactions are ubiquitous in enzymes and utilize active site residues as general acids and bases. Crystal structures and site-directed mutagenesis are routinely used to identify these residues, but assessment of their catalytic contribution remains a major challenge. In principle, effective molarity measurements, in which exogenous acids/bases rescue the reaction in mutants lacking these residues, can estimate these catalytic contributions. However, these exogenous moieties can be restricted in reactivity by steric hindrance or enhanced by binding interactions with nearby residues, thereby resulting in over- or underestimation of the catalytic contribution, respectively. With these challenges in mind, we investigated the catalytic contribution of an aspartate general base in ketosteroid isomerase (KSI) by exogenous rescue. In addition to removing the general base, we systematically mutated nearby residues and probed each mutant with a series of carboxylate bases of similar pKa but varying size. Our results underscore the need for extensive and multifaceted variation to assess and minimize steric and positioning effects and determine effective molarities that estimate catalytic contributions. We obtained consensus effective molarities of ∼5 × 10(4) M for KSI from Comamonas testosteroni (tKSI) and ∼10(3) M for KSI from Pseudomonas putida (pKSI). An X-ray crystal structure of a tKSI general base mutant showed no additional structural rearrangements, and double mutant cycles revealed similar contributions from an oxyanion hole mutation in the wild-type and base-rescued reactions, providing no indication of mutational effects extending beyond the general base site. Thus, the high effective molarities suggest a large catalytic contribution associated with the general base. A significant portion of this effect presumably arises from positioning of the base, but its large magnitude suggests the involvement of additional catalytic mechanisms as well.
Collapse
Affiliation(s)
- Vandana Lamba
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Filip Yabukarski
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Margaux Pinney
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| | - Daniel Herschlag
- Department of Biochemistry, ‡Department of Chemistry, #Department of Chemical Engineering, §Stanford ChEM-H, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
16
|
Grünenfelder CE, Kisunzu JK, Wennemers H. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide. Angew Chem Int Ed Engl 2016; 55:8571-4. [DOI: 10.1002/anie.201602230] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Claudio E. Grünenfelder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jessica K. Kisunzu
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
17
|
Grünenfelder CE, Kisunzu JK, Wennemers H. Peptide-Catalyzed Stereoselective Conjugate Addition Reactions of Aldehydes to Maleimide. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Claudio E. Grünenfelder
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Jessica K. Kisunzu
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie; ETH Zürich; Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| |
Collapse
|
18
|
Li Y, Fu T, Liu T, Guo H, Guo Q, Xu J, Zhang D, Qian W, Dai J, Li B, Guo Y, Hou S, Wang H. Characterization of alanine to valine sequence variants in the Fc region of nivolumab biosimilar produced in Chinese hamster ovary cells. MAbs 2016; 8:951-60. [PMID: 27050807 DOI: 10.1080/19420862.2016.1172150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Nivolumab is a therapeutic fully human IgG4 antibody to programmed death 1 (PD-1). In this study, a nivolumab biosimilar, which was produced in our laboratory, was analyzed and characterized. Sequence variants that contain undesired amino acid sequences may cause concern during biosimilar bioprocess development. We found that low levels of sequence variants were detected in the heavy chain of the nivolumab biosimilar by ultra performance liquid chromatography (UPLC) and tandem mass spectrometry. It was further identified with UPLC-MS/MS by IdeS or trypsin digestion. The sequence variant was confirmed through addition of synthetic mutant peptide. Subsequently, the mixing base signal of normal and mutant sequence was detected through DNA sequencing. The relative levels of mutant A424V in the Fc region of the heavy chain have been detected and demonstrated to be 12.25% and 13.54%, via base peak intensity (BPI) and UV chromatography of the tryptic peptide mapping, respectively. A424V variant was also quantified by real-time PCR (RT-PCR) at the DNA and RNA level, which was 19.2% and 16.8%, respectively. The relative content of the mutant was consistent at the DNA, RNA and protein level, indicating that the A424V mutation may have little influence at transcriptional or translational levels. These results demonstrate that orthogonal state-of-the-art techniques such as LC- UV- MS and RT-PCR should be implemented to characterize recombinant proteins and cell lines for development of biosimilars. Our study suggests that it is important to establish an integrated and effective analytical method to monitor and characterize sequence variants during antibody drug development, especially for antibody biosimilar products.
Collapse
Affiliation(s)
- Yantao Li
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Tuo Fu
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Tao Liu
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Huaizu Guo
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Qingcheng Guo
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Jin Xu
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Dapeng Zhang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Weizhu Qian
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,c Shanghai Zhangjiang Biotechnology Co
| | - Jianxin Dai
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Bohua Li
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Yajun Guo
- b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d School of Pharmacy, Liaocheng University , Liaocheng , China.,e School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Sheng Hou
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China
| | - Hao Wang
- a International Joint Cancer Institute, Second Military Medical University , Shanghai , China.,b State Key Laboratory of Antibody Medicine and Targeted Therapy , Shanghai , China.,d School of Pharmacy, Liaocheng University , Liaocheng , China
| |
Collapse
|
19
|
Johnston SB, Raines RT. Conformational stability and catalytic activity of PTEN variants linked to cancers and autism spectrum disorders. Biochemistry 2015; 54:1576-82. [PMID: 25647146 DOI: 10.1021/acs.biochem.5b00028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphoinositides are membrane components that play critical regulatory roles in mammalian cells. The enzyme PTEN, which catalyzes the dephosphorylation of the phosphoinositide PIP3, is damaged in most sporadic tumors. Mutations in the PTEN gene have also been linked to autism spectrum disorders and other forms of delayed development. Here, human PTEN is shown to be on the cusp of unfolding under physiological conditions. Variants of human PTEN linked to somatic cancers and disorders on the autism spectrum are shown to be impaired in their conformational stability, catalytic activity, or both. Those variants linked only to autism have activity higher than the activity of those linked to cancers. PTEN-L, which is a secreted trans-active isoform, has conformational stability greater than that of the wild-type enzyme. These data indicate that PTEN is a fragile enzyme cast in a crucial role in cellular metabolism and suggest that PTEN-L is a repository for a critical catalytic activity.
Collapse
Affiliation(s)
- Sean B Johnston
- Department of Biochemistry and ‡Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
20
|
Lukesh JC, Andersen KA, Wallin KK, Raines RT. Organocatalysts of oxidative protein folding inspired by protein disulfide isomerase. Org Biomol Chem 2014; 12:8598-602. [PMID: 25266373 PMCID: PMC4237591 DOI: 10.1039/c4ob01738b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalysts derived from diethylenetriamine effect the rapid isomerization of non-native protein disulfide bonds to native ones. These catalysts contain a pendant hydrophobic moiety to encourage interaction with the non-native state, and two thiol groups with low pKa values that form a disulfide bond with a high E°' value.
Collapse
Affiliation(s)
- John C Lukesh
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
21
|
Mitkevich VA, Burnysheva KM, Ilinskaya ON, Pace CN, Makarov AA. Cytotoxicity of RNase Sa to the acute myeloid leukemia Kasumi-1 cells depends on the net charge. Oncoscience 2014; 1:738-44. [PMID: 25594000 PMCID: PMC4278273 DOI: 10.18632/oncoscience.97] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 11/10/2014] [Indexed: 01/21/2023] Open
Abstract
The majority of known cytotoxic RNases are basic proteins which destroy intracellular RNA. Cationization of RNases is considered to be an effective strategy for strengthening their antitumor properties. We constructed a set of RNase Sa variants consisting of charge reversal mutants, charge neutralization mutants, and variants with positively charged cluster at the N-terminus. All constructs retain a high level of catalytic activity and differ in net charge. Using acute myeloid leukemia cells Kasumi-1 we have shown that (i) cytotoxicity of RNase Sa mutants is linearly enhanced by cationization, (ii) the ability of cytotoxic mutants to induce cell death is caused by induction of apoptosis and (iii) localization of positive charge on N-terminus does not contribute to RNase Sa cytotoxicity. Capacity to induce apoptosis in malignant cells and the absence of necrotic effects make the RNase Sa mutants with high positive charge a suitable anti-cancer agent.
Collapse
Affiliation(s)
- Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ksenia M Burnysheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga N Ilinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia ; Department of Microbiology, Kazan Federal (Volga-Region) University, Kazan, Russia
| | - C Nick Pace
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA ; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, USA
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
22
|
Feldmeier K, Höcker B. Computational protein design of ligand binding and catalysis. Curr Opin Chem Biol 2013; 17:929-33. [DOI: 10.1016/j.cbpa.2013.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Schwans JP, Sunden F, Gonzalez A, Tsai Y, Herschlag D. Uncovering the determinants of a highly perturbed tyrosine pKa in the active site of ketosteroid isomerase. Biochemistry 2013; 52:7840-55. [PMID: 24151972 PMCID: PMC3890242 DOI: 10.1021/bi401083b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the idiosyncratic enzyme active-site environment, side chain and ligand pKa values can be profoundly perturbed relative to their values in aqueous solution. Whereas structural inspection of systems has often attributed perturbed pKa values to dominant contributions from placement near charged groups or within hydrophobic pockets, Tyr57 of a Pseudomonas putida ketosteroid isomerase (KSI) mutant, suggested to have a pKa perturbed by nearly 4 units to 6.3, is situated within a solvent-exposed active site devoid of cationic side chains, metal ions, or cofactors. Extensive comparisons among 45 variants with mutations in and around the KSI active site, along with protein semisynthesis, (13)C NMR spectroscopy, absorbance spectroscopy, and X-ray crystallography, was used to unravel the basis for this perturbed Tyr pKa. The results suggest that the origin of large energetic perturbations are more complex than suggested by visual inspection. For example, the introduction of positively charged residues near Tyr57 raises its pKa rather than lowers it; this effect, and part of the increase in the Tyr pKa from the introduction of nearby anionic groups, arises from accompanying active-site structural rearrangements. Other mutations with large effects also cause structural perturbations or appear to displace a structured water molecule that is part of a stabilizing hydrogen-bond network. Our results lead to a model in which three hydrogen bonds are donated to the stabilized ionized Tyr, with these hydrogen-bond donors, two Tyr side chains, and a water molecule positioned by other side chains and by a water-mediated hydrogen-bond network. These results support the notion that large energetic effects are often the consequence of multiple stabilizing interactions rather than a single dominant interaction. Most generally, this work provides a case study for how extensive and comprehensive comparisons via site-directed mutagenesis in a tight feedback loop with structural analysis can greatly facilitate our understanding of enzyme active-site energetics. The extensive data set provided may also be a valuable resource for those wishing to extensively test computational approaches for determining enzymatic pKa values and energetic effects.
Collapse
Affiliation(s)
- Jason P. Schwans
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Fanny Sunden
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Ana Gonzalez
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Yingssu Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
| |
Collapse
|
24
|
Lacombe-Harvey MÈ, Fortin M, Ohnuma T, Fukamizo T, Letzel T, Brzezinski R. A highly conserved arginine residue of the chitosanase from Streptomyces sp. N174 is involved both in catalysis and substrate binding. BMC BIOCHEMISTRY 2013; 14:23. [PMID: 24041306 PMCID: PMC3848431 DOI: 10.1186/1471-2091-14-23] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/11/2013] [Indexed: 01/24/2023]
Abstract
Background Streptomyces sp. N174 chitosanase (CsnN174), a member of glycoside hydrolases family 46, is one of the most extensively studied chitosanases. Previous studies allowed identifying several key residues of this inverting enzyme, such as the two catalytic carboxylic amino acids as well as residues that are involved in substrate binding. In spite of the progress in understanding the catalytic mechanism of this chitosanase, the function of some residues highly conserved throughout GH46 family has not been fully elucidated. This study focuses on one of such residues, the arginine 42. Results Mutation of Arg42 into any other amino acid resulted in a drastic loss of enzyme activity. Detailed investigations of R42E and R42K chitosanases revealed that the mutant enzymes are not only impaired in their catalytic activity but also in their mode of interaction with the substrate. Mutated enzymes were more sensitive to substrate inhibition and were altered in their pattern of activity against chitosans of various degrees of deacetylation. Our data show that Arg42 plays a dual role in CsnN174 activity. Conclusions Arginine 42 is essential to maintain the enzymatic function of chitosanase CsnN174. We suggest that this arginine is influencing the catalytic nucleophile residue and also the substrate binding mode of the enzyme by optimizing the electrostatic interaction between the negatively charged carboxylic residues of the substrate binding cleft and the amino groups of GlcN residues in chitosan.
Collapse
Affiliation(s)
- Marie-Ève Lacombe-Harvey
- Département de Biologie, Centre d'Étude et de Valorisation de la Diversité Microbienne, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Arnold U, Huck BR, Gellman SH, Raines RT. Protein prosthesis: β-peptides as reverse-turn surrogates. Protein Sci 2013; 22:274-9. [PMID: 23238807 DOI: 10.1002/pro.2208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/10/2012] [Indexed: 01/27/2023]
Abstract
The introduction of non-natural modules could provide unprecedented control over folding/unfolding behavior, conformational stability, and biological function of proteins. Success requires the interrogation of candidate modules in natural contexts. Here, expressed protein ligation is used to replace a reverse turn in bovine pancreatic ribonuclease (RNase A) with a synthetic β-dipeptide: β²-homoalanine-β³-homoalanine. This segment is known to adopt an unnatural reverse-turn conformation that contains a 10-membered ring hydrogen bond, but one with a donor-acceptor pattern opposite to that in the 10-membered rings of natural reverse turns. The RNase A variant has intact enzymatic activity, but unfolds more quickly and has diminished conformational stability relative to native RNase A. These data indicate that hydrogen-bonding pattern merits careful consideration in the selection of beneficial reverse-turn surrogates.
Collapse
Affiliation(s)
- Ulrich Arnold
- Institute of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | | | | | | |
Collapse
|
26
|
Characterization and identification of alanine to serine sequence variants in an IgG4 monoclonal antibody produced in mammalian cell lines. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 908:1-8. [PMID: 23122394 DOI: 10.1016/j.jchromb.2012.09.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/04/2012] [Accepted: 09/13/2012] [Indexed: 12/17/2022]
Abstract
Low levels of alanine to serine sequence variants were identified in an IgG4 monoclonal antibody by ultra/high performance liquid chromatography and tandem mass spectrometry. The levels of the identified sequence variants A183S and A152S, both in the light chain, have been determined to be 7.8-9.9% and 0.5-0.6%, by extracted ion currents of the tryptic peptides L16 and L14, respectively. The A183S variant was confirmed through tryptic map spiking experiments using synthetic peptide, SDYEK, which incorporated Ser at the position of native Ala in the tryptic peptide L16. Both mutations were also observed by endoproteinase Asp-N peptide mapping. The variant level of A183S was also quantified by LC-UV with detection at 280nm and fluorescence detection of tyrosine residues on the tryptic peptides. The results from LC-MS, UV, and fluorescence detection are in close agreement with each other. The levels of the sequence variants are comparable among the antibody samples manufactured at different scales as well as locations, indicating that the variants' levels are not affected by manufacture scale or locations. DNA sequencing of the master cell bank revealed the presence of mixed bases at position 183 encoding both wild and mutated populations, whereas bases encoding the minor sequence variant at position 152 were not detected. The root cause for A152S mutation is not yet clearly understood at this moment.
Collapse
|
27
|
Huang Y, O'Mara B, Conover M, Ludwig R, Fu J, Tao L, Li ZJ, Rieble S, Grace MJ, Russell RJ. Glycine to glutamic acid misincorporation observed in a recombinant protein expressed by Escherichia coli cells. Protein Sci 2012; 21:625-32. [PMID: 22362707 DOI: 10.1002/pro.2046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 02/10/2012] [Indexed: 01/14/2023]
Abstract
A novel amino acid misincorporation, in which the intended glycine (Gly) residues were replaced by a glutamic acid (Glu), was observed in a recombinant protein expressed by Escherichia coli. The misincorporation was identified by peptide mapping and liquid chromatography-tandem mass spectrometric analysis on proteolyzed peptides of the protein and verified using the corresponding synthetic peptides containing the misincorporated residues. Analysis of the distribution of the misincorporated residues and their codon usage shows strong correlation between this misincorporation and the use of rarely used codon within the E. coli expression system. Results in this study suggest that the usage of the rare codon GGA has resulted in a Glu for Gly misincorporation.
Collapse
Affiliation(s)
- Yunping Huang
- Department of Biologics Product & Process Development, Bristol-Myers Squibb Technical Operations, Princeton, New Jersey 08543, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Geibel B, Merschky M, Rether C, Schmuck C. Artificial Enzyme Mimics. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
29
|
Lee J, Goodey NM. Catalytic contributions from remote regions of enzyme structure. Chem Rev 2011; 111:7595-624. [PMID: 21923192 DOI: 10.1021/cr100042n] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jeeyeon Lee
- Department of Chemistry, 413 Wartik Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | |
Collapse
|
30
|
Benner SA, Yang Z, Chen F. Synthetic Biology, Tinkering Biology, and Artificial Biology. What are We Learning? CR CHIM 2010; 14:372-387. [PMID: 29983697 DOI: 10.1016/j.crci.2010.06.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
While chemical theory cannot yet support an engineering vision that allows molecules, DNA sequences, and proteins to be interchangeable parts in artificial constructs without "tinkering", progress can be made in synthetic biology by pursuing challenges at the limits of existing theory. These force scientists across uncharted terrain where they must address unscripted problems where, if theory is inadequate, failure results. Thus, synthesis drives discovery and paradigm change in ways that analysis cannot. Further, if failures are analyzed, new theories emerge. Here, we illustrate this by synthesizing an artificial genetic system capable of Darwinian evolution, a feature theorized to be universal to life.
Collapse
Affiliation(s)
- Steven A Benner
- Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology
| | - Zunyi Yang
- Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology
| | - Fei Chen
- Foundation for Applied Molecular Evolution and The Westheimer Institute for Science and Technology
| |
Collapse
|
31
|
Dissecting the paradoxical effects of hydrogen bond mutations in the ketosteroid isomerase oxyanion hole. Proc Natl Acad Sci U S A 2010; 107:1960-5. [PMID: 20080683 DOI: 10.1073/pnas.0911168107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The catalytic importance of enzyme active-site interactions is frequently assessed by mutating specific residues and measuring the resulting rate reductions. This approach has been used in bacterial ketosteroid isomerase to probe the energetic importance of active-site hydrogen bonds donated to the dienolate reaction intermediate. The conservative Tyr16Phe mutation impairs catalysis by 10(5)-fold, far larger than the effects of hydrogen bond mutations in other enzymes. However, the less-conservative Tyr16Ser mutation, which also perturbs the Tyr16 hydrogen bond, results in a less-severe 10(2)-fold rate reduction. To understand the paradoxical effects of these mutations and clarify the energetic importance of the Tyr16 hydrogen bond, we have determined the 1.6-A resolution x-ray structure of the intermediate analogue, equilenin, bound to the Tyr16Ser mutant and measured the rate effects of mutating Tyr16 to Ser, Thr, Ala, and Gly. The nearly identical 200-fold rate reductions of these mutations, together with the 6.4-A distance observed between the Ser16 hydroxyl and equilenin oxygens in the x-ray structure, strongly suggest that the more moderate rate effect of this mutant is not due to maintenance of a hydrogen bond from Ser at position 16. These results, additional spectroscopic observations, and prior structural studies suggest that the Tyr16Phe mutation results in unfavorable interactions with the dienolate intermediate beyond loss of a hydrogen bond, thereby exaggerating the apparent energetic benefit of the Tyr16 hydrogen bond relative to the solution reaction. These results underscore the complex energetics of hydrogen bonding interactions and site-directed mutagenesis experiments.
Collapse
|
32
|
Schomburg D. Methodological aspects and potential of computer‐aided protein engineering. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905439009549745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dietmar Schomburg
- a GBF (Gesellschaft für Biotechnologische Forschung) , Mascheroder Weg 1, Braunschweig , D‐3300 , West Germany
| |
Collapse
|
33
|
Schneider KD, Bethel CR, Distler AM, Hujer AM, Bonomo RA, Leonard DA. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009; 48:6136-45. [PMID: 19485421 DOI: 10.1021/bi900448u] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Class D beta-lactamases hydrolyze beta-lactam antibiotics by using an active site serine nucleophile to form a covalent acyl-enzyme intermediate and subsequently employ water to deacylate the beta-lactam and release product. Class D beta-lactamases are carboxylated on the epsilon-amino group of an active site lysine, with the resulting carbamate functional group serving as a general base. We discovered that substitutions of the active site serine and lysine in OXA-1 beta-lactamase, a monomeric class D enzyme, significantly disrupt catalytic turnover. Substitution of glycine for the nucleophilic serine (S67G) results in an enzyme that can still bind substrate but is unable to form a covalent acyl-enzyme intermediate. Substitution of the carboxylated lysine (K70), on the other hand, results in enzyme that can be acylated by substrate but is impaired with respect to deacylation. We employed the fluorescent penicillin BOCILLIN FL to show that three different substitutions for K70 (alanine, aspartate, and glutamate) lead to the accumulation of significant acyl-enzyme intermediate. Interestingly, BOCILLIN FL deacylation rates (t(1/2)) vary depending on the identity of the substituting residue, from approximately 60 min for K70A to undetectable deacylation for K70D. Tryptophan fluorescence spectroscopy was used to confirm that these results are applicable to natural (i.e., nonfluorescent) substrates. Deacylation by K70A, but not K70D or K70E, can be partially restored by the addition of short-chain carboxylic acid mimetics of the lysine carbamate. In conclusion, we establish the functional role of the carboxylated lysine in OXA-1 and highlight its specific role in acylation and deacylation.
Collapse
Affiliation(s)
- Kyle D Schneider
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Onconase (ONC) is a member of the ribonuclease A superfamily that is toxic to cancer cells in vitro and in vivo. ONC is now in Phase IIIb clinical trials for the treatment of malignant mesothelioma. Internalization of ONC to the cytosol of cancer cells is essential for its cytotoxic activity, despite the apparent absence of a cell-surface receptor protein. Endocytosis and cytotoxicity do, however, appear to correlate with the net positive charge of ribonucleases. To dissect the contribution made by the endogenous arginine and lysine residues of ONC to its cytotoxicity, 22 variants were created in which cationic residues were replaced with alanine. Variants with the same net charge (+2 to +5) as well as equivalent catalytic activity and conformational stability were found to exhibit large (> 10-fold) differences in toxicity for the cells of a human leukemia line. In addition, a more cationic ONC variant could be either much more or much less cytotoxic than a less cationic variant, again depending on the distribution of its cationic residues. The endocytosis of variants with widely divergent cytotoxic activity was quantified by flow cytometry using a small-molecule fluorogenic label, and was found to vary by twofold or less. This small difference in endocytosis did not account for the large difference in cytotoxicity, implicating the distribution of cationic residues as being critical for lipid-bilayer translocation subsequent to endocytosis. This finding has fundamental implications for understanding the interaction of ribonucleases and other proteins with mammalian cells.
Collapse
Affiliation(s)
- Rebecca F Turcotte
- Medical Scientist Training Program and Biophysics Graduate Program, University of Wisconsin-Madison, WI, USA
| | | | | |
Collapse
|
35
|
Tam A, Arnold U, Soellner MB, Raines RT. Protein prosthesis: 1,5-disubstituted[1,2,3]triazoles as cis-peptide bond surrogates. J Am Chem Soc 2007; 129:12670-1. [PMID: 17914828 PMCID: PMC2531141 DOI: 10.1021/ja075865s] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Catrina I, O'Brien PJ, Purcell J, Nikolic-Hughes I, Zalatan JG, Hengge AC, Herschlag D. Probing the Origin of the Compromised Catalysis ofE.coliAlkaline Phosphatase in its Promiscuous Sulfatase Reaction. J Am Chem Soc 2007; 129:5760-5. [PMID: 17411045 PMCID: PMC2532492 DOI: 10.1021/ja069111+] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic promiscuity of E. coli alkaline phosphatase (AP) and many other enzymes provides a unique opportunity to dissect the origin of enzymatic rate enhancements via a comparative approach. Here, we use kinetic isotope effects (KIEs) to explore the origin of the 109-fold greater catalytic proficiency by AP for phosphate monoester hydrolysis relative to sulfate monoester hydrolysis. The primary 18O KIEs for the leaving group oxygen atoms in the AP-catalyzed hydrolysis of p-nitrophenyl phosphate (pNPP) and p-nitrophenylsulfate (pNPS) decrease relative to the values observed for nonenzymatic hydrolysis reactions. Prior linear free energy relationship results suggest that the transition states for AP-catalyzed reactions of phosphate and sulfate esters are "loose" and indistinguishable from that in solution, suggesting that the decreased primary KIEs do not reflect a change in the nature of the transition state but rather a strong interaction of the leaving group oxygen atom with an active site Zn2+ ion. Furthermore, the primary KIEs for the two reactions are identical within error, suggesting that the differential catalysis of these reactions cannot be attributed to differential stabilization of the leaving group. In contrast, AP perturbs the KIE for the nonbridging oxygen atoms in the reaction of pNPP but not pNPS, suggesting a differential interaction with the transferred group in the transition state. These and prior results are consistent with a strong electrostatic interaction between the active site bimetallo Zn2+ cluster and one of the nonbridging oxygen atoms on the transferred group. We suggest that the lower charge density of this oxygen atom on a transferred sulfuryl group accounts for a large fraction of the decreased stabilization of the transition state for its reaction relative to phosphoryl transfer.
Collapse
Affiliation(s)
- Irina Catrina
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Patrick J. O'Brien
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Jamie Purcell
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Ivana Nikolic-Hughes
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Jesse G. Zalatan
- Department of Chemistry, Stanford University, Stanford, California 94305
| | - Alvan C. Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
- To whom correspondence should be addressed: ,
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University, Stanford, California 94305
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- To whom correspondence should be addressed: ,
| |
Collapse
|
37
|
Benner SA, Glasfeld A, Piccirilli JA. Stereospecificity in Enzymology: Its Place in Evolution. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/9780470147283.ch3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
38
|
Freeman JO, Wallhorn D, Sherman JC. Four-helix bundle cavitein reveals middle leucine as linchpin. Biopolymers 2007; 88:725-32. [PMID: 17351918 DOI: 10.1002/bip.20718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A template-assembled de novo four-helix bundle is used to examine the hydrophobic effect within the bundle interior. Leu to Ala variants of the basis sequence GG-EELLKKLEELLKKG were characterized by GuHCl denaturation, NMR dispersion, and N-H/D exchange experiments. The results show that the middle leucine (L7) is imperative in maintaining bundle stability. The average leucine was found to contribute 1.8 kcal mol(-1) toward stability, whereas the middle leucines contribute 2.7 kcal mol(-1) each. Substituting alanine into the middle position (7) constitutes a striking 95% reduction of the overall cavitein stability.
Collapse
Affiliation(s)
- Jon O Freeman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
| | | | | |
Collapse
|
39
|
Brzović PS, Dunn MF. Rapid-scanning stopped-flow spectrophotometry. METHODS OF BIOCHEMICAL ANALYSIS 2006; 37:191-273. [PMID: 8309367 DOI: 10.1002/9780470110584.ch5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- P S Brzović
- Department of Biochemistry, University of California, Riverside
| | | |
Collapse
|
40
|
Abstract
The success of genome sequencing has heightened the demand for new means to manipulate proteins. An especially desirable goal is the ability to modify a target protein at a specific site with a functional group of orthogonal reactivity. Here, we achieve that goal by exploiting the intrinsic electrophilicity of the thioester intermediate formed during intein-mediated protein splicing. Detailed kinetic analyses of the reaction of nitrogen nucleophiles with a chromogenic small-molecule thioester revealed that the alpha-hydrazino acetyl group was the optimal nucleophile for attacking a thioester at neutral pH to form a stable linkage. A bifunctional reagent bearing an alpha-hydrazino acetamido and azido group was synthesized in high overall yield. This reagent was used to attack the thioester linkage between a target protein and intein, and thereby append an azido group to the target protein in a single step. The azido protein retained full biological activity. Furthermore, its azido group was available for chemical modification by Huisgen 1,3-dipolar azide-alkyne cycloaddition. Thus, the mechanism of intein-mediated protein splicing provides the means to install a useful functional group at a specific site-the C terminus-of virtually any protein.
Collapse
Affiliation(s)
- Jeet Kalia
- Department of Biochemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | | |
Collapse
|
41
|
|
42
|
Abstract
Fusion to cationic peptides, such as nonaarginine (R(9)), provides a means to deliver molecular cargo into mammalian cells. Here, we provide a thorough analysis of the effect of an R(9) tag on the attributes of a model protein: bovine pancreatic ribonuclease (RNase A). The R(9) tag diminishes the conformational stability of RNase A (DeltaT(m)=-8 degrees C in phosphate-buffered saline). This effect is nearly mitigated by the addition of salt. The tag does not compromise the enzymatic activity of RNase A. An R(9) tag facilitates the purification of RNase A by cation-exchange chromatography and enables the adsorption of RNase A on glass slides and silica resin with the retention of enzymatic activity. The tag can be removed precisely and completely by treatment with carboxypeptidase B. Finally, the R(9) tag increases both the cellular uptake of RNase A and the cytotoxicity of G88R RNase A, a variant that evades the cytosolic ribonuclease inhibitor protein. Thus, we conclude that polyarginine is a versatile protein fusion tag.
Collapse
Affiliation(s)
- Stephen M Fuchs
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706-1544, USA.
| | | |
Collapse
|
43
|
Abstract
Synthetic biologists come in two broad classes. One uses unnatural molecules to reproduce emergent behaviours from natural biology, with the goal of creating artificial life. The other seeks interchangeable parts from natural biology to assemble into systems that function unnaturally. Either way, a synthetic goal forces scientists to cross uncharted ground to encounter and solve problems that are not easily encountered through analysis. This drives the emergence of new paradigms in ways that analysis cannot easily do. Synthetic biology has generated diagnostic tools that improve the care of patients with infectious diseases, as well as devices that oscillate, creep and play tic-tac-toe.
Collapse
Affiliation(s)
- Steven A Benner
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
| | | |
Collapse
|
44
|
Köditz J, Ulbrich-Hofmann R, Arnold U. Probing the unfolding region of ribonuclease A by site-directed mutagenesis. ACTA ACUST UNITED AC 2005; 271:4147-56. [PMID: 15479244 DOI: 10.1111/j.1432-1033.2004.04355.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in DeltaG can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule.
Collapse
Affiliation(s)
- Jens Köditz
- Department of Biochemistry and Biotechnology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | | |
Collapse
|
45
|
|
46
|
Fitzpatrick PA, Ringe D, Klibanov AM. Computer-assisted modeling of subtilisin enantioselectivity in organic solvents. Biotechnol Bioeng 2004; 40:735-42. [DOI: 10.1002/bit.260400613] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Bocola M, Otte N, Jaeger KE, Reetz MT, Thiel W. Learning from Directed Evolution: Theoretical Investigations into Cooperative Mutations in Lipase Enantioselectivity. Chembiochem 2004; 5:214-23. [PMID: 14760743 DOI: 10.1002/cbic.200300731] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Molecular modeling with classical force-fields has been used to study the reactant complex and the tetrahedral intermediate in lipase-catalyzed ester hydrolysis in 20 enzyme/substrate combinations. The R and S enantiomers of alpha-methyldecanoic acid ester served as substrates for the wild-type lipase from Pseudomonas aeruginosa and nine selected mutants. After suitable preparation of initial structures from an available wild-type crystal structure, each system was subjected to 1 ns CHARMM force-field molecular dynamics simulations. The resulting geometric and energetic changes allow interpretation of some experimentally observed effects of mutations, particularly with regard to the "hot spots" at residues 155 and 162. The replacement S155F enhances S enantiopreference through a steric relay involving Leu162. The double mutation S53P + L162G improves S enantioselectivity by creating a new binding pocket for the S enantiomer with an additional stabilizing hydrogen bond to His83. The simulations provide insight into remote and cooperative effects of mutations.
Collapse
Affiliation(s)
- Marco Bocola
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | | | | | | |
Collapse
|
48
|
Studying enzyme enantioselectivity using combined ab initio and free energy calculations: α-chymotrypsin and methyl cis- and trans-5-oxo-2-pentylpirrolidine-3-carboxylates. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/j.tetasy.2003.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Arnold U, Hinderaker MP, Köditz J, Golbik R, Ulbrich-Hofmann R, Raines RT. Protein prosthesis: a nonnatural residue accelerates folding and increases stability. J Am Chem Soc 2003; 125:7500-1. [PMID: 12812474 DOI: 10.1021/ja0351239] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonnatural residues can endow proteins with desirable properties. Here, replacing a proline residue that has a cis peptide bond in native ribonuclease A with 5,5-dimethyl-l-proline is shown to accelerate protein folding by 6-fold and enhance conformational stability by DeltaTm = 2.8 +/- 0.3 degrees C while having no effect on enzymatic activity. The rational use of this and other prosthetic segments could enable chemotherapeutic proteins to survive longer in vivo or retain activity after oral administration.
Collapse
Affiliation(s)
- Ulrich Arnold
- Department of Biochemistry/Biotechnology, Martin-Luther University, 06099 Halle, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Nilsson BL, Hondal RJ, Soellner MB, Raines RT. Protein assembly by orthogonal chemical ligation methods. J Am Chem Soc 2003; 125:5268-9. [PMID: 12720426 DOI: 10.1021/ja029752e] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical synthesis harbors the potential to provide ready access to natural proteins as well as to create nonnatural ones. The Staudinger ligation of a peptide containing a C-terminal phosphinothioester with a peptide containing an N-terminal azide gives an amide with no residual atoms. This method for amide bond formation is orthogonal and complementary to other ligation methods. Herein, we describe the first use of the Staudinger ligation to couple peptides on a solid support. The fragment thus produced is used to assemble functional ribonuclease A via native chemical ligation. The synthesis of a protein by this route expands the versatility of chemical approaches to protein production.
Collapse
Affiliation(s)
- Bradley L Nilsson
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|