1
|
Gaete PS, Kumar D, Fernandez CI, Valdez Capuccino JM, Bhatt A, Jiang W, Lin YC, Liu Y, Harris AL, Luo YL, Contreras JE. Large-pore connexin hemichannels function like molecule transporters independent of ion conduction. Proc Natl Acad Sci U S A 2024; 121:e2403903121. [PMID: 39116127 PMCID: PMC11331127 DOI: 10.1073/pnas.2403903121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Connexin hemichannels were identified as the first members of the eukaryotic large-pore channel family that mediate permeation of both atomic ions and small molecules between the intracellular and extracellular environments. The conventional view is that their pore is a large passive conduit through which both ions and molecules diffuse in a similar manner. In stark contrast to this notion, we demonstrate that the permeation of ions and of molecules in connexin hemichannels can be uncoupled and differentially regulated. We find that human connexin mutations that produce pathologies and were previously thought to be loss-of-function mutations due to the lack of ionic currents are still capable of mediating the passive transport of molecules with kinetics close to those of wild-type channels. This molecular transport displays saturability in the micromolar range, selectivity, and competitive inhibition, properties that are tuned by specific interactions between the permeating molecules and the N-terminal domain that lies within the pore-a general feature of large-pore channels. We propose that connexin hemichannels and, likely, other large-pore channels, are hybrid channel/transporter-like proteins that might switch between these two modes to promote selective ion conduction or autocrine/paracrine molecular signaling in health and disease processes.
Collapse
Affiliation(s)
- Pablo S. Gaete
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Deepak Kumar
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Cynthia I. Fernandez
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| | - Juan M. Valdez Capuccino
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Aashish Bhatt
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Wenjuan Jiang
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Yi-Chun Lin
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Yu Liu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Andrew L. Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ07103
| | - Yun L. Luo
- Department of Biotechnology and Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA91766
| | - Jorge E. Contreras
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA95616
| |
Collapse
|
2
|
Gaete PS, Lillo MA, López W, Liu Y, Jiang W, Luo Y, Harris AL, Contreras JE. A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels. J Gen Physiol 2021; 152:211474. [PMID: 33074302 PMCID: PMC7579738 DOI: 10.1085/jgp.202012607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Large-pore channels permeable to small molecules such as ATP, in addition to atomic ions, are emerging as important regulators in health and disease. Nonetheless, their mechanisms of molecular permeation and selectivity remain mostly unexplored. Combining fluorescence microscopy and electrophysiology, we developed a novel technique that allows kinetic analysis of molecular permeation through connexin and CALHM1 channels in Xenopus oocytes rendered translucent. Using this methodology, we found that (1) molecular flux through these channels saturates at low micromolar concentrations, (2) kinetic parameters of molecular transport are sensitive to modulators of channel gating, (3) molecular transport and ionic currents can be differentially affected by mutation and gating, and (4) N-terminal regions of these channels control transport kinetics and permselectivity. Our methodology allows analysis of how human disease-causing mutations affect kinetic properties and permselectivity of molecular signaling and enables the study of molecular mechanisms, including selectivity and saturability, of molecular transport in other large-pore channels.
Collapse
Affiliation(s)
- Pablo S Gaete
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mauricio A Lillo
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - William López
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Yu Liu
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Yun Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA
| | - Andrew L Harris
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Jorge E Contreras
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| |
Collapse
|
3
|
|
4
|
Abstract
The connexin family of channel-forming proteins is present in every tissue type in the human anatomy. Connexins are best known for forming clustered intercellular channels, structurally known as gap junctions, where they serve to exchange members of the metabolome between adjacent cells. In their single-membrane hemichannel form, connexins can act as conduits for the passage of small molecules in autocrine and paracrine signalling. Here, we review the roles of connexins in health and disease, focusing on the potential of connexins as therapeutic targets in acquired and inherited diseases as well as wound repair, while highlighting the associated clinical challenges.
Collapse
|
5
|
Cervera J, Meseguer S, Mafe S. MicroRNA Intercellular Transfer and Bioelectrical Regulation of Model Multicellular Ensembles by the Gap Junction Connectivity. J Phys Chem B 2017; 121:7602-7613. [DOI: 10.1021/acs.jpcb.7b04774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Javier Cervera
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Salvador Mafe
- Dept.
de Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
6
|
Mondal A, Sachse FB, Moreno AP. Modulation of Asymmetric Flux in Heterotypic Gap Junctions by Pore Shape, Particle Size and Charge. Front Physiol 2017; 8:206. [PMID: 28428758 PMCID: PMC5382223 DOI: 10.3389/fphys.2017.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/20/2017] [Indexed: 01/26/2023] Open
Abstract
Gap junction channels play a vital role in intercellular communication by connecting cytoplasm of adjoined cells through arrays of channel-pores formed at the common membrane junction. Their structure and properties vary depending on the connexin isoform(s) involved in forming the full gap junction channel. Lack of information on the molecular structure of gap junction channels has limited the development of computational tools for single channel studies. Currently, we rely on cumbersome experimental techniques that have limited capabilities. We have earlier reported a simplified Brownian dynamics gap junction pore model and demonstrated that variations in pore shape at the single channel level can explain some of the differences in permeability of heterotypic channels observed in in vitro experiments. Based on this computational model, we designed simulations to study the influence of pore shape, particle size and charge in homotypic and heterotypic pores. We simulated dye diffusion under whole cell voltage clamping. Our simulation studies with pore shape variations revealed a pore shape with maximal flux asymmetry in a heterotypic pore. We identified pore shape profiles that match the in silico flux asymmetry results to the in vitro results of homotypic and heterotypic gap junction formed out of Cx43 and Cx45. Our simulation results indicate that the channel's pore-shape established flux asymmetry and that flux asymmetry is primarily regulated by the sizes of the conical and/or cylindrical mouths at each end of the pore. Within the set range of particle size and charge, flux asymmetry was found to be independent of particle size and directly proportional to charge magnitude. While particle charge was vital to creating flux asymmetry, charge magnitude only scaled the observed flux asymmetry. Our studies identified the key factors that help predict asymmetry. Finally, we suggest the role of such flux asymmetry in creating concentration imbalances of messenger molecules in cardiomyocytes. We also assess the potency of fibroblasts in aggravating such imbalances through Cx43-Cx45 heterotypic channels in fibrotic heart tissue.
Collapse
Affiliation(s)
- Abhijit Mondal
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Frank B Sachse
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA
| | - Alonso P Moreno
- Department of Bioengineering, University of UtahSalt Lake City, UT, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute, University of UtahSalt Lake City, UT, USA.,Department of Internal Medicine, Cardiology, University of UtahSalt Lake City, UT, USA
| |
Collapse
|
7
|
Johnson RG, Le HC, Evenson K, Loberg SW, Myslajek TM, Prabhu A, Manley AM, O’Shea C, Grunenwald H, Haddican M, Fitzgerald PM, Robinson T, Cisterna BA, Sáez JC, Liu TF, Laird DW, Sheridan JD. Connexin Hemichannels: Methods for Dye Uptake and Leakage. J Membr Biol 2016; 249:713-741. [DOI: 10.1007/s00232-016-9925-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 01/18/2023]
|
8
|
Bicen AO, Akyildiz IF, Balasubramaniam S, Koucheryavy Y. Linear Channel Modeling and Error Analysis for Intra/Inter-Cellular Ca 2+ Molecular Communication. IEEE Trans Nanobioscience 2016; 15:488-498. [PMID: 27514062 DOI: 10.1109/tnb.2016.2574639] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of intra/inter-cellular calcium ion (Ca2+) signaling for molecular communication (MC) is investigated in this paper. In particular, the elevation of the intracellular Ca2+ concentration upon the external excitation, i.e., Ca2+ wave generation, and the intercellular propagation of Ca2+ wave over consecutive cells are studied for information transmission. The main objective of this paper is to develop a linear channel model for intra/inter-cellular Ca2+ MC. In this context, the end-to-end Ca2+ MC system is studied under three blocks: the wave generation, the gap junctional (intercellular) propagation, and the intracellular propagation. The wave generation block captures the intracellular Ca2+ signaling pathway including the release of Ca2+ from the organelles and the buffers inside a cell, and the intake from the extracellular space. The gap junctional (intercellular) propagation block captures the Ca2+ transition through the gap junctions between the touching cells. The intracellular propagation block defines the effect of the cytoplasmic diffusion. Using the developed blocks for the different biophysical phenomena, the end-to-end channel gain and delay formulas are derived. Furthermore, the bit error probability is studied to reveal the impact of the detection threshold. This work provides the basis for the modeling, analysis and the design of Ca2+ MC systems.
Collapse
|
9
|
Rimkutė L, Jotautis V, Marandykina A, Sveikatienė R, Antanavičiūtė I, Skeberdis VA. The role of neural connexins in HeLa cell mobility and intercellular communication through tunneling tubes. BMC Cell Biol 2016; 17:3. [PMID: 26758208 PMCID: PMC4710989 DOI: 10.1186/s12860-016-0080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/08/2016] [Indexed: 01/12/2023] Open
Abstract
Background Membranous tunneling tubes (TTs) are a recently discovered new form of communication between remote cells allowing their electrical synchronization, migration, and transfer of cellular materials. TTs have been identified in the brain and share similarities with neuronal processes. TTs can be open-ended, close-ended or contain functional gap junctions at the membrane interface. Gap junctions are formed of two unapposed hemichannels composed of six connexin (Cx) subunits. There are evidences that Cxs also play channel-independent role in cell adhesion, migration, division, differentiation, formation of neuronal networks and tumorigenicity. These properties of Cxs and TTs may synergetically determine the cellular and intercellular processes. Therefore, we examined the impact of Cxs expressed in the nervous system (Cx36, Cx40, Cx43, Cx45, and Cx47) on: 1) cell mobility; 2) formation and properties of TTs; and 3) transfer of siRNA between remote cells through TTs. Results We have identified two types of TTs between HeLa cells: F-actin rich only and containing F-actin and α-tubulin. The morphology of TTs was not influenced by expression of examined connexins; however, Cx36-EGFP-expressing cells formed more TTs while cells expressing Cx43-EGFP, Cx45, and Cx47 formed fewer TTs between each other compared with wt and Cx40-CFP-expressing cells. Also, Cx36-EGFP and Cx40-CFP-expressing HeLa cells were more mobile compared with wt and other Cxs-expressing cells. TTs containing Cx40-CFP, Cx43-EGFP, or Cx47 gap junctions were capable of transmitting double-stranded small interfering RNA; however, Cx36-EGFP and Cx45 were not permeable to it. In addition, we show that Cx43-EGFP-expressing HeLa cells and laryngeal squamous cell carcinoma cells can couple to the mesenchymal stem cells through TTs. Conclusions Different Cxs may modulate the mobility of cells and formation of TTs in an opposite manner; siRNA transfer through the GJ-containing TTs is Cx isoform-dependent. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0080-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vaidas Jotautis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| | - Vytenis Arvydas Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, 17 Sukilėlių Ave., 50009, Kaunas, Lithuania.
| |
Collapse
|
10
|
Podtaev S, Nikolaev D, Samartsev V, Gavrilov V, Tsiberkin K. Frequency and temperature dependence of skin bioimpedance during a contralateral cold test. Physiol Meas 2015; 36:561-77. [PMID: 25690397 DOI: 10.1088/0967-3334/36/3/561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A study of the α- and β-dispersion of skin bioimpedance dependence on temperature and micro-hemodynamics is presented. The vascular tone changes during the cold test are verified by the wavelet-analysis of skin temperature signals obtained simultaneously with impedance measurements. Thirty three normal healthy subjects of 28 ± 7 years old were entered into the study. The tetra-polar electrode system was used to record the resistance and reactance; measurements were carried out at 67 frequencies, in a frequency range from 2 Hz to 50 kHz. It has been found that the impedance decreases with vasodilation and increases with vasoconstriction. The high values of correlation among thermal oscillation amplitudes and Nyquist diagram parameters prove the impedance dependence on blood flow in three frequency bands corresponding to the myogenic, neurogenic and endothelial vascular tone regulation mechanisms. Using an equivalent RC circuit, we obtained the changes in the Nyquist diagram matching the experimental data. The proposed descriptive α-dispersion model can be used to study mechanisms responsible for intercellular interaction.
Collapse
Affiliation(s)
- S Podtaev
- Institute of Continuous Media Mechanics, Korolyov str.1, Perm 614013, Russia
| | | | | | | | | |
Collapse
|
11
|
Lee SC, Patrick SL, Richardson KA, Connors BW. Two functionally distinct networks of gap junction-coupled inhibitory neurons in the thalamic reticular nucleus. J Neurosci 2014; 34:13170-82. [PMID: 25253862 PMCID: PMC4172808 DOI: 10.1523/jneurosci.0562-14.2014] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/18/2014] [Accepted: 08/24/2014] [Indexed: 11/21/2022] Open
Abstract
Gap junctions (GJs) electrically couple GABAergic neurons of the forebrain. The spatial organization of neuron clusters coupled by GJs is an important determinant of network function, yet it is poorly described for nearly all mammalian brain regions. Here we used a novel dye-coupling technique to show that GABAergic neurons in the thalamic reticular nucleus (TRN) of mice and rats form two types of GJ-coupled clusters with distinctive patterns and axonal projections. Most clusters are elongated narrowly along functional modules within the plane of the TRN, with axons that selectively inhibit local groups of relay neurons. However, some coupled clusters have neurons arrayed across the thickness of the TRN and target their axons to both first- and higher-order relay nuclei. Dye coupling was reduced, but not abolished, among cells of connexin36 knock-out mice. Our results suggest that GJs form two distinct types of inhibitory networks that correlate activity either within or across functional modules of the thalamus.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | - Saundra L Patrick
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | - Kristen A Richardson
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| | - Barry W Connors
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
12
|
Dargaei Z, Colmers PLW, Hodgson HM, Magoski NS. Electrical coupling between Aplysia bag cell neurons: characterization and role in synchronous firing. J Neurophysiol 2014; 112:2680-96. [PMID: 25185820 DOI: 10.1152/jn.00494.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In neuroendocrine cells, hormone release often requires a collective burst of action potentials synchronized by gap junctions. This is the case for the electrically coupled bag cell neurons in the reproductive system of the marine snail, Aplysia californica. These neuroendocrine cells are found in two clusters, and fire a synchronous burst, called the afterdischarge, resulting in neuropeptide secretion and the triggering of ovulation. However, the physiology and pharmacology of the bag cell neuron electrical synapse are not completely understood. As such, we made dual whole cell recordings from pairs of electrically coupled cultured bag cell neurons. The junctional current was nonrectifying and not influenced by postsynaptic voltage. Furthermore, junctional conductance was voltage independent and, not surprisingly, strongly correlated with coupling coefficient magnitude. The electrical synapse also acted as a low-pass filter, although under certain conditions, electrotonic potentials evoked by presynaptic action potentials could drive postsynaptic spikes. If coupled neurons were stimulated to spike simultaneously, they presented a high degree of action potential synchrony compared with not-coupled neurons. The electrical synapse failed to pass various intracellular dyes, but was permeable to Cs(+), and could be inhibited by niflumic acid, meclofenamic acid, or 5-nitro-2-(3-phenylpropylamino)benzoic acid. Finally, extracellular and sharp-electrode recording from the intact bag cell neuron cluster showed that these pharmacological uncouplers disrupted both electrical coupling and afterdischarge generation in situ. Thus electrical synapses promote bag cell neuron firing synchrony and may allow for electrotonic spread of the burst through the network, ultimately contributing to propagation of the species.
Collapse
Affiliation(s)
- Zahra Dargaei
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Phillip L W Colmers
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Heather M Hodgson
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| | - Neil S Magoski
- Department of Biomedical and Molecular Sciences, Physiology Graduate Program, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
13
|
Antanavičiūtė I, Rysevaitė K, Liutkevičius V, Marandykina A, Rimkutė L, Sveikatienė R, Uloza V, Skeberdis VA. Long-distance communication between laryngeal carcinoma cells. PLoS One 2014; 9:e99196. [PMID: 24945745 PMCID: PMC4063716 DOI: 10.1371/journal.pone.0099196] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 01/22/2023] Open
Abstract
Tunneling nanotubes and epithelial bridges are recently discovered new forms of intercellular communication between remote cells allowing their electrical synchronization, transfer of second messengers and even membrane vesicles and organelles. In the present study, we demonstrate for the first time in primary cell cultures prepared from human laryngeal squamous cell carcinoma (LSCC) samples that these cells communicate with each other over long distances (up to 1 mm) through membranous tunneling tubes (TTs), which can be open-ended or contain functional gap junctions formed of connexin 43. We found two types of TTs, containing F-actin alone or F-actin and α-tubulin. In the LSCC cell culture, we identified 5 modes of TT formation and performed quantitative assessment of their electrical properties and permeability to fluorescent dyes of different molecular weight and charge. We show that TTs, containing F-actin and α-tubulin, transport mitochondria and accommodate small DAPI-positive vesicles suggesting possible transfer of genetic material through TTs. We confirmed this possibility by demonstrating that even TTs, containing gap junctions, were capable of transmitting double-stranded small interfering RNA. To support the idea that the phenomenon of TTs is not only typical of cell cultures, we have examined microsections of samples obtained from human LSCC tissues and identified intercellular structures similar to those found in the primary LSCC cell culture.
Collapse
Affiliation(s)
- Ieva Antanavičiūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kristina Rysevaitė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vykintas Liutkevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Alina Marandykina
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Lina Rimkutė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Renata Sveikatienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virgilijus Uloza
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | |
Collapse
|
14
|
Nagaraja S, Kapela A, Tsoukias NM. Intercellular communication in the vascular wall: a modeling perspective. Microcirculation 2012; 19:391-402. [PMID: 22340204 DOI: 10.1111/j.1549-8719.2012.00171.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Movement of ions (Ca(2+) , K(+) , Na(+) , and Cl(-) ) and second messenger molecules like inositol 1, 4, 5-trisphosphate inside and in between different cells is the basis of many signaling mechanisms in the microcirculation. In spite of the vast experimental efforts directed toward evaluation of these fluxes, it has been a challenge to establish their roles in many essential microcirculatory phenomena. Recently, detailed theoretical models of calcium dynamics and plasma membrane electrophysiology have emerged to assist in the quantification of these intra and intercellular fluxes and enhance understanding of their physiological importance. This perspective reviews selected models relevant to estimation of such intra and intercellular ionic and second messenger fluxes and prediction of their relative significance to a variety of vascular phenomena, such as myoendothelial feedback, conducted responses, and vasomotion.
Collapse
Affiliation(s)
- Sridevi Nagaraja
- Department of Biomedical Engineering, Florida International University, Miami, Florida 33174, USA
| | | | | |
Collapse
|
15
|
Bukauskas FF. Neurons and β-cells of the pancreas express connexin36, forming gap junction channels that exhibit strong cationic selectivity. J Membr Biol 2012; 245:243-53. [PMID: 22752717 PMCID: PMC3626077 DOI: 10.1007/s00232-012-9445-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/01/2012] [Indexed: 01/30/2023]
Abstract
We examined the permeability of connexin36 (Cx36) homotypic gap junction (GJ) channels, expressed in neurons and β-cells of the pancreas, to dyes differing in molecular mass and net charge. Experiments were performed in HeLa cells stably expressing Cx36 tagged with EGFP by combining a dual whole-cell voltage clamp and fluorescence imaging. To assess the permeability of the single GJ channel (P(γ)), we used a dual-mode excitation of fluorescent dyes that allowed us to measure cell-to-cell dye transfer at levels not resolvable using whole-field excitation solely. We demonstrate that P(γ) of Cx36 for cationic dyes (EAM-1⁺ and EAM-2⁺) is ~10-fold higher than that for an anionic dye of the same net charge and similar molecular mass, Alexa fluor-350 (AFl-350⁻). In addition, P(γ) for Lucifer yellow (LY²⁻) is approximately fourfold smaller than that for AFl-350⁻, which suggests that the higher negativity of LY²⁻ significantly reduces permeability. The P(γ) of Cx36 for AFl-350 is approximately 358, 138, 23 and four times smaller than the P(γ)s of Cx43, Cx40, Cx45, and Cx57, respectively. In contrast, it is 6.5-fold higher than the P(γ) of mCx30.2, which exhibits a smaller single-channel conductance. Thus, Cx36 GJs are highly cation-selective and should exhibit relatively low permeability to numerous vital negatively charged metabolites and high permeability to K⁺, a major charge carrier in cell-cell communication.
Collapse
Affiliation(s)
- Feliksas F Bukauskas
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
16
|
Palacios-Prado N, Bukauskas FF. Modulation of metabolic communication through gap junction channels by transjunctional voltage; synergistic and antagonistic effects of gating and ionophoresis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1884-94. [PMID: 21930112 DOI: 10.1016/j.bbamem.2011.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/28/2023]
Abstract
Gap junction (GJ) channels assembled from connexin (Cx) proteins provide a structural basis for direct electrical and metabolic cell-cell communication. Here, we focus on gating and permeability properties of Cx43/Cx45 heterotypic GJs exhibiting asymmetries of both voltage-gating and transjunctional flux (J(j)) of fluorescent dyes depending on transjunctional voltage (V(j)). Relatively small differences in the resting potential of communicating cells can substantially reduce or enhance this flux at relative negativity or positivity on Cx45 side, respectively. Similarly, series of V(j) pulses resembling bursts of action potentials (APs) reduce J(j) when APs initiate in the cell expressing Cx43 and increase J(j) when APs initiate in the cell expressing Cx45. J(j) of charged fluorescent dyes is affected by ionophoresis and V(j)-gating and the asymmetry of J(j)-V(j) dependence in heterotypic GJs is enhanced or reduced when ionophoresis and V(j)-gating work in a synergistic or antagonistic manner, respectively. Modulation of cell-to-cell transfer of metabolites and signaling molecules by V(j) may occur in excitable as well as non-excitable tissues and may be more expressed in the border between normal and pathological regions where intercellular gradients of membrane potential and concentration of ions are substantially altered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Nicolás Palacios-Prado
- Dominick P.Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | | |
Collapse
|
17
|
de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 2010; 459:897-914. [PMID: 20379740 DOI: 10.1007/s00424-010-0830-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 03/16/2010] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly evident that electrical signaling via gap junctions plays a central role in the physiological control of vascular tone via two related mechanisms (1) the endothelium-derived hyperpolarizing factor (EDHF) phenomenon, in which radial transmission of hyperpolarization from the endothelium to subjacent smooth muscle promotes relaxation, and (2) responses that propagate longitudinally, in which electrical signaling within the intimal and medial layers of the arteriolar wall orchestrates mechanical behavior over biologically large distances. In the EDHF phenomenon, the transmitted endothelial hyperpolarization is initiated by the activation of Ca(2+)-activated K(+) channels channels by InsP(3)-induced Ca(2+) release from the endoplasmic reticulum and/or store-operated Ca(2+) entry triggered by the depletion of such stores. Pharmacological inhibitors of direct cell-cell coupling may thus attenuate EDHF-type smooth muscle hyperpolarizations and relaxations, confirming the participation of electrotonic signaling via myoendothelial and homocellular smooth muscle gap junctions. In contrast to isolated vessels, surprisingly little experimental evidence argues in favor of myoendothelial coupling acting as the EDHF mechanism in arterioles in vivo. However, it now seems established that the endothelium plays the leading role in the spatial propagation of arteriolar responses and that these involve poorly understood regenerative mechanisms. The present review will focus on the complex interactions between the diverse cellular signaling mechanisms that contribute to these phenomena.
Collapse
Affiliation(s)
- Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | |
Collapse
|
18
|
Kapela A, Bezerianos A, Tsoukias NM. A mathematical model of vasoreactivity in rat mesenteric arterioles: I. Myoendothelial communication. Microcirculation 2010; 16:694-713. [PMID: 19905969 DOI: 10.3109/10739680903177539] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To study the effect of myoendothelial communication on vascular reactivity, we integrated detailed mathematical models of Ca(2+) dynamics and membrane electrophysiology in arteriolar smooth muscle (SMC) and endothelial (EC) cells. Cells are coupled through the exchange of Ca(2+), Cl(-), K(+), and Na(+) ions, inositol 1,4,5-triphosphate (IP(3)), and the paracrine diffusion of nitric oxide (NO). EC stimulation reduces intracellular Ca(2+) ([Ca(2+)](i)) in the SMC by transmitting a hyperpolarizing current carried primarily by K(+). The NO-independent endothelium-derived hyperpolarization was abolished in a synergistic-like manner by inhibition of EC SK(Ca) and IK(Ca) channels. During NE stimulation, IP(3) diffusing from the SMC induces EC Ca(2+) release, which, in turn, moderates SMC depolarization and [Ca(2+)](i) elevation. On the contrary, SMC [Ca(2+)](i) was not affected by EC-derived IP(3). Myoendothelial Ca(2+) fluxes had no effect in either cell. The EC exerts a stabilizing effect on calcium-induced calcium release-dependent SMC Ca(2+) oscillations by increasing the norepinephrine concentration window for oscillations. We conclude that a model based on independent data for subcellular components can capture major features of the integrated vessel behavior. This study provides a tissue-specific approach for analyzing complex signaling mechanisms in the vasculature.
Collapse
Affiliation(s)
- Adam Kapela
- Department of Biomedical Engineering, Florida International University, Miami, Florida, USA
| | | | | |
Collapse
|
19
|
Heterotypic gap junction channels as voltage-sensitive valves for intercellular signaling. Proc Natl Acad Sci U S A 2009; 106:14855-60. [PMID: 19706392 DOI: 10.1073/pnas.0901923106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gap junction (GJ) channels assembled from connexin (Cx) proteins provide a structural basis for direct electrical and metabolic cell-cell communication. By combining fluorescence imaging and dual whole-cell voltage clamp methods, we demonstrate that in response to transjunctional voltage (Vj) Cx43/Cx45 heterotypic GJs exhibit both Vj-gating and dye transfer asymmetries. The later is affected by ionophoresis of charged fluorescent dyes and voltage-dependent gating. We demonstrate that small differences in resting (holding) potentials of communicating cells can fully block (at relative negativity on Cx45 side) or enhance (at relative positivity on Cx45 side) dye transfer. Similarly, series of high frequency Vj pulses resembling bursts of action potentials (APs) can fully block or increase the transjunctional flux (Jj) of dye depending on whether pulses are generated in the cell expressing Cx43 or Cx45, respectively. Asymmetry of Jj-Vj dependence is enhanced or reduced when ionophoresis and Vj-gating act synergistically or antagonistically, whereas single channel permeability (Pgamma) remains unaffected. This modulation of intercellular signaling by Vj can play a crucial role in many aspects of intercellular communication in the adult, in embryonic development, and in tissue regeneration.
Collapse
|
20
|
Palacios-Prado N, Sonntag S, Skeberdis VA, Willecke K, Bukauskas FF. Gating, permselectivity and pH-dependent modulation of channels formed by connexin57, a major connexin of horizontal cells in the mouse retina. J Physiol 2009; 587:3251-69. [PMID: 19433576 DOI: 10.1113/jphysiol.2009.171496] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mouse connexin57 (Cx57) is expressed most abundantly in horizontal cells of the retina, and forms gap junction (GJ) channels, which constitute a structural basis for electrical and metabolic intercellular communication, and unapposed hemichannels (UHCs) that are involved in an exchange of ions and metabolites between the cytoplasm and extracellular milieu. By combining fluorescence imaging and dual whole-cell voltage clamp methods, we showed that HeLa cells expressing Cx57 and C-terminally fused with enhanced green fluorescent protein (Cx57-EGFP) form junctional plaques (JPs) and that only cell pairs exhibiting at least one JP demonstrate cell-to-cell electrical coupling and transfer of negatively and positively charged dyes with molecular mass up to approximately 400 Da. The permeability of the single Cx57 GJ channel to Alexa fluor-350 is approximately 90-fold smaller than the permeability of Cx43, while its single channel conductance (57 pS) is only 2-fold smaller than Cx43 (110 pS). Gating of Cx57-EGFP/Cx45 heterotypic GJ channels reveal that Cx57 exhibit a negative gating polarity, i.e. channels tend to close at negativity on the cytoplasmic side of Cx57. Alkalization of pH(i) from 7.2 to 7.8 increased gap junctional conductance (g(j)) of approximately 100-fold with pK(a) = 7.41. We show that this g(j) increase was caused by an increase of both the open channel probability and the number of functional channels. Function of Cx57 UHCs was evaluated based on the uptake of fluorescent dyes. We found that under control conditions, Cx57 UHCs are closed and open at [Ca(2+)](o) = approximately 0.3 mm or below, demonstrating that a moderate reduction of [Ca(2+)](o) can facilitate the opening of Cx57 UHCs. This was potentiated with intracellular alkalization. In summary, our data show that the open channel probability of Cx57 GJs can be modulated by pH(i) with very high efficiency in the physiologically relevant range and may explain pH-dependent regulation of cell-cell coupling in horizontal cell in the retina.
Collapse
Affiliation(s)
- Nicolas Palacios-Prado
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
21
|
Rackauskas M, Verselis VK, Bukauskas FF. Permeability of homotypic and heterotypic gap junction channels formed of cardiac connexins mCx30.2, Cx40, Cx43, and Cx45. Am J Physiol Heart Circ Physiol 2007; 293:H1729-36. [PMID: 17557922 PMCID: PMC2836796 DOI: 10.1152/ajpheart.00234.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the permeabilities of homotypic and heterotypic gap junction (GJ) channels formed of rodent connexins (Cx) 30.2, 40, 43, and 45, which are expressed in the heart and other tissues, using fluorescent dyes differing in net charge and molecular mass. Combining fluorescent imaging and electrophysiological recordings in the same cell pairs, we evaluated the single-channel permeability (P(gamma)). All homotypic channels were permeable to the anionic monovalent dye Alexa Fluor-350 (AF(350)), but mCx30.2 channels exhibited a significantly lower P(gamma) than the others. The anionic divalent dye Lucifer yellow (LY) remained permeant in Cx40, Cx43, and Cx45 channels, but transfer through mCx30.2 channels was not detected. Heterotypic channels generally exhibited P(gamma) values that were intermediate to the corresponding homotypic channels. P(gamma) values of mCx30.2/Cx40, mCx30.2/Cx43, or mCx30.2/Cx45 heterotypic channels for AF(350) were similar and approximately twofold higher than P(gamma) values of mCx30.2 homotypic channels. Permeabilities for cationic dyes were assessed only qualitatively because of their binding to nucleic acids. All homotypic and heterotypic channel configurations were permeable to ethidium bromide and 4,6-diamidino-2-phenylindole. Permeability for propidium iodide was limited only for GJ channels that contain at least one mCx30.2 hemichannel. In summary, we have demonstrated that Cx40, Cx43, and Cx45 are permeant to all examined cationic and anionic dyes, whereas mCx30.2 demonstrates permeation restrictions for molecules with molecular mass over approximately 400 Da. The ratio of single-channel conductance to permeability for AF(350) was approximately 40- to 170-fold higher for mCx30.2 than for Cx40, Cx43, and Cx45, suggesting that mCx30.2 GJs are notably more adapted to perform electrical rather than metabolic cell-cell communication.
Collapse
Affiliation(s)
- Mindaugas Rackauskas
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
22
|
Eckert R. Gap-junctional single-channel permeability for fluorescent tracers in mammalian cell cultures. Biophys J 2006; 91:565-79. [PMID: 16632504 PMCID: PMC1483098 DOI: 10.1529/biophysj.105.072306] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have developed a simple dye transfer method that allows quantification of the gap-junction permeability of small cultured cells. Fluorescent dyes (calcein and Lucifer yellow) were perfused into one cell of an isolated cell pair using a patch-type micropipette in the tight-seal whole cell configuration. Dye spreading into the neighboring cells was monitored using a low-light charge-coupled device camera. Permeation rates for calcein and Lucifer yellow were then estimated by fitting the time course of the fluorescence intensities in both cells. For curve fitting, we used a set of model equations derived from a compartment model of dye distribution. The permeation rates were correlated to the total ionic conductance of the gap junction measured immediately after the perfusion experiment. Assuming that dye permeation is through a unit-conductance channel, we were then able to calculate the single-channel permeance for each tracer dye. We have applied this technique to HeLa cells stably transfected with rat-Cx46 and Cx43, and to BICR/M1R(k) cells, a rat mammary tumor cell line that has very high dye coupling through endogenous Cx43 channels. Scatter plots of permeation rates versus junctional conductance did not show a strictly linear correlation of ionic versus dye permeance, as would have been expected for a simple pore. Instead, we found that the data scatter within a wide range of different single-channel permeances. In BICR/M1R(k) cells, the lower limiting single-channel permeance is 2.2 +/- 2.0 x 10(-12) mm3/s and the upper limit is 50 x 10(-12) mm3/s for calcein and 6.8 +/- 2.8 x 10(-12) mm3/s and 150 x 10(-12) mm3/s for Lucifer yellow, respectively. In HeLa-Cx43 transfectants we found 2.0 +/- 2.4 x 10(-12) mm3/s and 95 x 10(-12) mm3/s for calcein and 2.1 +/- 6.8 x 10(-12) mm3/s and 80 x 10(-12) mm3/s for Lucifer yellow, and in HeLa-Cx46 transfectants 1.7 +/- 0.3 x 10(-12) mm3/s and 120 x 10(-12) mm3/s for calcein and 1.3 +/- 1.1 x 10(-12) mm3/s and 34 x 10(-12) mm3/s for Lucifer yellow, respectively. This variability is most likely due to a yet unknown mechanism that differentially regulates single-channel permeability for larger molecules and for small inorganic ions.
Collapse
Affiliation(s)
- Reiner Eckert
- Abteilung Biophysik, Biologisches Institut, Universität Stuttgart, Stuttgart, Germany.
| |
Collapse
|
23
|
Kolb HA, Somogyi R. Biochemical and biophysical analysis of cell-to-cell channels and regulation of gap junctional permeability. Rev Physiol Biochem Pharmacol 2005; 118:1-47. [PMID: 1721723 DOI: 10.1007/bfb0031480] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- H A Kolb
- University of Konstanz, Faculty of Biology, FRG
| | | |
Collapse
|
24
|
Abstract
Gap junctions, which are essential for functional coordination and homeostasis within tissues, permit the direct intercellular exchange of small molecules. The abundance and diversity of this exchange depends on the number and selectivity of the comprising channels and on the transjunctional gradient for and chemical character of the permeant molecules. Limited knowledge of functionally significant permeants and poor detectability of those few that are known have made it difficult to define channel selectivity. Presented herein is a multifaceted approach to the quantification of gap junction selectivity that includes determination of the rate constant for intercellular diffusion of a fluorescent probe (k2-DYE) and junctional conductance (gj) for each junction studied, such that the selective permeability (k2-DYE/gj) for dyes with differing chemical characteristics or junctions with differing connexin (Cx) compositions (or treatment conditions) can be compared. In addition, selective permeability can be correlated using single-channel conductance when this parameter is also measured. Our measurement strategy is capable of detecting 1) rate constants and selective permeabilities that differ across three orders of magnitude and 2) acute changes in that rate constant. Using this strategy, we have shown that 1) the selective permeability of Cx43 junctions to a small cationic dye varied across two orders of magnitude, consistent with the hypothesis that the various channel configurations adopted by Cx43 display different selective permeabilities; and 2) the selective permeability of Cx37 vs. Cx43 junctions was consistently and significantly lower.
Collapse
Affiliation(s)
- Jose F Ek-Vitorín
- Dept. of Physiology, Univ. of Arizona, PO Box 245051, Tucson, AZ 85724-5051, USA
| | | |
Collapse
|
25
|
Koenigsberger M, Sauser R, Lamboley M, Bény JL, Meister JJ. Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J 2004; 87:92-104. [PMID: 15240448 PMCID: PMC1304399 DOI: 10.1529/biophysj.103.037853] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 03/16/2004] [Indexed: 11/18/2022] Open
Abstract
Many experimental studies have shown that arterial smooth muscle cells respond with cytosolic calcium rises to vasoconstrictor stimulation. A low vasoconstrictor concentration gives rise to asynchronous spikes in the calcium concentration in a few cells (asynchronous flashing). With a greater vasoconstrictor concentration, the number of smooth muscle cells responding in this way increases (recruitment) and calcium oscillations may appear. These oscillations may eventually synchronize and generate arterial contraction and vasomotion. We show that these phenomena of recruitment and synchronization naturally emerge from a model of a population of smooth muscle cells coupled through their gap junctions. The effects of electrical, calcium, and inositol 1,4,5-trisphosphate coupling are studied. A weak calcium coupling is crucial to obtain a synchronization of calcium oscillations and the minimal required calcium permeability is deduced. Moreover, we note that an electrical coupling can generate oscillations, but also has a desynchronizing effect. Inositol 1,4,5-trisphosphate diffusion does not play an important role to achieve synchronization. Our model is validated by published in vitro experiments obtained on rat mesenteric arterial segments.
Collapse
Affiliation(s)
- Michèle Koenigsberger
- Laboratory of Cell Biophysics, Swiss Federal Institute of Technology, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
26
|
De Blasio BF, Iversen JG, Røttingen JA. Intercellular calcium signalling in cultured renal epithelia: a theoretical study of synchronization mode and pacemaker activity. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2004; 33:657-70. [PMID: 15565440 DOI: 10.1007/s00249-004-0409-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/24/2004] [Accepted: 04/05/2004] [Indexed: 11/27/2022]
Abstract
We investigate a two-dimensional lattice model representation of intercellular Ca2+ signalling in a population of epithelial cells coupled by gap junctions. The model is based on and compared with Ca2+ imaging data from globally bradykinin-stimulated MDCK-I (Madin-Darby canine kidney)-I cell layers. We study large-scale synchronization of relevance to our laboratory experiments. The system is found to express a wealth of dynamics, including quasiperiodic, chaotic and multiply-periodic behaviour for intermediate couplings. We take a particular interest in understanding the role of "pacemaker cells" in the synchronization process. It has been hypothesized that a few highly hormone-sensitive cells control the collective frequency of oscillation, which is close to the natural frequencies (without coupling) of these cells. The model behaviour is consistent with the conjectures of the pacemaker cell hypothesis near the critical coupling where the cells lock onto a single frequency. However, the simulations predict that the frequency in globally connected systems decreases with increasing coupling. It is found that a pacemaker is not defined by its natural frequency alone, but that other intrinsic or local factors must be considered. Inclusion of partly sensitized cells that do not oscillate autonomously in the cell layer increases the coupling necessary for global synchronization. For not excessively high coupling, these cells oscillate irregularly and with distinctive lower frequencies. In summary, the present study shows that the frequency of synchronized oscillations is not dictated by one or few fast-responding cells. The collective frequency is the result of a two-way communication between the phase-advanced pacemaker and its environment.
Collapse
|
27
|
Abstract
Intercellular Ca2+ waves in astrocytes are thought to serve as a pathway of long-range signaling. The waves can propagate by the diffusion of molecules through gap junctions and across the extracellular space. In rat striatal astrocytes, the gap-junctional route was shown to be dominant. To analyze the interplay of the processes involved in wave propagation, a mathematical model of this system has been developed. The kinetic description of Ca2+ signaling within a single cell accounts for inositol 1,4,5-trisphosphate (IP3) generation, including its activation by cytoplasmic Ca2+, IP3-induced Ca2+ liberation from intracellular stores and various other Ca2+ transports, and cytoplasmic diffusion of IP3 and Ca2+. When cells are coupled by gap junction channels in a two-dimensional array, IP3 generation in one cell triggers Ca2+ waves propagating across some tens of cells. The spatial range of wave propagation is limited, yet depends sensitively on the Ca2+-mediated regeneration of the IP3 signal. Accordingly, the term "limited regenerative signaling" is proposed. The gap-junctional permeability for IP3 is the crucial permissive factor for wave propagation, and heterogeneity of gap-junctional coupling yields preferential pathways of wave propagation. Processes involved in both signal initiation (activation of IP3 production caused by receptor agonist) and regeneration (activation of IP3 production by Ca2+, loading of the Ca2+ stores) are found to exert the main control on the wave range. The refractory period of signaling strongly depends on the refilling kinetics of the Ca2+ stores. Thus the model identifies multiple steps that may be involved in the regulation of this intercellular signaling pathway.
Collapse
|
28
|
Cottrell GT, Wu Y, Burt JM. Cx40 and Cx43 expression ratio influences heteromeric/ heterotypic gap junction channel properties. Am J Physiol Cell Physiol 2002; 282:C1469-82. [PMID: 11997262 DOI: 10.1152/ajpcell.00484.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In cells that coexpress connexin (Cx)40 and Cx43, the ratio of expression can vary depending on the cellular environment. We examined the effect of changing Cx40:Cx43 expression ratio on functional gap junction properties. Rin cells transfected with Cx40 or Cx43 (Rin40, Rin43) were cocultured with 6B5n, A7r5, A7r540C1, or A7r540C3 cells for electrophysiological and dye coupling analysis. Cx40:Cx43 expression ratio in 6B5n, A7r5, A7r540C1, and A7r540C3 cells was ~1:1, 3:1, 5:1, and 10:1, respectively. When Rin43 cells were paired with coexpressing cells, there was an increasing asymmetry of voltage-dependent gating and a shift toward smaller conductance events as Cx40:Cx43 ratio increased in the coexpressing cell. These observations could not be predicted by linear combinations of Cx40 and Cx43 properties in proportion to the expressed ratios of the two Cxs. When Rin40 cells were paired with coexpressing cells, the net voltage gating and single-channel conductance behavior were similar to those of Rin40/Rin40 cell pairs. Dye permeability properties of cell monolayers demonstrated that as Cx40:Cx43 expression ratio increased in coexpressing cells the charge and size selectivity of dye transfer reflected that of Rin40 cells, as would be predicted. These data indicate that the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents expressed in the cell; however, the dye permeability of these same channels can be predicted by the relative Cx contributions.
Collapse
Affiliation(s)
- G Trevor Cottrell
- Department of Physiology, Arizona Health Sciences Center, University of Arizona, Tucson, Arizona 85724, USA
| | | | | |
Collapse
|
29
|
Schuster S, Marhl M, Höfer T. Modelling of simple and complex calcium oscillations. From single-cell responses to intercellular signalling. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1333-55. [PMID: 11874447 DOI: 10.1046/j.0014-2956.2001.02720.x] [Citation(s) in RCA: 315] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review provides a comparative overview of recent developments in the modelling of cellular calcium oscillations. A large variety of mathematical models have been developed for this wide-spread phenomenon in intra- and intercellular signalling. From these, a general model is extracted that involves six types of concentration variables: inositol 1,4,5-trisphosphate (IP3), cytoplasmic, endoplasmic reticulum and mitochondrial calcium, the occupied binding sites of calcium buffers, and the fraction of active IP3 receptor calcium release channels. Using this framework, the models of calcium oscillations can be classified into 'minimal' models containing two variables and 'extended' models of three and more variables. Three types of minimal models are identified that are all based on calcium-induced calcium release (CICR), but differ with respect to the mechanisms limiting CICR. Extended models include IP3--calcium cross-coupling, calcium sequestration by mitochondria, the detailed gating kinetics of the IP3 receptor, and the dynamics of G-protein activation. In addition to generating regular oscillations, such models can describe bursting and chaotic calcium dynamics. The earlier hypothesis that information in calcium oscillations is encoded mainly by their frequency is nowadays modified in that some effect is attributed to amplitude encoding or temporal encoding. This point is discussed with reference to the analysis of the local and global bifurcations by which calcium oscillations can arise. Moreover, the question of how calcium binding proteins can sense and transform oscillatory signals is addressed. Recently, potential mechanisms leading to the coordination of oscillations in coupled cells have been investigated by mathematical modelling. For this, the general modelling framework is extended to include cytoplasmic and gap-junctional diffusion of IP3 and calcium, and specific models are compared. Various suggestions concerning the physiological significance of oscillatory behaviour in intra- and intercellular signalling are discussed. The article is concluded with a discussion of obstacles and prospects.
Collapse
Affiliation(s)
- Stefan Schuster
- Max Delbrück Centre for Molecular Medicine, Department of Bioinformatics, Berlin-Buch, Germany.
| | | | | |
Collapse
|
30
|
Höfer T, Politi A, Heinrich R. Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study. Biophys J 2001; 80:75-87. [PMID: 11159384 PMCID: PMC1301215 DOI: 10.1016/s0006-3495(01)75996-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Intercellular regenerative calcium waves in systems such as the liver and the blowfly salivary gland have been hypothesized to spread through calcium-induced calcium release (CICR) and gap-junctional calcium diffusion. A simple mathematical model of this mechanism is developed. It includes CICR and calcium removal from the cytoplasm, cytoplasmic and gap-junctional calcium diffusion, and calcium buffering. For a piecewise linear approximation of the calcium kinetics, expressions in terms of the cellular parameters are derived for 1) the condition for the propagation of intercellular waves, and 2) the characteristic time of the delay of a wave encountered at the gap junctions. Intercellular propagation relies on the local excitation of CICR in the perijunctional space by gap-junctional calcium influx. This mechanism is compatible with low effective calcium diffusivity, and necessitates that CICR can be excited in every cell along the path of a wave. The gap-junctional calcium permeability required for intercellular waves in the model falls in the range of reported gap-junctional permeability values. The concentration of diffusive cytoplasmic calcium buffers and the maximal rate of CICR, in the case of inositol 1,4,5-trisphosphate (IP3) receptor calcium release channels set by the IP(3) concentration, are shown to be further determinants of wave behavior.
Collapse
Affiliation(s)
- T Höfer
- Theoretical Biophysics, Institute of Biology, Humboldt University-Berlin, D-10115 Berlin, Germany.
| | | | | |
Collapse
|
31
|
Cottrell GT, Wu Y, Burt JM. Functional characteristics of heteromeric Cx40-Cx43 gap junction channel formation. CELL COMMUNICATION & ADHESION 2001; 8:193-7. [PMID: 12064587 DOI: 10.3109/15419060109080722] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cx40:Cx43 expression ratio in A7r5 cells is augmented in growth stimulated vs. growth arrested conditions. To determine the impact of changing Cx40:Cx43 expression ratio on gap junction function, we have developed A7r5 cell lines that display Cx40:Cx43 ratios of 1:1 (66B5n) and 10:1 (A7r540C3). When Rin43 cells were paired with these coexpressing cells, there was an increasing asymmetry of voltage dependent gating as the Cx40:Cx43 ratio increased in the coexpressing cell. This asymmetry was opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In addition, when Rin43 cells were paired with coexpressing cells there was a shift toward smaller single channel event amplitudes with increasing Cx40:Cx43 ratio in the coexpressing cell. Again, this is opposite to that which is predicted by Cx40/Cx43 heterotypic channels. In dye coupling experiments, 6B5N, A7r5, and A7r540C3 cells displayed charge and size selectivity that increased with increasing Cx40:Cx43 expression ratio. These data indicate that although the electrophysiological properties of heteromeric/heterotypic channels are not directly related to the proportions of Cx constituents that comprise the channel, the dye permeability data fit what would be predicted by an increase in Cx40:Cx43 ratio.
Collapse
Affiliation(s)
- G T Cottrell
- Department of Physiology, University of Arizona, Tucson 85724, USA.
| | | | | |
Collapse
|
32
|
Gap junctional coupling and patterns of connexin expression among neonatal rat lumbar spinal motor neurons. J Neurosci 2000. [PMID: 10594064 DOI: 10.1523/jneurosci.19-24-10813.1999] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interneuronal gap junctional coupling is a hallmark of neural development whose functional significance is poorly understood. We have characterized the extent of electrical coupling and dye coupling and patterns of gap junction protein expression in lumbar spinal motor neurons of neonatal rats. Intracellular recordings showed that neonatal motor neurons are transiently electrically coupled and that electrical coupling is reversibly abolished by halothane, a gap junction blocker. Iontophoretic injection of Neurobiotin, a low molecular weight compound that passes across most gap junctions, into single motor neurons resulted in clusters of many labeled motor neurons at postnatal day 0 (P0)-P2, and single labeled motor neurons after P7. The compact distribution of dye-labeled motor neurons suggested that, after birth, gap junctional coupling is spatially restricted. RT-PCR, in situ hybridization, and immunostaining showed that motor neurons express five connexins, Cx36, Cx37, Cx40, Cx43, and Cx45, a repertoire distinct from that expressed by other neurons or glia. Although all five connexins are widely expressed among motor neurons in embryonic and neonatal life, Cx36, Cx37, and Cx43 continue to be expressed in many adult motor neurons, and expression of Cx45, and in particular Cx40, decreases after birth. The disappearance of electrical and dye coupling despite the persistent expression of several gap junction proteins suggests that gap junctional communication among motor neurons may be modulated by mechanisms that affect gap junction assembly, permeability, or open state.
Collapse
|
33
|
Verselis VK, Veenstra R. Gap junction channels Permeability and voltage gating. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
34
|
Meda P, Spray DC. Gap junction function. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1569-2558(00)30008-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
35
|
Höfer T. Model of intercellular calcium oscillations in hepatocytes: synchronization of heterogeneous cells. Biophys J 1999; 77:1244-56. [PMID: 10465739 PMCID: PMC1300416 DOI: 10.1016/s0006-3495(99)76976-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Hepatocytes respond with repetitive cytosolic calcium spikes to stimulation by vasopressin and noradrenalin. In the intact liver, calcium oscillations occur in a synchronized fashion as periodic waves across whole liver lobules, but the mechanism of intercellular coupling remains unclear. Recently, it has been shown that individual hepatocytes can have very different intrinsic oscillation frequencies but become phase-locked when coupled by gap junctions. We investigate the gap junction hypothesis for intercellular synchronization by means of a mathematical model. It is shown that junctional calcium fluxes are effective in synchronizing calcium oscillations in coupled hepatocytes. An experimentally testable estimate is given for the junctional coupling coefficient required; it mainly depends on the degree of heterogeneity between cells. Intercellular synchronization by junctional calcium diffusion may occur also in other cell types exhibiting calcium-activated calcium release through InsP(3) receptors, if the gap junctional coupling is strong enough and the InsP(3) receptors are sufficiently sensitized by InsP(3).
Collapse
Affiliation(s)
- T Höfer
- Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, D-10115 Berlin, Germany.
| |
Collapse
|
36
|
Abstract
Retinal ganglion cells in the cat respond to single rhodopsin isomerizations with one to three spikes. This quantal signal is transmitted in the retina by the rod bipolar pathway: rod-->rod bipolar-->AII-->cone bipolar-->ganglion cell. The two-dimensional circuit underlying this pathway includes extensive convergence from rods to an AII amacrine cell, divergence from a rod to several AII and ganglion cells, and coupling between the AII amacrine cells. In this study we explored the function of coupling by reconstructing several AII amacrine cells and the gap junctions between them from electron micrographs; and simulating the AII network with and without coupling. The simulation showed that coupling in the AII network can: (1) improve the signal/noise ratio in the AII network; (2) improve the signal/noise ratio for a single rhodopsin isomerization striking in the periphery of the ganglion cell receptive field center, and therefore in most ganglion cells responding to a single isomerization; (3) expand the AII and ganglion cells' receptive field center; and (4) expand the "correlation field". All of these effects have one major outcome: an increase in correlation between ganglion cell activity. Well correlated activity between the ganglion cells could improve the brain's ability to discriminate few absorbed external photons from the high background of spontaneous thermal isomerizations. Based on the possible benefits of coupling in the AII network, we suggest that coupling occurs at low scotopic luminances.
Collapse
Affiliation(s)
- N Vardi
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
37
|
Bruzzone R, White TW, Paul DL. Connections with connexins: the molecular basis of direct intercellular signaling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 238:1-27. [PMID: 8665925 DOI: 10.1111/j.1432-1033.1996.0001q.x] [Citation(s) in RCA: 951] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjacent cells share ions, second messengers and small metabolites through intercellular channels which are present in gap junctions. This type of intercellular communication permits coordinated cellular activity, a critical feature for organ homeostasis during development and adult life of multicellular organisms. Intercellular channels are structurally more complex than other ion channels, because a complete cell-to-cell channel spans two plasma membranes and results from the association of two half channels, or connexons, contributed separately by each of the two participating cells. Each connexon, in turn, is a multimeric assembly of protein subunits. The structural proteins comprising these channels, collectively called connexins, are members of a highly related multigene family consisting of at least 13 members. Since the cloning of the first connexin in 1986, considerable progress has been made in our understanding of the complex molecular switches that control the formation and permeability of intercellular channels. Analysis of the mechanisms of channel assembly has revealed the selectivity of inter-connexin interactions and uncovered novel characteristics of the channel permeability and gating behavior. Structure/function studies have begun to provide a molecular understanding of the significance of connexin diversity and demonstrated the unique regulation of connexins by tyrosine kinases and oncogenes. Finally, mutations in two connexin genes have been linked to human diseases. The development of more specific approaches (dominant negative mutants, knockouts, transgenes) to study the functional role of connexins in organ homeostasis is providing a new perception about the significance of connexin diversity and the regulation of intercellular communication.
Collapse
Affiliation(s)
- R Bruzzone
- Unité de Neurovirologie et Régénération du Système Nerveux, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
38
|
Abstract
Coordinating the activity of neurons and their satellite glial cells requires mechanisms by which glial cells detect neuronal activity and change their properties as a result. This study monitors the intercellular diffusion of the fluorescent dye Lucifer Yellow (LY), following its injection into glial cells of the frog optic nerve, and demonstrates that nerve impulses increase the permeability of interglial gap junctions. Consequently, the spatial buffer capacity of the neuroglial cell syncytium for potassium, other ions, and small molecules will be enhanced; this may facilitate glial function in maintaining homeostasis of the neuronal microenvironment.
Collapse
Affiliation(s)
- H Marrero
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901
| | | |
Collapse
|
39
|
|
40
|
Spray DC. Physiological Properties of Gap Junction Channels in the Nervous System. NEUROSCIENCE INTELLIGENCE UNIT 1996. [DOI: 10.1007/978-3-662-21935-5_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Moreno AP, Rook MB, Fishman GI, Spray DC. Gap junction channels: distinct voltage-sensitive and -insensitive conductance states. Biophys J 1994; 67:113-9. [PMID: 7522596 PMCID: PMC1225340 DOI: 10.1016/s0006-3495(94)80460-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
All mammalian gap junction channels are sensitive to the voltage difference imposed across the junctional membrane, and parameters of voltage sensitivity have been shown to vary according to the gap junction protein that is expressed. For connexin43, the major gap junction protein in the cardiovascular system, in the uterus, and between glial cells in brain, voltage clamp studies have shown that transjunctional voltages (Vj) exceeding +/- 50 mV reduce junctional conductance (gj). However, substantial gj remains at even very large Vj values; this residual voltage-insensitive conductance has been termed gmin. We have explored the mechanism underlying gmin using several cell types in which connexin43 is endogenously expressed as well as in communication-deficient hepatoma cells transfected with cDNA encoding human connexin43. For pairs of transfectants exhibiting series resistance-corrected maximal gj (gmax) values ranging from < 2 to > 90 nS, the ratio gmin/gmax was found to be relatively constant (about 0.4-0.5), indicating that the channels responsible for the voltage-sensitive and -insensitive components of gj are not independent. Single channel studies further revealed that different channel sizes comprise the voltage-sensitive and -insensitive components, and that the open times of the larger, more voltage-sensitive conductance events declined to values near zero at large voltages, despite the high gmin. We conclude that the voltage-insensitive component of gj is ascribable to a voltage-insensitive substate of connexin43 channels rather than to the presence of multiple types of channels in the junctional membrane. These studies thus demonstrate that for certain gap junction channels, closure in response to specific stimuli may be graded, rather than all-or-none.
Collapse
Affiliation(s)
- A P Moreno
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | |
Collapse
|
42
|
Nakamura TY, Yamamoto I, Kanno Y, Shiba Y, Goshima K. Metabolic coupling of glutathione between mouse and quail cardiac myocytes and its protective role against oxidative stress. Circ Res 1994; 74:806-16. [PMID: 7908860 DOI: 10.1161/01.res.74.5.806] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cultured quail myocytes were much more resistant to H2O2 toxicity than cultured mouse myocytes. The intracellular concentration of glutathione ([GSH]i) and the activity of gamma-glutamylcysteine synthetase (gamma-GCS) in quail heart cells were about five and three times higher, respectively, than in mouse heart cells, although catalase and glutathione peroxidase (GSHpx) activity was similar in both. Preloading of gamma-glutamylcysteine monoethyl ester (gamma-GCE), a membrane-permeating GSH precursor, increased the H2O2 resistance of cultured mouse myocytes. These observations suggest that the high [GSH]i and the high activity of gamma-GCS in quail myocytes are responsible for their high resistance to H2O2. Both H2O2 sensitivity and [GSH]i of mosaic sheets composed of equal amounts of mouse and quail myocytes approximated those of sheets composed entirely of quail myocytes. From these observations, it is hypothesized that GSH was transferred from quail myocytes to mouse myocytes, probably through gap junctions between them, and that quail myocytes resynthesized GSH by a feedback mechanism, thus maintaining their intracellular GSH levels. When the fluorescent dye lucifer yellow was injected into a beating quail myocyte in a mosaic sheet, it spread to neighboring mouse myocytes but not to neighboring L cells (a cell line derived from mouse connective tissue). These observations indicate that existence of gap junctions in the region of cell contact between mouse and quail myocytes but not between quail myocytes and L cells. When quail myocytes preloaded with [3H]gamma-GCE were cocultured with mouse myocytes and L cells, the radioactivity was transmitted to neighboring mouse myocytes but not L cells. These observations show that GSH and/or its precursors can be transmitted from quail myocytes to mouse myocytes through gap junctions and that this can protect mouse myocytes from H2O2 toxicity. Mouse myocyte sheets composed of 10(4) cells or more showed higher resistance to H2O2 toxicity than single isolated mouse myocytes. Metabolic coupling of GSH between myocytes may contribute at least in part to this high resistance of the cell sheets.
Collapse
Affiliation(s)
- T Y Nakamura
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Chen YH, DeHaan RL. Multiple-channel conductance states and voltage regulation of embryonic chick cardiac gap junctions. J Membr Biol 1992; 127:95-111. [PMID: 1378102 DOI: 10.1007/bf00233282] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We used the double whole-cell voltage-clamp technique on ventricle cell pairs isolated from 7-day chick heart to measure the conductance of their gap junctions (Gj) and junctional channels (gamma j) with a steady-state voltage difference (Vj) applied across the junction. Currents were recorded from single gap junction channels (ij) as symmetrical rectangular signals of equal size and opposite sign in the two cells, and gamma j was measured from ij/Vj. We observed channel openings at six reproducible conductance levels with means of 42.6, 80.7, 119.6, 157.7, 200.4 and 240.3 pS. More than half of all openings were to the 80- and 160-pS conductance levels. The probability that a high conductance event (e.g., 160 or 240 pS) results from the random simultaneous opening of several 40-pS channels is small, based on their frequency of occurrence and on the prevalence of shifts between small and large conductance states with no intervening 40-pS steps. Our results are consistent with three models of embryonic cardiac gap junction channel configuration: a homogeneous population of 40-pS channels that can open cooperatively in groups of up to six; a single population of large channels with a maximal conductance near 240 pS and five smaller substates; or several different channel types, each with its own conductance. Gj was determined from the junctional current (Ij) elicited by rectangular pulses of applied transjunctional voltage as Ij/Vj. It was highest near 0 Vj and was progressively reduced by application of Vj between 20 and 80 mV or -20 and -80 mV. In response to increases in Vj, Gj decayed in a voltage- and time-dependent fashion. After a 6-sec holding period at 0 Vj, the initial conductance (G(init) measured immediately after the onset of an 80-mV step in Vj was nearly the same as that measured by a 10-mV prepulse. However, during 6-sec pulses of Vj greater than +/- 20 mV, Gj declined over several seconds from G(init)to a steady-state value (Gss). At potentials greater than +/- 20 mV the current decay could be fit with biexponential curves with the slow decay time constant (tau 2) 5-20 times longer than tau 1. For the response to a step to 80 mV Vj, for example, tau 1 = 127 msec and tau 2 = 2.6 sec. The rate of current decay in response to smaller positive or negative steps in Vj was slower, the magnitude of the decline was smaller, and the ratio tau 2/tau 1 decreased.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- Y H Chen
- Department of Anatomy and Cell Biology, Emory University Health Science Center, Atlanta, Georgia 30322
| | | |
Collapse
|
45
|
Abstract
Gap junction channels, now known to be formed of connexins, connect the interiors of apposed cells. These channels can be opened and closed by various physiological stimuli and experimental treatments. They are permeable to ions and neutral molecules up to a size of about 1 kDa or 1.5 nm diameter, including second messengers and metabolites. The processes of gating and of permeation are the subject of this review. Voltage is a readily applied stimulus, and transjunctional voltages, or those between cytoplasm and exterior, affect most junctions. Single channel transitions between open and closed states are rapid and presumably involve a charge movement as occurs with channels of electrically excitable channels of nerve and muscle. Identification of gating domains and charges by domain replacement and site-directed mutagenesis is being pursued. Raising cytoplasmic H+ or Ca2+ concentrations rapidly reduces junctional conductance, and this action is generally reversible, at least in part. A number of lipophilic alcohols, fatty acids and volatile anesthetics have similar actions. Phosphorylation also modulates junctional conductance, and in several cases, sites of phosphorylation are known. These gating processes appear similar to those induced by voltage. Permeability measurement indicates that the channel is aqueous and that permeation is by diffusion with only minor interactions with the channel wall. Differences among junctions are known, but further characterization of connexin and cell specificity is required.
Collapse
Affiliation(s)
- M V Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461
| | | |
Collapse
|
46
|
Moreno AP, Eghbali B, Spray DC. Connexin32 gap junction channels in stably transfected cells: unitary conductance. Biophys J 1991; 60:1254-66. [PMID: 1722119 PMCID: PMC1260179 DOI: 10.1016/s0006-3495(91)82159-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pairs of SKHep1 cells, which are derived from a highly metastatic human hepatoma, were studied using the whole cell voltage clamp technique with patch-type electrodes containing CsCl as the major ionic species. In 12 of 81 cell pairs, current flow through junctional membranes was detectable; in the remaining 69 cell pairs, junctional conductance was less than the noise limit of our recording apparatus (worst case: 10 pS). Macroscopic junctional conductance (gj) in the small percentage of pairs where it was detectable ranged from 100 to 600 pS. Unitary junctional conductance (gamma j) determined in the lowest conductance pairs or after reducing conductance with a short exposure to the uncoupling agent halothane was 25-35 pS. To study properties of gap junction channels formed of connexin32, the parental SKHep1 cell line was stably transfected with a plasmid containing cDNA that encodes connexin32, the major gap junction protein of rat liver cells. In 85 of 98 pairs of voltage clamped connexin32-transfected SKHep1 cells, macroscopic gj was greater than 1 nS; gj increased with time after dissociation (from 1.8 +/- 0.6 [mean +/- SE; n = 7] nS at 2 h after plating to 9.3 +/- 2.2 [n = 9] nS, the maximal value, at 24 h). Unitary conductance of gap junction channels between pairs of transfected SKHep1 cells was measured in low conductance pairs and after reducing gj by exposure to halothane or heptanol. Histograms of gamma j values in transfected cells, in 10 experiments where greater than 100 transitions were measurable, displayed two peaks; 120-130 pS and 25-35 pS. The smaller size corresponded to channels that were occasionally detected in the parental cells. We therefore conclude that connexin32 forms gap junctions channels of the 120-130 pS size class.
Collapse
Affiliation(s)
- A P Moreno
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
47
|
Spray DC, Chanson M, Moreno AP, Dermietzel R, Meda P. Distinctive gap junction channel types connect WB cells, a clonal cell line derived from rat liver. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C513-27. [PMID: 1706145 DOI: 10.1152/ajpcell.1991.260.3.c513] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gap junctions, dye coupling, and junctional conductance were studied in a cell line (WB) that is derived from rat liver and displays a phenotype similar to "oval" cells. In freeze-fracture replicas, two distinctive particle sizes were detected in gap junctional plaques. Immunocytochemical studies indicated punctate staining at membrane appositions using antibodies to connexin 43 and to a brain gap junction-associated antigen (34 kDa). No staining was observed using antibodies prepared against rat liver gap junction proteins (connexins 32 and 26). Pairs of WB cells were electrically and dye coupled. Junctional conductance (gj) between cell pairs averaged approximately 10 nS; occasionally, gj was low enough that unitary junctional conductances (gamma j) could be detected. Using a CsCl-containing electrode solution, distinctive gamma j values were recorded: approximately 20-30 pS, approximately 80-90 pS, and the sum of the other sizes. The largest gamma j events were apparently due to random coincident openings or closures of the smaller channels. Several treatments reduced gj. Frequency distributions of gamma j were unaltered by 2 mM halothane or 3.5 heptanol, but the sizes of intermediate and largest events were reduced slightly by 100 nM phorbol ester, and the relative frequency of the largest events was increased by 10 microM glutaraldehyde. We conclude that the distinctive gamma j values represent openings and closures of two distinct types of gap junction channels rather than substates of a single channel type; these unitary conductances may correspond to the dual immunoreactivity and to the two particle sizes seen in freeze fracture.
Collapse
Affiliation(s)
- D C Spray
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | |
Collapse
|
48
|
Abstract
Steady-state and kinetic analyses of gap junctional conductance, gi, in salivary glands of Drosophila melanogaster third instar larvae reveal a strong and complex voltage dependence that can be elicited by two types of voltages. Voltages applied between the cells, i.e., transjunctional voltages, Vj, and those applied between the cytoplasm and the extracellular space, inside-outside voltages, Vi,o, markedly alter gj. Alteration of Vi-o while holding Vj = O,i.e., by equal displacement of the voltages in the cells, causes gj to increase to a maximum on hyperpolarization and to decrease to near zero on depolarization. These conductance changes associated with Vi-o are fit by a model in which there are two independent gates in series, one in each series, one in each membrane, where each gate is equally sensitive to Vi-o and exhibits first order kinetics. Vj's generated by applying voltage steps of either polarity to either cell, substantially reduce gj. These conductance changes exhibit complex kinetics that depend on Vi-o as well as Vj. At more positive Vi-o's, the changes in gj have two phases, an early phase consisting of of a decrease in gj for either polarity of Vj and a later phase consisting of an increase in gj on hyperpolarizing either cell and a decrease on depolarizing either cell. At negative Vi-o's in the plateau region of the gj-Vi-o relation, the later slow increase in gj is absent on hyperpolarizing either cell. Also, the early decrease in gj for either polarity of Vj is faster the more positive the Vi-o. The complex time course elicited by applying voltage steps to one cell can be explained as combined actions of Vi-o and Vj, with the early phase ascribable to Vj, but influenced by Vi-o, and the later phase to the changes in Vi-o associated with the generation of Vj. The substantially different kinetics and sensitivity of changes in gj by Vi-o and Vj suggests that the mechanisms of gating by these two voltages are different. Evidently, these gap-junction channels are capable of two distinct, but interactive forms of voltage dependence.
Collapse
Affiliation(s)
- V K Verselis
- Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
49
|
Abraham M. The male germ cell protective barrier along phylogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 1991; 130:111-90. [PMID: 1778728 DOI: 10.1016/s0074-7696(08)61503-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M Abraham
- Department of Zoology, Hebrew University of Jerusalem, Israel
| |
Collapse
|
50
|
Dermietzel R, Hwang TK, Spray DS. The gap junction family: structure, function and chemistry. ANATOMY AND EMBRYOLOGY 1990; 182:517-28. [PMID: 1963760 DOI: 10.1007/bf00186458] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2023]
Abstract
Gap junctions are aggregates of transmembranous channels which bypass the extracellular space by transporting messenger molecules and ions from one cytoplasmic source to an adjacent cytoplasmic interior. The channels join the plasma membranes of adjacent cells by bridging the extracellular space between them. Thereby, cellular "compartments" which were once considered to be individual units are, in actuality, interconnected by a system of pathways which form a functional cellular syncytium. The evolutionary importance of a generalized intercellular communication system can be appreciated when one considers the widespread prevalence of gap junctions within animals of all multicellular phyla, and within almost all tissues of vertebrates. Only a few population of cells such as skeletal muscle cells (which are fused to form functional syncytia) and circulating blood cells are not equipped with gap junctions. This paper provides a brief review of the diverse structural, molecular and functional aspects of gap junctions as revealed by current research.
Collapse
Affiliation(s)
- R Dermietzel
- Institut für Morphologie und Anatomie, Universität Regensburg, Federal Republic of Germany
| | | | | |
Collapse
|