1
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
2
|
Tabuchi M. Dynamic neuronal instability generates synaptic plasticity and behavior: Insights from Drosophila sleep. Neurosci Res 2024; 198:1-7. [PMID: 37385545 PMCID: PMC11033711 DOI: 10.1016/j.neures.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
How do neurons encode the information that underlies cognition, internal states, and behavior? This review focuses on the neural circuit mechanisms underlying sleep in Drosophila and, to illustrate the power of addressing neural coding in this system, highlights a specific circuit mediating the circadian regulation of sleep quality. This circuit exhibits circadian cycling of sleep quality, which depends solely on the pattern (not the rate) of spiking. During the night, the stability of spike waveforms enhances the reliability of spike timing in these neurons to promote sleep quality. During the day, instability of the spike waveforms leads to uncertainty of spike timing, which remarkably produces synaptic plasticity to induce arousal. Investigation of the molecular and biophysical basis of these changes was greatly facilitated by its study in Drosophila, revealing direct connections between genes, molecules, spike biophysical properties, neural codes, synaptic plasticity, and behavior. Furthermore, because these patterns of neural activity change with aging, this model system holds promise for understanding the interplay between the circadian clock, aging, and sleep quality. It is proposed here that neurophysiological investigations of the Drosophila brain present an exceptional opportunity to tackle some of the most challenging questions related to neural coding.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.
| |
Collapse
|
3
|
Hendricks JM, Metz JR, Velde HM, Weeda J, Hartgers F, Yzer S, Hoyng CB, Pennings RJ, Collin RW, Boss MH, de Vrieze E, van Wijk E. Evaluation of Sleep Quality and Fatigue in Patients with Usher Syndrome Type 2a. OPHTHALMOLOGY SCIENCE 2023; 3:100323. [PMID: 37334034 PMCID: PMC10272497 DOI: 10.1016/j.xops.2023.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/27/2023] [Accepted: 04/25/2023] [Indexed: 06/20/2023]
Abstract
Purpose To study the prevalence, level, and nature of sleep problems and fatigue experienced by Usher syndrome type 2a (USH2a) patients. Design Cross-sectional study. Participants Fifty-six genetically confirmed Dutch patients with syndromic USH2a and 120 healthy controls. Methods Sleep quality, prevalence, and type of sleep disorders, chronotype, fatigue, and daytime sleepiness were assessed using 5 questionnaires: (1) Pittsburgh Sleep Quality Index, (2) Holland Sleep Disorders Questionnaire, (3) Morningness-Eveningness Questionnaire, (4) Checklist Individual Strength, and (5) Epworth Sleepiness Scale. For a subset of patients, recent data on visual function were used to study the potential correlation between the outcomes of the questionnaires and disease progression. Main Outcome Measures Results of all questionnaires were compared between USH2a and control cohorts, and the scores of the patients were compared with disease progression defined by age, visual field size, and visual acuity. Results Compared with the control population, patients with USH2a experienced a poorer quality of sleep, a higher incidence of sleep disorders, and higher levels of fatigue and daytime sleepiness. Intriguingly, the sleep disturbances and high levels of fatigue were not correlated with the level of visual impairment. These results are in accordance with the patients' experiences that their sleep problems already existed before the onset of vision loss. Conclusions This study demonstrates a high prevalence of fatigue and poor sleep quality experienced by patients with USH2a. Recognition of sleep problems as a comorbidity of Usher syndrome would be a first step toward improved patient care. The absence of a relationship between the level of visual impairment and the severity of reported sleep problems is suggestive of an extraretinal origin of the sleep disturbances. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Jessie M. Hendricks
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology & Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University Nijmegen, The Netherlands
| | - Hedwig M. Velde
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack Weeda
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Franca Hartgers
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suzanne Yzer
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald J.E. Pennings
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W.J. Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Myrthe H.M. Boss
- Department of Neurology, Hospital Gelderse Vallei, Ede, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Endogenous functioning and light response of the retinal clock in vertebrates. PROGRESS IN BRAIN RESEARCH 2022; 273:49-69. [DOI: 10.1016/bs.pbr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Desbiez ALJ, Kluyber D, Massocato GF, Attias N. Methods for the characterization of activity patterns in elusive species: the giant armadillo in the Brazilian Pantanal. J Zool (1987) 2021. [DOI: 10.1111/jzo.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. L. J. Desbiez
- ICAS ‐ Instituto de Conservação de Animais Silvestres Campo Grande Mato Grosso do Sul Brasil
- IPÊ ‐ Instituto de Pesquisas Ecológicas Nazaré Paulista São Paulo Brasil
- RZSS ‐ Royal Zoological Society of Scotland, Murrayfield Edinburgh UK
| | - D. Kluyber
- ICAS ‐ Instituto de Conservação de Animais Silvestres Campo Grande Mato Grosso do Sul Brasil
- Naples Zoo at Caribbean Gardens Naples FL USA
| | - G. F. Massocato
- ICAS ‐ Instituto de Conservação de Animais Silvestres Campo Grande Mato Grosso do Sul Brasil
- IPÊ ‐ Instituto de Pesquisas Ecológicas Nazaré Paulista São Paulo Brasil
- Houston Zoo Houston TX USA
| | - N. Attias
- ICAS ‐ Instituto de Conservação de Animais Silvestres Campo Grande Mato Grosso do Sul Brasil
- Programa de Pós‐Graduação em Biologia Animal Universidade Federal do Mato Grosso do Sul Cidade Universitária Campo Grande Mato Grosso do Sul Brasil
| |
Collapse
|
6
|
Time is of the essence: Coupling sleep-wake and circadian neurobiology to the antidepressant effects of ketamine. Pharmacol Ther 2020; 221:107741. [PMID: 33189715 DOI: 10.1016/j.pharmthera.2020.107741] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022]
Abstract
Several studies have demonstrated the effectiveness of ketamine in rapidly alleviating depression and suicidal ideation. Intense research efforts have been undertaken to expose the precise mechanism underlying the antidepressant action of ketamine; however, the translation of findings into new clinical treatments has been slow. This translational gap is partially explained by a lack of understanding of the function of time and circadian timing in the complex neurobiology around ketamine. Indeed, the acute pharmacological effects of a single ketamine treatment last for only a few hours, whereas the antidepressant effects peak at around 24 hours and are sustained for the following few days. Numerous studies have investigated the acute and long-lasting neurobiological changes induced by ketamine; however, the most dramatic and fundamental change that the brain undergoes each day is rarely taken into consideration. Here, we explore the link between sleep and circadian regulation and rapid-acting antidepressant effects and summarize how diverse phenomena associated with ketamine's antidepressant actions - such as cortical excitation, synaptogenesis, and involved molecular determinants - are intimately connected with the neurobiology of wake, sleep, and circadian rhythms. We review several recently proposed hypotheses about rapid antidepressant actions, which focus on sleep or circadian regulation, and discuss their implications for ongoing research. Considering these aspects may be the last piece of the puzzle necessary to gain a more comprehensive understanding of the effects of rapid-acting antidepressants on the brain.
Collapse
|
7
|
Small Molecules Targeting Biological Clock; A Novel Prospective for Anti-Cancer Drugs. Molecules 2020; 25:molecules25214937. [PMID: 33114496 PMCID: PMC7663518 DOI: 10.3390/molecules25214937] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/11/2022] Open
Abstract
The circadian rhythms are an intrinsic timekeeping system that regulates numerous physiological, biochemical, and behavioral processes at intervals of approximately 24 h. By regulating such processes, the circadian rhythm allows organisms to anticipate and adapt to continuously changing environmental conditions. A growing body of evidence shows that disruptions to the circadian rhythm can lead to various disorders, including cancer. Recently, crucial knowledge has arisen regarding the essential features that underlie the overt circadian rhythm and its influence on physiological outputs. This knowledge suggests that specific small molecules can be utilized to control the circadian rhythm. It has been discovered that these small molecules can regulate circadian-clock-related disorders such as metabolic, cardiovascular, inflammatory, as well as cancer. This review examines the potential use of small molecules for developing new drugs, with emphasis placed on recent progress that has been made regarding the identification of small-molecule clock modulators and their potential use in treating cancer.
Collapse
|
8
|
de Souza Teixeira AA, Lira FS, Rosa-Neto JC. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci 2020; 261:118453. [PMID: 32956663 PMCID: PMC7500276 DOI: 10.1016/j.lfs.2020.118453] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Aging is associated with gradual decline in numerous physiological processes, including a reduction in metabolic functions and immunological system. The circadian rhythm plays a vital role in health, and prolonged clock disruptions are associated with chronic diseases. The relationships between clock genes, aging, and immunosenescence are not well understood. Inflammation is an immune response triggered in living organisms in response to the danger associated with pathogens and injury. The term 'inflammaging' has been used to describe the chronic low-grade-inflammation that develops with advancing age and predicts susceptibility to age-related pathologies. Equilibrium between pro-and anti-inflammatory cytokines is needed for healthy aging and longevity. Sedentary and poor nutrition style life indices a disruption in circadian rhythm promoting an increase in pro-inflammatory factors or leads for chronic low-grade inflammation. Moreover, signals mediated by pro-inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6, might accentuate of the muscle loss during aging. Circadian clock is important to maintain the physiological functions, as maintenance of immune system. A strategy for imposes rhythmicity in the physiological systems may be adopted of exercise training routine. The lifelong regular practice of physical exercise decelerates the processes of aging, providing better quality and prolongation of life. Thus, in this review, we will focus on how aging affects circadian rhythms and its relationship to inflammatory processes (inflammaging), as well as the role of physical exercise as a regulator of the circadian rhythm, promoting aging with rhythmicity.
Collapse
Affiliation(s)
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
9
|
Apel S, Hudson R, Coleman GJ, Rödel HG, Kennedy GA. Regulation of the rabbit's once-daily pattern of nursing: a circadian or hourglass-dependent process? Chronobiol Int 2020; 37:1151-1162. [PMID: 32869679 DOI: 10.1080/07420528.2020.1805459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The European rabbit Oryctolagus cuniculus has an unusual pattern of nursing behavior. After giving birth in a nursery burrow (or laboratory nest box), the mother immediately leaves the young and only returns to nurse for a few minutes once approximately every 24 h. It has been assumed this schedule, like a variety of other functions in the rabbit, is under circadian control. This assumption has been largely based on findings from mothers only permitted restricted access to their young once every 24 h. However, in nature and in the laboratory, mothers with free access to young show nursing visits with a periodicity shorter than 24 h, that does not correspond to other behavioral and physiological rhythms entrained to the prevailing 24 h light/dark (LD) cycle. To investigate how this unusual, apparently non-circadian pattern might be regulated, we conducted two experiments using female Dutch-belted rabbits housed individually in cages designed to automatically register feeding activity and nest box visits. In Experiment 1 we recorded the behavior of 17 mothers with free access to their young under five different LD cycles with long photo and short scotoperiods, spanning the limits of entrainment of the rabbit's circadian system. Whereas feeding rhythms were entrained by LD cycles within the rabbit's circadian range of entrainment, nursing visits showed a consistently shorter periodicity regardless of the LD regimen, largely independent of the circadian system. In Experiment 2 we tested further 12 mothers under more conventional LD 16:8 cycles but "trained" by having access to the nest box restricted to 1 h at the same time each day for the first 7 d of nursing. Mothers were then allowed free access either when their young were left in the box (n = 6), or when the litter had been permanently removed (n = 6). Mothers with pups still present returned to nurse them on the following days according to a similarly advancing pattern to the mothers of Experiment 1 despite the previous 7 d of "training" to an experimentally enforced 24 h nursing schedule as commonly used in previous studies of rabbit maternal behavior. Mothers whose pups had been removed entered the box repeatedly several times on the first day of unrestricted access, but on subsequent days did so only rarely, and at times of day apparently unrelated to the previously scheduled access. We conclude that the pattern of the rabbit's once-daily nursing visits has a periodicity largely independent of the circadian system, and that this is reset at each nursing. When nursing fails to occur nest box visits cease abruptly, with mothers making few or no subsequent visits. Together, these findings suggest that the rabbit's once-daily pattern of nursing is regulated by an hourglass-type process with a period less than 24 h that is reset at each nursing, rather than by a circadian oscillator. Such a mechanism might be particularly adaptive for rhythms of short duration that should end abruptly with a sudden change in context such as death or weaning of the young.
Collapse
Affiliation(s)
- Sabine Apel
- School of Psychological Sciences, Faculty of Medicine, Nursing and Health Science, Monash University , Victoria, Australia
| | - Robyn Hudson
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México , Ciudad de México, Mexico
| | - Grahame J Coleman
- Veterinary Clinical Sciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne , Melbourne, Australia
| | - Heiko G Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443, Université Sorbonne Paris Nord , Villetaneuse, France
| | - Gerard A Kennedy
- School of Science, Psychology and Sport, Federation University , Ballarat, Australia.,School of Health and Biomedical Sciences, College of Science, Engineering and Health, RMIT University , Bundoora, Australia.,Institute for Breathing and Sleep, Austin Health , Heidelberg, Australia
| |
Collapse
|
10
|
Genome-wide circadian regulation: A unique system for computational biology. Comput Struct Biotechnol J 2020; 18:1914-1924. [PMID: 32774786 PMCID: PMC7385043 DOI: 10.1016/j.csbj.2020.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Circadian rhythms are 24-hour oscillations affecting an organism at multiple levels from gene expression all the way to tissues and organs. They have been observed in organisms across the kingdom of life, spanning from cyanobacteria to humans. In mammals, the master circadian pacemaker is located in the hypothalamic suprachiasmatic nuclei (SCN) in the brain where it synchronizes the peripheral oscillators that exist in other tissues. This system regulates the circadian activity of a large part of the transcriptome and recent findings indicate that almost every cell in the body has this clock at the molecular level. In this review, we briefly summarize the different factors that can influence the circadian transcriptome, including light, temperature, and food intake. We then summarize recently identified general principles governing genome-scale circadian regulation, as well as future lines of research. Genome-scale circadian activity represents a fascinating study model for computational biology. For this purpose, systems biology methods are promising exploratory tools to decode the global regulatory principles of circadian regulation.
Collapse
Key Words
- ABSR, Autoregressive Bayesian spectral regression
- AMPK, AMP-activated protein kinase
- AR, Arrhythmic feeding
- ARSER, Harmonic regression based on autoregressive spectral estimation
- BMAL1, The aryl hydrocarbon receptor nuclear translocator-like (ARNTL)
- CCD, Cortical collecting duct
- CR, Calorie-restricted diet
- CRY, Cryptochrome
- Circadian regulatory network
- Circadian rhythms
- Circadian transcriptome
- Cycling genes
- DCT/CNT, Distal convoluted tubule and connecting tubule
- DD, Dark: dark
- Energetic cost
- HF, High fat diet
- JTK_CYCLE, Jonckheere-Terpstra-Kendall (JTK) cycle
- KD, Ketogenic diet
- LB, Ad libitum
- LD, Light:dark
- LS, Lomb-Scargle
- Liver-RE, Liver clock reconstituted BMAL1-deficient mice
- NAD, Nicotinamide adenine dinucleotides
- ND, Normal diet
- NR, Night-restricted feeding
- PAS, PER-ARNT-SIM
- PER, Period
- RAIN, Rhythmicity Analysis Incorporating Nonparametric methods
- RF, Restricted feeding
- SCN, Suprachiasmatic nucleus
- SREBP, The sterol regulatory element binding protein
- TTFL, Transcriptional-translational feedback loop
- WT, Wild type
- eJTK_CYCLE, Empirical JTK_CYCLE
Collapse
|
11
|
Paulose JK, Cassone CV, Graniczkowska KB, Cassone VM. Entrainment of the Circadian Clock of the Enteric Bacterium Klebsiella aerogenes by Temperature Cycles. iScience 2019; 19:1202-1213. [PMID: 31551197 PMCID: PMC6831877 DOI: 10.1016/j.isci.2019.09.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/22/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023] Open
Abstract
The gastrointestinal bacterium Klebsiella (née Enterobacter) aerogenes expresses an endogenously generated, temperature-compensated circadian rhythm in swarming motility. We hypothesized that this rhythm may be synchronized/entrained in vivo by body temperature (TB). To determine entrainment, cultures expressing bioluminescence were exposed to temperature cycles of 1°C (35°C-36°C) or 3°C (34°C-37°C) in amplitude at periods (T-cycles) of T = 22, T = 24, or T = 28 h. Bacteria entrained to all T-cycles at both amplitudes and with stable phase relationships. A high-amplitude phase response curve (PRC) in response to 1-h pulses of 3°C temperature spike (34°C-37°C) at different circadian phases was constructed, revealing a Type-0 phase resetting paradigm. Furthermore, real-time bioluminescence imaging revealed a spatiotemporal pattern to the circadian rhythm. These data are consistent with the hypothesis that the K. aerogenes circadian clock entrains to its host via detection of and phase shifting to the daily pattern of TB.
Collapse
Affiliation(s)
- Jiffin K Paulose
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Charles V Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | | | - Vincent M Cassone
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
12
|
Fletcher ELK, Kanki M, Morgan J, Ray DW, Delbridge L, Fuller PJ, Clyne CD, Young MJ. Cardiomyocyte transcription is controlled by combined MR and circadian clock signalling. J Endocrinol 2019; 241:JOE-18-0584.R3. [PMID: 30689544 DOI: 10.1530/joe-18-0584] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
We previously identified a critical pathogenic role for MR activation in cardiomyocytes that included a potential interaction between the MR and the molecular circadian clock. While glucocorticoid regulation of the circadian clock is undisputed, MR interactions with circadian clock signalling are limited. We hypothesised that the MR influences cardiac circadian clock signalling, and vice versa. 10nM aldosterone or corticosterone regulated CRY 1, PER1, PER2 and ReverbA (NR1D1) gene expression patterns in H9c2 cells over 24hr. MR-dependent regulation of circadian gene promoters containing GREs and E-box sequences was established for CLOCK, Bmal, CRY 1 and CRY2, PER1 and PER2 and transcriptional activators CLOCK and Bmal modulated MR-dependent transcription of a subset of these promoters. We also demonstrated differential regulation of MR target gene expression in hearts of mice 4hr after administration of aldosterone at 8AM versus 8PM. Our data support combined MR regulation of a subset of circadian genes and that endogenous circadian transcription factors CLOCK and Bmal modulate this response. This unsuspected relationship links MR in the heart to circadian rhythmicity at the molecular level and has important implications for the biology of MR signalling in response to aldosterone as well as cortisol. These data are consistent with MR signalling in the brain where, like the heart, it preferentially responds to cortisol. Given the undisputed requirement for diurnal cortisol release in the entrainment of peripheral clocks, the present study highlights the MR as an important mechanism for transducing the circadian actions of cortisol in addition to the GR in the heart.
Collapse
Affiliation(s)
- ELizabeth K Fletcher
- E Fletcher, Sackler School of Graduate Biomedical Sciences, Tuft Medical Centre, Boston, United States
| | - Monica Kanki
- M Kanki, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - James Morgan
- J Morgan, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - David W Ray
- D Ray, Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Lea Delbridge
- L Delbridge, Dept Of Physiology, University of Melbourne, Melbourne, xxx, Australia
| | - Peter James Fuller
- P Fuller, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Melbourne, Australia
| | - Colin D Clyne
- C Clyne , Cancer Drug Discovery, Hudson Institute of Medical Research, Clayton, Australia
| | - Morag J Young
- M Young, Cardiovascular Endocrinology, Hudson Institute of Medical Research, Clayton, 3166, Australia
| |
Collapse
|
13
|
Carlson BM, Gross JB. Characterization and comparison of activity profiles exhibited by the cave and surface morphotypes of the blind Mexican tetra, Astyanax mexicanus. Comp Biochem Physiol C Toxicol Pharmacol 2018; 208:114-129. [PMID: 28823830 PMCID: PMC5817046 DOI: 10.1016/j.cbpc.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/06/2023]
Abstract
Departure from normal circadian rhythmicity and exposure to atypical lighting cues has been shown to adversely affect human health and wellness in a variety of ways. In contrast, adaptation to extreme environments has led many species to alter or even entirely abandon their reliance upon cyclic environmental inputs, principally daily cycles of light and darkness. The extreme darkness, stability and isolation of cave ecosystems has made cave-adapted species particularly attractive systems in which to study the consequences of life without light and the strategies that allow species to survive and even thrive in such environments. In order to further explore these questions, we have assessed the rhythmicity of locomotion in the blind Mexican tetra, Astyanax mexicanus, under controlled laboratory conditions. Using high-resolution video tracking assays, we characterized patterns in locomotor activity and spatial tank usage for members of the surface and Pachón cave populations. Here we demonstrate that cavefish have a higher overall level of activity and use the space within the trial tank differently than surface fish. Further, Pachón cavefish show circadian rhythmicity in both activity and spatial tank usage under a 12:12 light/dark cycle. We provide further evidence that these cavefish retain a weakly light-entrainable, endogenous circadian oscillator with limited capability to sustain rhythms in activity, but not spatial tank usage, in the absence of photic cues. Finally, we demonstrate a putative behavioral "masking effect" contributing to behavioral rhythms and provide evidence that exposure to constant darkness during development may alter behavioral patterns later in life.
Collapse
Affiliation(s)
- Brian M Carlson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
14
|
Photosensitive Alternative Splicing of the Circadian Clock Gene timeless Is Population Specific in a Cold-Adapted Fly, Drosophila montana. G3-GENES GENOMES GENETICS 2018; 8:1291-1297. [PMID: 29472309 PMCID: PMC5873918 DOI: 10.1534/g3.118.200050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To function properly, organisms must adjust their physiology, behavior and metabolism in response to a suite of varying environmental conditions. One of the central regulators of these changes is organisms’ internal circadian clock, and recent evidence has suggested that the clock genes are also important in the regulation of seasonal adjustments. In particular, thermosensitive splicing of the core clock gene timeless in a cosmopolitan fly, Drosophila melanogaster, has implicated this gene to be involved in thermal adaptation. To further investigate this link we examined the splicing of timeless in a northern malt fly species, Drosophila montana, which can withstand much colder climatic conditions than its southern relative. We studied northern and southern populations from two different continents (North America and Europe) to find out whether and how the splicing of this gene varies in response to different temperatures and day lengths. Interestingly, we found that the expression of timeless splice variants was sensitive to differences in light conditions, and while the flies of all study populations showed a change in the usage of splice variants in constant light compared to LD 22:2, the direction of the shift varied between populations. Overall, our findings suggest that the splicing of timeless in northern Drosophila montana flies is photosensitive, rather than thermosensitive and highlights the value of studying multiple species and populations in order to gain perspective on the generality of gene function changes in different kinds of environmental conditions.
Collapse
|
15
|
How does general anaesthesia affect the circadian clock? Sleep Med Rev 2018; 37:35-44. [DOI: 10.1016/j.smrv.2016.12.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022]
|
16
|
van der Pol CW, van Roovert-Reijrink IA, Aalbers G, Kemp B, van den Brand H. Incubation lighting schedules and their interaction with matched or mismatched post hatch lighting schedules: Effects on broiler bone development and leg health at slaughter age. Res Vet Sci 2017; 114:416-422. [DOI: 10.1016/j.rvsc.2017.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/08/2017] [Accepted: 07/16/2017] [Indexed: 11/27/2022]
|
17
|
Jin Y, Hur TY, Hong Y. Circadian Rhythm Disruption and Subsequent Neurological Disorders in Night-Shift Workers. J Lifestyle Med 2017; 7:45-50. [PMID: 29026723 PMCID: PMC5618733 DOI: 10.15280/jlm.2017.7.2.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
A large number of people in highly industrialized society are employed in night-shift work. Night-shift work interrupts the 24-hour daily cycle known as the circadian rhythm, as well as melatonin synthesis. These disruptions can make the body susceptible to oxidative stress and neural damage. In this regard, it is recommended that employees avoid long-term exposure to night-shift work.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
| | | | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
18
|
Park H, Cheon M, Kim S, Chung C. Temporal variations in presynaptic release probability in the lateral habenula. Sci Rep 2017; 7:40866. [PMID: 28106159 PMCID: PMC5247757 DOI: 10.1038/srep40866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022] Open
Abstract
Rhythmicity plays an important role in a number of biological systems. The habenular complex is reported to contain an intrinsic molecular clock and to show rhythmic expression of circadian clock genes and proteins including per2/PER2. In this study, we observed that there is a temporal rhythmicity in the presynaptic efficacy of the lateral habenula (LHb) neurons. We collected a substantial number of recordings at different time points of the day during the light phase. The frequency and amplitude of spontaneous excitatory transmission were increased in the afternoon compared to recordings performed in the morning. In addition, the paired-pulse ratio and the success rate of minimal stimulation were also significantly different depending on the time of the recording. We did not see any significant differences in recordings obtained from pyramidal neurons of the hippocampus in the same brain slices. Taken together, our data indicates that the LHb exhibits intrinsic temporal oscillation in basal neurotransmission and in presynaptic release probability. Given the rapidly growing interest on the function of the LHb, more careful examination of synaptic transmission in the LHb is thus required.
Collapse
Affiliation(s)
- Hoyong Park
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Myunghyun Cheon
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - Sungmin Kim
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| | - ChiHye Chung
- Department of Biological Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, South Korea
| |
Collapse
|
19
|
Nair V, Chedid A. Chronobiologic Considerations in Pharmacologic and Toxicologic Studies: Fact or Fancy. ACTA ACUST UNITED AC 2016. [DOI: 10.3109/10915818309140722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies showing circadian variation in pharmacologic response to drugs in man and experimental animals have been reviewed. The chronobiologic response is discussed in terms of the pharmacologic factors that determine drug action. The importance of internal markers in chronopharmacologic studies is emphasized and is illustrated by our studies with the antihypersive drugs. Identification of chronobiologic variations in the therapeutic and toxic response to drugs, when present, along with an understanding of their mechanisms, would permit the design of optimal therapeutic regimens for these drugs.
Collapse
Affiliation(s)
- V. Nair
- Depts. of Pharmacology and Pathology University of Health Sciences, The Chicago Medical School North Chicago, Illinois 60064
| | - A. Chedid
- Depts. of Pharmacology and Pathology University of Health Sciences, The Chicago Medical School North Chicago, Illinois 60064
| |
Collapse
|
20
|
Abstract
A dogma in the field of circadian rhythms is that in order to keep accurate time, pacemakers that generate such rhythms must be relatively independent of changes in the external and internal environment. While it is true that the period of circadian oscillators is conserved within a narrow range, regardless of alterations in the external and internal envi ronment, numerous perturbations have now been found that can change the period and/or induce a phase shift in circadian pacemakers. Many of these perturbations also alter the overall level of activity and/or metabolic state of the organism. In 1960, Aschoff suggested that alterations in the "level of excitement" may induce changes in circadian clocks. Although little attention has been given to this hypothesis over the past three decades, recent findings support its validity and open new avenues for studying the function and organization of circadian clock systems.
Collapse
Affiliation(s)
- Fred W. Turek
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
21
|
Masson S, Desrosiers G, Retiére C. Périodicité d’alimentation du polychète Nereis diversicolor (O.F. Müller) selon les changements de la marée. ECOSCIENCE 2016. [DOI: 10.1080/11956860.1995.11682264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Lück S, Westermark PO. Circadian mRNA expression: insights from modeling and transcriptomics. Cell Mol Life Sci 2016; 73:497-521. [PMID: 26496725 PMCID: PMC11108398 DOI: 10.1007/s00018-015-2072-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 01/08/2023]
Abstract
Circadian clocks synchronize organisms to the 24 h rhythms of the environment. These clocks persist under constant conditions, have their origin at the cellular level, and produce an output of rhythmic mRNA expression affecting thousands of transcripts in many mammalian cell types. Here, we review the charting of circadian output rhythms in mRNA expression, focusing on mammals. We emphasize the challenges in statistics, interpretation, and quantitative descriptions that such investigations have faced and continue to face, and outline remaining outstanding questions.
Collapse
Affiliation(s)
- Sarah Lück
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany
| | - Pål O Westermark
- Institute for Theoretical Biology, Charité - Universitätsmedizin Berlin, Invalidenstrasse 43, 10115, Berlin, Germany.
| |
Collapse
|
23
|
Pellman BA, Kim E, Reilly M, Kashima J, Motch O, de la Iglesia HO, Kim JJ. Time-Specific Fear Acts as a Non-Photic Entraining Stimulus of Circadian Rhythms in Rats. Sci Rep 2015; 5:14916. [PMID: 26468624 PMCID: PMC4606733 DOI: 10.1038/srep14916] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/14/2015] [Indexed: 12/11/2022] Open
Abstract
Virtually all animals have endogenous clock mechanisms that "entrain" to the light-dark (LD) cycle and synchronize psychophysiological functions to optimal times for exploring resources and avoiding dangers in the environment. Such circadian rhythms are vital to human mental health, but it is unknown whether circadian rhythms "entrained" to the LD cycle can be overridden by entrainment to daily recurring threats. We show that unsignaled nocturnal footshock caused rats living in an "ethological" apparatus to switch their natural foraging behavior from the dark to the light phase and that this switch was maintained as a free-running circadian rhythm upon removal of light cues and footshocks. Furthermore, this fear-entrained circadian behavior was dependent on an intact amygdala and suprachiasmatic nucleus. Thus, time-specific fear can act as a non-photic entraining stimulus for the circadian system, and limbic centers encoding aversive information are likely part of the circadian oscillator network that temporally organizes behavior.
Collapse
Affiliation(s)
- Blake A. Pellman
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
| | - Earnest Kim
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
| | - Melissa Reilly
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
| | - James Kashima
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
| | - Oleksiy Motch
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
| | - Horacio O. de la Iglesia
- Department of Biology, University of Washington, Seattle, Washington 98195, USA.
- Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA
| | - Jeansok J. Kim
- Department of Psychology, University of Washington, Seattle, Washington 98195, USA.
- Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
24
|
Damjanovic A, Milovanovic SD, Trajanovic NN. Descartes and His Peculiar Sleep Pattern. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2015; 24:396-407. [PMID: 26291552 DOI: 10.1080/0964704x.2015.1032057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rene Descartes (1596-1650) was a mathematician, philosopher, and scholar, whose work set a foundation for modern science. Among other interests, he focused on locating the "core and the seat of the soul" and concluded that the pineal gland was such a structure. Recent scientific findings validate Descartes' deep interest in pineal gland, appreciating its role as part of the circadian rhythm system. On the other hand, the biographical information suggests that Descartes had an aberration of the circadian rhythm (delayed sleep phase). Coincidentally, this meant that one of the most important things in his private life and one of the most significant areas of his research intersected in an overlooked way.
Collapse
Affiliation(s)
- Aleksandar Damjanovic
- a Clinic for Psychiatry , Clinical Center of Serbia and University of Belgrade , Belgrade , Serbia
| | - Srdjan D Milovanovic
- a Clinic for Psychiatry , Clinical Center of Serbia and University of Belgrade , Belgrade , Serbia
| | - Nikola N Trajanovic
- b Sleep Research Unit, University Health Network , Toronto , Canada
- c Neurophysiology Unit, "Dr. Ristic" Health Centre , Belgrade , Serbia
| |
Collapse
|
25
|
Role for Protein Kinase A in the Neurospora Circadian Clock by Regulating White Collar-Independent frequency Transcription through Phosphorylation of RCM-1. Mol Cell Biol 2015; 35:2088-102. [PMID: 25848091 DOI: 10.1128/mcb.00709-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 03/30/2015] [Indexed: 01/24/2023] Open
Abstract
Rhythmic activation and repression of clock gene expression is essential for the eukaryotic circadian clock functions. In the Neurospora circadian oscillator, the transcription of the frequency (frq) gene is periodically activated by the White Collar (WC) complex and suppressed by the FRQ-FRH complex. We previously showed that there is WC-independent frq transcription and its repression is required for circadian gene expression. How WC-independent frq transcription is regulated is not known. We show here that elevated protein kinase A (PKA) activity results in WC-independent frq transcription and the loss of clock function. We identified RCM-1 as the protein partner of RCO-1 and an essential component of the clock through its role in suppressing WC-independent frq transcription. RCM-1 is a phosphoprotein and is a substrate of PKA in vivo and in vitro. Mutation of the PKA-dependent phosphorylation sites on RCM-1 results in WC-independent transcription of frq and impaired clock function. Furthermore, we showed that RCM-1 is associated with the chromatin at the frq locus, a process that is inhibited by PKA. Together, our results demonstrate that PKA regulates frq transcription by inhibiting RCM-1 activity through RCM-1 phosphorylation.
Collapse
|
26
|
Duclos C, Beauregard MP, Bottari C, Ouellet MC, Gosselin N. The impact of poor sleep on cognition and activities of daily living after traumatic brain injury: a review. Aust Occup Ther J 2014; 62:2-12. [PMID: 25331353 DOI: 10.1111/1440-1630.12164] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Patients frequently report sleep disruptions or insomnia during their hospital stay, particularly after a traumatic brain injury (TBI). The consequences of these sleep disturbances on everyday activities are not well documented and are therefore not considered in the evaluation of independence in activities of daily living (ADLs). The goal of this narrative review is to explore the consequences of poor sleep quality on cognition and ADLs in the acute and subacute stages of a moderate and severe TBI, when patients are in acute care or inpatient rehabilitation. METHODS We will present an overview of normal sleep and its role in cognitive functioning, and then present the findings of studies that have investigated sleep characteristics in hospital settings and the consequences of sleep disturbances on ADLs. RESULTS During hospitalisation, TBI patients present severe sleep disturbances such as insomnia and sleep fragmentation, which are probably influenced by both the medical condition and the hospital or rehabilitation environment. Sleep disruption is associated with several cognitive deficits, including attention, memory and executive function impairments. Poor quality and/or insufficient quantity of sleep in acute TBI probably affect general functioning and ADLs calling for these cognitive functions. CONCLUSIONS AND SIGNIFICANCE The cognitive impairments present following TBI are probably exacerbated by poor sleep quality and sleep deprivation during hospitalisation, which in turn impact ADLs among this population. Health-care personnel should further consider sleep disturbances among people with TBI and a sleep protocol should be established.
Collapse
Affiliation(s)
- Catherine Duclos
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Québec, Canada; Department of Psychiatry, Université de Montréal, Montreal, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
Sleep and wake disturbances following traumatic brain injury. ACTA ACUST UNITED AC 2014; 62:252-61. [DOI: 10.1016/j.patbio.2014.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 05/13/2014] [Indexed: 01/16/2023]
|
28
|
Naruse M, Kim SJ, Aono M, Hori H, Ohtsu M. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer. Sci Rep 2014; 4:6039. [PMID: 25113239 PMCID: PMC4129418 DOI: 10.1038/srep06039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022] Open
Abstract
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.
Collapse
Affiliation(s)
- Makoto Naruse
- Photonic Network Research Institute, National Institute of Information and Communications Technology, 4-2-1 Nukui-kita, Koganei, Tokyo 184-8795, Japan
| | - Song-Ju Kim
- WPI Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masashi Aono
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguru-ku, Tokyo 152-8550, Japan
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hirokazu Hori
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Motoichi Ohtsu
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Huang F, Yang Z, Liu X, Li CQ. Melatonin facilitates extinction, but not acquisition or expression, of conditional cued fear in rats. BMC Neurosci 2014; 15:86. [PMID: 25026909 PMCID: PMC4111846 DOI: 10.1186/1471-2202-15-86] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/02/2014] [Indexed: 02/04/2023] Open
Abstract
Background Previous studies have shown that melatonin is involved in the processes that contribute to learning and memory. At present study, we tested the effects of exogenous melatonin (2.5 mg/kg) on the acquisition, expression and extinction of cued fear in rats. Results Results showed that a single afternoon administration 30 min before conditioning has no effect on the acquisition of cued fear. Compared to rats injected with vehicle, rats injected with melatonin 30 min before extinction training presented a significant lower freezing during both extinction training and extinction test phases, however, freezing response did not differ for the initial four trials during extinction training. Melatonin injected immediately after extinction training was ineffective on extinction learning. Conclusions These results suggest that melatonin, at the dose applied in this study, facilitates the extinction of conditional cued fear without affecting its acquisition or expression, and melatonin facilitates cued fear extinction only when it is present during extinction training. These findings extend previous research on the melatonin effects on learning and memory and suggest that melatonin may serve as an agent for the treatment of anxiety disorders such as posttraumatic stress disorder (PTSD).
Collapse
Affiliation(s)
| | | | | | - Chang-Qi Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, P,R China.
| |
Collapse
|
30
|
Nishide SY, Hashimoto K, Nishio T, Honma KI, Honma S. Organ-specific development characterizes circadian clock gene Per2 expression in rats. Am J Physiol Regul Integr Comp Physiol 2014; 306:R67-74. [DOI: 10.1152/ajpregu.00063.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To explore developmental changes in circadian organization of central and peripheral oscillators, circadian rhythms in clock gene expression were examined in 12 organs in transgenic rats carrying a bioluminescence reporter for Per2. Organ slices were obtained from different developmental stages starting at postnatal day 5 and tissue was cultured for more than 6 days. In addition, four organs were examined from embryonic day 20. Robust circadian rhythms in bioluminescence were detected in all organs examined. The circadian period in vitro was specific to each organ and remained essentially the same during development. The circadian peak phase on the first day of culture was significantly different not only among organs but also in the same organ. Three patterns in circadian phase were detected during development. Thus, during development, circadian phase did not change in the suprachiasmatic nucleus, adrenal gland, and liver, whereas delay shifts were seen in the pineal, lung, heart, kidney, spleen, thymus, and testis. Finally, circadian phase advanced at postnatal day 10–15 and subsequently delayed in skeletal muscle and stomach.Circadian amplitude also showed developmental changes in several organs. These findings indicate that the temporal orders of physiological functions of various organs change during development. Such age-dependent and organ-specific changes in the phase relationship among circadian clocks most likely reflect entrainment to organ-specific time cues at different developmental stages.
Collapse
Affiliation(s)
- Shin-ya Nishide
- Department of Physiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | - Takuya Nishio
- Hokkaido University School of Medicine, Sapporo, Japan; and
| | - Ken-ichi Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sato Honma
- Department of Chronomedicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
31
|
Choi D. Potency of melatonin in living beings. Dev Reprod 2013; 17:149-77. [PMID: 25949131 PMCID: PMC4282293 DOI: 10.12717/dr.2013.17.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Republic of Korea
| |
Collapse
|
32
|
Influence of Drug Properties and Routes of Drug Administration on the Design of Sustained and Controlled Release Systems. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14193-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
|
33
|
Voelkle MC, Oud JHL. Continuous time modelling with individually varying time intervals for oscillating and non-oscillating processes. THE BRITISH JOURNAL OF MATHEMATICAL AND STATISTICAL PSYCHOLOGY 2013; 66:103-26. [PMID: 22420323 DOI: 10.1111/j.2044-8317.2012.02043.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
When designing longitudinal studies, researchers often aim at equal intervals. In practice, however, this goal is hardly ever met, with different time intervals between assessment waves and different time intervals between individuals being more the rule than the exception. One of the reasons for the introduction of continuous time models by means of structural equation modelling has been to deal with irregularly spaced assessment waves (e.g., Oud & Delsing, 2010). In the present paper we extend the approach to individually varying time intervals for oscillating and non-oscillating processes. In addition, we show not only that equal intervals are unnecessary but also that it can be advantageous to use unequal sampling intervals, in particular when the sampling rate is low. Two examples are provided to support our arguments. In the first example we compare a continuous time model of a bivariate coupled process with varying time intervals to a standard discrete time model to illustrate the importance of accounting for the exact time intervals. In the second example the effect of different sampling intervals on estimating a damped linear oscillator is investigated by means of a Monte Carlo simulation. We conclude that it is important to account for individually varying time intervals, and encourage researchers to conceive of longitudinal studies with different time intervals within and between individuals as an opportunity rather than a problem.
Collapse
Affiliation(s)
- Manuel C Voelkle
- Max Planck Institute for Human Development, 14195 Berlin, Germany.
| | | |
Collapse
|
34
|
Rawashdeh O, Maronde E. The hormonal Zeitgeber melatonin: role as a circadian modulator in memory processing. Front Mol Neurosci 2012; 5:27. [PMID: 22408602 PMCID: PMC3295223 DOI: 10.3389/fnmol.2012.00027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/15/2012] [Indexed: 11/13/2022] Open
Abstract
The neuroendocrine substance melatonin is a hormone synthesized rhythmically by the pineal gland under the influence of the circadian system and alternating light/dark cycles. Melatonin has been shown to have broad applications, and consequently becoming a molecule of great controversy. Undoubtedly, however, melatonin plays an important role as a time cue for the endogenous circadian system. This review focuses on melatonin as a regulator in the circadian modulation of memory processing. Memory processes (acquisition, consolidation, and retrieval) are modulated by the circadian system. However, the mechanism by which the biological clock is rhythmically influencing cognitive processes remains unknown. We also discuss, how the circadian system by generating cycling melatonin levels can implant information about daytime into memory processing, depicted as day and nighttime differences in acquisition, memory consolidation and/or retrieval.
Collapse
Affiliation(s)
- Oliver Rawashdeh
- Dr. Senckenbergische Anatomie III, Institute of Cellular and Molecular Anatomy, Goethe-University, Frankfurt Hessen, Germany
| | | |
Collapse
|
35
|
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci U S A 2011; 109:101-6. [PMID: 22184224 DOI: 10.1073/pnas.1118034108] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The circadian clock coordinates daily oscillations of essential physiological and behavioral processes. Conversely, aberrant clocks with damped amplitude and/or abnormal period have been associated with chronic diseases and aging. To search for small molecules that perturb or enhance circadian rhythms, we conducted a high-throughput screen of approximately 200,000 synthetic compounds using Per2lucSV reporter fibroblast cells and validated 11 independent classes of molecules with Bmal1:luciferase reporter cells as well as with suprachiasmatic nucleus and peripheral tissue explants. Four compounds were found to lengthen the period in both central and peripheral clocks, including three compounds that inhibited casein kinase Iε in vitro and a unique benzodiazepine derivative acting through a non-GABA(A) receptor target. In addition, two compounds acutely induced Per2lucSV reporter bioluminescence, delayed the rhythm, and increased intracellular cAMP levels, but caused rhythm damping. Importantly, five compounds shortened the period of peripheral clocks; among them, four compounds also enhanced the amplitude of central and/or peripheral reporter rhythms. Taken together, these studies highlight diverse activities of drug-like small molecules in manipulating the central and peripheral clocks. These small molecules constitute a toolbox for probing clock regulatory mechanisms and may provide putative lead compounds for treatment of clock-associated diseases.
Collapse
|
36
|
Tsuruoka S, Hasegawa G, Kaneda T, Maeda A, Fujimura A. Dosing Time‐Dependent Effect of Raloxifene on Plasma Fibrinogen Concentration in Ovariectomized Rats. Chronobiol Int 2009; 25:808-18. [DOI: 10.1080/07420520802387682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
37
|
Quesenberry PJ, Dooner GJ, Dooner MS. Problems in the promised land: status of adult marrow stem cell biology. Exp Hematol 2009; 37:775-83. [PMID: 19447161 DOI: 10.1016/j.exphem.2009.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 05/05/2009] [Accepted: 05/07/2009] [Indexed: 12/01/2022]
Abstract
Long-term engrafting marrow hematopoietic stem cells have been considered to be a quiescent stem cell in G(0). However, there are contradictory reports on this point in the literature, showing marked variability of results over time and between mice. Furthermore, there are circadian rhythms for stem cells and progenitors. In general, most studies have not taken stochastic variability or circadian rhythms into account. In addition, stem cell purification has represented the present gold standard in stem cell research. However, evidence exists that the stem cell separations leave behind most stem cells and are not random. Thus, purified stem cells may not be representative of the stem cells in the unseparated marrow cell population. The epitope-based purification of stem cells may have misled the stem cell field. Lastly, there are interesting published studies indicating that the irradiated marrow microenvironment might be toxic to marrow stem cells, limiting self-renewal capacity, and that quantitative engraftment occurs in nonablated mice. These considerations suggest that in carrying out stem cell studies, attention needs to be directed to the appropriate number of repeat experiments, to circadian rhythms, to possible purification skewing of results, and to the most appropriate transplant assay model.
Collapse
Affiliation(s)
- Peter J Quesenberry
- Department of Medicine, Division of Hematology/Oncology, Rhode Island Hospital, Providence, RI 02903, USA.
| | | | | |
Collapse
|
38
|
Bobbert A, van Wiechen R, Eggelmeijer F. Imitations of the circadian changes in rabbit photic responses, elicited by stimulation of the cervical sympathetic nerves and mediated by means of intraocular adrenergic alpha receptors. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/09291019009360089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- A.C. Bobbert
- a Department of Physiology and Physiological Physics , Leiden University , P.O. Box 9604, RC Leiden, 2300, The Netherlands
| | - R.J.M.P. van Wiechen
- a Department of Physiology and Physiological Physics , Leiden University , P.O. Box 9604, RC Leiden, 2300, The Netherlands
| | - F. Eggelmeijer
- a Department of Physiology and Physiological Physics , Leiden University , P.O. Box 9604, RC Leiden, 2300, The Netherlands
| |
Collapse
|
39
|
O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science 2008; 320:949-53. [PMID: 18487196 PMCID: PMC2735813 DOI: 10.1126/science.1152506] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The mammalian circadian clockwork is modeled as transcriptional and posttranslational feedback loops, whereby circadian genes are periodically suppressed by their protein products. We show that adenosine 3',5'-monophosphate (cAMP) signaling constitutes an additional, bona fide component of the oscillatory network. cAMP signaling is rhythmic and sustains the transcriptional loop of the suprachiasmatic nucleus, determining canonical pacemaker properties of amplitude, phase, and period. This role is general and is evident in peripheral mammalian tissues and cell lines, which reveals an unanticipated point of circadian regulation in mammals qualitatively different from the existing transcriptional feedback model. We propose that daily activation of cAMP signaling, driven by the transcriptional oscillator, in turn sustains progression of transcriptional rhythms. In this way, clock output constitutes an input to subsequent cycles.
Collapse
Affiliation(s)
- John S. O’Neill
- MRC Laboratory of Molecular Biology, Hills Rd. Cambridge CB2 2QH, UK
| | | | | | - Joseph S. Takahashi
- Howard Hughes Medical Institute Dept. of Neurobiology & Physiology Northwestern University 2205 Tech Drive Evanston, IL 60208-3520, USA
| | | |
Collapse
|
40
|
Nishide SY, Honma S, Honma KI. The circadian pacemaker in the cultured suprachiasmatic nucleus from pup mice is highly sensitive to external perturbation. Eur J Neurosci 2008; 27:2686-90. [PMID: 18513319 DOI: 10.1111/j.1460-9568.2008.06231.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus of the hypothalamus (SCN) entrains to non-photic maternal rhythms in the fetal and neonatal periods of rodents but this capacity disappears in later life. In order to understand the mechanism behind the non-photic entrainment in the early postnatal period, the phase response of the clock gene (Bmal1) expression rhythm to external stimuli was examined in cultured SCN harvested at postnatal day 6. The SCN was obtained from transgenic mice carrying a bioluminescence reporter for Bmal1 expression. Phase-dependent phase shifts of circadian rhythm were detected in the pup as well as in the adult for culture medium exchange but the amount of phase shift was significantly larger in the pup than in the adult SCN. Half of the pup SCNs did not show integrated circadian rhythmicities in the first few days in culture. In pups, the circadian period of Bmal1 expression rhythm was shorter and the amplitude of circadian rhythm was much lower than in adults. It is concluded that the responsiveness of cultured SCN to medium exchange is much larger in pups than in adult mice. Immaturity of the structural organization in the circadian system seems to underlie the high responsiveness of the pup SCN.
Collapse
Affiliation(s)
- Shin-ya Nishide
- Department of Physiology, Hokkaido University Graduate School of Medicine, N-15, W-7, Kita-ku, Sapporo 060-8638, Japan
| | | | | |
Collapse
|
41
|
Ayo JO, Dzenda T, Zakari FO. Individual and Diurnal Variations in Rectal Temperature, Respiration, and Heart Rate of Pack Donkeys during the Early Rainy Season. J Equine Vet Sci 2008. [DOI: 10.1016/j.jevs.2008.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Abstract
Microarray studies have examined global gene expression in over 20 species of filamentous fungi encompassing a wide variety of research areas. The majority have addressed aspects of metabolism or pathogenicity. Metabolic studies have revealed important differences in the transcriptional regulation of genes for primary metabolic pathways between filamentous fungi and yeast. Transcriptional profiles for genes involved in secondary metabolism have also been established. Genes required for the biosynthesis of both useful and detrimental secondary metabolites have been identified. Due to the economic, ecological and medical implications, it is not surprising that many studies have used microarray analysis to examine gene expression in pathogenic filamentous fungi. Genes involved in various stages of pathogenicity have been identified, including those thought to be important for adaptation to the host environment. While most of the studies have simulated pathogenic conditions in vitro, a small number have also reported fungal gene expression within their plant hosts. This review summarizes the first 50 microarray studies in filamentous fungi and highlights areas for future investigation.
Collapse
Affiliation(s)
- Andrew Breakspear
- Department of Plant Biology, The University of Georgia, 1505 Miller Plant Sciences, Athens, GA 30602, USA
| | | |
Collapse
|
43
|
Tsuruoka S, Kaneda T, Maeda A, Ioka T, Fujimura A. Dosing time-dependent variation of bone resorption by cyclosporin A in rats' femurs. Eur J Pharmacol 2007; 564:226-31. [PMID: 17362919 DOI: 10.1016/j.ejphar.2007.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Revised: 02/01/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The dosing time-dependent difference of bone resorption by cyclosporin A was determined in normal rats. Rats were kept in rooms with a 12-h light/dark cycle. Cyclosporin A (3 mg/kg, once a day) or vehicle was given at either 2 h after light on (2 HALO) or 8 HALO, 14 HALO, 20 HALO for 24 weeks. Serum and 4-h urine samples were obtained before and at 12 and 24 weeks after the treatment. Body weight, creatinine clearance, serum parathyroid hormone, the trough level of cyclosporin A in whole blood and urinary excretion of Ca and P were not changed by the drug at every any dosing time. Serum Ca and P concentrations by the vehicle treatment differed with the dosing time. Furthermore, increases of these two parameters by the drug varied with dosing time; most prominently at the 2 HALO dosing, and were not seen at the 8 and 14 HALO dosings. Degree of bone resorption of the femur determined by dual-energy X-ray absorption, also varied with dosing time, most prominently at 2 HALO and less prominently at 14 HALO. Increase of urine deoxypyridinoline excretion, a marker of osteoclast activity, by the drug was highest at 2 HALO and lowest at 14 HALO, however parathyroid hormone and osteocalcin concentrations after cyclosporin A treatment did not vary with dosing time. Reduction of urinary nitric oxide (NO) was most prominent at 2 HALO and negligible at 14 HALO. We concluded that cyclosporin A-induced bone resorption and serum Ca and P increases were varied with dosing time. Sensitivity of osteoclasts by the drug was the major mechanisms of the phenomenon, while differences in pharmacokinetics, the parathyroid gland, osteoblasts and renal handling of Ca and P did not contribute to the phenomenon.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Division of Clinical Pharmacology, Jichi Medical University, 3311 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Sleep problems are extremely common during childhood, from infancy to adolescence. Despite the prevalence of sleep problems, childhood sleep disorders are often underrecognized and undiagnosed, despite being either preventable or treatable. Sleep impacts almost all aspects of a child's functioning, and thus the increased recognition and treatment of sleep disorders will positively affect a child's well-being. Children experience the same broad range of sleep disturbances encountered in adults, including sleep apnea, insomnia, parasomnia, delayed sleep phase, narcolepsy, and restless legs, but their clinical presentation, evaluation, and management may differ. Although snoring and sleep apnea may be the most common indication for an overnight sleep study in a child, one quarter of children presenting to a sleep clinic for evaluation will have a second sleep diagnosis, which is often nonrespiratory in nature. Especially in children, ruling out sleep apnea is rarely the end point of the sleep evaluation. Clinicians involved in sleep medicine must be prepared to recognize, evaluate, and manage plans for sleep disorders across the lifespan of the patient. This article will provide an updated review of nonrespiratory pediatric sleep disorders within a developmental framework.
Collapse
Affiliation(s)
- Melisa Moore
- Case Western Reserve University, Department of Psychology, Mather Memorial Building, No. 109, 10900 Euclid Ave, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
45
|
Nissen C, Feige B, Nofzinger EA, Voderholzer U, Berger M, Riemann D. EEG Slow Wave Activity Regulation in Major Depression. EEG-Slow-Wave-Aktivitat bei Patienten mit Major Depression. SOMNOLOGIE 2006. [DOI: 10.1111/j.1439-054x.2006.00083.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
EEG slow wave activity regulation in major depression. SOMNOLOGIE 2006. [DOI: 10.1007/j.1439-054x.2006.00083.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
D'Hondt L, McAuliffe C, Damon J, Reilly J, Carlson J, Dooner M, Colvin G, Lambert JF, Hsieh CC, Habibian H, Stencel K, Quesenberry PJ. Circadian variations of bone marrow engraftability. J Cell Physiol 2004; 200:63-70. [PMID: 15137058 DOI: 10.1002/jcp.20032] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Circadian rhythms exist for hematopoiesis, but little is known about circadian variation of bone marrow engraftability and host "acceptability". Using a B6.SJL to C57BL/6J congenic transplant model, we chose 3-times with light on: Hours After Light Onset (HALO) 4, 8, and 12 and 3-times with light off: HALO 16, 20, and 24. The mice were conditioned on a 12-h light/dark cycles. Recipient mice (100 cGy) received 40 million cells. We demonstrated a significant variation of bone marrow engraftability into bone marrow, spleen, and thymus when donor animals were subjected to changes in their light/dark cycles. Two statistically significant nadirs in all three organs were observed at HALO 8 and 24 in experiments carried out in July, while an identical set of experiments in February analyzing engraftment in marrow and spleen showed nadirs at HALO 8, but not at HALO 24. Marrow progenitors from the July experiments showed nadirs at HALO 12 and 24. The percentage of progenitors in S phase peaked at HALO 8 and 24. Interestingly, there were no changes in the ability of host to accept grafts with changes in the light/dark cycles of host animals. Circadian variations of bone marrow engraftability are important and should be considered in bone marrow transplant strategies.
Collapse
Affiliation(s)
- Lionel D'Hondt
- Centre Hospitalier Notre-Dame et Reine Fabiola, Charleroi, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tsuruoka S, Nishiki K, Wakaumi M, Yamamoto H, Ando H, Ning W, Fujimura A. Chronopharmacology of oxacalcitriol in 5/6 nephrectomized rats. Life Sci 2004; 75:809-22. [PMID: 15183074 DOI: 10.1016/j.lfs.2004.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 01/08/2004] [Indexed: 11/29/2022]
Abstract
We previously reported on the merits of the chronopharmacological effects of 1,25(OH) 2 vitaminD3 in 5/6 nephrectomized rats (Tsuruoka et al, Life Scineces 2002; 71: 1809-1820). In this study, the chronopharmacological effect of 22-oxacalcitriol (OCT), a newly developed active vitaminD3 analogue with less calcemic activity, was evaluated by a single and repeated dosing of the drug. The 5/6 nephrectomized animals were kept in rooms with a 12-h light/dark cycle. Single (12.5 microg/kg, i.v.) and repeated (5 microg/kg, i.v. three times a week for 12 weeks) dosing of OCT or vehicle was given at either 2 hours after lights on (2HALO) or 14 hours after lights on (14HALO). The severity of hypercalcemia and hyperphosphatemia was significantly milder when the drug was given at 14HALO. Serum concentrations of total OCT and albumin of the 2HALO and 14HALO trials did not differ significantly. The decrease of parathyroid hormone concentration was greater in the 14HALO trial while the increase in urinary ratio of Ca to creatinine was greater in the 2HALO trial. The suppression of urinary deoxypyridinoline excretion, an index of bone resorption capacity of osteoclast, and the increase in bone density of both femurs were greater in the 14HALO trial. These results suggest that the adverse reactions of OCT were ameliorated and its efficacy was enhanced after dosing of the drug at 14HALO. Chronopharmacological differences of OCT were more prominent than those seen with other vitamin D analogues. Dosing-time-dependent variation in the sensitivity of the drug to osteoclast were involved in the mechanisms of these events.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Division of Clinical Pharmacology, Jichi Medical School, 3311 Yakushiji Minamikawachi, Kawachi, Tochigi 329-0498, Japan.
| | | | | | | | | | | | | |
Collapse
|
49
|
Tsuruoka S, Wakaumi M, Yamamoto H, Fujimura A. Chronopharmacology of oxacalcitriol in rat model of osteoporosis. Eur J Pharmacol 2004; 488:239-45. [PMID: 15044057 DOI: 10.1016/j.ejphar.2004.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 02/05/2004] [Accepted: 02/06/2004] [Indexed: 11/26/2022]
Abstract
We have previously reported the merits of chronopharmacological effect of 1-alpha(OH) vitamin D3 in aged stroke-prone spontaneously hypertensive rat (SHRSP), a model of osteoporosis [Eur. J. Pharmacol. 428 (2001) 283.]. In this study, the chronopharmacological effect of 22-oxacalcitriol, a newly developed active vitamin D3 analogue with less calcemic activity, was evaluated by a single and repeated dosing of the drug in aged SHRSP. Animals (7 months old) were kept in rooms with a 12-h light/dark cycle. Single (12.5 microg/kg, i.v.) and repeated (5 microg/kg, i.v. three times a week for 12 weeks) dosing of 22-oxacalcitriol or vehicle was given at either 2 h after lights on (2HALO) or 14 h after lights on (14HALO). The severity of adverse reactions such as the changes of body weight, hypercalcemia and hyperphosphatemia, was significantly mild when the drug was given at 14HALO. Especially, the increase of serum Ca concentration was not detected at 14HALO trial. Serum concentrations of total (protein-bound and unbound) 22-oxacalcitriol and albumin (a major binding protein of the drug) of the 2HALO and 14HALO trials did not significantly differ. The decrease of parathyroid hormone (PTH) concentration was greater in the 14HALO trial while the increase in urinary ratio of Ca to creatinine was greater in the 2HALO trial. The increase in bone density of both femurs at the end of the study was greater in the 14HALO trial. The suppression of urinary excretion of deoxypyridinoline, an index of bone resorption capacity of osteoclast, was greater in the 14HALO trial, which indicates that the efficacy of 22-oxacalcitriol for suppressing bone resorption might vary with the dosing time. This is the first study to show the dosing-time-dependent changes in the efficacy and toxicity of 22-oxacalcitriol in the animal model of osteoporosis. Chronopharmacological differences seem to be more prominent than those of other vitamin D analogues. To use 22-oxacalcitriol at an adequate timing might provide better efficacy and safety than other vitamin D3 analogues for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Shuichi Tsuruoka
- Department of Pharmacology, Division of Clinical Pharmacology, Jichi Medical School, 3311 Yakushiji, Minamikawachi, Kawachi, Tochigi 329-0498, Japan.
| | | | | | | |
Collapse
|
50
|
Rodriguez M, Petitclerc D, Burchard JF, Nguyen DH, Block E. Blood melatonin and prolactin concentrations in dairy cows exposed to 60 Hz electric and magnetic fields during 8 h photoperiods. Bioelectromagnetics 2004; 25:508-15. [PMID: 15376244 DOI: 10.1002/bem.20024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two experiments were conducted to test the hypothesis that electric and magnetic field (EMF) exposure may result in endocrine responses similar to those observed in animals exposed to long days. In the first experiment, 16 lactating, pregnant Holstein cows were assigned to two replicates according to a crossover design with treatment switchback. All animals were confined to wooden metabolic cages and maintained under short day photoperiods (8 h light/16 h dark). Treated animals were exposed to a vertical electric field of 10 kV/m and a horizontal magnetic field of 30 microT (EMF) for 16 h/day for 4 weeks. In a second, similar experiment, 16 nonlactating, nonpregnant Holstein cows subjected to short days were exposed to EMF, using a similar protocol, for periods corresponding to the duration of one estrous cycle. In the first experiment, circulating MLT concentrations during the light period showed a small numerical decrease during EMF exposure (P < .05). Least-square means for the 8 h light period were 9.9 versus 12.4 pg/ml, SE = 1.3. Melatonin concentrations during the dark period were not affected by the treatment. A similar trend was observed in the second experiment, where MLT concentrations during the light period tended to be lower (8.8 pg/ml vs. 16.3 pg/ml, P < .06) in the EMF exposed group, and no effects were observed during the dark period. Plasma prolactin (PRL) was increased in the EMF exposed group (16.6 vs. 12.7 ng/ml, P < .02) in the first experiment. In the second experiment, the overall PRL concentrations found were lower, and the mean plasma PRL concentration was not affected by treatment. These experiments provide evidence that EMF exposure may modify the response of dairy cows to photoperiod.
Collapse
Affiliation(s)
- M Rodriguez
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | | | | | | | |
Collapse
|