1
|
Fitzgerald LF, Bartlett MF, Kent JA. Muscle fatigue, bioenergetic responses and metabolic economy during load- and velocity-based maximal dynamic contractions in young and older adults. Physiol Rep 2023; 11:e15876. [PMID: 37996974 PMCID: PMC10667588 DOI: 10.14814/phy2.15876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
We evaluated whether task-dependent, age-related differences in muscle fatigue (contraction-induced decline in normalized power) develop from differences in bioenergetics or metabolic economy (ME; mass-normalized work/mM ATP). We used magnetic resonance spectroscopy to quantify intracellular metabolites in vastus lateralis muscle of 10 young and 10 older adults during two maximal-effort, 4-min isotonic (20% maximal torque) and isokinetic (120°s-1 ) contraction protocols. Fatigue, inorganic phosphate (Pi), and pH (p ≥ 0.213) differed by age during isotonic contractions. However, older had less fatigue (p ≤ 0.011) and metabolic perturbation (lower [Pi], greater pH; p ≤ 0.031) than young during isokinetic contractions. ME was lower in older than young during isotonic contractions (p ≤ 0.003), but not associated with fatigue in either protocol or group. Rather, fatigue during both tasks was linearly related to changes in [H+ ], in both groups. The slope of fatigue versus [H+ ] was 50% lower in older than young during isokinetic contractions (p ≤ 0.023), consistent with less fatigue in older during this protocol. Overall, regardless of age or task type, acidosis, but not ME, was the primary mechanism for fatigue in vivo. The source of the age-related differences in contraction-induced acidosis in vivo remains to be determined, as does the apparent task-dependent difference in the sensitivity of muscle to [H+ ].
Collapse
Affiliation(s)
- Liam F. Fitzgerald
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Miles F. Bartlett
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| | - Jane A. Kent
- Muscle Physiology Laboratory, Department of KinesiologyUniversity of MassachusettsAmherstMassachusettsUSA
| |
Collapse
|
2
|
Wiseman RW, Brown CM, Beck TW, Brault JJ, Reinoso TR, Shi Y, Chase PB. Creatine Kinase Equilibration and ΔG ATP over an Extended Range of Physiological Conditions: Implications for Cellular Energetics, Signaling, and Muscle Performance. Int J Mol Sci 2023; 24:13244. [PMID: 37686064 PMCID: PMC10487889 DOI: 10.3390/ijms241713244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
In this report, we establish a straightforward method for estimating the equilibrium constant for the creatine kinase reaction (CK Keq″) over wide but physiologically and experimentally relevant ranges of pH, Mg2+ and temperature. Our empirical formula for CK Keq″ is based on experimental measurements. It can be used to estimate [ADP] when [ADP] is below the resolution of experimental measurements, a typical situation because [ADP] is on the order of micromolar concentrations in living cells and may be much lower in many in vitro experiments. Accurate prediction of [ADP] is essential for in vivo studies of cellular energetics and metabolism and for in vitro studies of ATP-dependent enzyme function under near-physiological conditions. With [ADP], we were able to obtain improved estimates of ΔGATP, necessitating the reinvestigation of previously reported ADP- and ΔGATP-dependent processes. Application to actomyosin force generation in muscle provides support for the hypothesis that, when [Pi] varies and pH is not altered, the maximum Ca2+-activated isometric force depends on ΔGATP in both living and permeabilized muscle preparations. Further analysis of the pH studies introduces a novel hypothesis around the role of submicromolar ADP in force generation.
Collapse
Affiliation(s)
- Robert Woodbury Wiseman
- Departments of Physiology and Radiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Caleb Micah Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Thomas Wesley Beck
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Jeffrey John Brault
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Tyler Robert Reinoso
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Yun Shi
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
3
|
Hureau TJ, Broxterman RM, Weavil JC, Lewis MT, Layec G, Amann M. On the role of skeletal muscle acidosis and inorganic phosphates as determinants of central and peripheral fatigue: A 31 P-MRS study. J Physiol 2022; 600:3069-3081. [PMID: 35593645 DOI: 10.1113/jp283036] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/28/2022] [Indexed: 01/20/2023] Open
Abstract
Intramuscular hydrogen ion (H+ ) and inorganic phosphate (Pi) concentrations were dissociated during exercise to challenge their relationships with peripheral and central fatigue in vivo. Ten recreationally active, healthy men (27 ± 5 years; 180 ± 4 cm; 76 ± 10 kg) performed two consecutive intermittent isometric single-leg knee-extensor trials (60 maximal voluntary contractions; 3 s contraction, 2 s relaxation) interspersed with 5 min of rest. Phosphorus magnetic resonance spectroscopy (31 P-MRS) was used to continuously quantify intramuscular [H+ ] and [Pi] during both trials. Using electrical femoral nerve stimulation, quadriceps twitch force (Qtw ) and voluntary activation (VA) were quantified at rest and throughout both trials. Decreases in Qtw and VA from baseline were used to determine peripheral and central fatigue, respectively. Qtw was strongly related to both [H+ ] (β coefficient: -0.9, P < 0.0001) and [Pi] (-1.1, P < 0.0001) across trials. There was an effect of trial on the relationship between Qtw and [H+ ] (-0.5, P < 0.0001), but not Qtw and [Pi] (0.0, P = 0.976). This suggests that, unlike the unaltered association with [Pi], a given level of peripheral fatigue was associated with a different [H+ ] in Trial 1 vs. Trial 2. VA was related to [H+ ] (-0.3, P < 0.0001), but not [Pi] (-0.2, P = 0.243), across trials and there was no effect of trial (-0.1, P = 0.483). Taken together, these results support intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents in the interstitial space, as a contributor to central fatigue during exercise. KEY POINTS: We investigated the relationship between intramuscular metabolites and neuromuscular function in humans performing two maximal, intermittent, knee-extension trials interspersed with 5 min of rest. Concomitant measurements of intramuscular hydrogen (H+ ) and inorganic phosphate (Pi) concentrations, as well as quadriceps twitch-force (Qtw ) and voluntary activation (VA), were made throughout each trial using phosphorus magnetic resonance spectroscopy (31 P-MRS) and electrical femoral nerve stimulations. Although [Pi] fully recovered prior to the onset of the second trial, [H+ ] did not. Qtw was strongly related to both [H+ ] and [Pi] across both trials. However, the relationship between Qtw and [H+ ] shifted leftward from the first to the second trial, whereas the relationship between Qtw and [Pi] remained unaltered. VA was related to [H+ ], but not [Pi], across both trials. These in vivo findings support the hypotheses of intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents, as a contributor to central fatigue.
Collapse
Affiliation(s)
- Thomas J Hureau
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,University of Strasbourg, Faculty of Sport Sciences, UR 3072: Mitochondria, Oxidative Stress and Muscular Protection Laboratory, Strasbourg, France
| | - Ryan M Broxterman
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA
| | - Joshua C Weavil
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA
| | - Matthew T Lewis
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA
| | - Gwenael Layec
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, Salt Lake City, UT, VAMC, USA.,Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
4
|
Cass JA, Williams CD, Irving TC, Lauga E, Malingen S, Daniel TL, Sponberg SN. A mechanism for sarcomere breathing: volume change and advective flow within the myofilament lattice. Biophys J 2021; 120:4079-4090. [PMID: 34384761 DOI: 10.1016/j.bpj.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 08/04/2021] [Indexed: 11/28/2022] Open
Abstract
During muscle contraction, myosin motors anchored to thick filaments bind to and slide actin thin filaments. These motors rely on energy derived from ATP, supplied, in part, by diffusion from the sarcoplasm to the interior of the lattice of actin and myosin filaments. The radial spacing of filaments in this lattice may change or remain constant during contraction. If the lattice is isovolumetric, it must expand when the muscle shortens. If, however, the spacing is constant or has a different pattern of axial and radial motion, then the lattice changes volume during contraction, driving fluid motion and assisting in the transport of molecules between the contractile lattice and the surrounding intracellular space. We first create an advective-diffusive-reaction flow model and show that the flow into and out of the sarcomere lattice would be significant in the absence of lattice expansion. Advective transport coupled to diffusion has the potential to substantially enhance metabolite exchange within the crowded sarcomere. Using time-resolved x-ray diffraction of contracting muscle, we next show that the contractile lattice is neither isovolumetric nor constant in spacing. Instead, lattice spacing is time varying, depends on activation, and can manifest as an effective time-varying Poisson ratio. The resulting fluid flow in the sarcomere lattice of synchronous insect flight muscles is even greater than expected for constant lattice spacing conditions. Lattice spacing depends on a variety of factors that produce radial force, including cross-bridges, titin-like molecules, and other structural proteins. Volume change and advective transport varies with the phase of muscle stimulation during periodic contraction but remains significant at all conditions. Although varying in magnitude, advective transport will occur in all cases in which the sarcomere is not isovolumetric. Akin to "breathing," advective-diffusive transport in sarcomeres is sufficient to promote metabolite exchange and may play a role in the regulation of contraction itself.
Collapse
Affiliation(s)
- Julie A Cass
- Allen Institute for Cell Science, Seattle, Washington; Department of Biology, University of Washington, Seattle, Washington
| | - C David Williams
- Department of Biology, University of Washington, Seattle, Washington; Applied ML Group, Microsoft CSE, Redmond, Washington
| | - Thomas C Irving
- BioCAT and CSRRI, Department of Biological Sciences, Illinois Institute of Technology, Chicago, Illinois
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Sage Malingen
- Department of Biology, University of Washington, Seattle, Washington
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington.
| | - Simon N Sponberg
- School of Physics & School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia.
| |
Collapse
|
5
|
Rockenfeller R, Günther M, Stutzig N, Haeufle DFB, Siebert T, Schmitt S, Leichsenring K, Böl M, Götz T. Exhaustion of Skeletal Muscle Fibers Within Seconds: Incorporating Phosphate Kinetics Into a Hill-Type Model. Front Physiol 2020; 11:306. [PMID: 32431619 PMCID: PMC7214688 DOI: 10.3389/fphys.2020.00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 12/01/2022] Open
Abstract
Initiated by neural impulses and subsequent calcium release, skeletal muscle fibers contract (actively generate force) as a result of repetitive power strokes of acto-myosin cross-bridges. The energy required for performing these cross-bridge cycles is provided by the hydrolysis of adenosine triphosphate (ATP). The reaction products, adenosine diphosphate (ADP) and inorganic phosphate (P i ), are then used-among other reactants, such as creatine phosphate-to refuel the ATP energy storage. However, similar to yeasts that perish at the hands of their own waste, the hydrolysis reaction products diminish the chemical potential of ATP and thus inhibit the muscle's force generation as their concentration rises. We suggest to use the term "exhaustion" for force reduction (fatigue) that is caused by combined P i and ADP accumulation along with a possible reduction in ATP concentration. On the basis of bio-chemical kinetics, we present a model of muscle fiber exhaustion based on hydrolytic ATP-ADP-P i dynamics, which are assumed to be length- and calcium activity-dependent. Written in terms of differential-algebraic equations, the new sub-model allows to enhance existing Hill-type excitation-contraction models in a straightforward way. Measured time courses of force decay during isometric contractions of rabbit M. gastrocnemius and M. plantaris were employed for model verification, with the finding that our suggested model enhancement proved eminently promising. We discuss implications of our model approach for enhancing muscle models in general, as well as a few aspects regarding the significance of phosphate kinetics as one contributor to muscle fatigue.
Collapse
Affiliation(s)
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
- Friedrich-Schiller-University, Jena, Germany
| | - Norman Stutzig
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel F. B. Haeufle
- Hertie-Institute for Clinical Brain Research and Center for Integrative Neuroscience, Eberhard-Karls-University, Tübingen, Germany
| | - Tobias Siebert
- Department of Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, Computational Biophysics and Biorobotics, University of Stuttgart, Stuttgart, Germany
| | - Kay Leichsenring
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Markus Böl
- Institute of Solid Mechanics, Technical University Braunschweig, Braunschweig, Germany
| | - Thomas Götz
- Mathematical Institute, University of Koblenz-Landau, Koblenz, Germany
| |
Collapse
|
6
|
Cè E, Longo S, Limonta E, Coratella G, Rampichini S, Esposito F. Peripheral fatigue: new mechanistic insights from recent technologies. Eur J Appl Physiol 2019; 120:17-39. [DOI: 10.1007/s00421-019-04264-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
|
7
|
Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers. Int J Mol Sci 2019; 20:ijms20123075. [PMID: 31238505 PMCID: PMC6627110 DOI: 10.3390/ijms20123075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 11/16/2022] Open
Abstract
The relation between the force (load) and the velocity of shortening (V) in contracting skeletal muscle is part of a rectangular hyperbola: (P + a) V = b(Po − P); where Po is the maximum isometric force and a and b are constants. The force–velocity (P–V) relation suggests that muscle can regulate its energy output depending on the load imposed on it (Hill, 1938). After the establishment of the sliding filament mechanism (H.E. Huxley and Hanson, 1954), the P–V relation has been regarded to reflect the cyclic interaction between myosin heads in myosin filaments and the corresponding myosin-binding sites in actin filaments, coupled with ATP hydrolysis (A.F. Huxley, 1957). In single skeletal muscle fibers, however, the P–V relation deviates from the hyperbola at the high force region, indicating complicated characteristics of the cyclic actin–myosin interaction. To correlate the P–V relation with kinetics of actin–myosin interaction, skinned muscle fibers have been developed, in which the surface membrane is removed to control chemical and ionic conditions around the 3D lattice of actin and myosin filaments. This article also deals with experimental methods with which the structural instability of skinned fibers can be overcome by applying parabolic decreases in fiber length.
Collapse
|
8
|
Sundberg CW, Prost RW, Fitts RH, Hunter SK. Bioenergetic basis for the increased fatigability with ageing. J Physiol 2019; 597:4943-4957. [PMID: 31018011 DOI: 10.1113/jp277803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/18/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS The mechanisms for the age-related increase in fatigability during dynamic exercise remain elusive. We tested whether age-related impairments in muscle oxidative capacity would result in a greater accumulation of fatigue causing metabolites, inorganic phosphate (Pi ), hydrogen (H+ ) and diprotonated phosphate (H2 PO4 - ), in the muscle of old compared to young adults during a dynamic knee extension exercise. The age-related increase in fatigability (reduction in mechanical power) of the knee extensors was closely associated with a greater accumulation of metabolites within the working muscle but could not be explained by age-related differences in muscle oxidative capacity. These data suggest that the increased fatigability in old adults during dynamic exercise is primarily determined by age-related impairments in skeletal muscle bioenergetics that result in a greater accumulation of metabolites. ABSTRACT The present study aimed to determine whether the increased fatigability in old adults during dynamic exercise is associated with age-related differences in skeletal muscle bioenergetics. Phosphorus nuclear magnetic resonance spectroscopy was used to quantify concentrations of high-energy phosphates and pH in the knee extensors of seven young (22.7 ± 1.2 years; six women) and eight old adults (76.4 ± 6.0 years; seven women). Muscle oxidative capacity was measured from the phosphocreatine (PCr) recovery kinetics following a 24 s maximal voluntary isometric contraction. The fatiguing exercise consisted of 120 maximal velocity contractions (one contraction per 2 s) against a load equivalent to 20% of the maximal voluntary isometric contraction. The PCr recovery kinetics did not differ between young and old adults (0.023 ± 0.007 s-1 vs. 0.019 ± 0.004 s-1 , respectively). Fatigability (reductions in mechanical power) of the knee extensors was ∼1.8-fold greater with age and was accompanied by a greater decrease in pH (young = 6.73 ± 0.09, old = 6.61 ± 0.04) and increases in concentrations of inorganic phosphate, [Pi ], (young = 22.7 ± 4.8 mm, old = 32.3 ± 3.6 mm) and diprotonated phosphate, [H2 PO4 - ], (young = 11.7 ± 3.6 mm, old = 18.6 ± 2.1 mm) at the end of the exercise in old compared to young adults. The age-related increase in power loss during the fatiguing exercise was strongly associated with intracellular pH (r = -0.837), [Pi ] (r = 0.917) and [H2 PO4 - ] (r = 0.930) at the end of the exercise. These data suggest that the age-related increase in fatigability during dynamic exercise has a bioenergetic basis and is explained by an increased accumulation of metabolites within the muscle.
Collapse
Affiliation(s)
- Christopher W Sundberg
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA.,Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Robert W Prost
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert H Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
9
|
Jarvis K, Woodward M, Debold EP, Walcott S. Acidosis affects muscle contraction by slowing the rates myosin attaches to and detaches from actin. J Muscle Res Cell Motil 2018; 39:135-147. [PMID: 30382520 DOI: 10.1007/s10974-018-9499-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022]
Abstract
The loss of muscle force and power during fatigue from intense contractile activity is associated with, and likely caused by, elevated levels of phosphate ([Formula: see text]) and hydrogen ions (decreased pH). To understand how these deficits in muscle performance occur at the molecular level, we used direct measurements of mini-ensembles of myosin generating force in the laser trap assay at pH 7.4 and 6.5. The data are consistent with a mechanochemical model in which a decrease in pH reduces myosin's detachment from actin (by slowing ADP release), increases non-productive myosin binding (by detached myosin rebinding without a powerstroke), and reduces myosin's attachment to actin (by slowing the weak-to-strong binding transition). Additional support of this mechanism is found by incorporating it into a branched pathway model for the effects of [Formula: see text] on myosin's interaction with actin. Including pH-dependence in one additional parameter (acceleration of [Formula: see text]-induced detachment), the model reproduces experimental measurements at high and low pH, and variable [Formula: see text], from the single molecule to large ensemble levels. Furthermore, when scaled up, the model predicts force-velocity relationships that are consistent with muscle fiber measurements. The model suggests that reducing pH has two opposing effects, a decrease in attachment favoring a decrease in muscle force and a decrease in detachment favoring an increase in muscle force. Depending on experimental details, the addition of [Formula: see text] can strengthen one or the other effect, resulting in either synergistic or antagonistic effects. This detailed molecular description suggests a molecular basis for contractile failure during muscle fatigue.
Collapse
Affiliation(s)
- Katelyn Jarvis
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA
| | - Mike Woodward
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Edward P Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Amherst, MA, 01003, USA
| | - Sam Walcott
- Department of Mathematics, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Woodward M, Debold EP. Acidosis and Phosphate Directly Reduce Myosin's Force-Generating Capacity Through Distinct Molecular Mechanisms. Front Physiol 2018; 9:862. [PMID: 30042692 PMCID: PMC6048269 DOI: 10.3389/fphys.2018.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/18/2018] [Indexed: 12/04/2022] Open
Abstract
Elevated levels of the metabolic by-products, including acidosis (i.e., high [H+]) and phosphate (Pi) are putative agents of muscle fatigue; however, the mechanism through which they affect myosin’s function remain unclear. To elucidate these mechanisms, we directly examined the effect of acidosis (pH 6.5 vs. 7.4), alone and in combination with elevated levels of Pi on the force-generating capacity of a mini-ensemble of myosin using a laser trap assay. Acidosis decreased myosin’s average force-generating capacity by 20% (p < 0.05). The reduction was due to both a decrease in the force generated during each actomyosin interaction, as well as an increase in the number of binding events generating negative forces. Adding Pi to the acidic condition resulted in a quantitatively similar decrease in force but was solely due to an elimination of all high force-generating events (>2 pN), resulting from an acceleration of the myosin’s rate of detachment from actin. Acidosis and Pi also had distinct effects on myosin’s steady state ATPase rate with acidosis slowing it by ∼90% (p > 0.05), while the addition of Pi under acidic conditions caused a significant recovery in the ATPase rate. These data suggest that these two fatigue agents have distinct effects on myosin’s cross-bridge cycle that may underlie the synergistic effect that they have muscle force. Thus these data provide novel molecular insight into the mechanisms underlying the depressive effects of Pi and H+ on muscle contraction during fatigue.
Collapse
Affiliation(s)
- Mike Woodward
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| | - Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, MA, United States
| |
Collapse
|
11
|
Abstract
Knowledge accumulated in the field of energetics of muscle contraction has been reviewed in this article. Active muscle converts chemical energy into heat and work. Therefore, measurements of heat production and mechanical work provide the framework for understanding the process of energy conversion in contraction. In the 1970s, precise comparison between energy output and the associated chemical reactions was performed. It has been found that the two do not match in several situations, resulting in an energy balance discrepancy. More recently, efforts in resolving these discrepancies in the energy balance have been made involving chemical analysis, phosphorus nuclear magnetic resonance spectroscopy, and microcalorimetry. Through reviewing the evidence from these studies, the energy balance discrepancy developed early during isometric contraction has become well understood on a quantitative basis. In this situation energy balance is established when we take into account the binding of Ca to sarcoplasmic proteins such as troponin and parvalbumin, and also the shift of cross-bridge states. On the other hand, the energy balance discrepancy observed during rapid shortening still remains to be clarified. The problem may be related to the essential mechanism of cross-bridge action.
Collapse
Affiliation(s)
- Kazuhiro Yamada
- Department of Neurophysiology, University of Oita Faculty of Medicine, Yufu, Oita, 879-5593, Japan.
| |
Collapse
|
12
|
DEBOLD EDWARDP, FITTS ROBERTH, SUNDBERG CHRISTOPHERW, NOSEK THOMASM. Muscle Fatigue from the Perspective of a Single Crossbridge. Med Sci Sports Exerc 2016; 48:2270-2280. [DOI: 10.1249/mss.0000000000001047] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Debold EP. Decreased Myofilament Calcium Sensitivity Plays a Significant Role in Muscle Fatigue. Exerc Sport Sci Rev 2016; 44:144-9. [DOI: 10.1249/jes.0000000000000089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Pethick J, Winter SL, Burnley M. Loss of knee extensor torque complexity during fatiguing isometric muscle contractions occurs exclusively above the critical torque. Am J Physiol Regul Integr Comp Physiol 2016; 310:R1144-53. [DOI: 10.1152/ajpregu.00019.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
The complexity of knee extensor torque time series decreases during fatiguing isometric muscle contractions. We hypothesized that because of peripheral fatigue, this loss of torque complexity would occur exclusively during contractions above the critical torque (CT). Nine healthy participants performed isometric knee extension exercise (6 s of contraction, 4 s of rest) on six occasions for 30 min or to task failure, whichever occurred sooner. Four trials were performed above CT (trials S1–S4, S1 being the lowest intensity), and two were performed below CT (at 50% and 90% of CT). Global, central, and peripheral fatigue were quantified using maximal voluntary contractions (MVCs) with femoral nerve stimulation. The complexity of torque output was determined using approximate entropy (ApEn) and the detrended fluctuation analysis-α scaling exponent (DFA-α). The MVC torque was reduced in trials below CT [by 19 ± 4% (means ± SE) in 90%CT], but complexity did not decrease [ApEn for 90%CT: from 0.82 ± 0.03 to 0.75 ± 0.06, 95% paired-samples confidence intervals (CIs), 95% CI = −0.23, 0.10; DFA-α from 1.36 ± 0.01 to 1.32 ± 0.03, 95% CI −0.12, 0.04]. Above CT, substantial reductions in MVC torque occurred (of 49 ± 8% in S1), and torque complexity was reduced (ApEn for S1: from 0.67 ± 0.06 to 0.14 ± 0.01, 95% CI = −0.72, −0.33; DFA-α from 1.38 ± 0.03 to 1.58 ± 0.01, 95% CI 0.12, 0.29). Thus, in these experiments, the fatigue-induced loss of torque complexity occurred exclusively during contractions performed above the CT.
Collapse
Affiliation(s)
- Jamie Pethick
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, United Kingdom
| | - Samantha L. Winter
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, United Kingdom
| | - Mark Burnley
- Endurance Research Group, School of Sport and Exercise Sciences, University of Kent, United Kingdom
| |
Collapse
|
15
|
Callahan DM, Umberger BR, Kent JA. Mechanisms of in vivo muscle fatigue in humans: investigating age-related fatigue resistance with a computational model. J Physiol 2016; 594:3407-21. [PMID: 26824934 DOI: 10.1113/jp271400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/20/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Muscle fatigue can be defined as the transient decrease in maximal force that occurs in response to muscle use. Fatigue develops because of a complex set of changes within the neuromuscular system that are difficult to evaluate simultaneously in humans. The skeletal muscle of older adults fatigues less than that of young adults during static contractions. The potential sources of this difference are multiple and intertwined. To evaluate the individual mechanisms of fatigue, we developed an integrative computational model based on neural, biochemical, morphological and physiological properties of human skeletal muscle. Our results indicate first that the model provides accurate predictions of fatigue and second that the age-related resistance to fatigue is due largely to a lower reliance on glycolytic metabolism during contraction. This model should prove useful for generating hypotheses for future experimental studies into the mechanisms of muscle fatigue. ABSTRACT During repeated or sustained muscle activation, force-generating capacity becomes limited in a process referred to as fatigue. Multiple factors, including motor unit activation patterns, muscle fibre contractile properties and bioenergetic function, can impact force-generating capacity and thus the potential to resist fatigue. Given that neuromuscular fatigue depends on interrelated factors, quantifying their independent effects on force-generating capacity is not possible in vivo. Computational models can provide insight into complex systems in which multiple inputs determine discrete outputs. However, few computational models to date have investigated neuromuscular fatigue by incorporating the multiple levels of neuromuscular function known to impact human in vivo function. To address this limitation, we present a computational model that predicts neural activation, biomechanical forces, intracellular metabolic perturbations and, ultimately, fatigue during repeated isometric contractions. This model was compared with metabolic and contractile responses to repeated activation using values reported in the literature. Once validated in this way, the model was modified to reflect age-related changes in neuromuscular function. Comparisons between initial and age-modified simulations indicated that the age-modified model predicted less fatigue during repeated isometric contractions, consistent with reports in the literature. Together, our simulations suggest that reduced glycolytic flux is the greatest contributor to the phenomenon of age-related fatigue resistance. In contrast, oxidative resynthesis of phosphocreatine between intermittent contractions and inherent buffering capacity had minimal impact on predicted fatigue during isometric contractions. The insights gained from these simulations cannot be achieved through traditional in vivo or in vitro experimentation alone.
Collapse
Affiliation(s)
- Damien M Callahan
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Brian R Umberger
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| | - Jane A Kent
- Department of Kinesiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
16
|
Osada T, Mortensen SP, Rådegran G. Mechanical compression during repeated sustained isometric muscle contractions and hyperemic recovery in healthy young males. J Physiol Anthropol 2015; 34:36. [PMID: 26520798 PMCID: PMC4628366 DOI: 10.1186/s40101-015-0075-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND An elevated intramuscular pressure during a single forearm isometric muscle contraction may restrict muscle hyperemia. However, during repeated isometric exercise, it is unclear to what extent mechanical compression and muscle vasodilatation contribute to the magnitude and time course of beat-to-beat limb hemodynamics, due to alterations in leg vascular conductance (LVC). METHODS In eight healthy male subjects, the time course of both beat-to-beat leg blood flow (LBF) and LVC in the femoral artery was determined between repeated 10-s isometric thigh muscle contractions and 10-s muscle relaxation (a duty cycle of 20 s) for steady-state 120 s at five target workloads (10, 30, 50, 70, and 90% of maximum voluntary contraction (MVC)). The ratio of restricted LBF due to mechanical compression across workloads was determined by the formula (relaxation LBF--contraction LBF)/relaxation LBF (%). RESULTS The exercise protocol was performed completely by all subjects (≤ 50% MVC), seven subjects (≤ 70% MVC), and two subjects (≤ 90% MVC). During a 10-s isometric muscle contraction, the time course in both beat-to-beat LBF and LVC displayed a fitting curve with an exponential increase (P < 0.001, r (2) ≥ 0.956) at each workload but no significant difference in mean LBF across workloads and pre-exercise. During a 10-s muscle relaxation, the time course in both beat-to-beat LBF and LVC increased as a function of workload, followed by a linear decline (P < 0.001, r (2) ≥ 0.889), that was workload-dependent, resulting in mean LBF increasing linearly across workloads (P < 0.01, r (2) = 0.984). The ratio of restricted LBF can be described as a single exponential decay with an increase in workload, which has inflection point distinctions between 30 and 50% MVC. CONCLUSIONS In a 20-s duty cycle of steady-state repeated isometric muscle contractions, the post-contraction hyperemia (magnitude of both LBF and LVC) during muscle relaxation was in proportion to the workload, which is in agreement with previous findings. Furthermore, time-dependent beat-to-beat muscle vasodilatation was seen, but not restricted, during isometric muscle contractions through all target workloads. Additionally, the relative contribution of mechanical obstruction and vasodilatation to the hyperemia observed in the repeated isometric exercise protocol was non-linear with regard to workload. In combination with repeated isometric exercise, the findings could potentially prove to be useful indicators of circulatory adjustment by mechanical compression for muscle-related disease.
Collapse
Affiliation(s)
- Takuya Osada
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan. .,Cardiac Rehabilitation Center, Tokyo Medical University Hospital, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan. .,The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.
| | - Stefan P Mortensen
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.,Department of Cardiovascular and Renal Research, University of Southern Denmark, DK-5000, Odense, Denmark
| | - Göran Rådegran
- The Copenhagen Muscle Research Centre, Rigshospitalet, University of Copenhagen, DK-2100, Copenhagen Ø, Denmark.,Department of Clinical Sciences Lund, Cardiology, Lund University, SE-221 85, Lund, Sweden.,The Section for Heart Failure and Valvular Disease, The Heart and Lung Clinic, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
17
|
Hwee DT, Kennedy AR, Hartman JJ, Ryans J, Durham N, Malik FI, Jasper JR. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. J Pharmacol Exp Ther 2015; 353:159-68. [PMID: 25678535 DOI: 10.1124/jpet.114.222224] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance.
Collapse
Affiliation(s)
| | | | | | - Julie Ryans
- Cytokinetics Inc., South San Francisco, California
| | | | - Fady I Malik
- Cytokinetics Inc., South San Francisco, California
| | | |
Collapse
|
18
|
Seow CY. Hill's equation of muscle performance and its hidden insight on molecular mechanisms. J Gen Physiol 2013; 142:561-73. [PMID: 24277600 PMCID: PMC3840917 DOI: 10.1085/jgp.201311107] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/04/2013] [Indexed: 11/20/2022] Open
Abstract
Muscles shorten faster against light loads than they do against heavy loads. The hyperbolic equation first used by A.V. Hill over seven decades ago to illustrate the relationship between shortening velocity and load is still the predominant method used to characterize muscle performance, even though it has been regarded as purely empirical and lacking precision in predicting velocities at high and low loads. Popularity of the Hill equation has been sustained perhaps because of historical reasons, but its simplicity is certainly attractive. The descriptive nature of the equation does not diminish its role as a useful tool in our quest to understand animal locomotion and optimal design of muscle-powered devices like bicycles. In this Review, an analysis is presented to illustrate the connection between the historic Hill equation and the kinetics of myosin cross-bridge cycle based on the latest findings on myosin motor interaction with actin filaments within the structural confines of a sarcomere. In light of the new data and perspective, some previous studies of force-velocity relations of muscle are revisited to further our understanding of muscle mechanics and the underlying biochemical events, specifically how extracellular and intracellular environment, protein isoform expression, and posttranslational modification of contractile and regulatory proteins change the interaction between myosin and actin that in turn alter muscle force, shortening velocity, and the relationship between them.
Collapse
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory Medicine, James Hogg Research Centre/St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia V6Z 1Y6, Canada
| |
Collapse
|
19
|
Abstract
Skeletal muscle fatigue is defined as the fall of force or power in response to contractile activity. Both the mechanisms of fatigue and the modes used to elicit it vary tremendously. Conceptual and technological advances allow the examination of fatigue from the level of the single molecule to the intact organism. Evaluation of muscle fatigue in a wide range of disease states builds on our understanding of basic function by revealing the sources of dysfunction in response to disease.
Collapse
Affiliation(s)
- Jane A Kent-Braun
- Department of Kinesiology, University of Massachusetts-Amherst, Amherst, Massachusetts, USA.
| | | | | |
Collapse
|
20
|
Abstract
Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures.
Collapse
Affiliation(s)
- Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | | | | | | |
Collapse
|
21
|
Driss T, Vandewalle H. The measurement of maximal (anaerobic) power output on a cycle ergometer: a critical review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:589361. [PMID: 24073413 PMCID: PMC3773392 DOI: 10.1155/2013/589361] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 06/22/2013] [Indexed: 12/14/2022]
Abstract
The interests and limits of the different methods and protocols of maximal (anaerobic) power (Pmax) assessment are reviewed: single all-out tests versus force-velocity tests, isokinetic ergometers versus friction-loaded ergometers, measure of Pmax during the acceleration phase or at peak velocity. The effects of training, athletic practice, diet and pharmacological substances upon the production of maximal mechanical power are not discussed in this review mainly focused on the technical (ergometer, crank length, toe clips), methodological (protocols) and biological factors (muscle volume, muscle fiber type, age, gender, growth, temperature, chronobiology and fatigue) limiting Pmax in cycling. Although the validity of the Wingate test is questionable, a large part of the review is dedicated to this test which is currently the all-out cycling test the most often used. The biomechanical characteristics specific of maximal and high speed cycling, the bioenergetics of the all-out cycling exercises and the influence of biochemical factors (acidosis and alkalosis, phosphate ions…) are recalled at the beginning of the paper. The basic knowledge concerning the consequences of the force-velocity relationship upon power output, the biomechanics of sub-maximal cycling exercises and the study on the force-velocity relationship in cycling by Dickinson in 1928 are presented in Appendices.
Collapse
Affiliation(s)
- Tarak Driss
- CeRSM, E.A. 2931, Equipe de Physiologie et de Biomécanique du Mouvement, UFR STAPS, Université Paris Ouest Nanterre—La Défense, 200 avenue de la République, 92000 Nanterre, France
| | - Henry Vandewalle
- Laboratoire de Physiologie, UFR de Santé, Médecine et Biologie Humaine, Université Paris XIII, Rue Marcel Cachin, 93017 Bobigny Cedex, France
| |
Collapse
|
22
|
Karatzaferi C, Chase PB. Muscle fatigue and muscle weakness: what we know and what we wish we did. Front Physiol 2013; 4:125. [PMID: 23755020 PMCID: PMC3667272 DOI: 10.3389/fphys.2013.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/13/2013] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christina Karatzaferi
- Department of Physical Education and Sports Science, University of Thessaly Trikala, Greece ; Department of Kinesiology, Center for Research and Technology Thessaly, Trikala, Greece
| | | |
Collapse
|
23
|
Allen DG, Trajanovska S. The multiple roles of phosphate in muscle fatigue. Front Physiol 2012; 3:463. [PMID: 23248600 PMCID: PMC3518787 DOI: 10.3389/fphys.2012.00463] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/22/2012] [Indexed: 01/23/2023] Open
Abstract
Muscle fatigue is the decline in performance of muscles observed during periods of intense activity. ATP consumption exceeds production during intense activity and there are multiple changes in intracellular metabolites which may contribute to the changes in crossbridge activity. It is also well-established that a reduction in activation, either through action potential changes or reduction in Ca(2+) release from the sarcoplasmic reticulum (SR), makes an additional contribution to fatigue. In this review we focus on the role of intracellular inorganic phosphate (P(i)) whose concentration can increase rapidly from around 5-30 mM during intense fatigue. Studies from skinned muscle fibers show that these changes substantially impair myofibrillar performance although the effects are strongly temperature dependent. Increased P(i) can also cause reduced Ca(2+) release from the SR and may therefore contribute to the reduced activation. In a recent study, we have measured both P(i) and Ca(2+) release in a blood-perfused mammalian preparation and the results from this preparation allows us to test the extent to which the combined effects of P(i) and Ca(2+) changes may contribute to fatigue.
Collapse
Affiliation(s)
- David G Allen
- School of Medical Sciences, Bosch Institute and Sydney School of Medicine, University of Sydney Sydney, NSW, Australia
| | | |
Collapse
|
24
|
Debold EP, Longyear TJ, Turner MA. The effects of phosphate and acidosis on regulated thin-filament velocity in an in vitro motility assay. J Appl Physiol (1985) 2012; 113:1413-22. [DOI: 10.1152/japplphysiol.00775.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscle fatigue from intense contractile activity is thought to result, in large part, from the accumulation of inorganic phosphate (Pi) and hydrogen ions (H+) acting to directly inhibit the function of the contractile proteins; however, the molecular basis of this process remain unclear. We used an in vitro motility assay and determined the effects of elevated H+ and Pi on the ability of myosin to bind to and translocate regulated actin filaments (RTF) to gain novel insights into the molecular basis of fatigue. At saturating Ca++, acidosis depressed regulated filament velocity ( VRTF) by ∼90% (6.2 ± 0.3 vs. 0.5 ± 0.2 μm/s at pH 7.4 and 6.5, respectively). However, the addition of 30 mM Pi caused VRTF to increase fivefold, from 0.5 ± 0.2 to 2.6 ± 0.3 μm/s at pH 6.5. Similarly, at all subsaturating Ca++ levels, acidosis slowed VRTF, but the addition of Pi significantly attenuated this effect. We also manipulated the [ADP] in addition to the [Pi] to probe which specific step(s) of cross-bridge cycle of myosin is affected by elevated H+. The findings are consistent with acidosis slowing the isomerization step between two actomyosin ADP-bound states. Because the state before this isomerization is most vulnerable to Pi rebinding, and the associated detachment from actin, this finding may also explain the Pi-induced enhancement of VRTF at low pH. These results therefore may provide a molecular basis for a significant portion of the loss of shortening velocity and possibly muscular power during fatigue.
Collapse
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Thomas J. Longyear
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| | - Matthew A. Turner
- Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
25
|
Debold EP. Recent insights into muscle fatigue at the cross-bridge level. Front Physiol 2012; 3:151. [PMID: 22675303 PMCID: PMC3365633 DOI: 10.3389/fphys.2012.00151] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 11/22/2022] Open
Abstract
The depression in force and/or velocity associated with muscular fatigue can be the result of a failure at any level, from the initial events in the motor cortex of the brain to the formation of an actomyosin cross-bridge in the muscle cell. Since all the force and motion generated by muscle ultimately derives from the cyclical interaction of actin and myosin, researchers have focused heavily on the impact of the accumulation of intracellular metabolites [e.g., P(i), H(+) and adenosine diphoshphate (ADP)] on the function these contractile proteins. At saturating Ca(++) levels, elevated P(i) appears to be the primary cause for the loss in maximal isometric force, while increased [H(+)] and possibly ADP act to slow unloaded shortening velocity in single muscle fibers, suggesting a causative role in muscular fatigue. However the precise mechanisms through which these metabolites might affect the individual function of the contractile proteins remain unclear because intact muscle is a highly complex structure. To simplify problem isolated actin and myosin have been studied in the in vitro motility assay and more recently the single molecule laser trap assay with the findings showing that both P(i) and H(+) alter single actomyosin function in unique ways. In addition to these new insights, we are also gaining important information about the roles played by the muscle regulatory proteins troponin (Tn) and tropomyosin (Tm) in the fatigue process. In vitro studies, suggest that both the acidosis and elevated levels of P(i) can inhibit velocity and force at sub-saturating levels of Ca(++) in the presence of Tn and Tm and that this inhibition can be greater than that observed in the absence of regulation. To understand the molecular basis of the role of regulatory proteins in the fatigue process researchers are taking advantage of modern molecular biological techniques to manipulate the structure and function of Tn/Tm. These efforts are beginning to reveal the relevant structures and how their functions might be altered during fatigue. Thus, it is a very exciting time to study muscle fatigue because the technological advances occurring in the fields of biophysics and molecular biology are providing researchers with the ability to directly test long held hypotheses and consequently reshaping our understanding of this age-old question.
Collapse
Affiliation(s)
- Edward P. Debold
- Department of Kinesiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
26
|
García-Manso JM, Rodríguez-Ruiz D, Rodríguez-Matoso D, de Saa Y, Sarmiento S, Quiroga M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J Sports Sci 2011; 29:619-25. [PMID: 21391085 DOI: 10.1080/02640414.2010.548822] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study, we used tensiomyography (TMG) to assess muscle status immediately after an ultra-endurance triathlon. Maximal radial displacement or deformation of the muscle belly, contraction time, delay time, sustain time, and relaxation time were measured for both legs, and dependent t-tests were used to compare means between the beginning and end of the race. The 19 men assessed (age 37.9 ± 7.1 years; height 177.5 ± 4.6 cm; weight: 73.6 ± 6.5 kg) participated in the 2009 edition of the Lanzarote Ironman. Deterioration in the neural response was observed for contraction time (P = 0.008) and relaxation time (P = 0.011), with a moderate decrease in the response time (sustain time) and a loss in muscle stiffness (deformation of the muscle belly). The effect of muscle fatigue on the rectus femoris and biceps femoris was different. Barely any changes in contraction time, relaxation time, sustain time, and deformation of the muscle belly were observed, while only the contraction response time decreased to a significant extent (reduction in delay time; P = 0.003). The considerable loss in contractile capacity induced by a long-distance race was reflected in changes in the neuromuscular response and fluctuations in the contractile capacity of the muscle. These modifications, derived from a prolonged, exhausting effort, can be assessed in a simple, non-aggressive, non-invasive way using tensiomyography.
Collapse
Affiliation(s)
- Juan Manuel García-Manso
- Department of Physical Education, Universidad de Las Palmas de Gran Canaria, Las Palmas, Gran Canaria, Spain
| | | | | | | | | | | |
Collapse
|
27
|
|
28
|
|
29
|
Keyser RE. Peripheral fatigue: high-energy phosphates and hydrogen ions. PM R 2010; 2:347-58. [PMID: 20656616 DOI: 10.1016/j.pmrj.2010.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
Peripheral fatigue results from an overactivity-induced decline in muscle function that originates from non-central nervous system mechanisms. A common symptom of fatigue is a feeling of tiredness or weariness because of overexertion, such as that associated with intense or prolonged physical exercise. Fatigue is worsened by low physical fitness and chronic illnesses. These conditions may intensify fatigue to levels that limit physical and social functioning and severely diminish health-related quality of life. Although etiologic aspects of peripheral fatigue are often associated with regulatory system (neurologic, endocrine, immunologic, muscular) and support system (cardiovascular, pulmonary, metabolic, renal, digestive, skeletal) limitations, final mediation occurs in muscle cells as a result of altered crossbridge functioning. Specifically, the final product and ionic metabolite accumulation that result from adenosine triphosphate hydrolysis appear to inhibit crossbridge formation and activation. Thus, clinical manifestations of peripheral fatigue often can be observed as limitations placed upon muscle or cardiorespiratory endurance, here defined as fatigue resistance. An overview of the common pathways by which peripheral fatigue can be mediated is provided. Product inhibition of contractile chemistry is brought into focus as a common pathway through which the mechanisms of peripheral fatigue often act.
Collapse
Affiliation(s)
- Randall E Keyser
- Center for the Study of Chronic Illness and Disability, Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.
| |
Collapse
|
30
|
Burnley M, Vanhatalo A, Fulford J, Jones AM. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a31P magnetic resonance spectroscopy study. Exp Physiol 2010; 95:798-807. [DOI: 10.1113/expphysiol.2010.052688] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Petersen LH, Gamperl AK. In situ cardiac function in Atlantic cod (Gadus morhua): effects of acute and chronic hypoxia. J Exp Biol 2010; 213:820-30. [DOI: 10.1242/jeb.033753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SUMMARY
Recent in vivo experiments on Atlantic cod (Gadus morhua) acclimated to chronic hypoxia (6-12 weeks at 10°C; PwO2 ~8-9 kPa) revealed a considerable decrease in the pumping capacity of the heart. To examine whether this diminished cardiac performance was due to the direct effects of chronic moderate hypoxia on the myocardium (as opposed to alterations in neural and/or hormonal control), we measured the resting and maximum in situ function of hearts from normoxia- and hypoxia-acclimated cod: (1) when initially perfused with oxygenated saline; (2) at the end of a 15 min exposure to severe hypoxia (PO2 ~0.6 kPa); and (3) 30 min after the hearts had been reperfused with oxygenated saline. Acclimation to hypoxia did not influence resting (basal) in situ cardiac performance during oxygenated or hypoxic conditions. However, it caused a decrease in maximum cardiac output () under oxygenated conditions (from 49.5 to 40.3 ml min−1 kg−1; by 19%), that was due to diminished values for maximum stroke volume (VS) and scope for VS. Severe hypoxia reduced in both groups to ~20 ml min−1 kg−1, yet, the hearts of hypoxia-acclimated fish were better able to sustain this level of under hypoxia, and the recovery of (as compared with initial values under oxygenated conditions) was significantly improved (94% vs 83%). These data show that acclimation to hypoxia has a direct effect on cod myocardial function and/or physiology, and suggest that the cod heart shows some adaptations to prolonged hypoxia.
Collapse
Affiliation(s)
- L. H. Petersen
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada, A1C 5S7
| | - A. K. Gamperl
- Ocean Sciences Centre, Memorial University of Newfoundland, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
32
|
Greenberg MJ, Mealy TR, Jones M, Szczesna-Cordary D, Moore JR. The direct molecular effects of fatigue and myosin regulatory light chain phosphorylation on the actomyosin contractile apparatus. Am J Physiol Regul Integr Comp Physiol 2010; 298:R989-96. [PMID: 20089714 DOI: 10.1152/ajpregu.00566.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle, during periods of exertion, experiences several different fatigue-based changes in contractility, including reductions in force, velocity, power output, and energy usage. The fatigue-induced changes in contractility stem from many different factors, including alterations in the levels of metabolites, oxidative damage, and phosphorylation of the myosin regulatory light chain (RLC). Here, we measured the direct molecular effects of fatigue-like conditions on actomyosin's unloaded sliding velocity using the in vitro motility assay. We examined how changes in ATP, ADP, P(i), and pH affect the ability of the myosin to translocate actin and whether the effects of each individual molecular species are additive. We found that the primary causes of the reduction in unloaded sliding velocity are increased [ADP] and lowered pH and that the combined effects of the molecular species are nonadditive. Furthermore, since an increase in RLC phosphorylation is often associated with fatigue, we examined the differential effects of myosin RLC phosphorylation and fatigue on actin filament velocity. We found that phosphorylation of the RLC causes a 22% depression in sliding velocity. On the other hand, RLC phosphorylation ameliorates the slowing of velocity under fatigue-like conditions. We also found that phosphorylation of the myosin RLC increases actomyosin affinity for ADP, suggesting a kinetic role for RLC phosphorylation. Furthermore, we showed that ADP binding to skeletal muscle is load dependent, consistent with the existence of a load-dependent isomerization of the ADP bound state.
Collapse
Affiliation(s)
- Michael J Greenberg
- Department of Physiology and Biophysics, Boston University School of Medicine, L-720, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The activity of most cellular processes is sensitive to pH. Cells therefore tightly control cytosol pH within narrow bounds. Measurement of cytosolic pH is of interest in studying many processes, including pH regulatory transport proteins. Key approaches that have been used to determine intracellular pH include pH-sensitive microelectrodes, nuclear magnetic resonance, and pH-sensitive fluorescent proteins. Here we review these approaches while providing details on the use of pH-sensitive fluorescent dyes to measure cytosolic pH.
Collapse
|
34
|
Vanhatalo A, Fulford J, DiMenna FJ, Jones AM. Influence of hyperoxia on muscle metabolic responses and the power-duration relationship during severe-intensity exercise in humans: a 31P magnetic resonance spectroscopy study. Exp Physiol 2009; 95:528-40. [PMID: 20028850 DOI: 10.1113/expphysiol.2009.050500] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Severe-intensity constant-work-rate exercise results in the attainment of maximal oxygen uptake, but the muscle metabolic milieu at the limit of tolerance (T(lim)) for such exercise remains to be elucidated. We hypothesized that T(lim) during severe-intensity exercise would be associated with the attainment of consistently low values of intramuscular phosphocreatine ([PCr]) and pH, as determined using (31)P magnetic resonance spectroscopy, irrespective of the work rate and the inspired O(2) fraction. We also hypothesized that hyperoxia would increase the asymptote of the hyperbolic power-duration relationship (the critical power, CP) without altering the curvature constant (W). Seven subjects (mean +/- s.d., age 30 +/- 9 years) completed four constant-work-rate knee-extension exercise bouts to the limit of tolerance (range, 3-10 min) both in normoxia (N) and in hyperoxia (H; 70% O(2)) inside the bore of 1.5 T superconducting magnet. The [PCr] (approximately 5-10% of resting baseline) and pH (approximately 6.65) at the limit of tolerance during each of the four trials was not significantly different either in normoxia or in hyperoxia. At the same fixed work rate, the overall rate at which [PCr] fell with time was attenuated in hyperoxia (mean response time: N, 59 +/- 20 versus H, 116 +/- 46 s; P < 0.05). The CP was higher (N, 16.1 +/- 2.6 versus H, 18.0 +/- 2.3 W; P < 0.05) and the W was lower (N, 1.92 +/- 0.70 versus H, 1.48 +/- 0.31 kJ; P < 0.05) in hyperoxia compared with normoxia. These data indicate that T(lim) during severe-intensity exercise is associated with the attainment of consistently low values of muscle [PCr] and pH. The CP and W parameters of the power-duration relationship were both sensitive to the inspiration of hyperoxic gas.
Collapse
Affiliation(s)
- Anni Vanhatalo
- School of Sport and Health Sciences, St Luke's Campus, University of Exeter, Exeter EX1 2LU, UK
| | | | | | | |
Collapse
|
35
|
Wigmore DM, Befroy DE, Lanza IR, Kent-Braun JA. Contraction frequency modulates muscle fatigue and the rate of myoglobin desaturation during incremental contractions in humans. Appl Physiol Nutr Metab 2008; 33:915-21. [PMID: 18923566 DOI: 10.1139/h08-085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The metabolic cost of force production, and therefore the demand for oxygen, increases with intensity and frequency of contraction. This study investigated the interaction between fatigue and oxygenation, as reflected by deoxymyoglobin (dMb), during slow and rapid rhythmic isometric contractions having the same duty cycles and relative force-time integrals (FTIs). We used 1H magnetic resonance spectroscopy and measures of dorsiflexor muscle force to compare dMb and fatigue (fall of maximal voluntary force, MVC) in 11 healthy adults (29 +/- 7 y) during 16 min of slow (4 s contraction, 6 s relaxation) and rapid (1.2 s, 1.8 s) incremental (10%-80% MVC) contractions. We tested the hypotheses that (i) the rate of Mb desaturation would be faster in rapid than in slow contractions and (ii) fatigue, Mb desaturation, and the fall in FTI would be greater, and PO2 (oxygen tension) lower, at the end of rapid contractions than at the end of slow contractions. Although dMb increased more quickly during rapid contractions (p = 0.05), it reached a plateau at a similar level in both protocols (approximately 42% max, p = 0.49), likely due to an inability to further increase force production and thus metabolic demand. Despite the similar dMb at the end of both protocols, fatigue was greater in rapid (56.6% +/- 2.7% baseline) than in slow (69.5% +/- 4.0%, p = 0.01) contractions. These results indicate that human skeletal muscle fatigue during incremental isometric contractions is in part a function of contraction frequency, possibly due to metabolic inhibition of the contractile process.
Collapse
Affiliation(s)
- Danielle M Wigmore
- Department of Kinesiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
36
|
Debold EP, Beck SE, Warshaw DM. Effect of low pH on single skeletal muscle myosin mechanics and kinetics. Am J Physiol Cell Physiol 2008; 295:C173-9. [PMID: 18480297 DOI: 10.1152/ajpcell.00172.2008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acidosis (low pH) is the oldest putative agent of muscular fatigue, but the molecular mechanism underlying its depressive effect on muscular performance remains unresolved. Therefore, the effect of low pH on the molecular mechanics and kinetics of chicken skeletal muscle myosin was studied using in vitro motility (IVM) and single molecule laser trap assays. Decreasing pH from 7.4 to 6.4 at saturating ATP slowed actin filament velocity (V(actin)) in the IVM by 36%. Single molecule experiments, at 1 microM ATP, decreased the average unitary step size of myosin (d) from 10 +/- 2 nm (pH 7.4) to 2 +/- 1 nm (pH 6.4). Individual binding events at low pH were consistent with the presence of a population of both productive (average d = 10 nm) and nonproductive (average d = 0 nm) actomyosin interactions. Raising the ATP concentration from 1 microM to 1 mM at pH 6.4 restored d (9 +/- 3 nm), suggesting that the lifetime of the nonproductive interactions is solely dependent on the [ATP]. V(actin), however, was not restored by raising the [ATP] (1-10 mM) in the IVM assay, suggesting that low pH also prolongs actin strong binding (t(on)). Measurement of t(on) as a function of the [ATP] in the single molecule assay suggested that acidosis prolongs t(on) by slowing the rate of ADP release. Thus, in a detachment limited model of motility (i.e., V(actin) approximately d/t(on)), a slowed rate of ADP release and the presence of nonproductive actomyosin interactions could account for the acidosis-induced decrease in V(actin), suggesting a molecular explanation for this component of muscular fatigue.
Collapse
Affiliation(s)
- E P Debold
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
37
|
Abstract
The functional correlates of fatigue observed in both animals and humans during exercise include a decline in peak force (P0), maximal velocity, and peak power. Establishing the extent to which these deleterious functional changes result from direct effects on the myofilaments is facilitated through understanding the molecular mechanisms of the cross-bridge cycle. With actin-myosin binding, the cross-bridge transitions from a weakly bound low-force state to a strongly bound high-force state. Low pH reduces the number of high-force cross bridges in fast fibers, and the force per cross bridge in both fast and slow fibers. The former is thought to involve a direct inhibition of the forward rate constant for transition to the strong cross-bridge state. In contrast, inorganic phosphate (Pi) is thought to reduce P0 by accelerating the reversal of this step. Both H+ and Pi decrease myofibrillar Ca2+ sensitivity. This effect is particularly important as the amplitude of the Ca2+ transient falls with fatigue. The inhibitory effects of low pH and high Pi on P0 are reduced as temperature increases from 10 to 30 degrees C. However, the H+-induced depression of peak power in the slow fiber type, and Pi inhibition of myofibrillar Ca2+ sensitivity in slow and fast fibers, are greater at high compared with low temperature. Thus the depressive effects of H+ and Pi at in vivo temperatures cannot easily be predicted from data collected below 25 degrees C. In vitro, reactive oxygen species reduce myofibrillar Ca2+ sensitivity; however, the importance of this mechanism during in vivo exercise is unknown.
Collapse
Affiliation(s)
- Robert H Fitts
- Dept. of Biological Sciences, Wehr Life Sciences Bldg., Marquette Univ., P. O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
38
|
Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 2007; 294:R585-93. [PMID: 18056980 DOI: 10.1152/ajpregu.00731.2007] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the "critical power" (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using (31)P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subjects initially completed single-leg knee-extension exercise at three to four different constant work rates to the limit of tolerance (range 3-18 min) for estimation of the CP (mean +/- SD, 20 +/- 2 W). Subsequently, the subjects exercised at work rates 10% below CP (<CP) for 20 min and 10% above CP (>CP) for as long as possible, while the metabolic responses in the contracting quadriceps muscle, i.e., phosphorylcreatine concentration ([PCr]), P(i) concentration ([P(i)]), and pH, were estimated using (31)P-MRS. All subjects completed 20 min of <CP exercise without duress, whereas the limit of tolerance during >CP exercise was 14.7 +/- 7.1 min. During <CP exercise, stable values for [PCr], [P(i)], and pH were attained within 3 min after the onset of exercise, and there were no further significant changes in these variables (end-exercise values = 68 +/- 11% of baseline [PCr], 314 +/- 216% of baseline [P(i)], and pH 7.01 +/- 0.03). During >CP exercise, however, [PCr] continued to fall to the point of exhaustion and [P(i)] and pH changed precipitously to values that are typically observed at the termination of high-intensity exhaustive exercise (end-exercise values = 26 +/- 16% of baseline [PCr], 564 +/- 167% of baseline [P(i)], and pH 6.87 +/- 0.10, all P < 0.05 vs. <CP exercise). These data support the hypothesis that the CP represents the highest constant work rate that can be sustained without a progressive depletion of muscle high-energy phosphates and a rapid accumulation of metabolites (i.e., H(+) concentration and [P(i)]), which have been associated with the fatigue process.
Collapse
Affiliation(s)
- Andrew M Jones
- School of Sport and Health Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, Devon, UK.
| | | | | | | | | |
Collapse
|
39
|
Rassaf T, Flögel U, Drexhage C, Hendgen-Cotta U, Kelm M, Schrader J. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ Res 2007; 100:1749-54. [PMID: 17495223 DOI: 10.1161/circresaha.107.152488] [Citation(s) in RCA: 235] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although the primary function of myoglobin (Mb) has been considered to be cellular oxygen storage and supply, recent studies have suggested to classify Mb as a multifunctional allosteric enzyme. In the heart, Mb acts as a potent scavenger of nitric oxide (NO) and contributes to the attenuation of oxidative damage. Here we report that a dynamic cycle exists in which a decrease in tissue oxygen tension drives the conversion of Mb from being an NO scavenger in normoxia to an NO producer in hypoxia. The NO generated by reaction of deoxygenated Mb with nitrite is functionally relevant and leads to a downregulation of cardiac energy status, which was not observed in mice lacking Mb. As a consequence, myocardial oxygen consumption is reduced and cardiac contractility is dampened in wild-type mice. We propose that this pathway represents a novel homeostatic mechanism by which a mismatch between oxygen supply and demand in muscle is translated into the fractional increase of deoxygenated Mb exhibiting enhanced nitrite reductase activity. Thus, Mb may act as an oxygen sensor which through NO can adjust muscle energetics to limited oxygen supply.
Collapse
Affiliation(s)
- Tienush Rassaf
- University Hospital Aachen, Department of Medicine, Division of Cardiology, Pulmonary and Vascular Diseases, Aachen, Germany.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Children are able to resist fatigue better than adults during one or several repeated high-intensity exercise bouts. This finding has been reported by measuring mechanical force or power output profiles during sustained isometric maximal contractions or repeated bouts of high-intensity dynamic exercises. The ability of children to better maintain performance during repeated high-intensity exercise bouts could be related to their lower level of fatigue during exercise and/or faster recovery following exercise. This may be explained by muscle characteristics of children, which are quantitatively and qualitatively different to those of adults. Children have less muscle mass than adults and hence, generate lower absolute power during high-intensity exercise. Some researchers also showed that children were equipped better for oxidative than glycolytic pathways during exercise, which would lead to a lower accumulation of muscle by-products. Furthermore, some reports indicated that the lower ability of children to activate their type II muscle fibres would also explain their greater resistance to fatigue during sustained maximal contractions. The lower accumulation of muscle by-products observed in children may be suggestive of a reduced metabolic signal, which induces lower ratings of perceived exertion. Factors such as faster phosphocreatine resynthesis, greater oxidative capacity, better acid-base regulation, faster readjustment of initial cardiorespiratory parameters and higher removal of metabolic by-products in children could also explain their faster recovery following high-intensity exercise.From a clinical point of view, muscle fatigue profiles are different between healthy children and children with muscle and metabolic diseases. Studies of dystrophic muscles in children indicated contradictory findings of changes in contractile properties and the muscle fatigability. Some have found that the muscle of boys with Duchenne muscular dystrophy (DMD) fatigued less than that of healthy boys, but others have reported that the fatigue in DMD and in normal muscle was the same. Children with glycogenosis type V and VII and dermatomyositis, and obese children tolerate exercise weakly and show an early fatigue. Studies that have investigated the fatigability in children with cerebral palsy have indicated that the femoris quadriceps was less fatigable than that of a control group but the fatigability of the triceps surae was the same between the two groups. Further studies are required to elucidate the mechanisms explaining the origins of muscle fatigue in healthy and diseased children. The use of non-invasive measurement tools such as magnetic resonance imaging and magnetic resonance spectroscopy in paediatric exercise science will give researchers more insight in the future.
Collapse
Affiliation(s)
- Sébastien Ratel
- Laboratory of Exercise Biology BAPS EA 3533, Faculty of Sports Sciences, University of Blaise Pascal, Clermont-Ferrand, France.
| | | | | |
Collapse
|
41
|
Abstract
This article critically discusses whether accumulation of lactic acid, or in reality lactate and/or hydrogen (H+) ions, is a major cause of skeletal muscle fatigue, i.e. decline of muscle force or power output leading to impaired exercise performance. There exists a long history of studies on the effects of increased lactate/H+ concentrations in muscle or plasma on contractile performance of skeletal muscle. Evidence suggesting that lactate/H+ is a culprit has been based on correlation-type studies, which reveal close temporal relationships between intramuscular lactate or H+ accumulation and the decline of force during fatiguing stimulation in frog, rodent or human muscle. In addition, an induced acidosis can impair muscle contractility in non-fatigued humans or in isolated muscle preparations, and several mechanisms to explain such effects have been provided. However, a number of recent high-profile papers have seriously challenged the 'lactic acid hypothesis'. In the 1990s, these findings mainly involved diminished negative effects of an induced acidosis in skinned or intact muscle fibres, at higher more physiological experimental temperatures. In the early 2000s, it was conclusively shown that lactate has little detrimental effect on mechanically skinned fibres activated by artificial stimulation. Perhaps more remarkably, there are now several reports of protective effects of lactate exposure or induced acidosis on potassium-depressed muscle contractions in isolated rodent muscles. In addition, sodium-lactate exposure can attenuate severe fatigue in rat muscle stimulated in situ, and sodium lactate ingestion can increase time to exhaustion during sprinting in humans. Taken together, these latest findings have led to the idea that lactate/H+ is ergogenic during exercise. It should not be taken as fact that lactic acid is the deviant that impairs exercise performance. Experiments on isolated muscle suggest that acidosis has little detrimental effect or may even improve muscle performance during high-intensity exercise. In contrast, induced acidosis can exacerbate fatigue during whole-body dynamic exercise and alkalosis can improve exercise performance in events lasting 1-10 minutes. To reconcile the findings from isolated muscle fibres through to whole-body exercise, it is hypothesised that a severe plasma acidosis in humans might impair exercise performance by causing a reduced CNS drive to muscle.
Collapse
Affiliation(s)
- Simeon P Cairns
- Institute of Sport and Recreation Research New Zealand, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
42
|
Lanza IR, Wigmore DM, Befroy DE, Kent-Braun JA. In vivo ATP production during free-flow and ischaemic muscle contractions in humans. J Physiol 2006; 577:353-67. [PMID: 16945975 PMCID: PMC2000678 DOI: 10.1113/jphysiol.2006.114249] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine how ATP synthesis and contractility in vivo are altered by ischaemia in working human skeletal muscle. The hypotheses were: (1) glycolytic flux would be higher during ischaemic (ISC) compared to free-flow (FF) muscle contractions, in compensation for reduced oxidative ATP synthesis, and (2) ischaemic muscle fatigue would be related to the accumulation of inhibitory metabolic by-products rather than to the phosphorylation potential ([ATP]/[ADP][P(i)]) of the muscle. Twelve healthy adults (6 men, 6 women) performed six intermittent maximal isometric contractions of the ankle dorsiflexors (12 s contract, 12 s relax), once with intact blood flow and once with local ischaemia by thigh cuff inflation to 220 Torr. Intracellular phosphorous metabolites and pH were measured non-invasively with magnetic resonance spectroscopy, and rates of ATP synthesis through oxidative phosphorylation, anaerobic glycolysis, and the creatine kinase reaction were determined. The force-time integral declined more during ISC (66 +/- 3% initial) than FF (75 +/- 2% initial, P = 0.002), indicating greater fatigue in ISC. [ATP] was preserved in both protocols, indicating matching of ATP production and use under both conditions. Glycolytic flux (mm s(-1)) was similar during FF and ISC (P = 0.16). Total ATP synthesis rate was lower during ISC, despite adjustment for the greater muscle fatigue in this condition (P < 0.001). Fatigue was linearly associated with diprotonated inorganic phosphate (FF r = 0.94 +/- 0.01, ISC r = 0.92 +/- 0.02), but not phosphorylation potential. These data provide novel evidence that ATP supply and demand in vivo are balanced in human skeletal muscle during ischaemic work, not through higher glycolytic flux, but rather through increased metabolic economy and decreased rates of ATP consumption as fatigue ensues.
Collapse
Affiliation(s)
- Ian R Lanza
- Kinesiology Department, Totman 108, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
43
|
Wigmore DM, Propert K, Kent-Braun JA. Blood flow does not limit skeletal muscle force production during incremental isometric contractions. Eur J Appl Physiol 2005; 96:370-8. [PMID: 16328195 DOI: 10.1007/s00421-005-0037-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
It has been suggested that a transient limitation in blood flow during intermittent muscular contractions can contribute to muscle fatigue, and that this limitation is greater as contraction intensity increases. We investigated skeletal muscle blood flow and fatigue in 13 healthy, untrained men (21-27 years) during 16 min of intermittent (4 s contract, 6 s relax) isometric dorsiflexor contractions. Contractions began at 10% of pre-exercise maximal voluntary contraction (MVC) force and increased by 10% every 2 min. Hyperemia (i.e., post-contraction blood flow, measured by venous occlusion plethysmography) and MVC were measured at the end of each stage. Muscle volume measures were obtained using magnetic resonance imaging. After 10 min of exercise, submaximal force and post-contraction hyperemia plateaued. MVC fell from 8 min of exercise onwards (p=0.004), and this onset of fatigue preceded the plateau in submaximal force and hyperemia. Despite a large range in dorsiflexor muscle size (66.3-176.4 cm(3)) and strength (112.5-421.8 N), neither muscle size nor strength were related to fatigue. The temporal dissociation between changes in blood flow and the onset of fatigue (fall of MVC) suggest that limited blood flow was not a factor in the impaired force production observed during intermittent isometric dorsiflexor contractions in healthy young men. Additionally, post-contraction hyperemia increased linearly with increasing contraction intensity, reflecting a match between blood flow and force production throughout the protocol that was independent of fatigue.
Collapse
Affiliation(s)
- D M Wigmore
- Department of Exercise Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
44
|
Debold EP, Romatowski J, Fitts RH. The depressive effect of Pi on the force-pCa relationship in skinned single muscle fibers is temperature dependent. Am J Physiol Cell Physiol 2005; 290:C1041-50. [PMID: 16282195 DOI: 10.1152/ajpcell.00342.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increases in P(i) combined with decreases in myoplasmic Ca(2+) are believed to cause a significant portion of the decrease in muscular force during fatigue. To investigate this further, we determined the effect of 30 mM P(i) on the force-Ca(2+) relationship of chemically skinned single muscle fibers at near-physiological temperature (30 degrees C). Fibers isolated from rat soleus (slow) and gastrocnemius (fast) muscle were subjected to a series of solutions with an increasing free Ca(2+) concentration in the presence and absence of 30 mM P(i) at both low (15 degrees C) and high (30 degrees C) temperature. In slow fibers, 30 mM P(i) significantly increased the Ca(2+) required to elicit measurable force, referred to as the activation threshold at both low and high temperatures; however, the effect was twofold greater at the higher temperature. In fast fibers, the activation threshold was unaffected by elevating P(i) at 15 degrees C but was significantly increased at 30 degrees C. At both low and high temperatures, 30 mM P(i) increased the Ca(2+) required to elicit half-maximal force (pCa(50)) in both slow and fast fibers, with the effect of P(i) twofold greater at the higher temperature. These data suggest that during fatigue, reductions in the myoplasmic Ca(2+) and increases in P(i) act synergistically to reduce muscular force. Consequently, the combined changes in these ions likely account for a greater portion of fatigue than previously predicted based on studies at lower temperatures or high temperatures at saturating Ca(2+) levels.
Collapse
Affiliation(s)
- E P Debold
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA.
| | | | | |
Collapse
|
45
|
Rowley KL, Mantilla CB, Sieck GC. Respiratory muscle plasticity. Respir Physiol Neurobiol 2005; 147:235-51. [PMID: 15871925 DOI: 10.1016/j.resp.2005.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/21/2005] [Accepted: 03/22/2005] [Indexed: 11/23/2022]
Abstract
Plasticity of respiratory muscles must be considered in the context of their unique physiological demands. The continuous rhythmic activation of respiratory muscles makes them among the most active in the body. Respiratory muscles, especially the diaphragm, are non-weight-bearing, and thus, in contrast to limb muscles, are not exposed to gravitational effects. Perturbations in normal activation and load known to induce plasticity in limb muscles may not cause similar adaptations in respiratory muscles. In this review, we explore the structural and functional properties of the diaphragm muscle and their response to alterations in load and activity. Overall, relatively modest changes in diaphragm structural and functional properties occur in response to perturbations in load or activity. However, disruptions in the normal influence of phrenic innervation by frank denervation, tetrodotoxin nerve block and spinal hemisection, induce profound changes in the diaphragm, indicating the substantial trophic influence of phrenic motoneurons on diaphragm muscle.
Collapse
Affiliation(s)
- Katharine L Rowley
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, 200 First St. SW, Joseph 4-184W, Rochester, MN 55905, USA
| | | | | |
Collapse
|
46
|
Johansen KL, Doyle J, Sakkas GK, Kent-Braun JA. Neural and metabolic mechanisms of excessive muscle fatigue in maintenance hemodialysis patients. Am J Physiol Regul Integr Comp Physiol 2005; 289:R805-13. [PMID: 15905222 DOI: 10.1152/ajpregu.00187.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dialysis patients have severe exercise limitations related to metabolic disturbances, but muscle fatigue has not been well studied in this population. We investigated the magnitude and mechanisms of fatigue of the ankle dorsiflexor muscles in patients on maintenance hemodialysis. Thirty-three dialysis patients and twelve healthy control subjects performed incremental isometric dorsiflexion exercise, beginning at 10% of their maximal voluntary contraction (MVC) and increasing by 10% every 2 min. Muscle fatigue (fall of MVC), completeness of voluntary activation, and metabolic responses to exercise were measured. Before exercise, dialysis subjects exhibited reduced strength and impaired peripheral activation (lower compound muscle activation potential amplitude) but no metabolic perturbation. During exercise, dialysis subjects demonstrated threefold greater fatigue than controls with evidence of central activation failure but no change in peripheral activation. All metabolic parameters were significantly more perturbed at end exercise in dialysis subjects than in controls, including lower phosphocreatine (PCr) and pH, and higher Pi, Pi/PCr, and H2PO4−. Oxidative potential was markedly lower in patients than in controls [62.5 (SD 27.2) vs. 134.6 (SD 31.7), P < 0.0001]. Muscle fatigue was negatively correlated with oxidative potential among dialysis subjects ( r = −0.52, P = 0.04) but not controls. Changes in central activation ratio were also correlated with muscle fatigue in the dialysis subjects ( r = 0.59, P = 0.001) but not the controls. This study provides new information regarding the excessive muscular fatigue of dialysis patients and demonstrates that the mechanisms of this fatigue include both intramuscular energy metabolism and central activation failure.
Collapse
Affiliation(s)
- Kirsten L Johansen
- Dialysis Unit, San Francisco Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
| | | | | | | |
Collapse
|
47
|
Lu X, Bryant MK, Bryan KE, Rubenstein PA, Kawai M. Role of the N-terminal negative charges of actin in force generation and cross-bridge kinetics in reconstituted bovine cardiac muscle fibres. J Physiol 2005; 564:65-82. [PMID: 15649975 PMCID: PMC1456038 DOI: 10.1113/jphysiol.2004.078055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Mutant yeast actins were used to determine the role of actin's N-terminal negative charges in force generation. The thin filament was selectively removed from bovine cardiac skinned muscle fibres by gelsolin, and the actin filament was reconstituted from purified G-actin. In this reconstitution, yeast wild-type actin (2Ac: two N-terminal negative charges), yeast mutant actins (3Ac and 4Ac), and rabbit skeletal muscle actin (MAc) were used. The effects of phosphate, ATP and ADP on force development were studied at 25 degrees C. With MAc, isometric tension was 77% of the initial tension owing to the lack of a regulatory system. With 2Ac, isometric tension was 10% of the initial tension; with 3Ac, isometric tension was 23%; and with 4Ac, isometric tension was 44%. Stiffness followed a similar pattern (2Ac < 3Ac < 4Ac < MAc). A similar trend was observed during rigor induction and relaxation. Sinusoidal analysis was performed to obtain the kinetic constants of the cross-bridge cycle. The results showed that the variability of the kinetic constants was < or = 2.5-fold among the 2Ac, 4Ac and MAc muscle models. When the cross-bridge distribution was examined, there was no significant reapportionment among these three models examined. These results indicate that force supported by each cross-bridge is modified by the N-terminal negative charges of actin, presumably via the actomyosin interface. We conclude that two N-terminal negative charges are not adequate, three negative charges are intermediate, and four negative charges are necessary to generate force.
Collapse
Affiliation(s)
- Xiaoying Lu
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Mary K Bryant
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
| | - Keith E Bryan
- Department of Biochemistry, University of IowaIowa City, IA 52242, USA
| | | | - Masataka Kawai
- Department of Anatomy and Cell Biology, University of IowaIowa City, IA 52242, USA
- Corresponding author M. Kawai: Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
48
|
Abstract
The basis for all biological movement is the conversion of chemical energy to mechanical energy by different classes of motor proteins. In skeletal muscle this motor protein is myosin II, a thick filament-based molecule that harnesses the free energy furnished by ATP hydrolysis to perform mechanical work against actin proteins of the thin filament. The cyclic attachment and detachment of myosin with actin that generates muscle force and shortening is Ca2+ regulated. Intense muscle activity may lead to metabolically induced inhibitions to the function of these myofibrillar proteins when Ca2+ regulation is normal, a phenomenon referred to as myofibrillar fatigue. Studies using single muscle fibers at room temperature or lower have shown that myosin motor function is inhibited by the accumulation of the ATP-hydrolysis products ADP, Pi, and H+ as well as by excess generation of reactive oxygen species (ROS). These metabolically induced impairments to myosin motor function reduce muscle work and power output by impairing maximal Ca2+ activated force, the Ca2+ sensitivity of force, and/or unloaded shortening velocity. Based on uncertainties about their inhibitory effect on muscle function at more physiological temperatures, the influence of ATP-hydrolysis product and ROS accumulation on myofibrillar protein function of human skeletal muscle remains to be clarified. Key words: actin, myosin, muscle contraction
Collapse
Affiliation(s)
- Rene Vandenboom
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, 48190, USA
| |
Collapse
|
49
|
Debold EP, Dave H, Fitts RH. Fiber type and temperature dependence of inorganic phosphate: implications for fatigue. Am J Physiol Cell Physiol 2004; 287:C673-81. [PMID: 15128502 DOI: 10.1152/ajpcell.00044.2004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated levels of P(i) are thought to cause a substantial proportion of the loss in muscular force and power output during fatigue from intense contractile activity. However, support for this hypothesis is based, in part, on data from skinned single fibers obtained at low temperatures (< or =15 degrees C). The effect of high (30 mM) P(i) concentration on the contractile function of chemically skinned single fibers was examined at both low (15 degrees C) and high (30 degrees C) temperatures using fibers isolated from rat soleus (type I fibers) and gastrocnemius (type II fibers) muscles. Elevating P(i) from 0 to 30 mM at saturating free Ca(2+) levels depressed maximum isometric force (P(o)) by 54% at 15 degrees C and by 19% at 30 degrees C (P < 0.05; significant interaction) in type I fibers. Similarly, the P(o) of type II fibers was significantly more sensitive to high levels of P(i) at the lower (50% decrease) vs. higher temperature (5% decrease). The maximal shortening velocity of both type I and type II fibers was not significantly affected by elevated P(i) at either temperature. However, peak fiber power was depressed by 49% at 15 degrees C but by only 16% at 30 degrees C in type I fibers. Similarly, in type II fibers, peak power was depressed by 40 and 18% at 15 and 30 degrees C, respectively. These data suggest that near physiological temperatures and at saturating levels of intracellular Ca(2+), elevated levels of P(i) contribute less to fatigue than might be inferred from data obtained at lower temperatures.
Collapse
Affiliation(s)
- E P Debold
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA.
| | | | | |
Collapse
|
50
|
Syme DA, Tonks DM. Fatigue and recovery of dynamic and steady-state performance in frog skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2004; 286:R916-26. [PMID: 14726426 DOI: 10.1152/ajpregu.00347.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle fatigue reflects alterations of both activation and cross-bridge function, which will have markedly different affects on steady-state vs. dynamic performance. Such differences offer insight into the specific origins of fatigue, its mechanical manifestation, and its consequences for animal movement. These were inferred using dynamic contractions (twitches and cyclic work as might occur during locomotion) and steady-state performance with maximal, sustained activation (tetani, stiffness, and isokinetic force) during fatigue and then recovery of frog (Rana pipiens) anterior tibialis muscle. Stiffness remained unaltered during early fatigue of force and then declined only 25% as force dropped 50%, suggesting a decline with fatigue in first the force-generating ability and then the number of cross bridges. The relationship between stiffness and force was different during fatigue and recovery; thus the number of cross bridges and force per cross bridge are not intimately linked. Twitch duration increased with fatigue and then recovered, with trajectories that were remarkably similar to and linear with changes in tetanic force, perhaps belying a common mechanism. Twitch force increased and then returned to resting levels during fatigue, reflecting a slowing of activation kinetics and a decline in cross-bridge number and force. Net cyclic work fatigued to the degree of becoming negative when tetanic force had declined only 15%. Steady-state isokinetic force (i.e., shortening work) declined by 75%, while cyclic shortening work declined only 30%. Slowed activation kinetics were again responsible, augmenting cyclic shortening work but greatly augmenting lengthening work (reducing net work). Steady-state measures can thus seriously mislead regarding muscle performance in an animal during fatigue.
Collapse
Affiliation(s)
- Douglas A Syme
- Dept. of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada.
| | | |
Collapse
|