1
|
Trembath HE, Yeh JJ, Lopez NE. Gastrointestinal Malignancy: Genetic Implications to Clinical Applications. Cancer Treat Res 2024; 192:305-418. [PMID: 39212927 DOI: 10.1007/978-3-031-61238-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Advances in molecular genetics have revolutionized our understanding of the pathogenesis, progression, and therapeutic options for treating gastrointestinal (GI) cancers. This chapter provides a comprehensive overview of the molecular landscape of GI cancers, focusing on key genetic alterations implicated in tumorigenesis across various anatomical sites including GIST, colon and rectum, and pancreas. Emphasis is placed on critical oncogenic pathways, such as mutations in tumor suppressor genes, oncogenes, chromosomal instability, microsatellite instability, and epigenetic modifications. The role of molecular biomarkers in predicting prognosis, guiding treatment decisions, and monitoring therapeutic response is discussed, highlighting the integration of genomic profiling into clinical practice. Finally, we address the evolving landscape of precision oncology in GI cancers, considering targeted therapies and immunotherapies.
Collapse
Affiliation(s)
- Hannah E Trembath
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Jen Jen Yeh
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA
| | - Nicole E Lopez
- Division of Colon and Rectal Surgery, Department of Surgery, University of California San Diego, 4303 La Jolla Village Drive Suite 2110, San Diego, CA, 92122, USA.
- Division of Surgical Oncology, Department of Surgery, University of North Carolina, 170 Manning Drive, CB#7213, 1150 Physician's Office Building, Chapel Hill, NC, 27599-7213, USA.
| |
Collapse
|
2
|
Panagopoulos I, Heim S. Interstitial Deletions Generating Fusion Genes. Cancer Genomics Proteomics 2021; 18:167-196. [PMID: 33893073 DOI: 10.21873/cgp.20251] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/16/2022] Open
Abstract
A fusion gene is the physical juxtaposition of two different genes resulting in a structure consisting of the head of one gene and the tail of the other. Gene fusion is often a primary neoplasia-inducing event in leukemias, lymphomas, solid malignancies as well as benign tumors. Knowledge about fusion genes is crucial not only for our understanding of tumorigenesis, but also for the diagnosis, prognostication, and treatment of cancer. Balanced chromosomal rearrangements, in particular translocations and inversions, are the most frequent genetic events leading to the generation of fusion genes. In the present review, we summarize the existing knowledge on chromosome deletions as a mechanism for fusion gene formation. Such deletions are mostly submicroscopic and, hence, not detected by cytogenetic analyses but by array comparative genome hybridization (aCGH) and/or high throughput sequencing (HTS). They are found across the genome in a variety of neoplasias. As tumors are increasingly analyzed using aCGH and HTS, it is likely that more interstitial deletions giving rise to fusion genes will be found, significantly impacting our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ioannis Panagopoulos
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway;
| | - Sverre Heim
- Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Baker SJ, Vogelstein B. p53: a tumor suppressor hiding in plain sight. J Mol Cell Biol 2020; 11:536-538. [PMID: 31276589 PMCID: PMC6736432 DOI: 10.1093/jmcb/mjz068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Suzanne J Baker
- St Jude Children's Research Hospital, Department of Developmental Neurobiology, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bert Vogelstein
- Ludwig Center & Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street St, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
The Temporal Regulation of S Phase Proteins During G 1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:335-369. [PMID: 29357066 DOI: 10.1007/978-981-10-6955-0_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Successful DNA replication requires intimate coordination with cell-cycle progression. Prior to DNA replication initiation in S phase, a series of essential preparatory events in G1 phase ensures timely, complete, and precise genome duplication. Among the essential molecular processes are regulated transcriptional upregulation of genes that encode replication proteins, appropriate post-transcriptional control of replication factor abundance and activity, and assembly of DNA-loaded protein complexes to license replication origins. In this chapter we describe these critical G1 events necessary for DNA replication and their regulation in the context of both cell-cycle entry and cell-cycle progression.
Collapse
|
5
|
Abstract
The analysis of the molecular mechanisms governing multistep carcinogenesis became experimentally approachable since the identification and characterization in tumor cells of altered or activated versions of cellular genes (oncogenes) that normally control cell growth and differentiation. The activating mutations confer new properties to the oncogene products and should therefore be considered as gain of function mutations. In addition, the oncogenes appear to act as dominant genetic traits since they act also in the presence of the homologous wild-type allele. However, the concept of a dominance of the transformed phenotype has been challenged by early experiments with somatic cell hybrids which showed that the fusion of normal and malignant cells may suppress the tumorigenic phenotype. The suppression or reversion of the malignant phenotype by the introduction of a normal chromosome into a tumor cell line has lent support to the idea that a family of cellular genes are coding for factors capable to interact with the cell-growth control machinery. These genes seem to reconstitute the normal control of cell growth even in the presence of an activated oncogene. In addition, a two-mutation model has been proposed to explain the epidemiological and clinical features of childhood cancers. According to the model, the development of these malignancies can be caused by the loss or inactivation of both alleles of cellular genes, as suggested by the somatic cell hybrid experiments where the function of the inactivated genes is restored by the contribution of those derived from the normal parental cells. This family of genes is designated as onco-suppressor genes since their product is necessary for the normal regulated cell growth and is lacking or inactivated in malignant cells. At gene level they should be considered as recessive genetic traits, since the tumor phenotype appears when both alleles of an oncosuppressor gene are inactivated. The mutations affecting their normal functions belong to the type « loss of function ». The molecular analysis of retinoblastoma has led to the cloning and sequencing of the related onco-suppressor gene (RB gene) whose product displays the features of a gene-regulatory protein. In addition, a binding between the RB product and various viral onco-proteins (E1A, large T, E7) has been demonstrated, thus suggesting a mechanism of RB inactivation by which some DNA viruses can transform the host cell. Finally, the increasing availability of DNA markers, defining restriction fragment length polymorphisms, has led to the mapping of the loci of inherited predisposition for familial cancer syndromes such as MEN-1, VHL and NF-2 and to the extension to common cancers of the allele losses analysis that can reveal onco-suppressor gene inactivation. This indirect approach has suggested the occurrence of different onco-suppressor genes for sporadic breast, colonic and lung cancers, bladder carcinoma, germinal tumors of the testis and malignant melanoma. In particular, colonic cancer provides a significant example of a possible multistep scenario for carcinogenesis in humans in which activated oncogenes (e.g. ras) and inactivated putative onco-suppressor genes (on chromosome 17 and 18) coexist in the same cell.
Collapse
Affiliation(s)
- G Della Porta
- Division of Experimental Oncology A, Istituto Nazionale Tumori, Milan, Italy
| | | | | |
Collapse
|
6
|
|
7
|
Goel RK, Lukong KE. Understanding the cellular roles of Fyn-related kinase (FRK): implications in cancer biology. Cancer Metastasis Rev 2017; 35:179-99. [PMID: 27067725 DOI: 10.1007/s10555-016-9623-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The non-receptor tyrosine kinase Fyn-related kinase (FRK) is a member of the BRK family kinases (BFKs) and is distantly related to the Src family kinases (SFKs). FRK was first discovered in 1993, and studies pursued thereafter attributed a potential tumour-suppressive function to the enzyme. In recent years, however, further functional characterization of the tyrosine kinase in diverse cancer types suggests that FRK may potentially play an oncogenic role as well. Specifically, while ectopic expression of FRK suppresses cell proliferation and migration in breast and brain cancers, knockdown or catalytic inhibition of FRK suppresses these cellular processes in pancreatic and liver cancer. Such functional paradox is therefore evidently exhibited in a tissue-specific context. This review sheds light on the recent developments emerged from investigations on FRK which include: (a) a review of the expression pattern of the protein in mammalian cells/tissues, (b) underlying genomic perturbations and (c) a mechanistic function of the enzyme across different cellular environments. Given its functional heterogeneity observed across different cancers, we also discuss the therapeutic significance of FRK.
Collapse
Affiliation(s)
- Raghuveera Kumar Goel
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada
| | - Kiven Erique Lukong
- Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Saskatoon, S7N 5E5, Saskatchewan, Canada.
| |
Collapse
|
8
|
Kinehara M, Yamamoto Y, Shiroma Y, Ikuo M, Shimamoto A, Tahara H. DNA and Histone Modifications in Cancer Diagnosis. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017:533-584. [DOI: 10.1007/978-3-319-59786-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
9
|
Abstract
Retinoblastoma is the most common primary intraocular malignancy of childhood. It typically presents with leukocoria or strabismus. In later stages of the disease, the child may exhibit proptosis, buphthalmos, or hypopyon. The pathognomonic molecular aberration is a loss of function mutation in the RB1 gene on chromosome 13q. The degree of tumor involvement within the eye is defined by its group. Grouping was historically done with Reese-Ellsworth System. Recent therapeutic advances have led to the development of a new grouping system, the International Classification of Retinoblastoma (ICRB). In cases of extraocular extension and metastatic disease, the degree of tumor involvement outside of the eye is defined by its stage. Retinoblastoma is staged using the International Retinoblastoma Staging System (IRSS). Children with intraocular retinoblastoma have an excellent overall and ocular survival. In order to avoid the morbidity of enucleation and external beam radiation, treatments for isolated intraocular retinoblastoma have progressively moved toward targeted local modalities. Patients with extraocular involvement, such as those with trilateral retinoblastoma, have a poorer prognosis. The majority of these higher stage patients are now able to be cured with combination chemotherapy.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets 2014; 15:2-16. [PMID: 24387338 DOI: 10.2174/1389450114666140106095151] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine. 240 Med Sci D, Irvine, CA 92697, USA.
| |
Collapse
|
11
|
Lee TC, Gombos DS, Harbour JW, Mansfield NC, Murphree AL. Retinoblastoma. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Schreiber C, Vormbrock K, Ziebold U. Genes involved in the metastatic cascade of medullary thyroid tumours. Methods Mol Biol 2012; 878:217-228. [PMID: 22674136 DOI: 10.1007/978-1-61779-854-2_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The process of how a benign tumour turns invasive and capable to survive in distant organs remains poorly understood, despite the evidence that metastasis formation is the primary cause of cancer patient mortality. This ignorance is partly due to the lack of appropriate animal models from which to investigate this complex process. The retinoblastoma (Rb) tumour suppressor pathway (pRb/E2F) is mutated in almost all human tumours, and a number of laboratories have now established pRb- or E2F-deficient mouse models. Consistent with the role of mutation in retinoblastoma in cancer biology, Rb heterozygous mice are prone to develop tumours. Among the ensuing tumours, the medullary thyroid carcinomas (MTCs) have a lessened tendency to form secondary cancers and metastases. Intriguingly, if an E2f3 mutation is introduced in this genetic background, more aggressive MTCs develop, which metastasize more frequently. Gene chip microarrays, however, provide an unbiased approach for examining the genome-wide expression levels and enable identification of a large set of metastasis-enriched gene sets. The identified genes may simply represent putative markers of the disease stage. Alternatively, genes may be identified that causally determine a link to the onset of metastasis. We describe the use of gene chip microarrays for identification of putative markers enriched in metastatic mouse MTCs. The chapter details how the most promising candidates are verified using additional methods, such as quantitative real-time PCR. In this case, co-transfection of the E2F-transcription factor using a heterologous reporter gene system is suggestive of E2Fs directly regulating putative metastasis markers.
Collapse
Affiliation(s)
- Caroline Schreiber
- Max-Delbrück-Center for Molecular Medicine, Free University Berlin, Berlin, Germany
| | | | | |
Collapse
|
13
|
Abstract
This year, 2011, marks the forty-year anniversary of the statistical analysis of retinoblastoma that provided the first evidence that tumorigenesis can be initiated by as few as two mutations. This work provided the foundation for the two-hit hypothesis that explained the role of recessive tumour suppressor genes (TSGs) in dominantly inherited cancer susceptibility syndromes. However, four decades later, it is now known that even partial inactivation of tumour suppressors can critically contribute to tumorigenesis. Here we analyse this evidence and propose a continuum model of TSG function to explain the full range of TSG mutations found in cancer.
Collapse
|
14
|
Mathew L, Miale TD, Rao S, Lobel SA, Fishman GA, Goldberg MF. Retrospective analysis of 58 children with retinoblastoma”. ACTA ACUST UNITED AC 2009; 4:67-74. [PMID: 6545386 DOI: 10.3109/13816818409007840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We performed a retrospective analysis of 58 children with retinoblastoma seen at the University of Illinois at Chicago between 1960 and 1982. Our findings showed an almost equal distribution by sex, a predominance (69%) of white patients, and a common presenting symptom (70%) of leukocoria, with (22%) or without (48%) strabismus. Unilateral involvement was noted in 35 patients (60%). Of the 23 (40%) bilaterally affected children, 19 had simultaneous involvement at the time of diagnosis. All bilateral and 90% of the unilateral cases were diagnosed before age five years. Family history was positive for retinoblastoma in five bilateral and one unilateral case. At the time of diagnosis, 35 patients had stage V disease (Reese-Ellsworth classification, Table 1). Depending on the stage of disease treatment included enucleation, radiation, and chemotherapy. Mortality was 25% from 1960 to 1974, and zero thereafter.
Collapse
|
15
|
How the Rb tumor suppressor structure and function was revealed by the study of Adenovirus and SV40. Virology 2009; 384:274-84. [PMID: 19150725 DOI: 10.1016/j.virol.2008.12.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 12/08/2008] [Indexed: 12/14/2022]
Abstract
The review recounts the history of how the study of the DNA tumor viruses including polyoma, SV40 and Adenovirus brought key insights into the structure and function of the Retinoblastoma protein (Rb). Knudsen's model of the two-hit hypothesis to explain patterns of hereditary and sporadic retinoblastoma provided the foundation for the tumor suppressor hypothesis that ultimately led to the cloning of the Rb gene. The discovery that SV40 and Adenovirus could cause tumors when inoculated into animals was startling not only because SV40 had contaminated the poliovirus vaccine and Adenovirus was a common cause of viral induced pneumonia but also because they provided an opportunity to study the genetics and biochemistry of cancer. Studies of mutant forms of these viruses led to the identification of the E1A and Large T antigen (LT) oncogenes and their small transforming elements including the Adenovirus Conserved Regions (CR), the SV40 J domain and the LxCxE motif. The immunoprecipitation studies that initially revealed the size and ultimately the identity of cellular proteins that could bind to these transforming elements were enabled by the widespread development of highly specific monoclonal antibodies against E1A and LT. The identification of Rb as an E1A and LT interacting protein quickly led to the cloning of p107, p130, p300, CBP, p400 and TRRAP and the concept that viral transformation was due, at least in part, to the perturbation of the function of normal cellular proteins. In addition, studies on the ability of E1A to transactivate the Adenovirus E2 promoter led to the cloning of the heterodimeric E2F and DP transcription factor and recognition that Rb repressed transcription of cellular genes required for cell cycle entry and progression. More recent studies have revealed how E1A and LT combine the activity of Rb and the other cellular associated proteins to perturb expression of many genes during viral infection and tumor formation.
Collapse
|
16
|
Majewski T, Lee S, Jeong J, Yoon DS, Kram A, Kim MS, Tuziak T, Bondaruk J, Lee S, Park WS, Tang KS, Chung W, Shen L, Ahmed SS, Johnston DA, Grossman HB, Dinney CP, Zhou JH, Harris RA, Snyder C, Filipek S, Narod SA, Watson P, Lynch HT, Gazdar A, Bar-Eli M, Wu XF, McConkey DJ, Baggerly K, Issa JP, Benedict WF, Scherer SE, Czerniak B. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. J Transl Med 2008; 88:694-721. [PMID: 18458673 PMCID: PMC2849658 DOI: 10.1038/labinvest.2008.27] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The search for the genomic sequences involved in human cancers can be greatly facilitated by maps of genomic imbalances identifying the involved chromosomal regions, particularly those that participate in the development of occult preneoplastic conditions that progress to clinically aggressive invasive cancer. The integration of such regions with human genome sequence variation may provide valuable clues about their overall structure and gene content. By extension, such knowledge may help us understand the underlying genetic components involved in the initiation and progression of these cancers. We describe the development of a genome-wide map of human bladder cancer that tracks its progression from in situ precursor conditions to invasive disease. Testing for allelic losses using a genome-wide panel of 787 microsatellite markers was performed on multiple DNA samples, extracted from the entire mucosal surface of the bladder and corresponding to normal urothelium, in situ preneoplastic lesions, and invasive carcinoma. Using this approach, we matched the clonal allelic losses in distinct chromosomal regions to specific phases of bladder neoplasia and produced a detailed genetic map of bladder cancer development. These analyses revealed three major waves of genetic changes associated with growth advantages of successive clones and reflecting a stepwise conversion of normal urothelial cells into cancer cells. The genetic changes map to six regions at 3q22-q24, 5q22-q31, 9q21-q22, 10q26, 13q14, and 17p13, which may represent critical hits driving the development of bladder cancer. Finally, we performed high-resolution mapping using single nucleotide polymorphism markers within one region on chromosome 13q14, containing the model tumor suppressor gene RB1, and defined a minimal deleted region associated with clonal expansion of in situ neoplasia. These analyses provided new insights on the involvement of several non-coding sequences mapping to the region and identified novel target genes, termed forerunner (FR) genes, involved in early phases of cancer development.
Collapse
Affiliation(s)
- Tadeusz Majewski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Knudson AG. Epidemiology of genetically determined cancer. CIBA FOUNDATION SYMPOSIUM 2007; 142:3-12; discussion 12-9. [PMID: 2663385 DOI: 10.1002/9780470513750.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dominantly heritable susceptibility is known for virtually every cancer. Susceptibility is typically restricted to one or a few tumours. For some tumours there appear to be at least two different predisposing conditions. Some mutant gene carriers survive to old age without developing the expected tumour(s). Some cases are new germline mutations. None of the conditions is very common, because of natural selection against gene carriers. Two questions arise: What is inherited? What is the relationship between the hereditary and non-hereditary forms of the same tumour? Retinoblastoma is a prototypic tumour. Penetrance in humans is nearly complete by the age of five years in the heritable form, which usually affects both eyes. Rare cases in which there is a constitutional deletion of chromosomal band 13q14 permitted localization of the responsible gene. Tumour formation is clearly a rare event at the cellular level, suggesting the necessity of a second, somatic, event. The difference in ages at diagnosis between unilateral and bilateral cases also suggests that two somatic events occur in non-hereditary cases. One explanation is that the gene is recessive and the second event involves loss of the remaining normal allele by mutation, non-disjunction, deletion or somatic recombination. The normal allele may be regarded as anti-oncogenic.
Collapse
Affiliation(s)
- A G Knudson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111
| |
Collapse
|
18
|
Hamilton GA. Peroxisomal oxidases and suggestions for the mechanism of action of insulin and other hormones. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 57:85-178. [PMID: 2863924 DOI: 10.1002/9780470123034.ch2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Abstract
The retinoblastoma susceptibility gene was the first tumor suppressor gene identified in humans and the first tumor suppressor gene knocked out by targeted deletion in mice. RB serves as a transducer between the cell cycle machinery and promoter-specific transcription factors, its most documented activity being the repression of the E2F family of transcription factors, which regulate the expression of genes involved in cell proliferation and survival. Recent investigations of RB function suggest that it works as a fundamental regulator to coordinate pathways of cellular growth and differentiation. In this review, we unravel the novel role of an equally important aspect of RB in downregulating the differentiation inhibitor EID-1 during cellular differentiation by teasing apart the signal, which elicit differentiation and limit cell cycle progression, since the molecular mechanisms relating to RB activation of differentiation is much less understood. We review the various roles for RB in differentiation of neurons, muscle, adipose tissue, and the retina. In addition, we provide an update for the current models of the role of RB in cell cycle to entry and exit, extending the view toward chromatin remodeling and expose the dichotomies in the regulation of RB family members. We conclude with a discussion of a novel RB regulatory network, incorporating the dynamic contribution of EID family proteins.
Collapse
Affiliation(s)
- L Khidr
- Department of Biological Chemistry, University of California-Irvine Med Sci 1, Irvine, CA 92697, USA
| | | |
Collapse
|
20
|
Murphree AL, Samuel MA, Harbour JW, Mansfield NC. Retinoblastoma. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Abstract
The past 60 years surely constitute a Golden Age for biomedical science, and for medical genetics in particular. A personal experience began with an encounter with inborn errors of metabolism, selection, and the incidences of hereditary diseases, and peaked with molecular biology, virology, and cytogenetics, finally focusing all three on the problem of cancer.
Collapse
|
22
|
|
23
|
Abstract
Molecular genetic studies of familial cancer syndromes identified and defined the recessive nature of tumor suppressor genes and resolved the paradox of why tumors arising in such families exhibited an autosomally dominant pattern of inheritance. Subsequent characterization of tumor suppressor proteins revealed their widespread involvement in sporadic cancers and pinpointed key mechanisms that protect animals against tumor development. We now recognize that tumor suppressor genes regulate diverse cellular activities, including cell cycle checkpoint responses, detection and repair of DNA damage, protein ubiquitination and degradation, mitogenic signaling, cell specification, differentiation and migration, and tumor angiogenesis. Their study has become a centerpiece of contemporary cancer research.
Collapse
Affiliation(s)
- Charles J Sherr
- Howard Hughes Medical Institute, Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA.
| |
Collapse
|
24
|
Affiliation(s)
- Alfred G Knudson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
25
|
Cesari R, Martin ES, Calin GA, Pentimalli F, Bichi R, McAdams H, Trapasso F, Drusco A, Shimizu M, Masciullo V, D'Andrilli G, Scambia G, Picchio MC, Alder H, Godwin AK, Croce CM. Parkin, a gene implicated in autosomal recessive juvenile parkinsonism, is a candidate tumor suppressor gene on chromosome 6q25-q27. Proc Natl Acad Sci U S A 2003; 100:5956-61. [PMID: 12719539 PMCID: PMC156308 DOI: 10.1073/pnas.0931262100] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In an effort to identify tumor suppressor gene(s) associated with the frequent loss of heterozygosity observed on chromosome 6q25-q27, we constructed a contig derived from the sequences of bacterial artificial chromosomeP1 bacteriophage artificial chromosome clones defined by the genetic interval D6S1581-D6S1579-D6S305-D6S1599-D6S1008. Sequence analysis of this contig found it to contain eight known genes, including the complete genomic structure of the Parkin gene. Loss of heterozygosity (LOH) analysis of 40 malignant breast and ovarian tumors identified a common minimal region of loss, including the markers D6S305 (50%) and D6S1599 (32%). Both loci exhibited the highest frequencies of LOH in this study and are each located within the Parkin genomic structure. Whereas mutation analysis revealed no missense substitutions, expression of the Parkin gene appeared to be down-regulated or absent in the tumor biopsies and tumor cell lines examined. In addition, the identification of two truncating deletions in 3 of 20 ovarian tumor samples, as well as homozygous deletion of exon 2 in the lung adenocarcinoma cell lines Calu-3 and H-1573, supports the hypothesis that hemizygous or homozygous deletions are responsible for the abnormal expression of Parkin in these samples. These data suggest that the LOH observed at chromosome 6q25-q26 may contribute to the initiation andor progression of cancer by inactivating or reducing the expression of the Parkin gene. Because Parkin maps to FRA6E, one of the most active common fragile sites in the human genome, it represents another example of a large tumor suppressor gene, like FHIT and WWOX, located at a common fragile site.
Collapse
Affiliation(s)
- Rossano Cesari
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lim IK. Spectrum of molecular changes during hepatocarcinogenesis induced by DEN and other chemicals in Fisher 344 male rats [Mechanisms of Ageing and Development 123 (2002) 1665-1680]. Mech Ageing Dev 2003; 124:697-708. [PMID: 12825548 DOI: 10.1016/s0047-6374(03)00010-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
UNLABELLED Unlike other tissues such as breast, colon and renal cell carcinoma, it is not an easy task to single out any representative oncogene or tumor suppressor genes in the development of hepatocellular carcinoma (HCC), which play a pivotal role. To investigate putatively altered main pathways in HCC, F344 male rats were treated with a single injection of N-nitrosodiethylamine (DEN), followed by either twice/week injections of nodularin for 10 weeks or thioacetamide (TAA) in drinking water for 39 weeks. p53 expression was dramatic in both hepatocytes and mesenchymal cells after a single injection of DEN, however, PCR-SSCP assay could not detect any p53 mutation during the development of hepatocellular adenoma (HCA). The data indicate that wtp53 response was mostly for removal of damaged cells during the initiation of carcinogenesis. When treated with DEN-TAA, induction of gankyrin expression during hepatic fibrosis preceded the loss of pRB protein, accompanied with significant expressions of G1phase cyclins and CDKs. Moreover, p16(INK4A) exon 1 was hypermethylated during the development of poorly differentiated HCCs. These changes would result in complete inactivation of the pRB regulatory pathway during hepatocarcinogenesis. Induction of TGF-beta1 expression with loss of its receptor expression occurred rapidly in the altered hepatocytes by DEN-nodularin treatment. CONCLUSION Therefore, escape from TGF-beta1 induced apoptosis and severe degradation of pRB protein during the early stage of carcinogenesis can perform a symphony to proliferate and to transform the altered hepatocytes to tumor cells. Inactivation of p16(INK4A) and p53 genes at the later stage of carcinogenesis would endow HCC with malignancy, which is highly resistant to any therapeutic trials.
Collapse
Affiliation(s)
- In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Gyunggi-do, Suwon, South Korea.
| |
Collapse
|
27
|
Richter S, Vandezande K, Chen N, Zhang K, Sutherland J, Anderson J, Han L, Panton R, Branco P, Gallie B. Sensitive and efficient detection of RB1 gene mutations enhances care for families with retinoblastoma. Am J Hum Genet 2003; 72:253-69. [PMID: 12541220 PMCID: PMC379221 DOI: 10.1086/345651] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2002] [Accepted: 10/11/2002] [Indexed: 01/12/2023] Open
Abstract
Timely molecular diagnosis of RB1 mutations enables earlier treatment, lower risk, and better health outcomes for patients with retinoblastoma; empowers families to make informed family-planning decisions; and costs less than conventional surveillance. However, complexity has hindered clinical implementation of molecular diagnosis. The majority of RB1 mutations are unique and distributed throughout the RB1 gene, with no real hot spots. We devised a sensitive and efficient strategy to identify RB1 mutations that combines quantitative multiplex polymerase chain reaction (QM-PCR), double-exon sequencing, and promoter-targeted methylation-sensitive PCR. Optimization of test order by stochastic dynamic programming and the development of allele-specific PCR for four recurrent point mutations decreased the estimated turnaround time to <3 wk and decreased direct costs by one-third. The multistep method reported here detected 89% (199/224) of mutations in bilaterally affected probands and both mutant alleles in 84% (112/134) of tumors from unilaterally affected probands. For 23 of 27 exons and the promoter region, QM-PCR was a highly accurate measure of deletions and insertions (accuracy 95%). By revealing those family members who did not carry the mutation found in the related proband, molecular analysis enabled 97 at-risk children from 20 representative families to avoid 313 surveillance examinations under anesthetic and 852 clinic visits. The average savings in direct costs from clinical examinations avoided by children in these families substantially exceeded the cost of molecular testing. Moreover, health care savings continue to accrue, as children in succeeding generations avoid unnecessary repeated anaesthetics and examinations.
Collapse
Affiliation(s)
- Suzanne Richter
- Faculty of Medicine, University of Western Ontario, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lim IK. Spectrum of molecular changes during hepatocarcinogenesis induced by DEN and other chemicals in Fischer 344 male rats. Mech Ageing Dev 2002; 123:1665-80. [PMID: 12470904 DOI: 10.1016/s0047-6374(02)00087-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
UNLABELLED Unlike other tissues such as breast, colon and renal cell carcinoma, it is not an easy task to single out any representative oncogene or tumor suppressor genes in the development of hepatocellular carcinoma (HCC), which play a pivotal role. To investigate putatively altered main pathways in HCC, F344 male rats were treated with a single injection of N-nitrosodiethylamine (DEN), followed by either twice/week injections of nodularin for 10 weeks or thioacetamide (TAA) in drinking water for 39 weeks. p53 expression was dramatic in both hepatocytes and mesenchymal cells after a single injection of DEN, however, PCR-SSCP assay could not detect any p53 mutation during the development of hepatocellular adenoma. The data indicate that wtp53 response was mostly for removal of damaged cells during the initiation of carcinogenesis. When treated with DEN-TAA, induction of gankyrin expression during hepatic fibrosis preceded the loss of pRB protein, accompanied with significant expressions of G1 phase cyclins and CDKs. Moreover, p16(INK4A) exon 1 was hypermethylated during the development of poorly differentiated HCCs. These changes would result in complete inactivation of the pRB regulatory pathway during hepatocarcinogenesis. Induction of TGF-beta1 expression with loss of its receptor expression occurred rapidly in the altered hepatocytes by DEN-nodularin treatment. CONCLUSION Therefore, escape from TGF-beta1 induced apoptosis and severe degradation of pRB protein during the early stage of carcinogenesis can perform a symphony to proliferate and to transform the altered hepatocytes to tumor cells. Inactivation of p16(INK4A) and p53 genes at the later stage of carcinogenesis would endow HCC with malignancy, which is highly resistant to any therapeutic trials.
Collapse
Affiliation(s)
- In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 442-721, South Korea.
| |
Collapse
|
29
|
Perez-Gracia JL, Gloria Ruiz-Ilundain M, Garcia-Ribas I, Maria Carrasco E. The role of extreme phenotype selection studies in the identification of clinically relevant genotypes in cancer research. Cancer 2002; 95:1605-10. [PMID: 12237932 DOI: 10.1002/cncr.10877] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The investigation of genetic alterations that may be related to the prognosis of patients with malignant disease has become a frequently used strategy in recent years. Although some conclusions have been reached in certain studies, the complexity and the multifactorial nature of most neoplastic diseases makes it difficult to identify clinically relevant information, and the results of some studies have been of borderline significance or have been conflicting. In contrast, the identification and the study of patients or families with very characteristic phenotypes have yielded outstanding results in the identification of the genetic characteristics underlying such phenotypes. Although, in most cases, the individuals who are selected for these types of studies are characterized by a negative phenotype (i.e., individuals who are at increased risk for developing a specific disease), a few studies have been directed toward individuals with phenotypes that imply an unusually good prognosis (i.e., individuals who present with a decreased risk for developing specific diseases despite an important exposure to well-known risk factors). Therefore, it seems logical to develop this strategy further as a valid methodology for the study of other diseases, such as cancer. The study of individuals with phenotypes that imply an extremely good prognosis, such as long-term survivors of theoretically incurable malignancies or individuals who seem to be protected against a certain neoplastic disorder despite having a markedly increased risk for its development, may unveil genetic alterations that explain such characteristic phenotypes and may provide potentially useful therapeutic targets against these diseases.
Collapse
|
30
|
Abstract
Over the last decade, a growing number of tumor suppressor genes have been discovered to play a role in tumorigenesis. Mutations of p53 have been found in hematological malignant diseases, but the frequency of these alterations is much lower than in solid tumors. These mutations occur especially as hematopoietic abnormalities become more malignant such as going from the chronic phase to the blast crisis of chronic myeloid leukemia. A broad spectrum of tumor suppressor gene alterations do occur in hematological malignancies, especially structural alterations of p15(INK4A), p15(INK4B) and p14(ARF) in acute lymphoblastic leukemia as well as methylation of these genes in several myeloproliferative disorders. Tumor suppressor genes are altered via different mechanisms, including deletions and point mutations, which may result in an inactive or dominant negative protein. Methylation of the promoter of the tumor suppressor gene can blunt its expression. Chimeric proteins formed by chromosomal translocations (i.e. AML1-ETO, PML-RARalpha, PLZF-RARalpha) can produce a dominant negative transcription factor that can decrease expression of tumor suppressor genes. This review provides an overview of the current knowledge about the involvement of tumor suppressor genes in hematopoietic malignancies including those involved in cell cycle control, apoptosis and transcriptional control.
Collapse
Affiliation(s)
- Utz Krug
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, California, CA 90048, USA.
| | | | | |
Collapse
|
31
|
Affiliation(s)
- E S Hickman
- European Institute of Oncology, Department of Experimental Oncology, Via Ripamonti 435, Milano 20141, Italy
| | | |
Collapse
|
32
|
Abstract
Colorectal cancer remains a leading cause of cancer-related mortality in the United States. Recently, colorectal cancer screening and colorectal cancer prevention have gained national attention. In response, the American Gastroenterological Association, the American College of Gastroenterology and the Agency for Healthcare Policy and Research have published recommendations for colorectal cancer screening and surveillance in patients with sporadic as well as hereditary forms of colorectal cancer. This review will focus on the basic molecular differences underlying the formation of carcinoma in patients with sporadic colorectal cancer, and the heritable syndromes of familial adenomatous polyposis (FAP), hereditary non-polyposis colorectal cancer (HNPCC), and juvenile polyposis (JPS). By appreciating the molecular mechanisms underlying these four types of polyp cancer syndromes, the differences in clinical time course for progression from polyp to carcinoma and in current screening recommendations for patients with sporadic adenomas, FAP, HNPCC and JPS can be better understood.
Collapse
Affiliation(s)
- R F Souza
- Department of Medicine, Dallas VA Medical Center and University of Texas-Southwestern Medical Center at Dallas, TX, USA.
| |
Collapse
|
33
|
Ruccione K. Cancer and genetics: what we need to know now. J Pediatr Oncol Nurs 1999; 16:156-71. [PMID: 10444943 DOI: 10.1177/104345429901600306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Profound changes brought about by discoveries in molecular biology may enable us in the future to treat cancer without causing late effects or to prevent cancer altogether. Even before that happens, the age of molecular medicine has arrived. Molecular biology is the study of biological processes at the level of the molecule. A major aspect of molecular biology is molecular genetics--the science that deals with DNA and RNA. Most of the progress in molecular biology has been made in the second half of the 20th century. Each discovery or technological innovation has built on previous discoveries and paved the way for the next, culminating in the current effort to map, sequence, and understand the functions of the entire human genome. In the past 20 years, many pieces of the cancer puzzle have been found, showing us how the normal cellular control mechanisms go awry to cause cancer and setting the stage for genetic testing and disease treatment. These new discoveries bring both promise and peril. To provide comprehensive care for survivors of childhood cancer and care in other settings as well, health care providers must now be familiar with the concepts and language of molecular biology, understand its applications to cancer care, and be fully informed about its implications for clinical practice, research, and education.
Collapse
Affiliation(s)
- K Ruccione
- Long-Term Information, Follow-up, and Evaluation (LIFE) Program, Children's Center for Cancer and Blood Diseases, Children's Hospital Los Angeles, CA 90027-6016, USA
| |
Collapse
|
34
|
Woitach JT, Zhang M, Niu CH, Thorgeirsson SS. A retinoblastoma-binding protein that affects cell-cycle control and confers transforming ability. Nat Genet 1998; 19:371-4. [PMID: 9697699 DOI: 10.1038/1258] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The retinoblastoma (RB) gene is one of the most extensively studied tumour-suppressor genes. Deletion or inactivation of both RB alleles is an essential, rate-limiting step in the formation of retinoblastoma and osteosarcoma that arise in families that carry mutant RB (ref. 2). RB inactivation is also found in other human tumours. Whereas loss of RB function is associated with the loss of cellular proliferative control, introduction of a wild-type RB can suppress cell growth and tumorigenicity. Thus, identification of factors that interfere with and/or control the function of the RB protein is critical for understanding both cell-cycle control and oncogenesis. Here we describe a new gene, Bog (for B5T over-expressed gene), which was identified and shown to be overexpressed in several transformed rat liver epithelial (RLE) cell lines resistant to the growth-inhibitory effect of TGF-beta1, as well as in primary human liver tumours. The Bog protein shares homology with other retinoblastoma-binding proteins and contains the Rb-binding motif LXCXE. Using the yeast two-hybrid system and co-immunoprecipitation, we demonstrated that Bog binds to Rb. In vivo, Bog/Rb complexes do not contain E2F-1, and Bog can displace E2F-1 from E2F-1/Rb complexes in vitro. Overexpression of Bog in normal RLE cells conferred resistance to the growth-inhibitory effect of TGF-beta1. Furthermore, normal RLE cells are rapidly transformed when Bog is continuously overexpressed and form hepatoblastoma-like tumours when transplanted into nude mice. These data suggest that Bog may be important in the transformation process, in part due to its capacity to confer resistance to the growth-inhibitory effects of TGF-beta1 through interaction with Rb and the subsequent displacement of E2F-1.
Collapse
Affiliation(s)
- J T Woitach
- Laboratory of Experimental Carcinogenesis, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
35
|
Affiliation(s)
- R Ponzone
- Department of Gynaecological Oncology, University of Turin, Italy
| | | |
Collapse
|
36
|
Curling M, Stenning S, Hudson CN, Watson JV. Multivariate analyses of DNA index, p62c-myc, and clinicopathological status of patients with ovarian cancer. J Clin Pathol 1998; 51:455-61. [PMID: 9771445 PMCID: PMC500749 DOI: 10.1136/jcp.51.6.455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM To determine if either DNA index or p62c-myc is an independent prognostic variable in ovarian cancer. METHODS Multivariate and univariate analyses of the relation between DNA index, p62c-myc, FIGO stage, histological type, tumour grade, completeness of surgery, and patient survival in ovarian cancer were examined. RESULTS Multivariate analysis showed significant association of survival only with stage and grade. There was no relation between survival and DNA index. CONCLUSIONS DNA index is not an independent prognostic variable in ovarian cancer.
Collapse
MESH Headings
- Analysis of Variance
- Biomarkers, Tumor/analysis
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/mortality
- Carcinoma, Endometrioid/pathology
- Cystadenoma, Mucinous/genetics
- Cystadenoma, Mucinous/mortality
- Cystadenoma, Mucinous/pathology
- Cystadenoma, Papillary/genetics
- Cystadenoma, Papillary/mortality
- Cystadenoma, Papillary/pathology
- Cystadenoma, Serous/genetics
- Cystadenoma, Serous/mortality
- Cystadenoma, Serous/pathology
- DNA, Neoplasm/analysis
- Data Collection
- Female
- Flow Cytometry
- Humans
- Multivariate Analysis
- Neoplasm Staging
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Prognosis
- Proto-Oncogene Proteins c-myc/analysis
- Survival Rate
Collapse
Affiliation(s)
- M Curling
- Clinical Oncology Unit, Medical School, Cambridge, UK
| | | | | | | |
Collapse
|
37
|
Arbetman A, Abdala M, Fandiño A, Herrera J, Baranzini S, Borelina D, Parma D, Manzitti J, Barreiro C, Giliberto F, Szijan I. Clinical, cytogenetic, and molecular testing of Argentine patients with retinoblastoma. J AAPOS 1998; 2:102-7. [PMID: 10530971 DOI: 10.1016/s1091-8531(98)90072-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE The purpose of this study is to determine the clinical, chromosomal, and molecular characteristics of Argentine patients with unilateral and bilateral retinoblastoma. STUDY DESIGN Eighty-six patients belonging to 82 families were studied; 59% of them were examined during the first year of life. Leukocoria was the most common reason for consultation. Other presenting signs were strabismus and glaucoma. Enucleation of the affected eye was performed in 85% of the cases and the complication rate was 13%. RESULTS An appropriate therapy allowed the survival of 84 of the 86 patients. Two children with malformations and growth retardation had an abnormal karyotype with a deletion in 13q14. Segregation analysis of polymorphic sites within the retinoblastoma gene and the parental origin of the allele lost in the tumor were analyzed in 30 of the 82 families. Five mutant alleles transmitted through the germline and six de novo germline mutant alleles were identified in 12 patients with hereditary retinoblastoma. Most de novo germline mutant alleles were paternally derived. Molecular analysis of nonhereditary retinoblastoma showed loss of heterozygosity in three of eight cases. From these, two maternal alleles and one paternal allele were lost, thus not indicating a significant difference in the parental origin for the lost allele. CONCLUSIONS These data are useful for deoxyribonucleic acid diagnosis of susceptibility to retinoblastoma in relatives of hereditary patients, even if mutations have not been identified.
Collapse
Affiliation(s)
- A Arbetman
- Genética y Biología Molecular, Facultad de Farmacia y Bioquímica, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rieder H, Lohmann D, Poensgen B, Fritz B, Aslan M, Drohm D, Strombach Angersbach FJ, Rehder H. Loss of heterozygosity of the retinoblastoma (RB1) gene in lipomas from a retinoblastoma patient. J Natl Cancer Inst 1998; 90:324-6. [PMID: 9486820 DOI: 10.1093/jnci/90.4.324] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- H Rieder
- Abteilung Klinische Genetik, Medizinisches Zentrum fuer Humangenetik, Philipps-Universitaet, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Knasmüller S, Parzefall W, Helma C, Kassie F, Ecker S, Schulte-Hermann R. Toxic effects of griseofulvin: disease models, mechanisms, and risk assessment. Crit Rev Toxicol 1997; 27:495-537. [PMID: 9347226 DOI: 10.3109/10408449709078444] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Griseofulvin (GF) has been in use for more than 30 years as a pharmaceutical drug in humans for the treatment of dermatomycoses. Animal studies give clear evidence that it causes a variety of acute and chronic toxic effects, including liver and thyroid cancer in rodents, abnormal germ cell maturation, teratogenicity, and embroyotoxicity in various species. No sufficient data from human studies are available at present to exclude a risk in humans: therefore, attempts were made to elucidate the mechanisms responsible for the toxic effects of GF and to address the question whether such effects might occur in humans undergoing GF therapy. It is well documented that GF acts as a spindle poison and its reproductive toxicity as well as the induction of numerical chromosome aberrations and of micronuclei in somatic cells possibly may result from disturbance of microtubuli formation. Likewise, a causal relationship between aneuploidy and cancer has been repeatedly postulated. However, a critical survey of the data available on aneuploidogenic chemicals revealed insufficient evidence for such an association. Conceivably, other mechanisms may be responsible for the carcinogenic effects of the drug. The induction of thyroid tumors in rats by GF is apparently a consequence of the decrease of thyroxin levels and it is unlikely that such effects occur in GF-exposed humans. The appearance of hepatocellular carcinomas (HCC) in mice on GF-supplemented diet is preceded by various biochemical and morphological changes in the liver. Among these, hepatic porphyria is prominent, it may result from inhibition of ferrochelatase and (compensatory) induction of ALA synthetase. GF-induced accumulation of porphyrins in mouse liver is followed by cell damage and necrotic and inflammatory processes. Similar changes are known from certain human porphyrias which are also associated with an increased risk for HCC. However, the porphyrogenic effect of GF therapy in humans is moderate compared with that in the mouse model, although more detailed studies should be performed in order to clarify this relationship on a quantitative basis. A further important effect of GF-feeding in mice is the formation of Mallory bodies (MBs) in hepatocytes. These cytoskeletal abnormalities occur also in humans, although under different conditions; their appearance is associated with the induction of liver disease and HCC. Chronic liver damage associated with porphyria and MB formation, enhanced cell proliferation, liver enlargement, and enzyme induction all may contribute to the hepatocarcinogenic effect of GF in mice. In conclusion, further investigation is required for adequate assessment of health risks to humans under GF therapy.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Tumor Biology, Cancer Research, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
40
|
Bremner R, Du DC, Connolly-Wilson MJ, Bridge P, Ahmad KF, Mostachfi H, Rushlow D, Dunn JM, Gallie BL. Deletion of RB exons 24 and 25 causes low-penetrance retinoblastoma. Am J Hum Genet 1997; 61:556-70. [PMID: 9326321 PMCID: PMC1715941 DOI: 10.1086/515499] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A deletion in the tumor-suppressor gene, RB, discovered by quantitative multiplex PCR, shows low penetrance (LP), since only 39% of eyes at risk in this family develop retinoblastoma. The 4-kb deletion spanning exons 24 and 25 (delta24-25) is the largest ever observed in an LP retinoblastoma family. Unlike the usual RB mutations, which cause retinoblastoma in 95% of at-risk eyes and yield no detectable protein, the delta24-25 allele transcribed a message splicing exon 23 to exon 26, resulting in a detectable protein (pRBdelta24-25) that lacks 58 amino acids from the C-terminal domain, proving that this domain is essential for suppression of retinoblastoma. Two functions were partially impaired by delta24-25-nuclear localization and repression of E2F-consistent with the idea that LP mutations generate "weak alleles" by reducing but not eliminating essential activities. However, delta24-25 ablated interaction of pRB with MDM2. Since a homozygous LP allele is considered nontumorigenic, the pRB/MDM2 interaction may be semi- or nonessential for suppressing retinoblastoma. Alternatively, some homozygous LP alleles may not cause tumorigenesis because an additional event is required (the "three-hit hypothesis"), or the resulting imbalance in pRB function may cause apoptosis (the "death allele hypothesis"). pRBdelta24-25 was also completely defective in suppressing growth of Saos-2 osteosarcoma cells. Targeting pRBdelta24-25 to the nucleus did not improve Saos-2 growth suppression, suggesting that C-terminal domain functions other than nuclear localization are essential for blocking proliferation in these cells. Since delta24-25 behaves like a null allele in these cells but like an LP allele in the retina, pRB may use different mechanisms to control growth in different cell types.
Collapse
Affiliation(s)
- R Bremner
- Eye Research Institute of Canada, Department of Ophthalmology, University of Toronto, Ontario.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D. Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 1997; 90:809-19. [PMID: 9288759 DOI: 10.1016/s0092-8674(00)80540-1] [Citation(s) in RCA: 1232] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe a gene encoding p73, a protein that shares considerable homology with the tumor suppressor p53. p73 maps to 1p36, a region frequently deleted in neuroblastoma and other tumors and thought to contain multiple tumor suppressor genes. Our analysis of neuroblastoma cell lines with 1p and p73 loss of heterozygosity failed to detect coding sequence mutations in remaining p73 alleles. However, the demonstration that p73 is monoallelically expressed supports the notion that it is a candidate gene in neuroblastoma. p73 also has the potential to activate p53 target genes and to interact with p53. We propose that the disregulation of p73 contributes to tumorigenesis and that p53-related proteins operate in a network of developmental and cell cycle controls.
Collapse
Affiliation(s)
- M Kaghad
- Sanofi Recherche, Labege, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Vento R, Giuliano M, Lauricella M, Carabillò M, Main H, Gerbino E, Tesoriere G. Differentiation of Y79 cells induced by prolonged exposure to insulin. Mol Cell Biochem 1997; 170:163-70. [PMID: 9144331 DOI: 10.1023/a:1006813705101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Y79 human retinoblastoma cells are known to contain receptors for both insulin and insulin-like growth factors (IGFs), to produce these cytokines and release them in the culture medium. Previously we have demonstrated that IGFs and insulin stimulate Y79 cell proliferation through the involvement of type I IGF receptor and Insulin Receptor Substrate 1 (IRS-1). This paper studies the effect of prolonged exposure to insulin on Y79 cells. Cells grown for 10 days in the presence of insulin were reseeded and incubated once more with insulin. In the reseeded cells proliferation lowered and morphological changes appeared. After 10 days of reseeding, cells stopped proliferating and showed long ramifying neurite processes and varicosities consistent with neuronal differentiation. Morphological differentiation was accompanied by a marked increase in the content of total protein and in that of tubulin, the major protein constituent of microtubules, a marked increase in the content of specialized protein markers of dopaminergic and cholinergic differentiation (dopamine beta-hydroxylase and choline acetyltransferase activities, respectively); a contemporaneous decrease in the content of glial fibrillary acidic protein (GFAP), a specific marker of glial cells, was also observed. Our results demonstrate that prolonged exposure to insulin induces Y79 cells to differentiate into a neuronal-like phenotype. At this moment it is not possible to establish the mechanism by which insulin induces this differentiative effect.
Collapse
Affiliation(s)
- R Vento
- Institute of Biological Chemistry, University of Palermo, Italy
| | | | | | | | | | | | | |
Collapse
|
43
|
Altered Expression of the Retinoblastoma Tumor-Suppressor Gene in Leukemic Cell Lines Inhibits Induction of Differentiation But Not G1-Accumulation. Blood 1997. [DOI: 10.1182/blood.v89.8.2938] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The retinoblastoma tumor-suppressor gene, RB, has been implicated in tumor suppression, in regulation of the cell cycle, and in mediating cell differentiation. RB is necessary for hematopoiesis in mice, and aberrant RB-expression is associated with the progress and prognosis of leukemia. We have used antisense oligonucleotides, established clones stably expressing an antisense RB construct, and also established clones over expressing the retinoblastoma protein (pRb) to study the role of RB expression in monocytic differentiation induced by all-trans retinoic acid (ATRA) or 1-α-25-dihyroxycholecalciferol (Vit D3) in the monoblastic cell line U-937 and erythroid differentiation induced by transforming growth factor β1 (TGFβ1) and hemin in the erythroleukemic cell line K562. A reduction in pRb production in antisense RB-transfected U-937 clones was shown. Antisense oligonucleotides as well as expression of the antisense RB construct suppressed differentiation responses to ATRA or Vit D3, as judged by the capability to reduce nitro blue tetrazolium, by the appearance of monocyte-related cell surface antigens and by morphologic criteria. K562 cells showed decreased differentiation response to TGFβ1, but not to hemin, when incubated with antisense oligonucleotides. U-937 antisense RB-transfected cells were also suppressed in their ability to upregulate levels of hypophosphorylated pRb when induced to differentiate. Although U-937 cells incubated with antisense oligonucleotides and clones expressing the antisense RB construct were hampered in their ability to differentiate on incubation with ATRA or Vit D3, the induced G0/G1-accumulation was similar to differentiating control cells treated with ATRA or Vit D3. Intriguingly, U-937 clones overexpressing RB were also inhibited in their differentiation response to ATRA or Vit D3 but not inhibited in their ability to respond with G0/G1 accumulation when induced with these substances. The results indicate that pRb plays a role in induced differentiation of U-937 cells as well as K562 cells involving mechanisms that, at least partially, are distinct from those inducing G1 accumulation.
Collapse
|
44
|
Riede I. Three mutant genes cooperatively induce brain tumor formation in Drosophila malignant brain tumor. CANCER GENETICS AND CYTOGENETICS 1996; 90:135-41. [PMID: 8830723 DOI: 10.1016/s0165-4608(96)00093-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila melanogaster strain Malignant Brain Tumor reveals temperature-sensitive transformation of the larval brain tissue. Genetic analysis shows that three gene defects, spzMBT, yetiMBT, and tldMBT, cooperatively induce brain tumor formation. Whereas spz and tld belong to the genes inducing differentiation patterns in the embryo, yeti induces cell overgrowth. spzMBT-, yetiMBT-, and tldMBT-containing animals are larval lethal, whereas Malignant Brain Tumor is kept as a homozygous strain at a permissive temperature. This reveals that this tumor-forming strain is the result of a number of adaptive mutation events.
Collapse
Affiliation(s)
- I Riede
- BL-Institut für Neurobiologie, Madgeburg, Germany
| |
Collapse
|
45
|
|
46
|
Oğur G, Sengun Z, Arel-Kiliç G, De Busscher C, Başaran S, Ozbek U, Ayan I, Sariban E, Vamos E. Clinical and cytogenetic studies of two cases of Klinefelter syndrome with hereditary retinoblastoma and rhabdomyosarcoma. CANCER GENETICS AND CYTOGENETICS 1996; 89:77-81. [PMID: 8689618 DOI: 10.1016/0165-4608(96)00352-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Two children with Klinefelter syndrome (KS), one associated with bilateral hereditary retinoblastoma (RB) and the other with rhabdomyosarcoma (RMS) are reported. Both were boys and chromosomally mosaic for KS. The hereditary retinoblastoma case yielded 46,XY,del(13)(q12q14.2)/47, XXY(c),del(13)(q12q14.2) in PHA-stimulated lymphocytes. The rhabdomyosarcoma case yielded 46,XY/ 47,XXY(c) in peripheral blood cells whereas tumor revealed trisomy 8, trisomy 7, and t(7;13)(q33;q32) in addition to 46,XY/47,XXyc mosaicism.
Collapse
Affiliation(s)
- G Oğur
- University of Istanbul, Departments of Cancer, Genetics, Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Giuliano M, Vento R, Lauricella M, Calvaruso G, Carabillo M, Tesoriere G. Role of insulin-like growth factors in autocrine growth of human retinoblastoma Y79 cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 236:523-32. [PMID: 8612625 DOI: 10.1111/j.1432-1033.1996.00523.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this study, we have demonstrated that human retinoblastoma Y79 cells produce insulin-like growth factors (IGFs) type I and type II and release them into the medium. We have also ascertained, by means of competitive studies and cross-linking procedure, that Y79 cells contain the type-I IGF receptor (IGF-IR). Furthermore, surface-bound IGF-I is internalised by the receptor, then degraded to amino acids. Insulin, IGF-I and IGF-II caused down-regulation of IGF-IR; the effect is concentration and time dependent. Scatchard analysis demonstrated that incubation with insulin markedly decreased the binding capacity measured for IGF-I while the apparent Kd value calculated for IGF-I binding was not significantly modified. IGF-I, IGF-II and insulin induced tyrosine phosphorylation of IGF-IR. Tyrosine phosphorylation of this receptor with, however, a less strong signal, was detectable even in cells cultured in serum-free medium without the addition of any exogenous growth factor. Similar results have been found concerning the tyrosine phosphorylation of insulin receptor substrate-1 (IRS 1). Tyrosine phosphorylation of both IGF-IR and IRS 1, either under basal conditions or after stimulation with growth factors, was strongly inhibited when alpha-IR3, a monoclonal antibody to IGF-IR, was added to the culture. IGF-I was capable of inducing Y79 cell proliferation and its effect was entirely inhibited by the addition of alpha-IR3. This antibody also markedly reduced the proliferation of Y79 cells cultured in serum-free medium not supplemented with stimulatory factors. Our results indicate that IGF-I and IGF-IR mediate an autocrine growth mechanism in Y79 cells.
Collapse
Affiliation(s)
- M Giuliano
- Institute of Biological Chemistry, University of Palermo, Italy
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
According to a "two-hit" model, dominantly inherited predisposition to cancer entails a germline mutation, while tumorigenesis requires a second, somatic, mutation. Non-hereditary cancer of the same type requires the same two hits, but both are somatic. The original tumor used in this model, retinoblastoma, involves mutation or loss of both are somatic. The original tumor used in this model, retinoblastoma, involves mutation or loss of both copies of the RB1 tumor-suppressor gene in both hereditary and non-hereditary forms. In fact, most dominantly inherited cancers show this relationship. New dominantly inherited cancers show this relationship. New questions have arisen, however. When a tumor-suppressor gene is ubiquitously expressed, why is there any specificity of tumor predilection? In some instances, it is clear that two hits produce only a benign precursor lesion and that other genetic events are necessary. As the number of necessary events increase, the impact of the germline mutation diminishes. The number of events is least for embryonal tumors, and relatively small for certain sarcomas. Stem-cell proliferation evidently plays a key role early in carcinogenesis. In some tissues it is physiological, as in embryonic development and in certain tissues in adolescence. In adult renewal tissues, the sites of the common carcinomas, mutation may be necessary to impair the control of switching between renewal and replicative cell divisions; the APC gene may be the target of such a mutation.
Collapse
Affiliation(s)
- A G Knudson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA USA
| |
Collapse
|
49
|
Abstract
BACKGROUND Over the past several years significant progress has been made in identifying the cellular and biochemical mechanisms underlying carcinogenesis. OBJECTIVE This review summarizes recent advances that have helped clarify the process of malignant transformation in cutaneous tumors. RESULTS Ultraviolet radiation-induced mutations in the p53 tumor suppressor gene and human papilloma virus inhibition of the p53 and retinoblastoma tumor suppressor gene products appear to play significant roles in the development of many cutaneous squamous cell carcinomas. Studies of patients with the nevoid basal cell carcinoma syndrome suggest the existence of an additional regulatory gene that may be involved in the development of basal cell carcinomas. CONCLUSIONS Carcinogenesis is multistep process involving genetic and epigenetic alterations to specific proto-oncogene and tumor suppressor gene products that progressively release the cell from normal controlled growth and replication.
Collapse
Affiliation(s)
- R A Buzzell
- Division of Dermatology, Southern Illinois University School of Medicine, Springfield 62794-9230, USA
| |
Collapse
|
50
|
|