1
|
Șerban RE, Boldeanu MV, Florescu DN, Ionescu M, Șerbănescu MS, Boldeanu L, Florescu MM, Stepan MD, Obleagă VC, Constantin C, Popescu DM, Streba CT, Vere CC. Comparison between Substance P and Calcitonin Gene-Related Peptide and Their Receptors in Colorectal Adenocarcinoma. J Clin Med 2024; 13:5616. [PMID: 39337103 PMCID: PMC11432560 DOI: 10.3390/jcm13185616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Colorectal cancer is a major health problem that still causes many deaths worldwide. Neuropeptides, such as substance P and calcitonin gene-related peptide, play the neurotransmitter and neurohormone roles that increase tumor invasiveness and metastasis potential. This study aimed to see whether these neuropeptides and their receptors-neurokinin 1 receptor and calcitonin receptor-like receptor-correlate with the diagnosis stage, tumor differentiation grade, and different patient characteristics in colorectal cancer and also to compare them. Methods: We performed serum analyses of substance P and CGRP levels in patients with colorectal cancer and also the immunohistochemical analysis of their receptors in colorectal tumors and then correlated them with the disease stage and with different tumor characteristics. Results: We demonstrated that both substance P and calcitonin gene-related peptide had increased levels in colorectal cancer and that their levels correlated with the stage of the disease and with the tumor differentiation grade. We also demonstrated the correlation of NK-1R and CRLR higher immunohistochemical scores with advanced and poorly differentiated tumors. Conclusions: This study demonstrates that the neuropeptides SP and CGRP and their receptors NK-1R and CRLR could play a role in the pathogenesis of colorectal cancer, and they could be used as diagnostic and prognostic markers and could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Robert-Emmanuel Șerban
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dan Nicolae Florescu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| | - Mihaela Ionescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mircea-Sebastian Șerbănescu
- Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Lidia Boldeanu
- Department of Microbiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mirela-Marinela Florescu
- Department of Pathology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mioara-Desdemona Stepan
- Department of Infant Care-Pediatrics-Neonatology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Vasile-Cosmin Obleagă
- Department of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristian Constantin
- Department of Radiology and Medical Imaging, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Dragoş-Marian Popescu
- Department of Extreme Conditions Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Costin Teodor Streba
- Department of Scientific Research Methodology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Department of Pulmonology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cristin Constantin Vere
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Research Center of Gastroenterology and Hepatology, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania
| |
Collapse
|
2
|
Straub RH, Cutolo M. A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases. Neuroimmunomodulation 2024; 31:183-210. [PMID: 39168106 DOI: 10.1159/000540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology. SUMMARY Keywords were derived from the psycho-neuro-endocrine immunology research field very well known to the authors (R.H.S. has collected a list of keywords since 1994). We screened PubMed, the Cochran Library of Medicine, Embase, Scopus database, and the ORCID database to find relevant historical literature. The Snowballing procedure helped find related work. According to the historical appearance of discoveries in the field, the order of presentation follows the subsequent scheme: (1) the sensory nervous system, (2) the sympathetic nervous system, (3) the vagus nerve, (4) steroid hormones (glucocorticoids, androgens, progesterone, estrogens, and the vitamin D hormone), (5) afferent pathways involved in fatigue, anxiety, insomnia, and depression (includes pathophysiology), and (6) evolutionary medicine and energy regulation - an umbrella theory. KEY MESSAGES A brief history on psycho-neuro-endocrine immunology cannot address all relevant aspects of the field. The authors are aware of this shortcoming. The reader must see this review as a viewpoint through the biased eyes of the authors. Nevertheless, the text gives an overview of the history in psycho-neuro-endocrine immunology of rheumatic diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Department of Internal Medicine DIMI, Postgraduate School of Rheumatology, University of Genova, Genoa, Italy
| |
Collapse
|
3
|
Abstract
Bone remodeling in the adult skeleton facilitates the removal and replacement of damaged and old bone to maintain bone quality. Tight coordination of bone resorption and bone formation during remodeling crucially maintains skeletal mass. Increasing evidence suggests that many cell types beyond osteoclasts and osteoblasts support bone remodeling, including macrophages and other myeloid lineage cells. Herein, we discuss the origin and functions for macrophages in the bone microenvironment, tissue resident macrophages, osteomacs, as well as newly identified osteomorphs that result from osteoclast fission. We also touch on the role of macrophages during inflammatory bone resorption. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
| | - Elizabeth W. Bradley
- Department of Orthopedics and Stem Cell Institute, University of Minnesota, Minneapolis, MN
| |
Collapse
|
4
|
Costa PAC, Silva WN, Prazeres PHDM, Picoli CC, Guardia GDA, Costa AC, Oliveira MA, Guimarães PPG, Gonçalves R, Pinto MCX, Amorim JH, Azevedo VAC, Resende RR, Russo RC, Cunha TM, Galante PAF, Mintz A, Birbrair A. Chemogenetic modulation of sensory neurons reveals their regulating role in melanoma progression. Acta Neuropathol Commun 2021; 9:183. [PMID: 34784974 PMCID: PMC8594104 DOI: 10.1186/s40478-021-01273-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2021] [Accepted: 10/10/2021] [Indexed: 02/08/2023] Open
Abstract
Sensory neurons have recently emerged as components of the tumor microenvironment. Nevertheless, whether sensory neuronal activity is important for tumor progression remains unknown. Here we used Designer Receptors Exclusively Activated by a Designer Drug (DREADD) technology to inhibit or activate sensory neurons' firing within the melanoma tumor. Melanoma growth and angiogenesis were accelerated following inhibition of sensory neurons' activity and were reduced following overstimulation of these neurons. Sensory neuron-specific overactivation also induced a boost in the immune surveillance by increasing tumor-infiltrating anti-tumor lymphocytes, while reducing immune-suppressor cells. In humans, a retrospective in silico analysis of melanoma biopsies revealed that increased expression of sensory neurons-related genes within melanoma was associated with improved survival. These findings suggest that sensory innervations regulate melanoma progression, indicating that manipulation of sensory neurons' activity may provide a valuable tool to improve melanoma patients' outcomes.
Collapse
Affiliation(s)
- Pedro A C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Walison N Silva
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro H D M Prazeres
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Caroline C Picoli
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | | | - Alinne C Costa
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mariana A Oliveira
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Pedro P G Guimarães
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ricardo Gonçalves
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Mauro C X Pinto
- Departamento de Farmacologia, Universidade Federal de Goiás, Goiânia, GO, Brasil
| | - Jaime H Amorim
- Centro das Ciências Biológicas e da Saúde, Universidade Federal do Oeste da Bahia, Barreiras, BA, Brasil
| | - Vasco A C Azevedo
- Departamento de Genetica, Ecologia e Evolucao, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rodrigo R Resende
- Departamento de Bioquimica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Thiago M Cunha
- Departamento de Farmacologia, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Pedro A F Galante
- Centro de Oncologia Molecular, Hospital Sirio-Libanes, Sao Paulo, SP, Brasil
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Alexander Birbrair
- Departamento de Patologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.
- Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Neuroimmune interactions and osteoarthritis pain: focus on macrophages. Pain Rep 2021; 6:e892. [PMID: 33981927 PMCID: PMC8108586 DOI: 10.1097/pr9.0000000000000892] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022] Open
Abstract
Bidirectional interactions between the immune system and the nervous system are increasingly appreciated as playing a pathogenic role in chronic pain. Unraveling the mechanisms by which inflammatory pain is mediated through communication between nerves and immune cells may lead to exciting new strategies for therapeutic intervention. In this narrative review, we focus on the role of macrophages in the pathogenesis of osteoarthritis (OA) pain. From regulating homeostasis to conducting phagocytosis, and from inducing inflammation to resolving it, macrophages are plastic cells that are highly adaptable to their environment. They rely on communicating with the environment through cytokines, growth factors, neuropeptides, and other signals to respond to inflammation or injury. The contribution of macrophages to OA joint damage has garnered much attention in recent years. Here, we discuss how macrophages may participate in the initiation and maintenance of pain in OA. We aim to summarize what is currently known about macrophages in OA pain and identify important gaps in the field to fuel future investigations.
Collapse
|
6
|
Neurokinin receptors and their implications in various autoimmune diseases. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:66-78. [PMID: 35492389 PMCID: PMC9040085 DOI: 10.1016/j.crimmu.2021.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neurokinin receptors belong to the GPCRs family and are ubiquitously expressed throughout the nervous and immune systems. Neurokinin receptors in coordination with neurokinins playing an important role in many physiological processes, including smooth muscle contraction, secretion, proliferation, and nociception. They also contribute to various disease conditions such as inflammatory bowel disease, rheumatoid arthritis, multiple sclerosis, psoriasis, and cancer. Neurokinin receptors antagonist are potent and highly selective and showing success in treating chemotherapy-induced nausea and vomiting. In this review, discuss the various neurokinin receptor expression on immune cells and their importance in various inflammatory and autoimmune diseases and their therapeutic importance. The Neurokinin receptor is an important regulatory mechanism to control the neuronal and immune systems. Various neurokinin receptors (NK1R, NK2R, and NK3R) are expressed in neurons and cells of the immune system. Substance P (SP) controls the differentiation and function of immune cells. SP-NK1R receptor signaling shows substantial cross-talk between neuronal and immune systems in inflammation and autoimmunity.
Collapse
|
7
|
McKenna M, McDougall JJ. Cannabinoid control of neurogenic inflammation. Br J Pharmacol 2020; 177:4386-4399. [PMID: 33289534 DOI: 10.1111/bph.15208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2020] [Revised: 05/02/2020] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
A significant number of cannabinoids are known to have analgesic and anti-inflammatory properties in various diseases. Due to their presynaptic/terminal location, cannabinoid receptors can inhibit synaptic transmission and have the potential to regulate neurogenic inflammation. Neurogenic inflammation occurs when a noxious signal is detected in the periphery initiating an antidromic axon reflex in the same sensory neurone leading to depolarization of the afferent terminal. Neuropeptides are subsequently released and contribute to vasodilation, plasma extravasation and modulation of immune cells. Endocannabinoids, synthetic cannabinoids and phytocannabinoids can reduce neuroinflammation by inhibiting afferent firing and inflammatory neuropeptide release. Thus, in addition to a direct effect on vascular smooth muscle and inflammatory cells, cannabinoids can reduce inflammation by silencing small diameter neurones. This review examines the neuropharmacological processes involved in regulating antidromic depolarization of afferent nerve terminals by cannabinoids and the control of neurogenic inflammation in different diseases.
Collapse
Affiliation(s)
- Meagan McKenna
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jason J McDougall
- Departments of Pharmacology and Anaesthesia, Pain Management & Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Rajappa R, Nazal MR, Stelzer JW, Hsu HP, Conaway WK, Rokkappanavar S, Niu W, Upadhyaya S, Alpaugh K, Spector M, Martin SD. Translational relevance of the goat as a preclinical model of the human labrum and chondrolabral junction-histological study. J Orthop Res 2020; 38:1070-1080. [PMID: 31788831 DOI: 10.1002/jor.24546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/28/2019] [Accepted: 11/24/2019] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to evaluate the histologic features of the caprine labrum, with emphasis on the chondrolabral junction, with the goal of informing the feasibility of the goat as an animal model. The left hip joint of six adolescent Spanish goats (Capra pyrenaica) was harvested and subjected to anatomical and histological assessments. Human acetabular and femoral head samples, collected during total hip arthroplasty, served as comparison samples. The caprine labrum was found to consist of mostly type I collagen with uniform crimp, with an average crimp length of 20.8 µm. Upon histological assessment, acetabular articular chondrocytes were found to express substance-P, especially near or in the chondrolabral junction. And the majority of nonvascular cells expressed α-smooth muscle actin (SMA), with no notable elastin and laminin expression. Human labrum demonstrated similar staining patterns. Overall, the goat hip was found to be homologous to the human hip, demonstrating potential as a useful animal model for future studies. This is the first report of a crimped collagen structure in the labrum. Crimped type I collagen at the chondrolabral junction imparts an extension-recovery property which allows for toleration of stress without permanent deformation, underlying the importance of its preservation during surgery. The high expression of substance-P reflects the degree to which the labrum is innervated. Finally, the expression of α-SMA with contractile characteristics could indicate the potential for chondrocyte (i.e., myochondrocytes) modeling of the extracellular matrix. Statement of Clinical Significance: Establishment of a large animal model and deeper knowledge of the histological composition of the hip joint will enhance our study of the acetabular labrum, including repair techniques. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:1070-1080, 2020.
Collapse
Affiliation(s)
- Ravikumar Rajappa
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Mark R Nazal
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - John W Stelzer
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - Hu Ping Hsu
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - William K Conaway
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| | - Swetha Rokkappanavar
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Wanting Niu
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Shivam Upadhyaya
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Kyle Alpaugh
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115
| | - Myron Spector
- Tissue Engineering Laboratories, VA Boston Healthcare System, 150S Huntington Avenue, Boston, Massachusetts, 02130.,Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139
| | - Scott D Martin
- Sports Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Partners Heath System, Boston, Massachusetts, 02114
| |
Collapse
|
9
|
Duarte FCK, Zwambag DP, Brown SHM, Clark A, Hurtig M, Srbely JZ. Increased Substance P Immunoreactivity in Ipsilateral Knee Cartilage of Rats Exposed to Lumbar Spine Injury. Cartilage 2020; 11:251-261. [PMID: 30461296 PMCID: PMC7097978 DOI: 10.1177/1947603518812568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The present study aimed to investigate whether experimentally induced lumbar facet-joint OA lead to degenerative changes and enhanced SP expression within the ipsilateral neurosegmentally linked tibiofemoral cartilage. METHODS Adult male Sprague-Dawley rats were assigned to left side L5-L6 facet mechanical compression injury (surgery) (n = 6), L5-L6 facet exposure with no compression (sham) (n = 5), or naïve (no surgery) (n = 4) groups. The morphology of the tibiofemoral articular cartilage was assessed using a modified Mankin scoring system. Immunohistochemistry was used to examine the density of chondrocytes stained positive for SP (cells/cm2) in the ipsilateral tibiofemoral cartilage at 28 days postintervention. RESULTS Tibiofemoral cartilage in the surgery group showed consistent loss of superficial zone chondrocytes, mild roughening of the articular surface and occasional chondrocyte clusters as well as a greater density of SP mainly in the superficial cartilage zone compared with sham and naïve groups, although they also had a basic SP-expression. CONCLUSION Our results support the hypothesis that neurogenic mechanisms may mediate the spread of SP to neurosegmentally linked heterologous joints affecting the distal cartilage homeostasis. These findings contribute additional insight into the potential role of neurogenic inflammation with implications in the pathophysiology of chronic inflammatory joint disease and OA.
Collapse
Affiliation(s)
- Felipe C. K. Duarte
- Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Derek P. Zwambag
- Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Stephen H. M. Brown
- Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Andrea Clark
- Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| | - Mark Hurtig
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - John Z. Srbely
- Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Straub RH, Dufner B, Rauch L. Proinflammatory α-Adrenergic Neuronal Regulation of Splenic IFN-γ, IL-6, and TGF-β of Mice from Day 15 onwards in Arthritis. Neuroimmunomodulation 2020; 27:58-68. [PMID: 32610310 PMCID: PMC7446300 DOI: 10.1159/000508109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/18/2020] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION In arthritic mice, a sympathetic influence is proinflammatory from the time point of immunization until the onset of disease (days 0-32), but reasons are unknown. Disruption of the major anti-inflammatory pathway through Gαs-coupled receptors probably play a role. For example, noradrenaline cannot operate via anti-inflammatory β2-adrenoceptors but through proinflammatory α1/2-ad-renoceptors. This might happen, first, through a loss of sympathetic nerve fibers in inflamed tissue with low neurotransmitter levels (noradrenaline only binds to high-affinity α-adrenoceptors) and, second, through an alteration in G-protein receptor coupling with a predominance of α-adrenergic signaling. We hypothesized that both mechanisms play a role in the course of collagen type II-induced arthritis (CIA) in the spleen in mice. METHODS In CIA mice, nerve fiber density in the spleen was quantified by immunohistochemistry techniques. The functional impact of sympathetic nerve fibers in the spleen was studied by a micro-superfusion technique of spleen slices with a focus on the secretion of IFN-γ and IL-6 (proinflammatory) and TGF-β (anti-inflammatory). RESULTS During CIA, sympathetic nerve fibers get increasingly lost from day14 until day 55 after immunization. The influence of electrically released noradrenaline diminishes in the course of arthritis. At all investigated time points (days 14, 32, and 55), only proinflammatory neuronal α-adrenergic effects on cytokine secretion were demonstrated (i.e., stimulation of IFN-γ and IL-6 and inhibition of TGF-β). CONCLUSION Sympathetic nerve fibers are rapidly lost in the spleen, and only proinflammatory α-adrenergic neuronal regulation of cytokine secretion takes place throughout the course of arthritis. These results support a predominance of a proinflammatory α-adrenergic sympathetic influence in arthritis.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany,
| | - Bianca Dufner
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| | - Luise Rauch
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital, Regensburg, Germany
| |
Collapse
|
11
|
Varricchi G, Pecoraro A, Loffredo S, Poto R, Rivellese F, Genovese A, Marone G, Spadaro G. Heterogeneity of Human Mast Cells With Respect to MRGPRX2 Receptor Expression and Function. Front Cell Neurosci 2019; 13:299. [PMID: 31333418 PMCID: PMC6616107 DOI: 10.3389/fncel.2019.00299] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
Mast cells and their mediators play a role in the control of homeostasis and in the pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially established in the mid-1960s has been extended in humans. Human mast cells isolated and purified from different anatomic sites can be activated via aggregation of cell surface high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI. MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs (HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids, cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs. SP and morphine were incomplete secretagogues because they did not induce the de novo synthesis of arachidonic acid metabolites from human mast cells. In the same experiments anti-IgE (3 μg/ml) induced the release of histamine and tryptase and the de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the heterogeneous expression and function of MRGPRX2 receptor on primary human mast cells isolated from different anatomic sites.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Felice Rivellese
- Center for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Arturo Genovese
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
12
|
Chimenti MS, Triggianese P, De Martino E, Conigliaro P, Fonti GL, Sunzini F, Caso F, Perricone C, Costa L, Perricone R. An update on pathogenesis of psoriatic arthritis and potential therapeutic targets. Expert Rev Clin Immunol 2019; 15:823-836. [PMID: 31177868 DOI: 10.1080/1744666x.2019.1627876] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Introduction: Innate immune response and bone remodeling are key factors contributing to the pathogenesis of psoriatic arthritis (PsA). Moreover, the evidence of autoantibodies in patients' sera suggests an autoimmune side in PsA. Besides the immune pathways, studies strongly support the role of genetic risk alleles in affecting the clinical heterogeneity of PsA as well as the response to therapy. A good clinical response to treatment, indeed, represents a challenge in PsA patients and the identification of patient-targeted therapies is still a critical issue. Areas covered: We performed a systematic review aiming at describing new evidence on PsA pathogenesis and treatments. Reported items for systematic reviews (PRISMA checklist) were analyzed. Studies included from the PubMed database addressed the following items: innate immunity, autoimmunity, bone remodeling, and therapeutic targets in PsA; time frame of research 1970-2019. Specifically, we reviewed data on IL-17 inhibitors, abatacept, JAK inhibitors, ABT 122, and A (3) adenosine receptors agonist, CF101. Expert opinion: In PsA an intriguing pathogenetic network has been documented. Several biological and synthetic drugs are promising in terms of efficacy and safety profile.
Collapse
Affiliation(s)
- Maria Sole Chimenti
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Paola Triggianese
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Erica De Martino
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Paola Conigliaro
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Giulia Lavinia Fonti
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Flavia Sunzini
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| | - Francesco Caso
- b Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University Federico II , Naples , Italy
| | - Carlo Perricone
- c Arthritis Center, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Rome , Italy
| | - Luisa Costa
- b Rheumatology Unit, Department of Clinical Medicine and Surgery, School of Medicine and Surgery, University Federico II , Naples , Italy
| | - Roberto Perricone
- a Rheumatology, allergology and clinical immunology, Department of Systems Medicine, University of Rome Tor Vergata , Rome , Italy
| |
Collapse
|
13
|
Benditz A, Sprenger S, Rauch L, Weber M, Grifka J, Straub RH. Increased pain and sensory hyperinnervation of the ligamentum flavum in patients with lumbar spinal stenosis. J Orthop Res 2019; 37:737-743. [PMID: 30747438 DOI: 10.1002/jor.24251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/19/2019] [Accepted: 02/05/2019] [Indexed: 02/04/2023]
Abstract
Nociceptive sensory nerve fibers have never been investigated in the ligamentum flavum (LF) of patients with LSS. The aim was to analyze nociceptive sensory nerve fibers in the ligamentum flavum (LF) of patients with LSS. A prospective study in patients with lumbar spinal stenosis (LSS) undergoing invasive surgical treatment for lumbar spinal stenosis (LSS) with flavectomy was performed. Patients with LSS were subjected to flavectomy and density of sensory and sympathetic nerve fibers, macrophages, vessels, activated fibroblasts, and cells were investigated by immunostaining techniques. A group of patients with acute disc herniation served as control group. We found a higher density of sensory nerve fibers in LSS patients versus controls. These findings support the role of LF in associated low back pain. Density of sensory nerve fibers in LSS, was positively correlated with typical markers of clinical pain and functional disability, but not with LF density of activated fibroblasts. Inflammation as estimated by macrophage infiltration and higher vascularity does not play a marked role in LF in our LSS patients. In the present study, compared to men with LSS, women with LSS demonstrate more pain and depression, and show a higher density of sensory nerve fibers in LF. This study shed new light on nociceptive nerve fibers, which are increased in LSS compared to controls. The findings speak against a strong inflammatory component in LSS. A higher pain levels in women compared to men can be explained by a higher density of nociceptive nerve fibers. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-7, 2019.
Collapse
Affiliation(s)
- Achim Benditz
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Svenja Sprenger
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany.,Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| | - Luise Rauch
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| | - Markus Weber
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Joachim Grifka
- Department of Orthopedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V. Allee 3, 93077, Bad Abbach, Germany
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Bayern, Germany
| |
Collapse
|
14
|
Galindo T, Reyna J, Weyer A. Evidence for Transient Receptor Potential (TRP) Channel Contribution to Arthritis Pain and Pathogenesis. Pharmaceuticals (Basel) 2018; 11:E105. [PMID: 30326593 PMCID: PMC6315622 DOI: 10.3390/ph11040105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Based on clinical and preclinical evidence, Transient Receptor Potential (TRP) channels have emerged as potential drug targets for the treatment of osteoarthritis, rheumatoid arthritis, and gout. This review summarizes the relevant data supporting a role for various TRP channels in arthritis pain and pathogenesis, as well as the current state of pharmacological efforts to ameliorate arthritis symptoms in patient populations.
Collapse
Affiliation(s)
- Tabitha Galindo
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Jose Reyna
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Andy Weyer
- Biological Sciences Department, City College of San Francisco, San Francisco, CA 94112, USA.
| |
Collapse
|
15
|
Foster SL, Seehus CR, Woolf CJ, Talbot S. Sense and Immunity: Context-Dependent Neuro-Immune Interplay. Front Immunol 2017; 8:1463. [PMID: 29163530 PMCID: PMC5675863 DOI: 10.3389/fimmu.2017.01463] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
The sensory nervous and immune systems, historically considered autonomous, actually work in concert to promote host defense and tissue homeostasis. These systems interact with each other through a common language of cell surface G protein-coupled receptors and receptor tyrosine kinases as well as cytokines, growth factors, and neuropeptides. While this bidirectional communication is adaptive in many settings, helping protect from danger, it can also become maladaptive and contribute to disease pathophysiology. The fundamental logic of how, where, and when sensory neurons and immune cells contribute to either health or disease remains, however, unclear. Our lab and others’ have begun to explore how this neuro-immune reciprocal dialog contributes to physiological and pathological immune responses and sensory disorders. The cumulative results collected so far indicate that there is an important role for nociceptors (noxious stimulus detecting sensory neurons) in driving immune responses, but that this is highly context dependent. To illustrate this concept, we present our findings in a model of airway inflammation, in which nociceptors seem to have major involvement in type 2 but not type 1 adaptive immunity.
Collapse
Affiliation(s)
- Simmie L Foster
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Depression Clinical Research Program, Massachusetts General Hospital, Boston, MA, United States
| | - Corey R Seehus
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Sébastien Talbot
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
16
|
Okamura Y, Mishima S, Kashiwakura JI, Sasaki-Sakamoto T, Toyoshima S, Kuroda K, Saito S, Tokuhashi Y, Okayama Y. The dual regulation of substance P-mediated inflammation via human synovial mast cells in rheumatoid arthritis. Allergol Int 2017; 66S:S9-S20. [PMID: 28366675 DOI: 10.1016/j.alit.2017.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2016] [Revised: 02/13/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neural pathways are thought to be directly involved in the pathogenesis of rheumatoid arthritis (RA). Although synovial mast cells (MCs) are activated by substance P (SP), the role of MCs in neural pathways in RA remains unknown. The aims of this study were to investigate 1) whether tachykinins are produced by synovial MCs and whether production differs in RA and osteoarthritis (OA) patients, and 2) what is the responsible receptor for SP in synovial MCs. METHODS Synovial tissues were obtained from patients with RA or OA undergoing joint replacement surgery. Cultured synovium-derived MCs were generated by culturing dispersed synovial cells with stem cell factor. SP expression was investigated using immunofluorescence and enzyme immunoassays. Mas-related gene X2 (MrgX2) expression was reduced in human MCs using a lentiviral shRNA silencing technique. RESULTS SP expression was localized around the cell membrane in 41% (median) of the MCs in synovium from RA but in only 7% of that from OA, suggesting the activation of MCs. Synovial MCs expressed tachykinin (TAC) 1 mRNA, the expression of which was upregulated by the aggregation of FcɛRI or the addition of aggregated IgG. However, the released SP appeared to be rapidly degraded by MC chymase. Synovial MCs were activated with SP through MrgX2 to release histamine without producing proinflammatory cytokines. CONCLUSIONS Activated synovial MCs may rapidly degrade SP, which may downregulate the SP-mediated activation of synoviocytes in RA. On the other hand, SP activates MCs to induce inflammatory mediators, suggesting the dual regulation of SP-mediated inflammation by MCs in RA.
Collapse
|
17
|
Abstract
Rheumatic diseases follow a characteristic anatomical pattern of joint and organ involvement. This Review explores three interconnected mechanisms that might be involved in the predilection of specific joints for developing specific forms of arthritis: site-specific local cell types that drive disease; systemic triggers that affect local cell types; and site-specific exogenous factors, such as focal mechanical stress, that activate cells locally. The embryonic development of limbs and joints is also relevant to the propensity of certain joints to develop arthritis. Additionally, location-specific homeostasis and disease occurs in skin and blood vessels, thereby extending the concept of site-specificity in human diseases beyond rheumatology. Acknowledging the importance of site-specific parameters increases the complexity of current disease paradigms and brings us closer to understanding why particular disease processes manifest at a particular location.
Collapse
|
18
|
Abstract
Multidirectional interactions between the nervous and immune systems have been documented in homeostasis and pathologies ranging from multiple sclerosis to autism, and from leukemia to acute and chronic inflammation. Recent studies have addressed this crosstalk using cell-specific targeting, novel sequencing, imaging, and analytical tools, shedding light on unappreciated mechanisms of neuro-immune regulation. This Review focuses on neuro-immune interactions at barrier surfaces-mostly the gut, but also including the skin and the airways, areas densely populated by neurons and immune cells that constantly sense and adapt to tissue-specific environmental challenges.
Collapse
Affiliation(s)
- Henrique Veiga-Fernandes
- Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028 Lisboa, Portugal.
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
19
|
|
20
|
Ordovas-Montanes J, Rakoff-Nahoum S, Huang S, Riol-Blanco L, Barreiro O, von Andrian UH. The Regulation of Immunological Processes by Peripheral Neurons in Homeostasis and Disease. Trends Immunol 2016; 36:578-604. [PMID: 26431937 DOI: 10.1016/j.it.2015.08.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 02/06/2023]
Abstract
The nervous system and the immune system are the principal sensory interfaces between the internal and external environment. They are responsible for recognizing, integrating, and responding to varied stimuli, and have the capacity to form memories of these encounters leading to learned or 'adaptive' future responses. We review current understanding of the cross-regulation between these systems. The autonomic and somatosensory nervous systems regulate both the development and deployment of immune cells, with broad functions that impact on hematopoiesis as well as on priming, migration, and cytokine production. In turn, specific immune cell subsets contribute to homeostatic neural circuits such as those controlling metabolism, hypertension, and the inflammatory reflex. We examine the contribution of the somatosensory system to autoimmune, autoinflammatory, allergic, and infectious processes in barrier tissues and, in this context, discuss opportunities for therapeutic manipulation of neuro-immune interactions.
Collapse
Affiliation(s)
- Jose Ordovas-Montanes
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Seth Rakoff-Nahoum
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Siyi Huang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Olga Barreiro
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT), and Harvard University, Cambridge, MA 02139, USA.
| |
Collapse
|
21
|
Abstract
Evolution has yielded multiple complex and complementary mechanisms to detect environmental danger and protect tissues from damage. The nervous system rapidly processes information and coordinates complex defense behaviors, and the immune system eliminates diverse threats by virtue of mobile, specialized cell populations. The two systems are tightly integrated, cooperating in local and systemic reflexes that restore homeostasis in response to tissue injury and infection. They further share a broad common language of cytokines, growth factors, and neuropeptides that enables bidirectional communication. However, this reciprocal cross talk permits amplification of maladaptive feedforward inflammatory loops that contribute to the development of allergy, autoimmunity, itch, and pain. Appreciating the immune and nervous systems as a holistic, coordinated defense system provides both new insights into inflammation and exciting opportunities for managing acute and chronic inflammatory diseases.
Collapse
Affiliation(s)
- Sébastien Talbot
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Simmie L Foster
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115; .,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
22
|
Lisowska B, Lisowski A, Siewruk K. Substance P and Chronic Pain in Patients with Chronic Inflammation of Connective Tissue. PLoS One 2015; 10:e0139206. [PMID: 26444559 PMCID: PMC4622041 DOI: 10.1371/journal.pone.0139206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2015] [Accepted: 09/10/2015] [Indexed: 11/30/2022] Open
Abstract
Objective Evidence suggests that substance P (SP) is involved in chronic joint inflammation, such as the pathogenesis of rheumatoid arthritis and osteoarthritis. The goal of the research was to evaluate the correlation between chronic pain and changes in the SP level in patients with chronic inflammation of the connective tissue. Methods Patients with osteoarthritis and rheumatoid arthritis were enrolled in this study. The relationship between chronic pain intensity and the serum SP concentration was evaluated in these groups of patients with osteoarthritis and rheumatoid arthritis. Results The results showed a positive correlation between the serum SP concentrations and chronic pain intensity. Conclusions 1. The SP serum concentration was significantly different between the groups of patients with OA and RA. 2. There was a positive correlation between the serum SP concentration and chronic pain intensity in OA and RA patients.
Collapse
Affiliation(s)
- Barbara Lisowska
- Department of Anaesthesiology, Medical Centre for Postgraduate Education, Adam Gruca Clinical Hospital, Postgraduate Medical Education Centre, Otwock, Poland
| | - Aleksander Lisowski
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Siewruk
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
23
|
Baddack U, Frahm S, Antolin-Fontes B, Grobe J, Lipp M, Müller G, Ibañez-Tallon I. Suppression of Peripheral Pain by Blockade of Voltage-Gated Calcium 2.2 Channels in Nociceptors Induces RANKL and Impairs Recovery From Inflammatory Arthritis in a Mouse Model. Arthritis Rheumatol 2015; 67:1657-67. [PMID: 25733371 DOI: 10.1002/art.39094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/18/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies inflammation and joint deformation. Patients with RA rate pain relief as the highest priority; however, few studies have addressed the efficacy and safety of therapies directed specifically toward pain pathways. The ω-conotoxin MVIIA (ziconotide) is used in humans to alleviate persistent pain syndromes, because it specifically blocks the voltage-gated calcium 2.2 (CaV 2.2) channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The aims of this study were to investigate whether blockade of CaV 2.2 can suppress arthritis pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade. METHODS Transgenic mice expressing a membrane-tethered form of MVIIA under the control of a nociceptor-specific gene (MVIIA-transgenic mice) were used in the experiments. The mice were subjected to unilateral induction of joint inflammation using a combination of antigen and collagen. RESULTS CaV 2.2 blockade mediated by tethered MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsided, MVIIA-transgenic mice showed continued inflammation, with up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction. CONCLUSION Taken together, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation.
Collapse
Affiliation(s)
- Uta Baddack
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany, and Centre National de la Recherche Scientifique, Toulouse, France
| | - Silke Frahm
- Charité-Universitätsmedizin, Berlin, Germany
| | | | - Jenny Grobe
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Martin Lipp
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | - Gerd Müller
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| | | |
Collapse
|
24
|
Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Neuron 2015; 87:341-54. [PMID: 26119026 DOI: 10.1016/j.neuron.2015.06.007] [Citation(s) in RCA: 317] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2014] [Revised: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 01/15/2023]
Abstract
Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation, we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8(+) sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large-pore ion channels to specifically block nociceptors, substantially reduced ovalbumin- or house-dust-mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce the release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4(+) and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma.
Collapse
|
25
|
Abdul Wanees El-Awdan S, Al-Shafeey N, Salam OA, Ibrahim El-Iraqy W, Abdul Bakky Kenawy S. Modulation of the pharmacological properties of meloxicam by octreotide in rats. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2012.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
|
26
|
Murakami K, Nakagawa H, Nishimura K, Matsuo S. Changes in peptidergic fiber density in the synovium of mice with collagenase-induced acute arthritis. Can J Physiol Pharmacol 2015; 93:435-41. [PMID: 25909759 DOI: 10.1139/cjpp-2014-0446] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
The effect of acute osteoarthritis (OA) on peripheral nerve fibers (NFs) in synovial tissue, and their association with histological changes were investigated in collagenase-induced OA mice. Collagenase (10 U in 5 μL saline) was injected into the right knee, and the same volume of saline was injected into the left knee as the control. Mice were sacrificed 1, 2, 3, and 4 weeks after the collagenase injection. Histopathological changes in the knee joints were evaluated. The numbers of protein gene product (PGP) 9.5-, calcitonin-gene-related peptide (CGRP)-, and substance P (SP)-positive NFs in the synovial tissue were determined, and their densities in the tissue were calculated. The densities of PGP 9.5- and CGRP-positive NFs in the synovium were drastically decreased 1 week after the collagenase injection. However, by week 4, the density of PGP 9.5- and CGRP-positive NFs had recovered to 84% and 79% of their normal levels, respectively. Despite the poor correlation between the synovitis score and the density of CGRP- or SP-positive NFs in the synovium, the ossification rate of chondrophytes in chondro/osteophyte lesions correlated strongly with the density of CGRP-positive NFs (R = 0.855). These results suggest that the ossification of chondrophytes occurred in parallel with the increase in CGRP-positive fiber density in the synovium during the acute phase of collagenase-induced OA.
Collapse
Affiliation(s)
- Kohei Murakami
- Laboratory of Toxicology, Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-ourai-kita, Izumisano-shi, Osaka 598-8531, Japan., Department of Veterinary Clinical Pathobiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
27
|
Jenei-Lanzl Z, Capellino S, Kees F, Fleck M, Lowin T, Straub RH. Anti-inflammatory effects of cell-based therapy with tyrosine hydroxylase-positive catecholaminergic cells in experimental arthritis. Ann Rheum Dis 2015; 74:444-51. [PMID: 24297380 DOI: 10.1136/annrheumdis-2013-203925] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Studies in rheumatoid arthritis (RA), osteoarthritis (OA) and mice with arthritis demonstrated tyrosine hydroxylase-positive (TH(+)) cells in arthritic synovium and parallel loss of sympathetic nerve fibres. The exact function of TH(+) cells and mode of TH induction are not known. METHODS Synovial cells of RA/OA were isolated and cultured under normoxic/hypoxic conditions with/without stimulating enzyme cofactors of TH and inhibitors of TH. We studied TH expression and release of cytokines/catecholamines. In vivo function was tested by cell therapy with TH(+) neuronal precursor cells (TH(+) neuronal cells) in DBA/1 mice with collagen type II-induced arthritis (CIA). RESULTS Compared with normoxic conditions, hypoxia increased TH protein expression and catecholamine synthesis and decreased release of tumour necrosis factor (TNF) in OA/RA synovial cells. This inhibitory effect on TNF was reversed by TH inhibition with α-methyl-para-tyrosine (αMPT), which was particularly evident under hypoxic conditions. Incubation with specific TH cofactors (tetrahydrobiopterin and Fe(2+)) increased hypoxia-induced inhibition of TNF, which was also reversed by αMPT. To address a possible clinical role of TH(+) cells, murine TH(+) neuronal cells were generated from mesenchymal stem cells. TH(+) neuronal cells exhibited a typical catecholaminergic phenotype. Adoptive transfer of TH(+) neuronal cells markedly reduced CIA in mice, and 6-hydroxydopamine, which depletes TH(+) cells, reversed this effect. CONCLUSIONS The anti-inflammatory effect of TH(+) neuronal cells on experimental arthritis has been presented for the first time. In RA/OA, TH(+) synovial cells have TH-dependent anti-inflammatory capacities, which are augmented under hypoxia. Using generated TH(+) neuronal cells might open new avenues for cell-based therapy.
Collapse
Affiliation(s)
- Zsuzsa Jenei-Lanzl
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Silvia Capellino
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Bavaria, Germany Division of Endocrinology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Frieder Kees
- Department of Pharmacology and Toxicology, University Regensburg, Regensburg, Bavaria, Germany
| | - Martin Fleck
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Torsten Lowin
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Bavaria, Germany
| | - Rainer H Straub
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
28
|
Wang H, Zhang X, He JY, Zheng XF, Li D, Li Z, Zhu JF, Shen C, Cai GQ, Chen XD. Increasing expression of substance P and calcitonin gene-related peptide in synovial tissue and fluid contribute to the progress of arthritis in developmental dysplasia of the hip. Arthritis Res Ther 2015; 17:4. [PMID: 25578529 PMCID: PMC4320827 DOI: 10.1186/s13075-014-0513-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Developmental dysplasia of the hip (DDH) is a common musculoskeletal disorder that has pain and loss of joint function as major pathological features. In the present study, we explored the mechanisms of possible involvement and regulation of substance P (SP) and calcitonin gene-related peptide (CGRP) in the pathological and inflammatory processes of arthritis in DDH. METHODS Blood, synovial tissue and fluid samples were collected from patients diagnosed with different severities of DDH and from patients with femoral neck fracture. Levels of SP, CGRP and inflammatory cytokines in synovium and synovial fluid (SF) in the different groups were evaluated by immunohistochemistry, real-time PCR and enzyme-linked immunosorbent assay (ELISA). Correlations between neuropeptides and inflammatory cytokines in SF were evaluated by partial correlation analysis. The proinflammatory effects of SP and CGRP on synoviocytes obtained from patients with moderate DDH were investigated in vitro by real-time PCR and ELISA. The mechanisms of those effects were evaluated by Western blot analysis and nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) DNA binding assay. RESULTS Significantly increased levels of neuropeptides and inflammatory cytokines were observed in synovium and SF from patients in the severe DDH group compared with the moderate DDH and control groups. In moderate DDH samples, SP in SF correlated with tumor necrosis factor (TNF)-α, and CGRP in SF correlated with TNF-α and interleukin (IL)-10. In the severe DDH group, SP in SF correlated with interleukin (IL)-1β, TNF-α and IL-10. CGRP in SF correlated with TNF-α. Additionally, SP might have had obvious proinflammatory effects on synoviocytes through the activation of NF-κB. CONCLUSIONS The upregulation of SP and CGRP in synovium and SF might participate in the inflammatory process of arthritis in DDH. The activation of the NF-κB pathway seems indispensable in the proinflammatory effect of SP on synoviocytes. This original discovery may indicate a potential clinical drug target and the development of innovative therapies for DDH.
Collapse
Affiliation(s)
- Hui Wang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiang Zhang
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Ji-Ye He
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xin-Feng Zheng
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - De Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Zheng Li
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Jun-Feng Zhu
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Chao Shen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Gui-Quan Cai
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| | - Xiao-Dong Chen
- Department of Orthopaedic Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665, Kongjiang Road, Yangpu District, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
29
|
Ughi N, Hervey SA, Gualtierotti R, Silvana Z, Herrick AL, Ingegnoli F, Meroni P. Sparing effect of hemiplegia on skin fibrosis and microvascular involvement: reports of two cases of systemic sclerosis and review of the literature. Semin Arthritis Rheum 2014; 44:597-601. [PMID: 25488380 DOI: 10.1016/j.semarthrit.2014.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The sparing effect of hemiplegia in rheumatic diseases has been described, but reports on systemic sclerosis (SSc)-spectrum disorders are unusual. SSc-spectrum disorders are complex diseases of unknown origin characterized by multisystem involvement, skin and organ fibrosis, microvascular alterations, and immunologic abnormalities. We describe two cases of patients with hemiplegia who developed Raynaud׳s phenomenon and skin fibrosis of the non-paretic limb. METHODS Clinical, laboratory, and investigation findings of two cases with hemiplegia who developed scleroderma spectrum disorders of the non-paretic limb are presented. A review of the medical literature was performed in PubMed for all articles in English. RESULTS A total of 46 reports from 1935 to 2012 were identified, especially on osteoarthritis and rheumatoid arthritis. Only two case reports on patients with SSc describe asymmetric SSc skin involvement and unilateral acro-osteolysis on x-ray images of the non-paretic limb. By contrast, we report the first description of capillaroscopic microvascular changes in patients with hemiplegia and asymmetric SSc skin involvement. CONCLUSIONS Our cases point out the potential role of a "cross-talk" between the nervous system and the skin in SSc-spectrum disorders and suggest future directions for research in studies of pathogenesis.
Collapse
Affiliation(s)
- Nicola Ughi
- Division of Rheumatology, Department of Clinical Sciences and Community Health, Gaetano Pini Orthopedic Institute, University of Milano, Piazza Cardinal Ferrari 1, Milano 20122, Italy.
| | - Simon A Hervey
- Eastbourne District General Hospital, Eastbourne, East Sussex, UK
| | - Roberta Gualtierotti
- Division of Rheumatology, Department of Clinical Sciences and Community Health, Gaetano Pini Orthopedic Institute, University of Milano, Piazza Cardinal Ferrari 1, Milano 20122, Italy
| | - Zeni Silvana
- Division of Rheumatology, Department of Clinical Sciences and Community Health, Gaetano Pini Orthopedic Institute, University of Milano, Piazza Cardinal Ferrari 1, Milano 20122, Italy
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Francesca Ingegnoli
- Division of Rheumatology, Department of Clinical Sciences and Community Health, Gaetano Pini Orthopedic Institute, University of Milano, Piazza Cardinal Ferrari 1, Milano 20122, Italy
| | - Pierluigi Meroni
- Division of Rheumatology, Department of Clinical Sciences and Community Health, Gaetano Pini Orthopedic Institute, University of Milano, Piazza Cardinal Ferrari 1, Milano 20122, Italy
| |
Collapse
|
30
|
Vitamin D deficiency leads to sensory and sympathetic denervation of the rat synovium. Neuroscience 2014; 279:77-93. [PMID: 25193239 DOI: 10.1016/j.neuroscience.2014.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2014] [Revised: 08/15/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022]
Abstract
Vitamin D deficiency is associated with increased susceptibility to inflammatory arthritis. Sensory and sympathetic synovial nerves are critical to the development of inflammatory arthritis and spontaneously degenerate in the early phases of disease. These nerves contain vitamin D receptors and vitamin D influences nerve growth and neurotrophin expression. We therefore examined the density of synovial nerves and neurotrophin-containing cells in vitamin D-deficient rats. Seven-week-old Sprague-Dawley rats were fed either control or vitamin D-deficient diets for 4weeks. Knee synovium sections extending from the patella to the meniscus were immunostained for total nerves, myelinated and unmyelinated nerves, sympathetic nerves, peptidergic and non-peptidergic sensory nerves, and neurotrophins and immune cell markers. In control rats, intimal innervation by unmyelinated sensory fibers was denser than subintimal innervation. In contrast, sympathetic innervation was confined to the subintima. Many sensory axons contained markers for both peptidergic and non-peptidergic nerves. Nerve growth factor (NGF) was primarily expressed by intimal CD163-negative type B synoviocytes, while neurturin, a ligand selective for non-peptidergic sensory neurons, was expressed by synovial mast cells. In vitamin D-deficient rats, there were significant reductions in sensory nerves in the intima and sympathetic nerves in the subintima. While there was no significant change in NGF-immunoreactivity, the number of neurturin-expressing mast cells was significantly reduced in the intima, suggesting that intimal reductions in sensory nerves may be related to reductions in neurturin. Vitamin D deficiency therefore may increase susceptibility to inflammatory arthritis by depleting sensory and sympathetic synovial nerves as a result of reduced synovial neurotrophin content.
Collapse
|
31
|
Abstract
A recent paper published in Nature reports sensory nerve fibers in the skin that give local immune cells important instructions for the organization of an immune response; in this particular case the cooperation between the nervous and immune systems had disastrous consequences, namely an auto-destruction of the skin.
Collapse
|
32
|
Ahmed AS, Ahmed M, Li J, Gu HF, Bakalkin G, Stark A, Harris HE. Proteasome inhibitor MG132 modulates inflammatory pain by central mechanisms in adjuvant arthritis. Int J Rheum Dis 2014; 20:25-32. [DOI: 10.1111/1756-185x.12353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mahmood Ahmed
- Department of Neurobiology, Care Sciences and Society; Center for Family and Community Medicine; Karolinska Institutet; Huddinge Sweden
| | - Jian Li
- Department of Molecular Medicine and Surgery; Karolinska University Hospital; Karolinska Institutet; Stockholm Sweden
| | - Harvest F. Gu
- Department of Molecular Medicine and Surgery; Karolinska University Hospital; Karolinska Institutet; Stockholm Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences; Uppsala University; Uppsala Sweden
| | - André Stark
- Department of Clinical Sciences; Danderyd Hospital; Karolinska Institutet; Stockholm Sweden
| | - Helena Erlandsson Harris
- Department of Medicine; Center for molecular medicine; Karolinska University Hospital; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
33
|
Barcena de Arellano ML, Mechsner S. The peritoneum--an important factor for pathogenesis and pain generation in endometriosis. J Mol Med (Berl) 2014; 92:595-602. [PMID: 24590000 DOI: 10.1007/s00109-014-1135-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 12/16/2022]
Abstract
Endometriosis (EM) is an oestrogen-dependent disease affecting 10-15 % of women during reproductive age. It is characterised by the presence of endometrial glands, stromal- and smooth muscle-like cells outside of the uterine cavity. Fifty to sixty per cent of women and teenage girls with pelvic pain suffer from EM. EM causes disability and compromises the quality of life in women and young girls significantly. Pain generation in EM is an intricate interplay of several factors such as the endometriotic lesions themselves and the pain-mediating substances, nerve fibres and cytokine-releasing immune cells such as macrophages. These interactions seem to induce a neurogenic inflammatory process. Recently published data demonstrated an increased peptidergic and decreased noradrenergic nerve fibre density in peritoneal lesions. These data could be substantiated by in vitro analyses demonstrating that the peritoneal fluids of patients suffering from EM induced an enhanced sprouting of sensory neurites from chicken dorsal root ganglia and decreased neurite outgrowth from sympathetic ganglia. These findings might be directly involved in the perpetuation of inflammation and pain. Furthermore, the evidence of EM-associated smooth muscle-like cells seems another important factor in pain generation. The peritoneal endometriotic lesion leads to reactions in the surrounding tissue and, therefore, is larger than generally believed. The identification of EM-associated nerve fibres and smooth muscle-like cells fuel discussions on the mechanisms of pain generation in EM, and may present new targets for innovative treatments.
Collapse
Affiliation(s)
- Maria-Luisa Barcena de Arellano
- Campus Benjamin Franklin, Charité Endometriosis Center, Clinic for Gynecology, Charité University Hospital, Hindenburgdamm 30, Berlin, 12200, Germany
| | | |
Collapse
|
34
|
de Avila ED, de Molon RS, de Godoi Gonçalves DA, Camparis CM. Relationship between levels of neuropeptide Substance P in periodontal disease and chronic pain: a literature review. ACTA ACUST UNITED AC 2014; 5:91-7. [DOI: 10.1111/jicd.12087] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/26/2013] [Accepted: 11/24/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics; School of Dentistry at Araraquara; University of Estadual Paulista - UNESP; Araraquara Sao Paulo Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery; School of Dentistry at Araraquara; University of Estadual Paulista - UNESP; Araraquara Sao Paulo Brazil
| | - Daniela Aparecida de Godoi Gonçalves
- Department of Dental Materials and Prosthodontics; School of Dentistry at Araraquara; University of Estadual Paulista - UNESP; Araraquara Sao Paulo Brazil
| | - Cinara Maria Camparis
- Department of Dental Materials and Prosthodontics; School of Dentistry at Araraquara; University of Estadual Paulista - UNESP; Araraquara Sao Paulo Brazil
| |
Collapse
|
35
|
|
36
|
Meinel T, Pongratz G, Rauch L, Straub RH. Neuronal α1/2-adrenergic stimulation of IFN-γ, IL-6, and CXCL-1 in murine spleen in late experimental arthritis. Brain Behav Immun 2013; 33:80-9. [PMID: 23791889 DOI: 10.1016/j.bbi.2013.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/04/2013] [Revised: 06/01/2013] [Accepted: 06/07/2013] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Functional cross-talk exists between sympathetic nerve fibers and cytokine-producing splenic cells in early collagen type II-induced arthritis (CIA) (day 32). These earlier experiments demonstrated exclusively neuronal sympathetic regulation of IFN-γ, CXCL1, IL-6, and TGF-β. However, in late arthritis, the sympathetic influence might change due to loss of sympathetic nerve fibers and appearance of neurotransmitter-producing cells. We aimed to investigate neurotransmitter-dependent regulation of IFN-γ, CXCL1, IL-6, and TGF-β in murine spleen in late CIA. METHODS Spleens were removed when animals reached day 58 (46-68) after immunization to generate 0.35 mm-thick spleen slices, which were transferred to superfusion microchambers to electrically induce release of neurotransmitters. Using respective neurotransmitter antagonists, effects of released neurotransmitters on cytokine secretion were investigated. RESULTS There was electrically induced inhibition of IFN-γ, CXCL1, and IL-6, and stimulation of TGF-β, which was much less pronounced than in early CIA. There existed β adrenergic inhibition of IFN-γ, IL-6, and TGF-β (and stimulation of CXCL1) independent of electrical stimulation (interpreted as non-neuronal). However, there was a neuronal α1/2 adrenergic stimulation of IFN-γ, CXCL1, and IL-6 and, we observed neuronal A1-adenosinergic stimulation of TGF-β. CONCLUSIONS In the late phase of CIA, non-neuronal modulation of cytokine secretion increases while neuronal regulation strikingly decreases. Particularly, β-adrenergic effects are non-neuronal while α1/2-adrenergic effects are clearly neuronal. We suggest that alterations in sympathetic innervation of the spleen fundamentally change the functional neuroimmune interplay in the spleen of arthritic mice.
Collapse
Affiliation(s)
- Thomas Meinel
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, 93042 Regensburg, Germany
| | | | | | | |
Collapse
|
37
|
Seidel M, Wise B, Lane N. Nerve growth factor: an update on the science and therapy. Osteoarthritis Cartilage 2013; 21:1223-8. [PMID: 23973134 PMCID: PMC4252012 DOI: 10.1016/j.joca.2013.06.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/23/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Nerve growth factor (NGF) is a key regulator of nociceptive pain and thus appears to be an interesting target molecule for an innovative class of analgesic medication. We set out to review the principles of neurogenic inflammation and results of anti-NGF regimens in animal studies as well as clinical trials with patients with back pain and osteoarthritis (OA). DESIGN We searched using Google Scholar Search and Pubmed as well as through conference reports for articles and abstracts related to NGF and clinical trials using anti-NGF regimens. We report on efficacy findings and adverse events (AEs) related to these agents in this review. RESULTS We identified five full articles and eight abstract reports relating to anti-NGF agents studied for use in back pain and in OA. CONCLUSIONS Anti-NGF agents either alone or in combination with non-steroidal anti-inflammatory agents (NSAIDs) were more efficacious for the treatment of pain in a number of trials of knee and hip pain compared to NSAIDs alone. However, adverse effects that included rapidly progressive OA and joint replacement were more common in patients treated with anti-NGF and NSAIDs than either treatment alone. Anti-NGF treatment related neurologic symptoms including paresthesias, and potentially other types of adverse effects were usually transient but warrant additional investigation.
Collapse
Affiliation(s)
- M.F. Seidel
- Medizinische Klinik und Poliklinik III, University Hospital, Section of Rheumatology, Sigmund-Freud-Straße 25, D-53127 Bonn, Germany
| | - B.L. Wise
- University of California, Davis School of Medicine, Center for Musculoskeletal Health, 4625 2nd Avenue, Suite 1002, Sacramento, CA 95817, USA
| | - N.E. Lane
- University of California, Davis School of Medicine, Center for Musculoskeletal Health, 4625 2nd Avenue, Suite 1002, Sacramento, CA 95817, USA
| |
Collapse
|
38
|
Barcena de Arellano ML, Münch S, Arnold J, Helbig S, Schneider A, Mechsner S. Calcium-binding protein expression in peritoneal endometriosis-associated nerve fibres. Eur J Pain 2013; 17:1425-37. [PMID: 23649874 DOI: 10.1002/j.1532-2149.2013.00323.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/01/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies demonstrated the potential involvement of nerve fibres in the chronic inflammatory process of endometriosis. We aimed to characterize nerve fibres in the proximal and distal areas of the peritoneal endometriotic lesions in order to understand the chronic inflammatory process in endometriosis. METHODS Peritoneal endometriotic lesions (proximal area) (n = 17), the matching unaffected peritoneum (distal area) and healthy peritoneum of patients without endometriosis (n = 15) were analysed with the neuronal markers PGP 9.5, calbindin, calretinin and parvalbumin. Peritoneal fluids of women with and without endometriosis were used for Western blot analysis and for the neuronal growth assay. The protein expression of neuronal PC-12 cells incubated with peritoneal fluids was analysed. RESULTS The overall nerve fibre density was significantly reduced in the distal area of the lesion when compared with the proximal area or with healthy peritoneum. The density of calbindin-, calretinin- and parvalbumin-positive nerve fibres was significantly increased in the endometriosis group. Calretinin expression was elevated in the peritoneal fluid of women with symptomatic endometriosis when compared with women with asymptomatic endometriosis. Furthermore, PC-12 cells incubated with peritoneal fluid of women with endometriosis showed a higher proliferation rate and a stronger neurite outgrowth than the control group. PC-12 cells incubated in peritoneal fluids of women with endometriosis expressed less calretinin but more calbindin than the control group. CONCLUSIONS Calcium-binding proteins seem to be increased in endometriosis-associated nerve fibres and might play an important role in the chronic inflammatory condition and the pain pathogenesis of endometriosis.
Collapse
|
39
|
Barcena de Arellano ML, Arnold J, Lang H, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Evidence of neurotrophic events due to peritoneal endometriotic lesions. Cytokine 2013; 62:253-61. [DOI: 10.1016/j.cyto.2013.03.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2012] [Revised: 02/25/2013] [Accepted: 03/03/2013] [Indexed: 12/18/2022]
|
40
|
Morris KM, Cao F, Onagi H, Altamore TM, Gamble AB, Easton CJ. Prohormone-substrate peptide sequence recognition by peptidylglycine α-amidating monooxygenase and its reflection in increased glycolate inhibitor potency. Bioorg Med Chem Lett 2012; 22:7015-8. [PMID: 23084901 DOI: 10.1016/j.bmcl.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 12/28/2022]
Abstract
The interactions of nineteen peptide substrates and fifteen analogous peptidomimetic glycolate inhibitors with human peptidylglycine α-amidating monooxygenase (PAM) have been investigated. The substrates and inhibitors are the prohormones of calcitonin and oxytocin and their analogues. PAM both secreted into the medium by and extracted from DMS53 small lung carcinoma cells has been studied. The results show that recognition of the prooxytocin and procalcitonin peptide sequences by the enzyme extends more than four and five amino acid residues, respectively, from their C-termini. This substrate sequence recognition is mirrored by increased inhibitor potency with increased peptide length in the glycolate peptidomimetics. Substitution of the C-terminal penultimate glycine and proline residues of prooxytocin and procalcitonin and their analogues with phenylalanine increases the enzyme binding affinity. However, this changes the binding mode from one that depends on peptide sequence recognition to another primarily determined by the phenylalanine moiety, for both the substrates and analogous glycolate inhibitors.
Collapse
Affiliation(s)
- Kelly M Morris
- ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Research School of Chemistry, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci 2012; 15:1063-7. [PMID: 22837035 DOI: 10.1038/nn.3144] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
The peripheral nervous and immune systems are traditionally thought of as serving separate functions. The line between them is, however, becoming increasingly blurred by new insights into neurogenic inflammation. Nociceptor neurons possess many of the same molecular recognition pathways for danger as immune cells, and, in response to danger, the peripheral nervous system directly communicates with the immune system, forming an integrated protective mechanism. The dense innervation network of sensory and autonomic fibers in peripheral tissues and high speed of neural transduction allows rapid local and systemic neurogenic modulation of immunity. Peripheral neurons also seem to contribute to immune dysfunction in autoimmune and allergic diseases. Therefore, understanding the coordinated interaction of peripheral neurons with immune cells may advance therapeutic approaches to increase host defense and suppress immunopathology.
Collapse
Affiliation(s)
- Isaac M Chiu
- FM Kirby Neurobiology Center, Children's Hospital Boston, Boston, Massachusetts, USA
| | | | | |
Collapse
|
42
|
Arnold J, Barcena de Arellano ML, Rüster C, Vercellino GF, Chiantera V, Schneider A, Mechsner S. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis. Brain Behav Immun 2012; 26:132-41. [PMID: 21888965 DOI: 10.1016/j.bbi.2011.08.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/31/2011] [Revised: 08/17/2011] [Accepted: 08/18/2011] [Indexed: 12/24/2022] Open
Abstract
To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain.
Collapse
Affiliation(s)
- Julia Arnold
- Endometriosis Research Centre Charité, Department of Gynaecology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Yoshida A, Morihara T, Matsuda KI, Sakamoto H, Arai Y, Kida Y, Kawata M, Kubo T. Immunohistochemical analysis of the effects of estrogen on intraarticular neurogenic inflammation in a rat anterior cruciate ligament transection model of osteoarthritis. Connect Tissue Res 2011; 53:197-206. [PMID: 22141435 DOI: 10.3109/03008207.2011.628059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Synovitis is considered as one of the factors associated with the pathogenesis of osteoarthritis (OA). There is currently a significant amount of research linking estrogen deficiencies with the development of OA in estrogen-deficient women, including postmenopausal women; however, the exact etiology remains unclear. Various neuropeptides, such as substance P (SP) and calcitonin gene-related peptide (CGRP), have been shown to contribute to synovitis in OA joints, and the influence of estrogen on the expressions of SP and CGRP in the synovium of OA joints has been noted. After ovariectomy (OVX) followed by estradiol (E2) replacement, 24 female rats were divided into three groups: OVX group, OVX + E2 replacement group (E2 group), and a sham group. All rats underwent transection of the anterior cruciate ligament at the same time. After 30 days, the histological findings of knee joints by hematoxylin-eosin staining and immunofluorescence staining of protein gene product 9.5 (pan-neuronal marker), SP, and CGRP were compared among experimental groups. The degree of synovitis in the OVX group was higher than in the E2 and sham groups. No significant differences in the density of protein gene product 9.5-immunoreactive nerve fibers were observed among the three experimental groups, but the density of SP- or CGRP-immunoreactive nerve fibers in the OVX group was significantly higher than in the E2 and sham groups. These findings suggest that estrogen partly regulates intraarticular neurogenic inflammation in OA joints by modulating the expressions of neuropeptides in the synovium.
Collapse
Affiliation(s)
- Atsuhiko Yoshida
- Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Bie B, Zhao ZQ. Peripheral inflammation alters desensitization of substance P-evoked current in rat dorsal root ganglion neurons. Eur J Pharmacol 2011; 670:495-9. [DOI: 10.1016/j.ejphar.2011.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2011] [Revised: 08/24/2011] [Accepted: 09/07/2011] [Indexed: 12/01/2022]
|
45
|
Ahmed AS, Li J, Erlandsson-Harris H, Stark A, Bakalkin G, Ahmed M. Suppression of pain and joint destruction by inhibition of the proteasome system in experimental osteoarthritis. Pain 2011; 153:18-26. [PMID: 22018973 DOI: 10.1016/j.pain.2011.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2010] [Revised: 06/30/2011] [Accepted: 08/01/2011] [Indexed: 12/28/2022]
Abstract
Osteoarthritis is a degenerative joint disease with pain and loss of joint function as major pathological features. Recent studies show that proteasome inhibitors reduce pain in various pathological conditions. We evaluated the effects of MG132, a reversible proteasome inhibitor on pain and joint destruction in a rat model of osteoarthritis. Osteoarthritis was induced by intraarticular injection of monosodium iodoacetate into the rat knee. Knee joint stiffness was scored and nociception was evaluated by mechanical pressure applied to the respective hind paw. Knee joint destruction was assessed by radiological and histological analyses. Expression of matrix metalloproteinase-3 (MMP-3) was analyzed by quantitative reverse transcription polymerase chain reaction in the knee articular cartilage. Expression of substance P (SP) and calcitonin gene-related peptide (CGRP) was studied in the dorsal root ganglia (L4-L6) by quantitative reverse transcription polymerase chain reaction and in the knee joints by immunohistochemistry. Our results indicate that daily treatment of osteoarthritic rats with MG132 significantly increases their mobility while the swelling, pain thresholds, and pathological features of the affected joints were reduced. Furthermore, the upregulated expression of MMP-3, SP, and CGRP in the arthritic rats was normalized by MG132 administration. We conclude that the proteasome inhibitor MG132 reduces pain and joint destruction, probably by involving the peripheral nervous system, and that changes in SP and CGRP expression correlate with alterations in behavioural responses. Our findings suggest that nontoxic proteasome inhibitors may represent a novel pharmacotherapy for osteoarthritis.
Collapse
Affiliation(s)
- Aisha Siddiqah Ahmed
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 17176, Sweden Department of Medicine, Centre for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Solna, Stockholm 17176, Sweden Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm 18288, Sweden Department of Pharmaceutical Biosciences, Uppsala University, Uppsala 75105, Sweden Department of Neurobiology, Care Sciences and Society, Center for Family and Community Medicine, Karolinska Institutet, Huddinge 14183, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Koopman FA, Stoof SP, Straub RH, van Maanen MA, Vervoordeldonk MJ, Tak PP. Restoring the balance of the autonomic nervous system as an innovative approach to the treatment of rheumatoid arthritis. Mol Med 2011; 17:937-48. [PMID: 21607292 PMCID: PMC3188868 DOI: 10.2119/molmed.2011.00065] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2011] [Accepted: 05/19/2011] [Indexed: 01/14/2023] Open
Abstract
The immunomodulatory effect of the autonomic nervous system has raised considerable interest over the last decades. Studying the influence on the immune system and the role in inflammation of the sympathetic as well as the parasympathetic nervous system not only will increase our understanding of the mechanism of disease, but also could lead to the identification of potential new therapeutic targets for chronic immune-mediated inflammatory diseases, such as rheumatoid arthritis (RA). An imbalanced autonomic nervous system, with a reduced parasympathetic and increased sympathetic tone, has been a consistent finding in RA patients. Studies in animal models of arthritis have shown that influencing the sympathetic (via α- and β-adrenergic receptors) and the parasympathetic (via the nicotinic acetylcholine receptor α7nAChR or by electrically stimulating the vagus nerve) nervous system can have a beneficial effect on inflammation markers and arthritis. The immunosuppressive effect of the parasympathetic nervous system appears less ambiguous than the immunomodulatory effect of the sympathetic nervous system, where activation can lead to increased or decreased inflammation depending on timing, doses and kind of adrenergic agent used. In this review we will discuss the current knowledge of the role of both the sympathetic (SNS) and parasympathetic nervous system (PNS) in inflammation with a special focus on the role in RA. In addition, potential antirheumatic strategies that could be developed by targeting these autonomic pathways are discussed.
Collapse
Affiliation(s)
- Frieda A Koopman
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Susanne P Stoof
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Marjolein A van Maanen
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| | - Margriet J Vervoordeldonk
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
- Arthrogen BV, Amsterdam, the Netherlands
| | - Paul P Tak
- Division of Clinical Immunology and Rheumatology, Academic Medical Center/University of Amsterdam, the Netherlands
| |
Collapse
|
47
|
Lobanov OV, Peng YB. Differential contribution of electrically evoked dorsal root reflexes to peripheral vasodilatation and plasma extravasation. J Neuroinflammation 2011; 8:20. [PMID: 21356101 PMCID: PMC3058041 DOI: 10.1186/1742-2094-8-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2010] [Accepted: 02/28/2011] [Indexed: 11/11/2022] Open
Abstract
Background Dorsal root reflexes (DRRs) are antidromic activities traveling along the primary afferent fibers, which can be generated by peripheral stimulation or central stimulation. DRRs are thought to be involved in the generation of neurogenic inflammation, as indicated by plasma extravasation and vasodilatation. The hypothesis of this study was that electrical stimulation of the central stump of a cut dorsal root would lead to generation of DRRs, resulting in plasma extravasation and vasodilatation. Methods Sprague-Dawley rats were prepared to expose spinal cord and L4-L6 dorsal roots under pentobarbital general anesthesia. Electrical stimulation of either intact, proximal or distal, cut dorsal roots was applied while plasma extravasation or blood perfusion of the hindpaw was recorded. Results While stimulation of the peripheral stump of a dorsal root elicited plasma extravasation, electrical stimulation of the central stump of a cut dorsal root generated significant DRRs, but failed to induce plasma extravasation. However, stimulation of the central stump induced a significant increase in blood perfusion. Conclusions It is suggested that DRRs are involved in vasodilatation but not plasma extravasation in neurogenic inflammation in normal animals.
Collapse
Affiliation(s)
- Oleg V Lobanov
- Department of Psychology, University of Texas at Arlington, Arlington, TX 76019, USA
| | | |
Collapse
|
48
|
Ossyssek B, Anders S, Grifka J, Straub RH. Surgical synovectomy decreases density of sensory nerve fibers in synovial tissue of non-inflamed controls and rheumatoid arthritis patients. J Orthop Res 2011; 29:297-302. [PMID: 21226240 DOI: 10.1002/jor.21233] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
Surgical synovectomy is a technique to treat synovitis and pain in patients with rheumatoid arthritis (RA) resistant to DMARDs or therapy with biologics. Indication to synovectomy is subject to tight cooperation of orthopaedic surgeons and rheumatologists. It was thought that synovectomy leads to a reduction of sensory nerve fibers, called sensory denervation. Since sensory denervation after synovectomy has never been histologically tested, we aimed to investigate sensory and sympathetic innervation in synovial tissue before and after synovectomy. Eight non-inflamed control subjects and eight patients with RA were included in this study with a two-stage synovectomy approach (interval 40–50 days). Nerve fibers and cells in synovial tissue were detected and counted using immunofluorescence. Density of sympathetic nerve fibers did not change after synovectomy, whereas density of sensory nerve fibers decreased in all control subjects and seven of eight patients with RA. In parallel, the density of synovial cells increased after synovectomy in all control subjects and six of eight RA patients, which is indicative of a wound healing response. In one female RA patient, density of sensory nerve fibers increased and a very marked rise of cellular density was observed, too. This indicates that probably not all patients profit from surgical synovectomy. The majority of patients (94%) demonstrated sensory denervation after surgical synovectomy accompanied by a wound healing cell response. This study can help to explain the positive effects of surgical synovectomy which usually leads to pain reduction and improved mobility.
Collapse
Affiliation(s)
- B Ossyssek
- Laboratory of Experimental Rheumatology and Neuroendocrino-Immunology, Division of Rheumatology, Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | | | | | | |
Collapse
|
49
|
|
50
|
Reduction in serum levels of substance P in patients with rheumatoid arthritis by etanercept, a tumor necrosis factor inhibitor. Mod Rheumatol 2010; 21:244-50. [PMID: 21188454 DOI: 10.1007/s10165-010-0384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2010] [Accepted: 11/01/2010] [Indexed: 10/18/2022]
Abstract
We determined the effects of etanercept on the serum concentrations of neuropeptides in RA patients. In a total of 11 patients who had been injected with etanercept, the serum levels of substance P, calcitonin gene-related peptide (CGRP), and gastrin-releasing peptide (GRP) were analyzed. Average levels of serum substance P were significantly reduced from 1.53 to 0.62 ng/ml after the injection of etanercept. In the CGRP and GRP analyses, these average levels dropped from 1.57 and 0.51 ng/ml to 0.44 and 0.04 ng/ml, respectively. Etanercept appears to decrease substance P levels with an improvement in disease activities.
Collapse
|