1
|
Sun K, Ray S, Gupta N, Aldworth Z, Stopfer M. Olfactory system structure and function in newly hatched and adult locusts. Sci Rep 2024; 14:2608. [PMID: 38297144 PMCID: PMC10830560 DOI: 10.1038/s41598-024-52879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024] Open
Abstract
An important question in neuroscience is how sensory systems change as animals grow and interact with the environment. Exploring sensory systems in animals as they develop can reveal how networks of neurons process information as the neurons themselves grow and the needs of the animal change. Here we compared the structure and function of peripheral parts of the olfactory pathway in newly hatched and adult locusts. We found that populations of olfactory sensory neurons (OSNs) in hatchlings and adults responded with similar tunings to a panel of odors. The morphologies of local neurons (LNs) and projection neurons (PNs) in the antennal lobes (ALs) were very similar in both age groups, though they were smaller in hatchlings, they were proportional to overall brain size. The odor evoked responses of LNs and PNs were also very similar in both age groups, characterized by complex patterns of activity including oscillatory synchronization. Notably, in hatchlings, spontaneous and odor-evoked firing rates of PNs were lower, and LFP oscillations were lower in frequency, than in the adult. Hatchlings have smaller antennae with fewer OSNs; removing antennal segments from adults also reduced LFP oscillation frequency. Thus, consistent with earlier computational models, the developmental increase in frequency is due to increasing intensity of input to the oscillation circuitry. Overall, our results show that locusts hatch with a fully formed olfactory system that structurally and functionally matches that of the adult, despite its small size and lack of prior experience with olfactory stimuli.
Collapse
Affiliation(s)
- Kui Sun
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Subhasis Ray
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Plaksha University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Nitin Gupta
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Zane Aldworth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mark Stopfer
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Bicker G, Stern M. Structural and Functional Plasticity in the Regenerating Olfactory System of the Migratory Locust. Front Physiol 2020; 11:608661. [PMID: 33424632 PMCID: PMC7793960 DOI: 10.3389/fphys.2020.608661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Regeneration after injury is accompanied by transient and lasting changes in the neuroarchitecture of the nervous system and, thus, a form of structural plasticity. In this review, we introduce the olfactory pathway of a particular insect as a convenient model to visualize neural regeneration at an anatomical level and study functional recovery at an electrophysiological level. The olfactory pathway of the locust (Locusta migratoria) is characterized by a multiglomerular innervation of the antennal lobe by olfactory receptor neurons. These olfactory afferents were axotomized by crushing the base of the antenna. The resulting degeneration and regeneration in the antennal lobe could be quantified by size measurements, dye labeling, and immunofluorescence staining of cell surface proteins implicated in axonal guidance during development. Within 3 days post lesion, the antennal lobe volume was reduced by 30% and from then onward regained size back to normal by 2 weeks post injury. The majority of regenerating olfactory receptor axons reinnervated the glomeruli of the antennal lobe. A few regenerating axons project erroneously into the mushroom body on a pathway that is normally chosen by second-order projection neurons. Based on intracellular responses of antennal lobe output neurons to odor stimulation, regenerated fibers establish functional synapses again. Following complete absence after nerve crush, responses to odor stimuli return to control level within 10–14 days. On average, regeneration of afferents, and re-established synaptic connections appear faster in younger fifth instar nymphs than in adults. The initial degeneration of olfactory receptor axons has a trans-synaptic effect on a second order brain center, leading to a transient size reduction of the mushroom body calyx. Odor-evoked oscillating field potentials, absent after nerve crush, were restored in the calyx, indicative of regenerative processes in the network architecture. We conclude that axonal regeneration in the locust olfactory system appears to be possible, precise, and fast, opening an avenue for future mechanistic studies. As a perspective of biomedical importance, the current evidence for nitric oxide/cGMP signaling as positive regulator of axon regeneration in connectives of the ventral nerve cord is considered in light of particular regeneration studies in vertebrate central nervous systems.
Collapse
Affiliation(s)
- Gerd Bicker
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Stern
- Division of Cell Biology, Institute of Physiology and Cell Biology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
Patel AJ, Matheson T. Aimed limb movements in a hemimetabolous insect are intrinsically compensated for allometric wing growth by developmental mechanisms. ACTA ACUST UNITED AC 2019; 222:jeb.208553. [PMID: 31350300 PMCID: PMC6739809 DOI: 10.1242/jeb.208553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022]
Abstract
For aimed limb movements to remain functional, they must be adapted to developmental changes in body morphology and sensory-motor systems. Insects use their limbs to groom the body surface or to dislodge external stimuli, but they face the particular problem of adapting these movements to step-like changes in body morphology during metamorphosis or moulting. Locusts are hemimetabolous insects in which the imaginal moult to adulthood results in a sudden and dramatic allometric growth of the wings relative to the body and the legs. We show that, despite this, hind limb scratches aimed at mechanosensory stimuli on the wings remain targeted to appropriate locations after moulting. In juveniles, the tips of the wings extend less than halfway along the abdomen, but in adults they extend well beyond the posterior end. Kinematic analyses were used to examine the scratching responses of juveniles (fifth instars) and adults to touch of anterior (wing base) and posterior (distal abdomen) targets that develop isometrically, and to wing tip targets that are anterior in juveniles but posterior in adults. Juveniles reach the (anterior) wing tip with the distal tibia of the hind leg using anterior rotation of the thoraco-coxal and coxo-trochanteral (‘hip’) joints and flexion of the femoro-tibial (‘knee’) joint. Adults, however, reach the corresponding (but now posterior) wing tip using posterior rotation of the hip and extension of the knee, reflecting a different underlying motor pattern. This change in kinematics occurs immediately after the adult moult without learning, indicating that the switch is developmentally programmed. Highlighted Article: A developmentally programmed change in the scratching movements of locusts permits adult animals to aim their movements at new wing tip targets, without learning.
Collapse
Affiliation(s)
- Alexandra J Patel
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, University Road, Leicester LE1 7RH, UK
| | - Thomas Matheson
- University of Leicester, Department of Neuroscience, Psychology and Behaviour, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
4
|
Abe T, Fujiyama N, Tomimatsu H, Nagayama T. Age-dependent and social status-dependent behavioural plasticity of the cricket Gryllus bimaculatus. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Sato N, Shidara H, Ogawa H. Post-molting development of wind-elicited escape behavior in the cricket. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:36-46. [PMID: 29030316 DOI: 10.1016/j.jinsphys.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Arthropods including insects grow through several developmental stages by molting. The abrupt changes in their body size and morphology accompanying the molting are responsible for the developmental changes in behavior. While in holometabolous insects, larval behaviors are transformed into adult-specific behaviors with drastic changes in nervous system during the pupal stage, hemimetabolous insects preserve most innate behaviors whole life long, which allow us to trace the maturation process of preserved behaviors after the changes in body. Wind-elicited escape behavior is one of these behaviors and mediated by cercal system, which is a mechanosensory organ equipped by all stages of nymph in orthopteran insects like crickets. However, the maturation process of the escape behavior after the molt is unclear. In this study, we examined time-series of changes in the wind-elicited escape behavior just after the imaginal molt in the cricket. The locomotor activities are developed over the elapsed time, and matured 24h after the molt. In contrast, a stimulus-angle dependency of moving direction was unchanged over time, meaning that the cercal sensory system detecting airflow direction was workable immediately after the molt, independent from the behavioral maturation. The post-molting development of the wind-elicited behavior was considered to result not simply from maturation of the exoskeleton or musculature because the escape response to heat-shock stimulus did not change after the molt. No effect of a temporal immobilization after the imaginal molt on the maturation of the wind-elicited behavior also implies that the maturation may be innately programmed without experience of locomotion.
Collapse
Affiliation(s)
- Nodoka Sato
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hisashi Shidara
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroto Ogawa
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
6
|
Pfister A, Johnson A, Ellers O, Horch HW. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus. Front Physiol 2013; 3:367. [PMID: 23986706 PMCID: PMC3750946 DOI: 10.3389/fphys.2012.00367] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022] Open
Abstract
Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system (CNS) sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2) send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5). Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 h, as well as at 3, 5, 7, 14, and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.
Collapse
Affiliation(s)
- Alexandra Pfister
- Department of Invertebrate Zoology, American Museum of Natural History New York, NY, USA
| | | | | | | |
Collapse
|
7
|
Pflüger HJ, Wolf H. Developmental and activity-dependent plasticity of filiform hair receptors in the locust. Front Physiol 2013; 4:70. [PMID: 23986712 PMCID: PMC3750942 DOI: 10.3389/fphys.2013.00070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/18/2013] [Indexed: 11/13/2022] Open
Abstract
A group of wind sensitive filiform hair receptors on the locust thorax and head makes contact onto a pair of identified interneuron, A4I1. The hair receptors' central nervous projections exhibit pronounced structural dynamics during nymphal development, for example, by gradually eliminating their ipsilateral dendritic field while maintaining the contralateral one. These changes are dependent not only on hormones controlling development but on neuronal activity as well. The hair-to-interneuron system has remarkably high gain (close to 1) and makes contact to flight steering muscles. During stationary flight in front of a wind tunnel, interneuron A4I1 is active in the wing beat rhythm, and in addition it responds strongly to stimulation of sensory hairs in its receptive field. A role of the hair-to-interneuron in flight steering is thus suggested. This system appears suitable for further study of developmental and activity-dependent plasticity in a sensorimotor context with known connectivity patterns.
Collapse
Affiliation(s)
- Hans-Joachim Pflüger
- Department of Neurobiology, Institute of Biology, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin Berlin, Germany
| | | |
Collapse
|
8
|
Haehnel M, Taguchi M, Liao JC. Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio). J Comp Neurol 2012; 520:1376-86. [PMID: 22102005 DOI: 10.1002/cne.22798] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The lateral line system of larval zebrafish is emerging as a model to study a range of topics in neurobiology, from hair cell regeneration to sensory processing. However, despite numerous studies detailing the patterning and development of lateral line neuromasts, little is known about the organization of their connections to afferent neurons and targets in the hindbrain. We found that as fish grow and neuromasts proliferate over the body surface, the number of afferent neurons increases linearly. The number of afferents innervating certain neuromasts increases over time, while it decreases for other neuromasts. The ratio of afferent neurons to neuromasts differs between the anterior and posterior lateral line system, suggesting potential differences in sensitivity threshold or spatial resolution. A single afferent neuron routinely contacts a group of neuromasts, suggesting that different afferent neurons can convey information about receptive fields along the body. When afferent projections are traced into the hindbrain, where a distinct somatotopy has been previously described, we find that this general organization is absent at the Mauthner cell. We speculate that directional input from the lateral line is less important at an early age, whereas the speed of the escape response is paramount, and that directional responses arise later in development. By quantifying morphological connections in the lateral line system, this study provides a detailed foundation to understand how hydrodynamic information is processed and ultimately translated into appropriate motor behaviors.
Collapse
Affiliation(s)
- Melanie Haehnel
- The Whitney Laboratory for Marine Bioscience, Department of Biology, University of Florida, St. Augustine, Florida 32080, USA
| | | | | |
Collapse
|
9
|
Liao JC, Haehnel M. Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J Neurophysiol 2012; 107:2615-23. [PMID: 22338025 DOI: 10.1152/jn.01108.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fishes rely on the neuromasts of their lateral line system to detect water flow during behaviors such as predator avoidance and prey localization. Although the pattern of neuromast development has been a topic of detailed research, we still do not understand the functional consequences of its organization. Previous work has demonstrated somatotopy in the posterior lateral line, whereby afferent neurons that contact more caudal neuromasts project more dorsally in the hindbrain than those that contact more rostral neuromasts (Gompel N, Dambly-Chaudiere C, Ghysen A. Development 128: 387-393, 2001). We performed patch-clamp recordings of afferent neurons that contact neuromasts in the posterior lateral line of anesthetized, transgenic larval zebrafish (Danio rerio) to show that larger cells are born earlier, have a lower input resistance, a lower spontaneous firing rate, and tend to contact multiple neuromasts located closer to the tail than smaller neurons, which are born later, have a higher input resistance, a higher spontaneous firing rate, and tend to contact single neuromasts. We suggest that early-born neurons are poised to detect large stimuli during the initial stages of development. Later-born neurons are more easily driven to fire and thus likely to be more sensitive to local, weaker flows. Afferent projections onto identified glutamatergic regions in the hindbrain lead us to hypothesize a novel mechanism for lateral line somatotopy. We show that afferent fibers associated with tail neuromasts respond to stronger stimuli and are wired to dorsal hindbrain regions associated with Mauthner-mediated escape responses and fast, avoidance swimming. The ability to process flow stimuli by circumventing higher-order brain centers would ease the task of processing where speed is of critical importance. Our work lays the groundwork to understand how the lateral line translates flow stimuli into appropriate behaviors at the single cell level.
Collapse
Affiliation(s)
- James C Liao
- The Whitney Laboratory for Marine Bioscience, Dept. of Biology, Univ. of Florida, St. Augustine, FL 32080, USA.
| | | |
Collapse
|
10
|
|
11
|
Tessier CR, Broadie K. Activity-dependent modulation of neural circuit synaptic connectivity. Front Mol Neurosci 2009; 2:8. [PMID: 19668708 PMCID: PMC2724028 DOI: 10.3389/neuro.02.008.2009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 07/15/2009] [Indexed: 01/10/2023] Open
Abstract
In many nervous systems, the establishment of neural circuits is known to proceed via a two-stage process; (1) early, activity-independent wiring to produce a rough map characterized by excessive synaptic connections, and (2) subsequent, use-dependent pruning to eliminate inappropriate connections and reinforce maintained synapses. In invertebrates, however, evidence of the activity-dependent phase of synaptic refinement has been elusive, and the dogma has long been that invertebrate circuits are “hard-wired” in a purely activity-independent manner. This conclusion has been challenged recently through the use of new transgenic tools employed in the powerful Drosophila system, which have allowed unprecedented temporal control and single neuron imaging resolution. These recent studies reveal that activity-dependent mechanisms are indeed required to refine circuit maps in Drosophila during precise, restricted windows of late-phase development. Such mechanisms of circuit refinement may be key to understanding a number of human neurological diseases, including developmental disorders such as Fragile X syndrome (FXS) and autism, which are hypothesized to result from defects in synaptic connectivity and activity-dependent circuit function. This review focuses on our current understanding of activity-dependent synaptic connectivity in Drosophila, primarily through analyzing the role of the fragile X mental retardation protein (FMRP) in the Drosophila FXS disease model. The particular emphasis of this review is on the expanding array of new genetically-encoded tools that are allowing cellular events and molecular players to be dissected with ever greater precision and detail.
Collapse
Affiliation(s)
- Charles R Tessier
- Department of Biological Sciences, Vanderbilt University Nashville, TN, USA
| | | |
Collapse
|
12
|
Lüdke J, Lakes-Harlan R. Regeneration of the tibia and somatotopy of regenerated hair sensilla in Schistocerca gregaria (Forskål). ARTHROPOD STRUCTURE & DEVELOPMENT 2008; 37:210-220. [PMID: 18342264 DOI: 10.1016/j.asd.2007.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 09/27/2007] [Accepted: 10/01/2007] [Indexed: 05/26/2023]
Abstract
After injury many arthropods are able to regenerate lost body parts and their innervation. Here, regeneration was studied in the desert locust Schistocerca gregaria after amputation of the midleg tibia and tarsus in the first larval instar. A regenerate was formed first in the third larval instar and it increased in size with each larval moult. The regenerate was always unsegmented and remained much shorter than the intact leg parts. The growth rate was initially rather high and decreased thereafter to that of intact parts. The amputation also influenced the growth rate of proximal leg parts (femur and trochanter) resulting in shortened leg segments. The regenerate carried many sense organs like trichoid sensilla and canal sensilla. The primary mechanosensory neurons of the trichoid sensilla projected somatotopically into the mesothoracic ganglion. A comparison of these projections from intact leg segments and regenerates showed a regrow into the target neuropil areas and a restoration of the somatotopy. Intact sensilla on the injured leg and regenerated sensilla expanded their central projections lateral-medially.
Collapse
Affiliation(s)
- Julia Lüdke
- Integrative Sensory Physiology, Institute of Animal Physiology, Justus-Liebig-University Giessen, Wartweg 95, D-35392 Giessen, Germany
| | | |
Collapse
|
13
|
Dangles O, Pierre D, Magal C, Vannier F, Casas J. Ontogeny of air-motion sensing in cricket. J Exp Biol 2006; 209:4363-70. [PMID: 17050851 DOI: 10.1242/jeb.02485] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Juvenile crickets suffer high rates of mortality by natural predators that they can detect using extremely sensitive air-sensing filiform hairs located on their cerci. Although a huge amount of knowledge has accumulated on the physiology, the neurobiology and the biomechanics of this sensory system in adults, the morphological and functional aspects of air sensing have not been as well studied in earlier life history stages. Using scanning electronic microscopy, we performed a survey of all cercal filiform hairs in seven instars of the wood cricket (Nemobius sylvestris). Statistical analyses allowed us to quantify profound changes in the number, the length and the distribution of cercal hairs during development. Of particular importance,we found a fivefold increase in hair number and the development of a bimodal length-frequency distribution of cercal hairs from the second instar onwards. Based on theoretical estimations of filiform hair population coding, we found that the cercal system is functional for a wide range of frequencies of biologically relevant oscillatory flows, even from the first instar. As the cricket develops, the overall sensitivity of the cercal system increases as a result of the appearance of new hairs, but the value of the best tuned frequency remains fixed between 150 and 180 Hz after the second instar. These frequencies nicely match those emitted by natural flying predators, suggesting that the development of the cercal array of hairs may have evolved in response to such signals.
Collapse
Affiliation(s)
- O Dangles
- Université de Tours, IRBI UMR CNRS 6035, Parc Grandmont, 37200 Tours, France
| | | | | | | | | |
Collapse
|
14
|
Shaw KL, Danley PD. Behavioral genomics and the study of speciation at a porous species boundary. ZOOLOGY 2006; 106:261-73. [PMID: 16351912 DOI: 10.1078/0944-2006-00129] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porous species boundaries are characterized by differential gene flow, where some regions of the genome experience divergent evolution while others experience the homogenizing effects of gene flow. If species can arise or remain distinct despite gene flow between them, speciation can only be understood on a gene by gene level. To understand the genetics of speciation, we therefore must identify the targets of selection that cause divergent evolution and identify the genetic architecture underlying such "speciation phenotypes". This will enable characterization of genomic regions that are "free to flow" between species, and those that diverge in the face of gene flow. We discuss this problem in the genus Laupala, a morphologically cryptic, flightless group of crickets that has radiated in Hawaii. Because songs are used in courtship and always distinguish close relatives of Laupala as well as species in sympatry, we argue that songs in Laupala are speciation phenotypes. Here, we present our approaches to identify the underlying genomic regions and song genes that differentiate closely related species. We discuss what is known about the genetic basis of this species difference derived from classic quantitative genetics and quantitative trait locus mapping experiments. We also present a model of the molecular expression of cricket song to assist in our goal to identify the genes involved in song variation. As most species are sympatric and exchange genes with congeners, we discuss the importance of understanding the genetic and genomic architecture of song as a speciation phenotype that must be characterized to identify differential patterns of gene flow at porous species boundaries.
Collapse
Affiliation(s)
- Kerry L Shaw
- Department of Biology, University of Maryland, College Park, MD 20742-4415, USA.
| | | |
Collapse
|
15
|
Libersat F. Maturation of dendritic architecture: lessons from insect identified neurons. ACTA ACUST UNITED AC 2005; 64:11-23. [PMID: 15884008 DOI: 10.1002/neu.20142] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The highly complex geometry of dendritic trees is crucial for neural signal integration and the proper wiring of neuronal circuits. The morphogenesis of dendritic trees is regulated by innate genetic factors, neuronal activity, and external molecular cues. How each of these factors contributes to dendritic maturation has been addressed in studies of the developing nervous systems of animals ranging from insects to mammals. This article reviews our current knowledge and understanding of the role of afferent input in the establishment of the architecture of mature dendritic trees, using insect neurons as models. With these model systems and using quantitative morphometry, it is possible to define the contributions of intrinsic and extrinsic factors in dendritic morphogenesis of identified neurons and to evaluate the impact of dendritic maturation on the integration of identified neurons into functional circuits subserving identified behaviors. The commonly held view of dendritic morphogenesis is that general structural features result from genetic instructions, whereas fine connectivity details rely mostly on substrate interactions and functional activity. During early dendritic maturation, dendritic growth cone formation produces new branches at all dendritic roots. The second phase is growth cone independent and afferent input dependent, during which branching is limited to high order distal dendrites. During the third phase, activity-dependent synaptic maturation occurs with limited or subtle remodeling of branching.
Collapse
Affiliation(s)
- Frederic Libersat
- Zlotowski Center for Neuroscience and Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
16
|
Libersat F, Leung V, Mizrahi A, Mathenia N, Comer C. Maturation of escape circuit function during the early adulthood of cockroaches Periplaneta americana. ACTA ACUST UNITED AC 2005; 62:62-71. [PMID: 15389684 DOI: 10.1002/neu.20067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
During postembryonic development of insects, sensorimotor pathways, which generate specific behaviors, undergo maturational changes. It is less clear whether such pathways are typically stable, or undergo further maturation, during the adult stage. In the present study, we have examined this issue by multilevel analysis of a simple model system, the escape behavior of the cockroach, from identified synapses to behavior. We show that the escape system is highly responsive immediately after the molt to adulthood, but that the latency of escape responses was not at its typical value immediately after the molt to adult. The latency of escape behavior increased over the first 30 days of adult life, perhaps indicating maturational adjustments of the escape sensorimotor pathway. The first station in the escape circuitry is the synaptic connections between the cercal wind receptors and the giant interneurons. We measured unitary excitatory synaptic potentials between single sensory neurons and an identified giant interneuron (GI(2)). We found a decrease in the synaptic strength between identified cercal hairs from a single column and GI(2) over the first month after the adult molt. Consequently, the latency and the number of action potentials of GI(2) in response to natural stimuli increased and decreased respectively during this time. Thus, we show that both behavioral performance and the wind sensitivity of GI(2) decreased over the first month after molt. We conclude that the cockroach escape system undergoes further sensorimotor maturation over a period of 1 month, and that cellular changes correlate with, or predict, some changes in behavioral performance.
Collapse
Affiliation(s)
- Frederic Libersat
- Department of Life Sciences and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva, Israel 84105.
| | | | | | | | | |
Collapse
|
17
|
Marin-Burgin A, Eisenhart FJ, Baca SM, Kristan WB, French KA. Sequential development of electrical and chemical synaptic connections generates a specific behavioral circuit in the leech. J Neurosci 2005; 25:2478-89. [PMID: 15758156 PMCID: PMC6725167 DOI: 10.1523/jneurosci.4787-04.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/21/2005] [Accepted: 01/23/2005] [Indexed: 11/21/2022] Open
Abstract
Neuronal circuits form during embryonic life, even before synapses are completely mature. Developmental changes can be quantitative (e.g., connections become stronger and more reliable) or qualitative (e.g., synapses form, are lost, or switch from electrical to chemical or from excitatory to inhibitory). To explore how these synaptic events contribute to behavioral circuits, we have studied the formation of a circuit that produces local bending (LB) behavior in leech embryos. This circuit is composed of three layers of neurons: mechanosensory neurons, interneurons, and motor neurons. The only inhibition in this circuit is in the motor neuron layer; it allows the animal to contract on one side while relaxing the opposite side. LB develops in two stages: initially touching the body wall causes circumferential indentation (CI), an embryonic behavior in which contraction takes place around the whole perimeter of the segment touched; one or 2 d later, the same touch elicits adult-like LB. Application of bicuculline methiodide in embryos capable of LB switched the behavior back into CI, indicating that the development of GABAergic connections turns CI into LB. Using voltage-sensitive dyes and electrophysiological recordings, we found that electrical synapses were present early and produced CI. Inhibition appeared later, shaping the circuit that was already connected by electrical synapses and producing the adult behavior, LB.
Collapse
Affiliation(s)
- Antonia Marin-Burgin
- Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0357, USA.
| | | | | | | | | |
Collapse
|
18
|
Shepherd D, Perry VH. Self-destruct programs in the processes of developing neurons. Curr Top Dev Biol 2005; 65:149-67. [PMID: 15642382 DOI: 10.1016/s0070-2153(04)65005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- David Shepherd
- School of Biological Sciences, University of Southampton, Southampton SO16 7PX, United Kingdom
| | | |
Collapse
|
19
|
Usui-Ishihara A, Simpson P. Differences in sensory projections between macro- and microchaetes in Drosophilid flies. Dev Biol 2005; 277:170-83. [PMID: 15572148 DOI: 10.1016/j.ydbio.2004.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 09/12/2004] [Indexed: 11/29/2022]
Abstract
From examination of the central axonal projections of sensory bristles on the notum of several species of Drosophilidae, we demonstrate different features that may indicate different functions for macro- and microchaetes. The large macrochaetes have conserved arborizations that correlate with their conserved position. Nevertheless, we find evidence for only two discrete projection patterns for bristles in the dorsocentral (DC) row, even when there may be four or five bristles present. We show that the small microchaetes of Drosophila melanogaster display regional specificity and subsets of contiguous bristles project to a common region in the thoracic ganglion. Interestingly, the axons of each of these subsets also form a specific fasciculation group on the scutum before joining the axon of a particular macrochaete. The positions of microchaetes on the scutum and the shape of the fasciculation groups vary between closely related species. There is no correlation between body size, bristle patterns, and fasciculation patterns. Furthermore, none of these traits correlate with the phylogenetic relationships between the species studied. We discuss the possibility that macro- and microchaetes may have different functions and that these have implications for evolutionary constraints on bristle patterns.
Collapse
Affiliation(s)
- Akiko Usui-Ishihara
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | | |
Collapse
|
20
|
Abstract
Synaptic specificity is the culmination of several processes, beginning with the establishment of neuronal subtype identity, followed by navigation of the axon to the correct subdivision of neuropil, and finally, the cell-cell recognition of appropriate synaptic partners. In this review we summarize the work on sensory neurons in crickets, cockroaches, moths, and fruit flies that establishes some of the principles and molecular mechanisms involved in the control of synaptic specificity. The identity of a sensory neuron is controlled by combinatorial expression of transcription factors, the products of patterning and proneural genes. In the nervous system, sensory axon projections are anatomically segregated according to modality, stimulus quality, and cell-body position. A variety of cell-surface and intracellular signaling molecules are used to achieve this. Synaptic target recognition is also controlled by transcription factors such as Engrailed and may be, in part, mediated by cadherin-like molecules.
Collapse
Affiliation(s)
- Jonathan M Blagburn
- Institute of Neurobiology, Department of Physiology, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico 00901-1123.
| | | |
Collapse
|
21
|
Redmond DE, Zhao JL, Randall JD, Eklund AC, Eusebi LOV, Roth RH, Gullans SR, Jensen RV. Spatiotemporal patterns of gene expression during fetal monkey brain development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:99-106. [PMID: 14643016 DOI: 10.1016/j.devbrainres.2003.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human DNA microarrays are used to study the spatiotemporal patterns of gene expression during the course of fetal monkey brain development. The 444 most dynamically expressed genes in four major brain areas are reported at five different fetal ages. The spatiotemporal profiles of gene expression show both regional specificity as well as waves of gene expression across the developing brain. These patterns of expression are used to identify statistically significant clusters of co-regulated genes. This study demonstrates for the first time in the primate the relevance, timing, and spatial locations of expression for many developmental genes identified in other animals and provides clues to the functions of many unknowns. Two different microarray platforms are used to provide high-throughput cross validation of the most important gene expression changes. These results may lead to new understanding of brain development and new strategies for treating and repairing disorders of brain function.
Collapse
Affiliation(s)
- D Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Matsuura T, Kanou M. Postembryonic changes in the response properties of wind-sensitive giant interneurons in cricket. JOURNAL OF INSECT PHYSIOLOGY 2003; 49:805-15. [PMID: 16256682 DOI: 10.1016/s0022-1910(03)00116-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2002] [Accepted: 04/08/2003] [Indexed: 05/05/2023]
Abstract
The intensity-response (I-R) relations for four wind-sensitive giant interneurons (GIs 8-1, 9-1, 9-2 and 9-3) in the fourth-, sixth- and last-instar nymphs of the cricket, Gryllus bimaculatus, were investigated using a unidirectional air current stimulus in order to explore the functional changes of GIs during postembryonic development. Contrary to our expectations, the response properties of GIs in nymphs were largely different from those in adults. The response magnitude of GI 8-1 in an intact cricket decreased during development, i.e. the GI in younger insects showed a larger response magnitude. Although the response magnitudes of GIs 9-1 and 9-2 were almost identical during the nymphal period, a significant decrease was observed after the imaginal ecdysis. During the nymphal period, the response magnitude of GI 9-3 increased according to the developmental stage. However, it decreased significantly after the imaginal ecdysis. We also investigated the response magnitudes of the GIs in nymphs after unilateral cercal ablation. From the results of ablation experiments, the changes in excitatory and/or inhibitory connections between filiform hairs and each GI during postembryonic development were revealed.
Collapse
Affiliation(s)
- Tetsuya Matsuura
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | | |
Collapse
|
23
|
Mizrahi A, Libersat F. Afferent input regulates the formation of distal dendritic branches. J Comp Neurol 2002; 452:1-10. [PMID: 12205705 DOI: 10.1002/cne.10275] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During postembryonic development, the dendritic arbors of neurons grow to accommodate new incoming synaptic inputs. Our goal was to examine which features of dendritic architecture of postsynaptic interneurons are regulated by these synaptic inputs. To address this question, we took advantage of the cockroach cercal system where the morphology of the sensory giant interneurons (GIs) is uniquely identified and, therefore, amenable to quantitative analysis. We analyzed the three-dimensional architecture of chronically deafferented vs. normally developed dendritic trees of a specific identified GI, namely GI2. GI2 shows five prominent dendrites, four of which were significantly altered after deafferentation. De-afferentation induced an average of 55% decrease in metric measures (number of branch points, total length, and total surface area) on the entire dendritic tree. Sholl and branch order analysis showed a decrease in the most distal and higher order branches. We suggest that afferent input plays a specific role in shaping the morphology of dendritic trees by regulating the formation or maintenance of high-order distal branches.
Collapse
Affiliation(s)
- Adi Mizrahi
- Zlotowski Center for Neuroscience and Department of Life Sciences, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel.
| | | |
Collapse
|
24
|
Abstract
Studies of insect identified neurons over the past 25 years have provided some of the very best data on sensorimotor integration; tracing information flow from sensory to motor networks. General principles have emerged that have increased the sophistication with which we now understand both sensory processing and motor control. Two overarching themes have emerged from studies of identified sensory interneurons. First, within a species, there are profound differences in neuronal organization associated with both the sex and the social experience of the individual. Second, single neurons exhibit some surprisingly rich examples of computational sophistication in terms of (a) temporal dynamics (coding superimposed upon circadian and shorter-term rhythms), and also (b) what Kenneth Roeder called "neural parsimony": that optimal information can be encoded, and complex acts of sensorimotor coordination can be mediated, by small ensembles of cells. Insect motor systems have proven to be relatively complex, and so studies of their organization typically have not yielded completely defined circuits as are known from some other invertebrates. However, several important findings have emerged. Analysis of neuronal oscillators for rhythmic behavior have delineated a profound influence of sensory feedback on interneuronal circuits: they are not only modulated by feedback, but may be substantially reconfigured. Additionally, insect motor circuits provide potent examples of neuronal restructuring during an organism's lifetime, as well as insights on how circuits have been modified across evolutionary time. Several areas where future advances seem likely to occur include: molecular genetic analyses, neuroecological syntheses, and neuroinformatics--the use of digital resources to organize databases with information on identified nerve cells and behavior.
Collapse
Affiliation(s)
- C M Comer
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | |
Collapse
|
25
|
Bucher D, Pflüger H. Directional sensitivity of an identified wind-sensitive interneuron during the postembryonic development of the locust. JOURNAL OF INSECT PHYSIOLOGY 2000; 46:1545-1556. [PMID: 10980300 DOI: 10.1016/s0022-1910(00)00078-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Simultaneous extracellular recordings from both locust abdominal connectives show a differential activation of both bilateral homologues of an identified long projection interneuron (A4I1) in response to wind stimuli from different directions. Despite the previously shown extensive structural dynamics of sensory afferents and synaptic rearrangement of the direct afferent-to-interneuron connections during postembryonic development, a directional sensitivity is already present in first instar nymphs. Only quantitative changes in the strength of the directional response can be detected. Intracellular stainings of the A4I1 interneuron in first instar nymphs and adults show that general morphological features do not change during postembryonic development, in contrast to the presynaptic sensory afferents. This also holds for general morphological features of pleuroaxillary flight motoneurons. The output connections of A4I1 to these motoneurons and an unidentified intersegmental interneuron are already present in flightless nymphs.
Collapse
Affiliation(s)
- D Bucher
- Freie Universität Berlin, Fachbereich Biologie, Institut für Neurobiologie, Königin-Luise-Strasse 28-30, D-14195, Berlin, Germany
| | | |
Collapse
|
26
|
Abstract
We examine the anatomical basis for the representation of stimulus parameters within a neural map and examine the extraction of these parameters by sensory interneurons (INs) in the cricket cercal sensory system. The extraction of air current direction by these sensory interneurons can be understood largely in terms of the anatomy of the system. There are two critical anatomical constraints. (1) The arborizations of afferents with similar directional tuning properties are located near each other within the neural map. Therefore, a continuous variation in stimulus direction causes a continuous variation in the spatial pattern of activation. (2) The restriction of the synaptic connections of an interneuron to a unique set of afferents results from the unique anatomy of that interneuron: its dendritic arbors are located within restricted regions of the afferent map containing afferents with a limited subset of directional sensitivities. The functional organization of the set of four interneurons studied here is equivalent to a Cartesian coordinate system for computing the stimulus direction vector. For any air current stimulus direction, the firing rates of the active interneurons could be decoded as Cartesian coordinates by neurons at successive processing stages. The implications of this Cartesian coordinate system are discussed with respect to optimal coding strategies and developmental constraints on the cellular implementation of this coding scheme.
Collapse
|
27
|
Abstract
Primary mechanosensory receptors and interneurons in the cricket cercal sensory system are sensitive to the direction and frequency of air current stimuli. Receptors innervating long mechanoreceptor hairs (>1000 microm) are most sensitive to low-frequency air currents (<150 Hz); receptors innervating medium-length hairs (900-500 microm) are most sensitive to higher frequency ranges (150-400 Hz). Previous studies demonstrated that the projection pattern of the synaptic arborizations of long hair receptor afferents form a continuous map of air current direction within the terminal abdominal ganglion (). We demonstrate here that the projection pattern of the medium-length hair afferents also forms a continuous map of stimulus direction. However, the afferents from the long and medium-length hair afferents show very little spatial segregation with respect to their frequency sensitivity. The possible functional significance of this small degree of spatial segregation was investigated, by calculating the relative overlap between the long and medium-length hair afferents with the dendrites of two interneurons that are known to have different frequency sensitivities. Both interneurons were shown to have nearly equal anatomical overlap with long and medium hair afferents. Thus, the differential overlap of these interneurons with the two different classes of afferents was not adequate to explain the observed frequency selectivity of the interneurons. Other mechanisms such as selective connectivity between subsets of afferents and interneurons and/or differences in interneuron biophysical properties must play a role in establishing the frequency selectivities of these interneurons.
Collapse
|
28
|
Hill AA, Jin P. Regulation of synaptic depression rates in the cricket cercal sensory system. J Neurophysiol 1998; 79:1277-85. [PMID: 9497409 DOI: 10.1152/jn.1998.79.3.1277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To assess the roles of pre- and postsynaptic mechanisms in the regulation of depression, short-term synaptic depression was characterized at the synapses between sensory neurons and two interneurons in the cricket cercal sensory system. Changes in excitatory postsynaptic potential (EPSP) amplitude with repetitive stimulation at 5 and 20 Hz were quantified and fitted to the depletion model of transmitter release. The depression rates of different sensory neuron synapses on a single interneuron varied with the age of the sensory neurons such that old sensory neuron synapses depressed faster than young synapses. Although all synapses showed depression, short-term facilitation was selectively expressed only at sensory neuron synapses on one interneuron, the medial giant interneuron (MGI). These synapses showed concurrent facilitation and depression with high-frequency stimulation (100 Hz), whereas the synapses on another interneuron, 10-3, showed only depression at all stimulus frequencies. A previous study showed that the ability of a synapse to facilitate is correlated with the identity of the postsynaptic neuron. The present results indicate that depression and facilitation are regulated independently. Depression is regulated presynaptically in a manner related to sensory neuron age; whereas, facilitation is regulated by the postsynaptic target.
Collapse
Affiliation(s)
- A A Hill
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
29
|
|
30
|
|
31
|
|
32
|
Morphogenesis of the branching pattern of a group of spiking local interneurons in relation to the organization of embryonic sensory neuropils in locust. Philos Trans R Soc Lond B Biol Sci 1997. [DOI: 10.1098/rstb.1995.0128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The embryonic development of the principal tracts, commissures and neuropils in the thoracic ganglia of the locust
Schistocerca gregaria
are described. We show that the major tracts and commissures are generated during the earliest stages of axon outgrowth. Some longitudinal tracts can be identified as early as 42 % of embryonic development and by 55 % all tracts except the dorsal median tract (DMT) and median dorsal tract (MDT) can be recognized. DMT and MDT cannot be reliably identified until 65% . The major neuropilar regions, in contrast, are identifiable relatively late in embryogenesis. They are first evident at 65-70 %, but do not become fully distinct until 70-75 %. This coincides with the developmental timing of synaptogenesis. Onto this developmental groundplan we have mapped the growth of an identified group of local interneurons. The early growth of these interneurons (50-65% ) is characterized by slow and directed axon outgrowth which assembles the basic skeletal structure of the interneurons without aberrant growth. This is followed by a period of extensive growth (65-80% ) during which the basic scaffold is elaborated. Finally there is a m aturation phase during which branches are pruned away to produce the mature interneuron structure. We show that, despite initial extensive overgrowth of branches, there is no branching into inappropriate neuropil regions in the embryo. The development of arborizations within specific neuropils appears to be tightly controlled. By using this information on interneuron growth and neuropil development it is now possible to begin to understand the developmental mechanisms that shape the neuronal architecture of the locust central nervous system.
Collapse
|
33
|
Truman JW, De Vente J, Ball EE. Nitric oxide-sensitive guanylate cyclase activity is associated with the maturational phase of neuronal development in insects. Development 1996; 122:3949-58. [PMID: 9012515 DOI: 10.1242/dev.122.12.3949] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many developing insect neurones pass through a phase when they respond to nitric oxide (NO) by producing cyclic GMP. Studies on identified grasshopper motoneurones show that this NO sensitivity appears after the growth cone has arrived at its target but before it has started to send out branches. NO sensitivity typically ends as synaptogenesis is nearing completion. Data from interneurones and sensory neurones are also consistent with the hypothesis that NO sensitivity appears as a developing neurone changes from axonal outgrowth to maturation and synaptogenesis. Cyclic GMP likely constitutes part of a retrograde signalling pathway between a neurone and its synaptic partner. NO sensitivity also appears in some mature neurones at times when they may be undergoing synaptic rearrangement. Comparative studies on other insects indicate that the association between an NO-sensitive guanylate cyclase and synaptogenesis is an ancient one, as evidenced by its presence in both ancient and more recently evolved insect groups.
Collapse
Affiliation(s)
- J W Truman
- Research School of Biological Sciences, Australian National University, Canberra.
| | | | | |
Collapse
|
34
|
Blagburn JM, Sosa MA, Blanco RE. Specificity of identified central synapses in the embryonic cockroach: appropriate connections form before the onset of spontaneous afferent activity. J Comp Neurol 1996; 373:511-28. [PMID: 8889942 DOI: 10.1002/(sici)1096-9861(19960930)373:4<511::aid-cne4>3.0.co;2-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms by which neurons recognize the appropriate postsynaptic cells remain largely unknown. A useful approach to this problem is to use a system with a few identifiable neurons that form highly specific synaptic connections. We studied the development of synapses between two identified cercal sensory afferents and two giant interneurons (GIs) in the embryonic cockroach Periplaneta americana. By 46% of embryonic development, the axons of the filiform hair sensory neurons have entered the terminal ganglionic neuropil and grow alongside the GI primary dendrites, although they do not form synapses. From 50% of development, the GI dendrites grow outward from the center of the neuropil to contact the presynaptic axons and their branches. The sensory neurons begin to spike at 52% of development, and, from 55% of development, these action potentials evoked excitatory postsynaptic potentials in the GIs. Synaptic contacts were first seen at this time. The pattern of synaptic connections was highly specific from the outset. G12 had strong input from the medial (M) afferent and had almost negligible input from the lateral (L) afferent, whereas G13 had input from both. This specificity was present before bursts of spontaneous activity began in the sensory neurons at 59% of development. G12 filopodia selectively formed synaptic contacts with the M axon rather than the L axon. The few contacts made by G12 with the L axon had a normal morphology but fewer presynaptic densities. Filopodial insertions were not involved in selective synapse formation. In this system, highly specific synaptic recognition appears to be activity independent.
Collapse
Affiliation(s)
- J M Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan 00901.
| | | | | |
Collapse
|
35
|
Salecker I, Boeckh J. Embryonic development of the antennal lobes of a hemimetabolous insect, the cockroach Periplaneta americana: light and electron microscopic observations. J Comp Neurol 1995; 352:33-54. [PMID: 7536222 DOI: 10.1002/cne.903520104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the hemimetabolous insect Periplaneta americana, the adult-like organization of the primary olfactory centers, the antennal lobes, is established during the approximately 31 days of embryogenesis. This report describes the temporal sequence of developmental events as viewed in the light and electron microscope by means of histological stains and by DiI labeling of antennal receptor axons with subsequent photoconversion. Glomeruli, characteristic differentiations of the antennal lobe neuropil, are first observed on day 19; their development, which is not synchronous in the various parts of the antennal lobe, lasts until about day 22. From day 10 on, glial cells begin to form a narrow boundary layer between the soma cortex and the central neuropil. They exhibit a lengthening of their processes in parallel with the formation of glomeruli. Marked proliferation or migration of these glial cells into the neuropil between glomeruli has not been observed. Antennal receptor axons could be labeled from stage 15 on. They terminate in an elongated growth cone with numerous filopodia. From day 18 on, some of these become bent or show an initial bifurcation. From day 22 on, the first afferent axons develop an adult-like arborization pattern. Synaptic contacts between receptor axons and unidentified neurons were observed as early as stages 16 and 19, in which the axons still have a growth cone-like form. In stage 27, in which the fibers have adult-like arborizations, many output contacts and few input contacts were found.
Collapse
Affiliation(s)
- I Salecker
- Institut für Zoologie, Universität Regensburg, Federal Republic of Germany
| | | |
Collapse
|
36
|
Troyer TW, Levin JE, Jacobs GA. Construction and analysis of a database representing a neural map. Microsc Res Tech 1994; 29:329-43. [PMID: 7858313 DOI: 10.1002/jemt.1070290502] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We describe the development and analysis of a quantitative database representing the global structural and functional organization of an entire sensory map. The database was derived from measurements of anatomical characteristics of a statistical sample of typical mechanosensory afferents in the cricket cercal sensory system. Anatomical characteristics of the neurons were measured quantitatively in three dimensions using a computer reconstruction system. The reconstructions of all neurons were aligned and scaled to a common standard set of dimensions, according to a highly reproducible set of intrinsic fiducial marks. The database therefore preserves accurate information about spatial relationships between the neurons within the ensemble. Algorithms were implemented to allow the integration of electrophysiological data about the stimulus/response characteristics of the reconstructed neurons into the database. The algorithms essentially map a physiological function onto a "field" representing the continuous distribution of synaptic terminals throughout the neural structure. Subsequent analysis allowed quantitative predictions of several important functional characteristics of the sensory map that emerge from its global organization. First, quantitative and testable predictions were made about ensemble response patterns within the map. The predicted patterns are presented as graphical images, similar to images that might be observed with activity-dependent dyes in the real neural system. Second, the synaptic innervation patterns from the sensory afferent map onto the dendrites of a postsynaptic target interneuron were predicted by calculating the overlap between the interneuron's dendrites with the afferent map. By doing so, several aspects of the stimulus/response properties of the interneuron were accurately predicted.
Collapse
Affiliation(s)
- T W Troyer
- Department of Mathematics, University of California, Berkeley 94720
| | | | | |
Collapse
|
37
|
Kämper G, Murphey R. Maturation of an insect nervous system: Constancy in the face of change. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0300-9629(94)90308-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Abstract
The way in which the dimensions of neurons change during postembryonic development has important effects on their electrotonic structures. Theoretically, only one mode of growth can conserve the electrotonic structures of growing neurons without employing changes in membrane electrical properties. If the dendritic diameters of a neuron increase as the square of the increase in dendritic lengths, then the neuron's electrotonic structure is conserved. We call this special mode of allometric growth "isoelectrotonic growth." In this study we compared the developmental changes in morphology of two identified invertebrate neurons with theoretical growth curves. We found that a cricket neuron, MGI, grows isoelectrotonically and thereby preserves its electrotonic properties. In contrast, the crayfish neuron, LG, grows in nearly isometric manner resulting in an increase in its electrotonic length.
Collapse
Affiliation(s)
- A A Hill
- Department of Biology, Morrill Science Center (South), University of Massachusetts at Amherst, 01003-35825, USA
| | | | | |
Collapse
|
39
|
Davis GW, Murphey RK. Retrograde signaling and the development of transmitter release properties in the invertebrate nervous system. JOURNAL OF NEUROBIOLOGY 1994; 25:740-56. [PMID: 7915302 DOI: 10.1002/neu.480250612] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The dynamics of presynaptic transmitter release are often matched to the functional properties of the postsynaptic cell. In organisms ranging from cats to crickets, evidence suggests that retrograde signaling is essential for matching these presynaptic release properties to individual postsynaptic partners. Retrograde interactions appear to control the development of presynaptic, short-term facilitation and depression.
Collapse
Affiliation(s)
- G W Davis
- Biology Department, Morrill Science Center (South), University of Massachusetts, Amherst 01003
| | | |
Collapse
|
40
|
Boyan GS, Ball EE. The grasshopper, Drosophila and neuronal homology (advantages of the insect nervous system for the neuroscientist). Prog Neurobiol 1993; 41:657-82. [PMID: 8140256 DOI: 10.1016/0301-0082(93)90030-v] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- G S Boyan
- Zoologisches Institut, Universität Basel, Switzerland
| | | |
Collapse
|
41
|
Clark GA, Kandel ER. Induction of long-term facilitation in Aplysia sensory neurons by local application of serotonin to remote synapses. Proc Natl Acad Sci U S A 1993; 90:11411-5. [PMID: 8248263 PMCID: PMC47992 DOI: 10.1073/pnas.90.23.11411] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Long-term synaptic facilitation at the connections of Aplysia sensory neurons onto their target cells involves alterations in gene expression. How then are the relevant cellular signals for the induction and expression of long-term synaptic changes conveyed between the nucleus and remote synaptic terminals? We have explored this question using a set of remote, peripheral terminals of siphon sensory cells, which are approximately 3 cm from the sensory cell body in the abdominal ganglion. We found that these remote synapses, like the proximal synapses previously studied in dissociated cell culture, can exhibit long-term facilitation 24 hr after cell-wide serotonin application. Furthermore, serotonin applications restricted to the remote synaptic terminals nevertheless produced long-term facilitation, indicating that signals generated in synaptic regions can trigger the long-term process, perhaps via retrograde signals to the nucleus to modify gene expression, followed by anterograde signals back to the terminal. Serotonin applications restricted to the cell body and proximal synapses of the sensory neuron also produced long-term facilitation at remote synapses, although to a lesser extent, suggesting that long-term facilitation is expressed cell-wide, but that superimposed on this cell-wide facilitation there appears to be a component that is synapse-specific.
Collapse
Affiliation(s)
- G A Clark
- Psychology Department, Princeton University, NJ 08544
| | | |
Collapse
|
42
|
Reichert H. Molecular correlates of neuronal specificity in the developing insect nervous system. Mol Neurobiol 1993; 7:349-62. [PMID: 8179843 DOI: 10.1007/bf02769182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The development of the nervous system in insects, as in most other higher animals, is characterized by the high degree of precision and specificity with which synaptic connectivity is established. Multiple molecular mechanisms are involved in this process. In insects a number of experimental methods and model systems can be used to analyze these mechanisms, and the modular organization of the insect nervous system facilitates this analysis considerably. Well characterized molecular elements involved in axogenesis are the cell-cell adhesion molecules that underlie selective fasciculation. These are cell-surface molecules that are expressed in a regional and dynamic manner on developing axon fascicles. Secreted molecules also appear to be involved in directing axonal navigation. Nonneuronal cells, such as glia, provide cellular and noncellular substrates that are important pathway cues for neuronal outgrowth. Once outgrowing processes reach their general target regions they make synapses with the appropriate postsynaptic cells. The molecular mechanisms that allow growth cones to recognize their correct target cells are essential for neuronal specificity and are being analyzed in neuromuscular and brain interneuron systems of insects. Candidate synaptic recognition molecules with remarkable and highly restricted expression patterns in the developing nervous system have recently been discovered.
Collapse
Affiliation(s)
- H Reichert
- Department of Zoology, University of Basel, Switzerland
| |
Collapse
|
43
|
Fleming JT, Tornoe C, Riina HA, Coadwell J, Lewis JA, Sattelle DB. Acetylcholine receptor molecules of the nematode Caenorhabditis elegans. EXS 1993; 63:65-80. [PMID: 8422541 DOI: 10.1007/978-3-0348-7265-2_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Receptors for acetylcholine are present in nematodes. Studies using physiological and biochemical methods have revealed the existence of nicotinic acetylcholine receptors with a novel pharmacology. Caenorhabditis elegans provides a particularly suitable organism with which to investigate such receptors using molecular genetic approaches. Mutants resistant to the cholinergic agonist (and anthelmintic drug) levamisole have permitted the isolation of a number of genes, including structural subunits of the nicotinic acetylcholine receptor. The only known viable mutants of nicotinic receptors are those of Caenorhabditis elegans. This organism offers the prospect of studying the developmental and regulatory effects of the loss of a single component of the receptor. Using Caenorhabditis elegans it is possible to select interesting phenotypic mutations by in vivo mutagenesis before determining the causative lesion. Resistance genes other than those encoding structural subunits are of particular interest, as they will encode additional polypeptides closely associated with nicotinic receptor function. Such proteins are often difficult or impossible to identify using conventional biochemical approaches, whereas genetic selection should permit their identification.
Collapse
Affiliation(s)
- J T Fleming
- Department of Zoology, University of Cambridge, England
| | | | | | | | | | | |
Collapse
|
44
|
Thompson KS, Blagburn JM, Gibbon CR, Bacon JP. Correlation of filiform hair position with sensory afferent morphology and synaptic connections in the second instar cockroach. J Comp Neurol 1992; 320:213-27. [PMID: 1619050 DOI: 10.1002/cne.903200206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An attempt is made to relate the distribution of filiform hairs on the cercus of the second instar cockroach, Periplaneta americana, to the morphology and patterns of synaptic connectivity of their afferents. We studied the most distal 25 of the 39 filiform hairs which are commonly present. Filiform afferent arborizations were stained by cobalt filling from the cell body in the cercus. Three fundamental arbor types were found, two similar to those of the first instar medial (M) and lateral (L) afferents, and a third, novel type. L-type arbors could be divided into four subtypes. The most obvious correlate of arbor type is the circumferential position of the hair on the cercus. The proximodistal position of the sensillum within each cercal segment is also a determinant of its arbor. By comparison of hair positions and afferent morphologies, we were able to ascribe homologies between the second instar hairs and members of adult longitudinal hair columns. The patterns of monosynaptic connections between afferents and giant interneurons (GIs) 1, 2, 3, 5, and 6 were determined by recording synaptic potentials in GIs evoked by direct mechanical displacement of individual filiform hairs. Latency from stimulus onset to the rise phase of the first excitatory postsynaptic potential (EPSP) was used as the criterion of monosynapticity. The EPSP amplitudes of the two original L and M afferents are halved in the second instar, in the absence of a significant decrease in GI input resistance. The other afferents can be divided into two basic classes: those which input to GI5 (M-type), and those which input to GI3 and GI6 (L-type). The former is correlated with a central or medial position, while the latter is associated with a group of afferents situated laterally on the cercus. In segments 3 and 4, input to GIs 1 and 2 also correlates with a medial cercal position, however, in the more proximal segments 5 and 6, afferents at all positions input to these interneurons. The occurrence of afferents of identical morphology and similar connectivity in equivalent positions in different segments suggests that each sensory neuron is determined by its two-dimensional position within a segment. The presence of afferents with the same morphology which display proximodistal differences in synaptic connectivity, and of other afferents which have M-type connectivity despite L-type morphology, means that anatomy is generally a poor predictor of synaptic connectivity.
Collapse
Affiliation(s)
- K S Thompson
- Institute of Neurobiology, University of Puerto Rico, Old San Juan 00901
| | | | | | | |
Collapse
|
45
|
Büschges A, Ramirez JM, Driesang R, Pearson KG. Connections of the forewing tegulae in the locust flight system and their modification following partial deafferentation. ACTA ACUST UNITED AC 1992; 23:44-60. [PMID: 1373440 DOI: 10.1002/neu.480230106] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The flight motor pattern of the adult locust (Locusta migratoria L.) is able to recover from the loss of the hindwing tegulae. This recovery is due to a functional substitution of the hindwing tegulae by the forewing tegulae (Büschges, Ramirez, and Pearson, 1992). To assess changes in the pathways from the forewing tegulae in the flight system, we investigated the pathways of the forewing tegula in intact locusts and in animals 2 weeks after hindwing tegula removal. The following physiological alterations in these pathways were found to be associated with the recovery: (1) In the intact locusts, the connections of forewing tegula afferents to flight interneurons are variable but this variability did not occur in recovered animals, and (2) larger numbers of forewing tegula afferents connect to interneurons that excite elevator motoneurons (interneurons 566 and 567) and to an interneuron that inhibits depressor motoneurons (interneuron 511). The size of unitary excitatory postsynaptic potentials (EPSPs) evoked by signal forewing tegula afferents was found not to be altered in recovered animals. The changes in connectivity of forewing tegula afferents are correlated with morphological alterations in the structure of the terminal processes of the afferents and with sprouting of some branches of interneurons receiving input from these afferents.
Collapse
Affiliation(s)
- A Büschges
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
46
|
Sandstrom DJ, Weeks JC. Reidentification of larval interneurons in the pupal stage of the tobacco hornworm, Manduca sexta. J Comp Neurol 1991; 308:311-27. [PMID: 1890241 DOI: 10.1002/cne.903080213] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The abdominal prolegs are the primary locomotory appendages of Manduca sexta larvae. After the prolegs are lost at pupation, some of the proleg motoneurons die while the survivors are respecified to carry out different functions in the adult moth. As a first step toward investigating the process of functional respecification at the synaptic level, we searched for larval interneurons that affected the activity of proleg motoneurons, and followed these interneurons into the pupal stage. Interneurons were judged to be individually identifiable based on their effects on proleg motoneuron activity and their anatomical features. Seven larval interneurons were identified and placed in five physiological classes based on their effects on proleg motoneurons: ipsilateral excitors, contralateral excitors, ipsilateral inhibitors, contralateral inhibitors, and bilateral inhibitor-excitors. Four of the larval interneurons produced apparently monosynaptic postsynaptic potentials in proleg motoneuron. Of the five larval interneurons that were reidentified in the early pupal stage, two showed minor but consistent structural modifications from the larval stage. Interneurons that produced unitary postsynaptic potentials in larval motoneurons continued to do so in pupal motoneurons. These studies demonstrate that individually identified interneurons can be followed through the larval-pupal transformation, during the initial stages of motoneuron respecification.
Collapse
Affiliation(s)
- D J Sandstrom
- Graduate Group in Neurobiology, University of California, Berkeley 94720
| | | |
Collapse
|
47
|
Chiba A, Murphey RK. Connectivity of identified central synapses in the cricket is normal following regeneration and blockade of presynaptic activity. JOURNAL OF NEUROBIOLOGY 1991; 22:130-42. [PMID: 2030338 DOI: 10.1002/neu.480220204] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cercal sensory neurons in the cricket innervate interneurons in the central nervous system (CNS) and provide a model system for studying the formation of central synapses. When axons of the sensory neurons were transected during larval development, the cell bodies and the soma-bearing portion of axons, which are located within the cercus, survived but lost their excitability for 9-10 days. During this period, the sensory neurons grew new axons and reinnervated the terminal abdominal ganglion. Physiological recordings showed that sensory neurons of known identity reestablished monosynaptic contacts with their normal postsynaptic interneuron. Moreover, each synapse exhibited a characteristic strength indistinguishable from the intact synapse in an unoperated cricket. Since this selective connectivity was apparent immediately after the excitability of the axotomized sensory neurons was restored, action potentials in the sensory neurons appear to be unnecessary for normal synaptic regeneration to occur. Consistent with this, the reinnervation process was unaffected even when action potentials in the sensory neurons were blocked by tetrodotoxin (TTX) immediately following axotomy until just before testing. During the normal course of development, the characteristic strength of individual synapses changes systematically, resulting in the developmental rearrangement of these synapses (Chiba et al., 1988). This synaptic rearrangement was also unaffected when action potentials in the sensory neurons were blocked by TTX for the last 30% of larval development. Therefore, in the cricket cercal sensory system, both regeneration of the central synapses following axotomy of the presynaptic sensory neurons and the normal rearrangement of connectivity during larval development appear not to require axonal action potentials.
Collapse
Affiliation(s)
- A Chiba
- Department of Biology, State University of New York, Albany 12222
| | | |
Collapse
|
48
|
Lakes R, Kalmring K. Regeneration of the projection and synaptic connections of tympanic receptor fibers of Locusta migratoria (Orthoptera) after axotomy. JOURNAL OF NEUROBIOLOGY 1991; 22:169-81. [PMID: 2030340 DOI: 10.1002/neu.480220207] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The tergite nerve N6 of the first abdominal segment of the locust Locusta migratoria contains receptor fibers, from the tympanic organ, and hair sensilla as well as motoric axons. The nerve was axotomized in nymphal instars or adults, and the regeneration of nerve fibers was studied. The sensory fibers regrow and regenerate their projection pattern within the central nervous system. They recognize their specific neuropile areas even after entering the ganglion through different pathways. The receptor fibers of the tympanic organ reestablish synaptic connections to auditory interneurons, even though the physiological characteristics of the interneurons are not fully restored. This regenerative capability contrasts with the lack of regeneration of peripheral structures in locusts, but supports the described plasticity in the auditory system of monaural locusts (Lakes, Kalmring, and Engelhard, 1990). The motor fibers do not regenerate nerves innervating muscles of the body wall.
Collapse
Affiliation(s)
- R Lakes
- AG Neurobiologie, FB Biologie-Zoologie, Philipps-Universität, 3550 Marburg, Federal Republic of Germany
| | | |
Collapse
|
49
|
Blagburn JM, Thompson KS. Specificity of filiform hair afferent synapses onto giant interneurons in Periplaneta americana: anatomy is not a sufficient determinant. J Comp Neurol 1990; 302:255-71. [PMID: 2289973 DOI: 10.1002/cne.903020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synapses between the filiform hair sensory afferents and giant interneurons (GIs) 1-6 of embryonic and first instar cockroaches, Periplaneta americana, were used to investigate the role of neuronal anatomy in determining synaptic specificity. The pattern of afferent-to-GI synapses was first determined by intracellular recording of excitatory postsynaptic potentials (EPSPs). The lateral (L) axon synapses only with GIs 3, 4, and 6, while the medial (M) axon synapses with the contralateral dendrites of all six GIs but with the ipsilateral dendrites only of GIs 1, 2, and 4. The three-dimensional anatomy of the filiform afferents and GIs was determined by injection of cobalt. There is little anatomical segregation of the filiform afferents; consequently, there is no correlation between the anatomy of the GIs and their synaptic inputs. The M axon and ipsilateral GI3 were studied in more detail by light and electron microscopy. Despite the presence of an anterior M axon branch which loops around the ipsilateral GI3 neurite at a distance of 2 microns, no synapses are formed between them. This lack of synapses is not due to the presence of physical barriers. Investigation of filiform afferents and GIs in embryonic ganglia shows that at no stage are the afferents sufficiently separated for their anatomy to be an important factor in determining the specificity of the synaptic inputs of the GIs. It was postulated that two pairs of complementary cell surface labels would be sufficient to code for this specificity, and that, in GIs 3, 5, and 6, spatial differences in the expression of these labels allow the M axon to distinguish ipsilateral dendrites from contralateral.
Collapse
Affiliation(s)
- J M Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, Old San Juan 00901
| | | |
Collapse
|
50
|
Boyan GS, Ball EE. Neuronal organization and information processing in the wind-sensitive cercal receptor/giant interneurone system of the locus and other orthopteroid insects. Prog Neurobiol 1990; 35:217-43. [PMID: 2236578 DOI: 10.1016/0301-0082(90)90028-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- G S Boyan
- Molecular Neurobiology Group, Research School of Biological Sciences, Australian National University, Canberra City
| | | |
Collapse
|