1
|
Yasanga T, Wunnapuk K, Phuackchantuck R, Thaikruea L, Achalawitkun T, Rungraung P, Santidherakul S. Updated Nematocyst Types in Tentacle of Venomous Box Jellyfish, Chironex indrasaksajiae(Sucharitakul, 2017) and Chiropsoides buitendijki(Horst, 1907) (Cnidaria, Cubozoa) in Thai Waters. Toxins (Basel) 2025; 17:44. [PMID: 39852997 PMCID: PMC11769429 DOI: 10.3390/toxins17010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
The multiple-tentacle box jellyfish, Chironex indrasaksajiae (Sucharitakul, 2017) and Chiropsoides buitendijki (Horst, 1907), are venomous species found in Thai waters. They are responsible for numerous envenomations through their stinging organelles, nematocysts. These specialized microscopic structures discharge venom, yet detailed knowledge of their types and morphology in these species remains limited. This study updates the characterization of nematocyst types and features in C. indrasaksajiae and C. buitendijki using light and scanning electron microscopy for detailed examination. Four distinct nematocyst types were identified: banana-shaped microbasic p-mastigophores, oval-shaped microbasic p-rhopaloids, sub-spherical microbasic p-rhopaloids, and rod-shaped isorhizas. In C. indrasaksajiae, banana-shaped microbasic p-mastigophores exhibited significant intraspecific variability, ranging from 30.26 µm to 102.56 µm in length and 6.42 µm to 17.01 µm in width. Conversely, C. buitendijki showed a narrower size range, 72.17 µm to 98.37 µm in length and 10.73 µm to 16.48 µm in width, based on multiple individuals. The size ranges for the other nematocyst types were consistent across both species. This study enhances the understanding of nematocyst morphology in these box jellyfish, providing a foundation for further research on venom delivery mechanisms and improved management of jellyfish envenomations in Thai waters.
Collapse
Affiliation(s)
- Thippawan Yasanga
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Klintean Wunnapuk
- Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rochana Phuackchantuck
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lakkana Thaikruea
- Working Group on Maritime Service Plan System Development, Region 11, Royal Thai Ministry of Public Health, Surat Thani 84000, Thailand;
| | | | - Purinat Rungraung
- Marine and Coastal Resources Research Center, The Upper Gulf of Thailand, Department of Marine and Coastal Resources, Samut Sakhon 74000, Thailand;
| | - Sineenart Santidherakul
- Medical Science Research Equipment Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
2
|
Yanagihara AA, Giglio ML, Hurwitz K, Kadler R, Espino SS, Raghuraman S, Olivera BM. Elucidation of Medusozoan (Jellyfish) Venom Constituent Activities Using Constellation Pharmacology. Toxins (Basel) 2024; 16:447. [PMID: 39453223 PMCID: PMC11510950 DOI: 10.3390/toxins16100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Within the phylum Cnidaria, sea anemones (class Anthozoa) express a rich diversity of ion-channel peptide modulators with biomedical applications, but corollary discoveries from jellyfish (subphylum Medusozoa) are lacking. To bridge this gap, bioactivities of previously unexplored proteinaceous and small molecular weight (~15 kDa to 5 kDa) venom components were assessed in a mouse dorsal root ganglia (DRG) high-content calcium-imaging assay, known as constellation pharmacology. While the addition of crude venom led to nonspecific cell death and Fura-2 signal leakage due to pore-forming activity, purified small molecular weight fractions of venom demonstrated three main, concentration-dependent and reversible effects on defined heterogeneous cell types found in the primary cultures of mouse DRG. These three phenotypic responses are herein referred to as phenotype A, B and C: excitatory amplification (A) or inhibition (B) of KCl-induced calcium signals, and test compound-induced disturbances to baseline calcium levels (C). Most notably, certain Alatina alata venom fractions showed phenotype A effects in all DRG neurons; Physalia physalis and Chironex fleckeri fractions predominantly showed phenotype B effects in small- and medium-diameter neurons. Finally, specific Physalia physalis and Alatina alata venom components induced direct excitatory responses (phenotype C) in glial cells. These findings demonstrate a diversity of neuroactive compounds in jellyfish venom potentially targeting a constellation of ion channels and ligand-gated receptors with broad physiological implications.
Collapse
Affiliation(s)
- Angel A. Yanagihara
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Matías L. Giglio
- Department of Biology, University of Utah, Salt Lake City, UT 84115, USA; (M.L.G.); (S.S.E.)
| | - Kikiana Hurwitz
- Faculty of Sciences, Brigham Young University Hawaii, Laie, HI 96762, USA;
| | - Raechel Kadler
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, USA;
| | - Samuel S. Espino
- Department of Biology, University of Utah, Salt Lake City, UT 84115, USA; (M.L.G.); (S.S.E.)
| | - Shrinivasan Raghuraman
- Department of Biology, University of Utah, Salt Lake City, UT 84115, USA; (M.L.G.); (S.S.E.)
| | - Baldomero M. Olivera
- Department of Biology, University of Utah, Salt Lake City, UT 84115, USA; (M.L.G.); (S.S.E.)
| |
Collapse
|
3
|
Holst S, Tiseo GR, Djeghri N, Sötje I. Approaches and findings in histological and micromorphological research on Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:99-192. [PMID: 39547756 DOI: 10.1016/bs.amb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The substantial development of microscopic techniques and histological examination methods during the past five decades allowed for many new insights into the histology and microanatomy of Rhizostomeae. The present review focuses on new findings about histologically important structures: nerves, senses, muscles, gonads, zooxanthellae and nematocysts. Different ontogenetic stages of rhizostome species were included in the literature research, supplemented with the authors' unpublished data and figures. The overview of the research results reveals that the application of chemo- and immunohistochemical techniques have provided deeper insights into neuronal and sensory structures and their interconnections. Modern microscopic methods led to new findings on the histological gonadal organization and details of the processes of gametogenesis, fertilization, cleavage, gastrulation, and brooding. Advanced optical methods also allowed for a better understanding of Rhizostomeae-zooxanthellae associations and the morphology and function of nematocysts. Improvements in molecular biology allowed for more precise identification of zooxanthellae associated with rhizostome species. Although there has been significant progress in all of the research subjects covered here, we identify several knowledge gaps and conclude with some recommendations for future research.
Collapse
Affiliation(s)
- Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany.
| | - Gisele R Tiseo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, Continuous Plankton Recorder Survey, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Ilka Sötje
- University of Hamburg, Institute for Cell and Systems Biology of Animals (IZS), Hamburg, Germany
| |
Collapse
|
4
|
He LS, Qi Y, Allard CAH, Valencia-Montoya WA, Krueger SP, Weir K, Seminara A, Bellono NW. Molecular tuning of sea anemone stinging. eLife 2023; 12:RP88900. [PMID: 37906220 PMCID: PMC10617991 DOI: 10.7554/elife.88900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here, we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVβ subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.
Collapse
Affiliation(s)
- Lily S He
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Yujia Qi
- Machine Learning Center Genoa (MalGa), Department of Civil, Chemical and Environmental Engineering (DICCA), University of GenoaGenoaItaly
| | - Corey AH Allard
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard UniversityCambridgeUnited States
| | - Stephanie P Krueger
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Keiko Weir
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Agnese Seminara
- Machine Learning Center Genoa (MalGa), Department of Civil, Chemical and Environmental Engineering (DICCA), University of GenoaGenoaItaly
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
5
|
Fridrich A, Salinas-Saaverda M, Kozlolvski I, Surm JM, Chrysostomou E, Tripathi AM, Frank U, Moran Y. An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis. Cell Rep 2023; 42:113072. [PMID: 37676763 PMCID: PMC10548089 DOI: 10.1016/j.celrep.2023.113072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
An ancient evolutionary innovation of a novel cell type, the stinging cell (cnidocyte), appeared >600 million years ago in the phylum Cnidaria (sea anemones, corals, hydroids, and jellyfish). A complex bursting nano-injector of venom, the cnidocyst, is embedded in cnidocytes and enables cnidarians to paralyze their prey and predators, contributing to this phylum's evolutionary success. In this work, we show that post-transcriptional regulation by a pan-cnidarian microRNA, miR-2022, is essential for biogenesis of these cells in the sea anemone Nematostella vectensis. By manipulation of miR-2022 levels in a transgenic reporter line of cnidocytes, followed by transcriptomics, single-cell data analysis, prey paralysis assays, and cell sorting of transgenic cnidocytes, we reveal that miR-2022 enables cnidocyte biogenesis in Nematostella, while exhibiting a conserved expression domain with its targets in cnidocytes of other cnidarian species. Thus, here we revealed a functional basis to the conservation of one of nature's most ancient microRNAs.
Collapse
Affiliation(s)
- Arie Fridrich
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria.
| | | | - Itamar Kozlolvski
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joachim M Surm
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Abhinandan M Tripathi
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Uri Frank
- Centre for Chromosome Biology, University of Galway, Galway, Ireland
| | - Yehu Moran
- Department of Ecology Evolution and Behavior, Faculty of Science, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
6
|
He LS, Qi Y, Allard CAH, Valencia-Montoya WA, Krueger SP, Weir K, Seminara A, Bellono NW. Molecular tuning of sea anemone stinging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545144. [PMID: 37577638 PMCID: PMC10418081 DOI: 10.1101/2023.06.15.545144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Jellyfish and sea anemones fire single-use, venom-covered barbs to immobilize prey or predators. We previously showed that the anemone Nematostella vectensis uses a specialized voltage-gated calcium (CaV) channel to trigger stinging in response to synergistic prey-derived chemicals and touch (Weir et al., 2020). Here we use experiments and theory to find that stinging behavior is suited to distinct ecological niches. We find that the burrowing anemone Nematostella uses uniquely strong CaV inactivation for precise control of predatory stinging. In contrast, the related anemone Exaiptasia diaphana inhabits exposed environments to support photosynthetic endosymbionts. Consistent with its niche, Exaiptasia indiscriminately stings for defense and expresses a CaV splice variant that confers weak inactivation. Chimeric analyses reveal that CaVβ subunit adaptations regulate inactivation, suggesting an evolutionary tuning mechanism for stinging behavior. These findings demonstrate how functional specialization of ion channel structure contributes to distinct organismal behavior.
Collapse
Affiliation(s)
- Lily S He
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Yujia Qi
- Machine Learning Center Genoa (MalGa), Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Montallegro 1, 16145 Genoa, Italy
| | - Corey AH Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge MA 02138 USA
| | - Stephanie P Krueger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Keiko Weir
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| | - Agnese Seminara
- Machine Learning Center Genoa (MalGa), Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, Via Montallegro 1, 16145 Genoa, Italy
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge MA 02138 USA
| |
Collapse
|
7
|
Wu L, Lambert JD. Clade-specific genes and the evolutionary origin of novelty; new tools in the toolkit. Semin Cell Dev Biol 2023; 145:52-59. [PMID: 35659164 DOI: 10.1016/j.semcdb.2022.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Clade-specific (a.k.a. lineage-specific) genes are very common and found at all taxonomic levels and in all clades examined. They can arise by duplication of previously existing genes, which can involve partial truncations or combinations with other protein domains or regulatory sequences. They can also evolve de novo from non-coding sequences, leading to potentially truly novel protein domains. Finally, since clade-specific genes are generally defined by lack of sequence homology with other proteins, they can also arise by sequence evolution that is rapid enough that previous sequence homology can no longer be detected. In such cases, where the rapid evolution is followed by constraint, we consider them to be ontologically non-novel but likely novel at a functional level. In general, clade-specific genes have received less attention from biologists but there are increasing numbers of fascinating examples of their roles in important traits. Here we review some selected recent examples, and argue that attention to clade-specific genes is an important corrective to the focus on the conserved developmental regulatory toolkit that has been the habit of evo-devo as a field. Finally, we discuss questions that arise about the evolution of clade-specific genes, and how these might be addressed by future studies. We highlight the hypothesis that clade-specific genes are more likely to be involved in synapomorphies that arose in the stem group where they appeared, compared to other genes.
Collapse
Affiliation(s)
- Longjun Wu
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
8
|
Zhang B, Anderson PSL. Investigation of the rate-mediated form-function relationship in biological puncture. Sci Rep 2023; 13:12097. [PMID: 37495672 PMCID: PMC10372153 DOI: 10.1038/s41598-023-39092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Puncture is a vital mechanism for survival in a wide range of organisms across phyla, serving biological functions such as prey capture, defense, and reproduction. Understanding how the shape of the puncture tool affects its functional performance is crucial to uncovering the mechanics underlying the diversity and evolution of puncture-based systems. However, such form-function relationships are often complicated by the dynamic nature of living systems. Puncture systems in particular operate over a wide range of speeds to penetrate biological tissues. Current studies on puncture biomechanics lack systematic characterization of the complex, rate-mediated, interaction between tool and material across this dynamic range. To fill this knowledge gap, we establish a highly controlled experimental framework for dynamic puncture to investigate the relationship between the puncture performance (characterized by the depth of puncture) and the tool sharpness (characterized by the cusp angle) across a wide range of bio-relevant puncture speeds (from quasi-static to [Formula: see text] 50 m/s). Our results show that the sensitivity of puncture performance to variations in tool sharpness reduces at higher puncture speeds. This trend is likely due to rate-based viscoelastic and inertial effects arising from how materials respond to dynamic loads. The rate-dependent form-function relationship has important biological implications: While passive/low-speed puncture organisms likely rely heavily on sharp puncture tools to successfully penetrate and maintain functionalities, higher-speed puncture systems may allow for greater variability in puncture tool shape due to the relatively geometric-insensitive puncture performance, allowing for higher adaptability during the evolutionary process to other mechanical factors.
Collapse
Affiliation(s)
- Bingyang Zhang
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Philip S L Anderson
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
9
|
Holstein TW. The Hydra stem cell system - Revisited. Cells Dev 2023; 174:203846. [PMID: 37121433 DOI: 10.1016/j.cdev.2023.203846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/02/2023]
Abstract
Cnidarians are >600 million years old and are considered the sister group of Bilateria based on numerous molecular phylogenetic studies. Apart from Hydra, the genomes of all major clades of Cnidaria have been uncovered (e.g. Aurelia, Clytia, Nematostella and Acropora) and they reveal a remarkable completeness of the metazoan genomic toolbox. Of particular interest is Hydra, a model system of aging research, regenerative biology, and stem cell biology. With the knowledge gained from scRNA research, it is now possible to characterize the expression profiles of all cell types with great precision. In functional studies, our picture of the Hydra stem cell biology has changed, and we are in the process of obtaining a clear picture of the homeostasis and properties of the different stem cell populations. Even though Hydra is often compared to plant systems, the new data on germline and regeneration, but also on the dynamics and plasticity of the nervous system, show that Hydra with its simple body plan represents in a nutshell the prototype of an animal with stem cell lineages, whose properties correspond in many ways to Bilateria. This review provides an overview of the four stem cell lineages, the two epithelial lineages that constitute the ectoderm and the endoderm, as well as the multipotent somatic interstitial lineage (MPSC) and the germline stem cell lineage (GSC), also known as the interstitial cells of Hydra.
Collapse
Affiliation(s)
- Thomas W Holstein
- Heidelberg University, Centre for Organismal Studies (COS), Molecular Evolution and Genomics, Im Neuenheimer Feld 230, D-69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Single-cell atavism reveals an ancient mechanism of cell type diversification in a sea anemone. Nat Commun 2023; 14:885. [PMID: 36797294 PMCID: PMC9935875 DOI: 10.1038/s41467-023-36615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Cnidocytes are the explosive stinging cells unique to cnidarians (corals, jellyfish, etc). Specialized for prey capture and defense, cnidocytes comprise a group of over 30 morphologically and functionally distinct cell types. These unusual cells are iconic examples of biological novelty but the developmental mechanisms driving diversity of the stinging apparatus are poorly characterized, making it challenging to understand the evolutionary history of stinging cells. Using CRISPR/Cas9-mediated genome editing in the sea anemone Nematostella vectensis, we show that a single transcription factor (NvSox2) acts as a binary switch between two alternative stinging cell fates. Knockout of NvSox2 causes a transformation of piercing cells into ensnaring cells, which are common in other species of sea anemone but appear to have been silenced in N. vectensis. These results reveal an unusual case of single-cell atavism and expand our understanding of the diversification of cell type identity.
Collapse
|
11
|
Expression profiling and cellular localization of myxozoan minicollagens during nematocyst formation and sporogenesis. Int J Parasitol 2022; 52:667-675. [PMID: 35970383 DOI: 10.1016/j.ijpara.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
In free-living cnidarians, minicollagens are major structural components in the biogenesis of nematocysts. Recent sequence mining and proteomic analysis demonstrate that minicollagens are also expressed by myxozoans, a group of evolutionarily ancient cnidarian endoparasites. Nonetheless, the presence and abundance of nematocyst-associated genes/proteins in nematocyst morphogenesis have never been studied in Myxozoa. Here, we report the gene expression profiles of three myxozoan minicollagens, ncol-1, ncol-3, and the recently identified noncanonical ncol-5, during the intrapiscine development of Myxidium lieberkuehni, the myxozoan parasite of the northern pike, Esox lucius. Moreover, we localized the myxozoan-specific minicollagen Ncol-5 in the developing myxosporean stages by Western blotting, immunofluorescence, and immunogold electron microscopy. We found that expression of minicollagens was spatiotemporally restricted to developing nematocysts within the myxospores during sporogenesis. Intriguingly, Ncol-5 is localized in the walls of nematocysts and predominantly in nematocyst tubules. Overall, we demonstrate that despite being significantly reduced in morphology, myxozoans retain structural components associated with nematocyst development in free-living cnidarians. Furthermore, our findings have practical implications for future functional and comparative studies as minicollagens are useful markers of the developmental phase of myxozoan parasites.
Collapse
|
12
|
The architecture and operating mechanism of a cnidarian stinging organelle. Nat Commun 2022; 13:3494. [PMID: 35715400 PMCID: PMC9205923 DOI: 10.1038/s41467-022-31090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
The stinging organelles of jellyfish, sea anemones, and other cnidarians, known as nematocysts, are remarkable cellular weapons used for both predation and defense. Nematocysts consist of a pressurized capsule containing a coiled harpoon-like thread. These structures are in turn built within specialized cells known as nematocytes. When triggered, the capsule explosively discharges, ejecting the coiled thread which punctures the target and rapidly elongates by turning inside out in a process called eversion. Due to the structural complexity of the thread and the extreme speed of discharge, the precise mechanics of nematocyst firing have remained elusive7. Here, using a combination of live and super-resolution imaging, 3D electron microscopy, and genetic perturbations, we define the step-by-step sequence of nematocyst operation in the model sea anemone Nematostella vectensis. This analysis reveals the complex biomechanical transformations underpinning the operating mechanism of nematocysts, one of nature’s most exquisite biological micro-machines. Further, this study will provide insight into the form and function of related cnidarian organelles and serve as a template for the design of bioinspired microdevices. The venomous stinging cells of jellyfish, anemones, and corals contain an organelle, the nematocyst, which explosively discharges a venom-laden thread. Here, the authors describe the nematocyst thread and its sub-structures in the sea anemone N. vectensis, revealing a complexity and sophistication underpinning this cellular weapon.
Collapse
|
13
|
Holstein TW. The role of cnidarian developmental biology in unraveling axis formation and Wnt signaling. Dev Biol 2022; 487:74-98. [DOI: 10.1016/j.ydbio.2022.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
|
14
|
Diverse silk and silk-like proteins derived from terrestrial and marine organisms and their applications. Acta Biomater 2021; 136:56-71. [PMID: 34551332 DOI: 10.1016/j.actbio.2021.09.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.
Collapse
|
15
|
Ozacmak VH, Arrieta AR, Thorington GU, Hessinger DA. N-Acetyl Neuraminic Acid (NANA) Activates L-Type Calcium Channels on Isolated Tentacle Supporting Cells of the Sea Anemone ( Aiptasia pallida). THE BIOLOGICAL BULLETIN 2021; 241:196-207. [PMID: 34706210 DOI: 10.1086/715844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractSensory receptors control nematocyst discharge on sea anemone tentacles. Micromolar N-acetylated sugars (e.g., N-acetyl neuraminic acid [NANA]) bind chemoreceptors on ectodermal supporting cells and predispose adjacent nematocyst discharge in response to mechanical contact via a cyclic adenosine monophosphate (cAMP)-dependent sensitization pathway, while higher NANA levels dose-dependently desensitize. Recent evidence implicates L-type calcium channels in desensitizing the pathway in aconitate sea anemones Aiptasia pallida (also known as Exaiptasia diaphana). We, therefore, hypothesize that NANA activates calcium influx via L-type calcium channels. We demonstrate a dose-dependent, NANA-activated 45Ca influx into dissociated ectodermal cells isolated from A. pallida tentacles, with maximal influx occurring at desensitizing concentrations of NANA. The L-type calcium channel inhibitors nifedipine, diltiazem, methoxyverapamil, and cadmium blocked NANA-stimulated 45Ca influx. Elevated extracellular KCl levels dose-dependently increased nifedipine-sensitive 45Ca influx to implicate voltage-gated calcium channels. Forskolin, 8-bromo-cAMP, and the protein kinase A inhibitor H-8 affect NANA-stimulated calcium influx in a manner consistent with activated cAMP-dependent pathway involvement. Because NANA chemoreceptors localize to supporting cells of cnidocyte supporting cell complexes, NANA activation of 45Ca influx into isolated tentacle ectodermal cells suggests that L-type calcium channels and NANA chemoreceptors co-localize to supporting cells. Indeed, a fluorescent marker of L-type calcium channels localizes to the apical ectoderm adjacent to nematocysts of live tentacles. We conclude that supporting cell chemoreceptors activate co-localized L-type calcium channels via a cAMP-dependent mechanism in order to initiate desensitization. We suggest that pathway desensitization may conserve nematocysts from excessive discharge during prey capture.
Collapse
|
16
|
Wuitchik DM, Almanzar A, Benson BE, Brennan S, Chavez JD, Liesegang MB, Reavis JL, Reyes CL, Schniedewind MK, Trumble IF, Davies SW. Title: Characterizing environmental stress responses of aposymbiotic Astrangia poculata to divergent thermal challenges. Mol Ecol 2021; 30:5064-5079. [PMID: 34379848 DOI: 10.1111/mec.16108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 07/13/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Anthropogenic climate change threatens corals globally and both high and low temperatures are known to induce coral bleaching. However, coral stress responses across wide thermal breadths remain understudied. Disentangling the role of symbiosis on the stress response in obligately symbiotic corals is challenging because this response is inherently coupled with nutritional stress. Here, we leverage aposymbiotic colonies of the facultatively symbiotic coral, Astrangia poculata, which lives naturally with and without its algal symbionts, to examine how broad thermal challenges influence coral hosts in the absence of symbiosis. A. poculata were collected from their northern range limit and thermally challenged in two independent 16-day common garden experiments (heat and cold challenge) and behavioral responses to food stimuli and genome-wide gene expression profiling (TagSeq) were performed. Both thermal challenges elicited significant reductions in polyp extension. However, there were five times as many differentially expressed genes (DEGs) under cold challenge compared to heat challenge. Despite an overall stronger response to cold challenge, there was significant overlap in DEGs between thermal challenges. We contrasted these responses to a previously identified module of genes associated with the environmental stress response (ESR) in tropical reef-building corals. Cold challenged corals exhibited a pattern consistent with more severe stressors while the heat challenge response was consistent with lower intensity stressors. Given that these responses were observed in aposymbiotic colonies, many genes previously implicated in ESRs in tropical symbiotic species may represent the coral host's stress response in or out of symbiosis.
Collapse
Affiliation(s)
- D M Wuitchik
- Department of Biology, Boston University, Boston, MA, USA
| | - A Almanzar
- Department of Biology, Boston University, Boston, MA, USA
| | - B E Benson
- Department of Biology, Boston University, Boston, MA, USA
| | - S Brennan
- Department of Biology, Boston University, Boston, MA, USA
| | - J D Chavez
- Department of Biology, Boston University, Boston, MA, USA
| | - M B Liesegang
- Department of Biology, Boston University, Boston, MA, USA.,Scripps Institution of Oceanography, University of California San Diego, San Diego, CA, USA
| | - J L Reavis
- Department of Biology, Boston University, Boston, MA, USA
| | - C L Reyes
- Department of Biology, Boston University, Boston, MA, USA
| | | | - I F Trumble
- Department of Biology, Boston University, Boston, MA, USA
| | - S W Davies
- Department of Biology, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Damian-Serrano A, Haddock SHD, Dunn CW. The Evolutionary History of Siphonophore Tentilla: Novelties, Convergence, and Integration. Integr Org Biol 2021; 3:obab019. [PMID: 34355122 PMCID: PMC8331849 DOI: 10.1093/iob/obab019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Synopsis Siphonophores are free-living predatory colonial hydrozoan cnidarians found in every region of the ocean. Siphonophore tentilla (tentacle side branches) are unique biological structures for prey capture, composed of a complex arrangement of cnidocytes (stinging cells) bearing different types of nematocysts (stinging capsules) and auxiliary structures. Tentilla present an extensive morphological and functional diversity across species. While associations between tentillum form and diet have been reported, the evolutionary history giving rise to this morphological diversity is largely unexplored. Here we examine the evolutionary gains and losses of novel tentillum substructures and nematocyst types on the most recent siphonophore phylogeny. Tentilla have a precisely coordinated high-speed strike mechanism of synchronous unwinding and nematocyst discharge. Here we characterize the kinematic diversity of this prey capture reaction using high-speed video and find relationships with morphological characters. Since tentillum discharge occurs in synchrony across a broad morphological diversity, we evaluate how phenotypic integration is maintaining character correlations across evolutionary time. We found that the tentillum morphospace has low dimensionality, identified instances of heterochrony and morphological convergence, and generated hypotheses on the diets of understudied siphonophore species. Our findings indicate that siphonophore tentilla are phenotypically integrated structures with a complex evolutionary history leading to a phylogenetically-structured diversity of forms that are predictive of kinematic performance and feeding habits.
Collapse
Affiliation(s)
- A Damian-Serrano
- Osborn Memorial Laboratories, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - S H D Haddock
- Midwater Research, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - C W Dunn
- Osborn Memorial Laboratories, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
18
|
Amiel AR, Michel V, Carvalho JE, Shkreli M, Petit C, Röttinger E. [The sea anemone Nematostella vectensis, an emerging model for biomedical research: Mechano-sensitivity, extreme regeneration and longevity]. Med Sci (Paris) 2021; 37:167-177. [PMID: 33591260 DOI: 10.1051/medsci/2020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nematostella has fascinating features such as whole-body regeneration, the absence of signs of aging and importantly, the absence of age-related diseases. Easy to culture and spawn, this little sea anemone in spite of its "simple" aspect, displays interesting morphological characteristics similar to vertebrates and an unexpected similarity in gene content/genome organization. Importantly, the scientific community working on Nematostella is developing a variety of functional genomics tools that enable scientists to use this anemone in the field of regenerative medicine, longevity and mecano-sensory diseases. As a complementary research model to vertebrates, this marine invertebrate is emerging and promising to dig deeper into those fields of research in an integrative manner (entire organism) and provides new opportunities for scientists to lift specific barriers that can be encountered with other commonly used animal models.
Collapse
Affiliation(s)
- Aldine R Amiel
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Vincent Michel
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France
| | - João E Carvalho
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| | - Marina Shkreli
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France
| | - Christine Petit
- Institut de l'audition, Institut Pasteur, Inserm UMRS 1120, 75012 Paris, France - Collège de France, 75005 Paris, France
| | - Eric Röttinger
- Université Côte d'Azur, CNRS, Inserm - Institut de Recherche sur le Cancer et le Vieillissement (IRCAN), 06107 Nice, France - Université Côte d'Azur - Institut fédératif de recherche - ressources marines, 06107 Nice, France
| |
Collapse
|
19
|
Amreen Nisa S, Vinu D, Krupakar P, Govindaraju K, Sharma D, Vivek R. Jellyfish venom proteins and their pharmacological potentials: A review. Int J Biol Macromol 2021; 176:424-436. [PMID: 33581202 DOI: 10.1016/j.ijbiomac.2021.02.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Several research in the organisms of marine invertebrates to assess the medicinal ability of its bio-active molecules have yielded very positive results in recent times. Jellyfish secreted venoms are rich sources of toxins intended to catch prey or deter predators among invertebrate species, but they may also have harmful effects on humans. The nematocyst, a complex intracellular system that injects a venomous mixture into prey or predators that come into contact with the tentacles or other parts of the body of cnidarians, determines the venomous existence of cnidarians. Nematocyst venoms are mixtures of peptides, proteins and other components that in laboratory animals can induce cytotoxicity, blockade of ion channels, membrane pore formation, in vivo cardiovascular failure and lethal effects. There are also valuable pharmacological and biological aspects of jellyfish venoms. In the present review, overviews of the variety of possible toxin families in cnidarian venoms are addressed in this analysis and these potential toxins are surveyed with those from other cnidarians that offer insight into their potential functions such as anti-oxidant, anti-cancer activity and much more. This research review will provide awareness of the growing repertoire of jellyfish venom proteins and will help to further isolate and classify particular proteins to understand its structure and functional relationship.
Collapse
Affiliation(s)
- S Amreen Nisa
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - D Vinu
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - P Krupakar
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - K Govindaraju
- Centre for Ocean Research, MoES - Earth Science and Technology Cell (ESTC), Sathyabama Institute of Science and Technology, Chennai 600 119, India.
| | - D Sharma
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Rahul Vivek
- Department of Biochemistry, University of Wisconsin-, Madison, WI, USA.
| |
Collapse
|
20
|
Abstract
Using the database Web of Science, a systematic search for literature on learning in Cnidaria, both non-associative and associative, was conducted. Cnidaria comprise hydras, box jellies, (true) jellyfish, corals, and sea anemones, a group of animals possessing diffuse networks of nerves known as nerve nets or neural nets. Being neighbors on the animal evolutionary tree to bilaterian animals, the vast collection of (mostly) bilaterally symmetric animals with brains ranging from tiny worms to giant whales, the cognitive capacities of Cnidaria inform the evolution of nervous systems and cognition in bilateria. I failed to find literature on learning in corals and box jellies. Habituation has been amply shown in hydras, jellyfish, and sea anemones, while sensitization has been studied in detail in sea anemones, including some neurobiological details in the release of nematocysts or poisoned darts for capturing prey. One well-controlled study found evidence for classical conditioning with shock in sea anemones, in addition to two other lesser-controlled demonstrations. The relevance of associative learning in sea anemones, embodied cognition, and representationsal issues when it comes to animals without central brains is discussed.
Collapse
|
21
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
22
|
Abstract
Temperature influences many physiological processes that govern life as a result of the thermal sensitivity of chemical reactions. The repeated evolution of endothermy and widespread behavioral thermoregulation in animals highlight the importance of elevating tissue temperature to increase the rate of chemical processes. Yet, movement performance that is robust to changes in body temperature has been observed in numerous species. This thermally robust performance appears exceptional in light of the well-documented effects of temperature on muscle contractile properties, including shortening velocity, force, power and work. Here, we propose that the thermal robustness of movements in which mechanical processes replace or augment chemical processes is a general feature of any organismal system, spanning kingdoms. The use of recoiling elastic structures to power movement in place of direct muscle shortening is one of the most thoroughly studied mechanical processes; using these studies as a basis, we outline an analytical framework for detecting thermal robustness, relying on the comparison of temperature coefficients (Q 10 values) between chemical and mechanical processes. We then highlight other biomechanical systems in which thermally robust performance that arises from mechanical processes may be identified using this framework. Studying diverse movements in the context of temperature will both reveal mechanisms underlying performance and allow the prediction of changes in performance in response to a changing thermal environment, thus deepening our understanding of the thermal ecology of many organisms.
Collapse
Affiliation(s)
- Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, Science Center 110, Tampa, FL 33620, USA
| |
Collapse
|
23
|
Zheng XY, Cheng DJ, Lian LH, Zhang RT, Yu XY. Severe fundus lesions induced by ocular jellyfish stings: A case report. World J Clin Cases 2020; 8:4544-4549. [PMID: 33083416 PMCID: PMC7559664 DOI: 10.12998/wjcc.v8.i19.4544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Globally, although the jellyfish population has increased in recent years, ocular jellyfish stings remain an uncommon ophthalmic emergency, and have been rarely reported. According to a few previous reports, ocular jellyfish stings may cause anterior segment disorders, and most of these injuries were self-limited and spontaneously resolved within 24 to 48 h.
CASE SUMMARY A brother and sister both presented with severe fundus complications several years after ocular jellyfish stings and both had prolonged blurred vision. To our knowledge, such fundus lesions induced by jellyfish stings have not been reported previously.
CONCLUSION The fundus status of patients following ocular jellyfish stings should be carefully monitored in cases of irreversible ocular damage.
Collapse
Affiliation(s)
- Xiang-Yue Zheng
- Department of Ophthalmology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - De-Jin Cheng
- Department of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Li-Hua Lian
- Department of Ophthalmology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Ru-Ting Zhang
- Department of Ophthalmology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| | - Xiao-Yi Yu
- Department of Ophthalmology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong Province, China
| |
Collapse
|
24
|
Americus B, Lotan T, Bartholomew JL, Atkinson SD. A comparison of the structure and function of nematocysts in free-living and parasitic cnidarians (Myxozoa). Int J Parasitol 2020; 50:763-769. [PMID: 32707121 DOI: 10.1016/j.ijpara.2020.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
Myxozoans are obligate parasites that have complex life cycles requiring alternate vertebrate and invertebrate hosts, with transmission via microscopic waterborne spores. Unusually for parasites, they belong to the phylum Cnidaria, alongside thousands of free-living corals, sea anemones, jellyfish and hydrozoans. Their cnidarian affinity is affirmed by genetic relatedness and the presence of nematocysts, historically called "polar capsules" in myxozoan research. Free-living cnidarians utilise this cellular weaponry for defence, predation and adhesion, whereas myxozoans use it to anchor to their hosts as the first step in infection. Despite the ~650 million years of divergence between free-living cnidarians and myxozoans, their nematocysts retain many shared morphological and molecular characters. Both are intra-cellular capsules with a single opening, and contain a coiled, evertable tubule. They are composed of unique nematocyst proteins, nematogalectin and minicollagen, and both likely contain an internal matrix of metal cations covalently bound to the anionic polymer poly-gamma glutamate. The rapid dissociation of this matrix and the resulting increase in internal osmotic potential is the driving force behind tubule elongation during discharge. In this review, we compare the structure and function of nematocysts in Myxozoa and free-living Cnidaria, incorporating recent molecular characterizations. We propose that terminology for homologous myxozoan structures be synonymized with those from other Cnidaria, hence, "polar capsule" as a taxon-specific nematocyst morphotype and "polar filament" as "tubule." Despite taxonomic divergence, genome reduction and an evolution to parasitism, myxozoans maintain nematocysts that are structurally and functionally homologous to those of their free-living cnidarian relatives.
Collapse
Affiliation(s)
- Benjamin Americus
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Tamar Lotan
- Department of Marine Biology, The Leon H.Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | | | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
25
|
Thorington GU, Hessinger DA. Activated L-Type Calcium Channels Inhibit Chemosensitized Nematocyst Discharge from Sea Anemone Tentacles. THE BIOLOGICAL BULLETIN 2020; 238:180-192. [PMID: 32597714 DOI: 10.1086/708947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Because in vivo nematocyst discharge requires extracellular Ca2+, Ca2+ channels have been suspected to be involved; but their identity and role have not been revealed. The majority of nematocysts that discharge from sea anemone tentacles are under the control of sensitizing chemoreceptors for N-acetylated sugars (e.g., N-acetylneuraminic acid). Activated chemoreceptors predispose contact-sensitive mechanoreceptors to trigger discharge. We show that activating L-type Ca2+ channels inhibits N-acetylneuraminic acid-sensitized discharge, contrary to a previous suggestion. In addition, inhibiting L-type channels increases sensitivity to N-acetylneuraminic acid. Specifically, we show that the L-type Ca2+ channel activator (-)-Bay K 8644 dose-dependently inhibits N-acetylneuraminic acid-sensitized discharge, as does raising ambient Ca2+ levels. We also show that lowering extracellular Ca2+ levels or adding any of several selective and chemically distinct L-type Ca2+ channel blockers, including dihydropyridines, dose-dependently increases N-acetylneuraminic acid sensitivity and broadens the dynamic range of N-acetylneuraminic acid sensitization. Consistent with these functional findings, Aiptasia pallida expresses an L-type Ca2+ channel α subunit transcript that encodes a conserved dihydropyridine-binding site. Phylogenetic analysis confirms a close relationship of the Aiptasia Ca2+ channel α subunit sequence between anemones, anthozoans, and cnidarians that extends into protostomal and deuterostomal bilaterians. We conclude that L-type Ca2+ channel activity modulates N-acetylneuraminic acid-sensitized nematocyst discharge in a push-pull manner depending on channel activity state. Our findings suggest that L-type channel activation promotes chemosensory desensitization, and we predict that N-acetylneuraminic acid chemoreceptor signaling will activate L-type channels.
Collapse
|
26
|
Weir K, Dupre C, van Giesen L, Lee ASY, Bellono NW. A molecular filter for the cnidarian stinging response. eLife 2020; 9:e57578. [PMID: 32452384 PMCID: PMC7250568 DOI: 10.7554/elife.57578] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/09/2020] [Indexed: 01/06/2023] Open
Abstract
All animals detect and integrate diverse environmental signals to mediate behavior. Cnidarians, including jellyfish and sea anemones, both detect and capture prey using stinging cells called nematocytes which fire a venom-covered barb via an unknown triggering mechanism. Here, we show that nematocytes from Nematostella vectensis use a specialized voltage-gated calcium channel (nCaV) to distinguish salient sensory cues and control the explosive discharge response. Adaptations in nCaV confer unusually sensitive, voltage-dependent inactivation to inhibit responses to non-prey signals, such as mechanical water turbulence. Prey-derived chemosensory signals are synaptically transmitted to acutely relieve nCaV inactivation, enabling mechanosensitive-triggered predatory attack. These findings reveal a molecular basis for the cnidarian stinging response and highlight general principles by which single proteins integrate diverse signals to elicit discrete animal behaviors.
Collapse
Affiliation(s)
- Keiko Weir
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Christophe Dupre
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Lena van Giesen
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Amy S-Y Lee
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
27
|
Rosario MV, Olberding JP, Deban SM. Playing with Power: Mechanisms of Energy Flow in Organismal Movement. Integr Comp Biol 2020; 59:1511-1514. [PMID: 31584638 DOI: 10.1093/icb/icz146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Across multiple evolutionary clades and size scales, organismal movement requires controlling the flow of energy through the body to enhance certain functions. Whether energy is released or absorbed by the organism, proper function hinges on the ability to manipulate both where and when energy is transferred. For example, both power amplification and power attenuation rely on the use of springs for the intermediate storage of energy between the body and the environment; but variation in function is the result of the path and timing of energy flow. In this symposium, we have invited speakers that demonstrate the diversity of mechanisms used to control the flow of energy through the body and into the environment. By bringing together researchers investigating movements in the context of power and energy flow, the major goal of this symposium is to facilitate fresh perspectives on the unifying mechanical themes of energy transfer in organismal movement.
Collapse
Affiliation(s)
- Michael V Rosario
- Department of Biology, West Chester University, 700 South High Street, West Chester, PA, USA
| | - Jeffrey P Olberding
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, USA
| | - Stephen M Deban
- Department of Integrative Biology, University of South Florida, 4202 E. Fowler Ave, SCA 110, Tampa, FL, USA
| |
Collapse
|
28
|
Bezares-Calderón LA, Berger J, Jékely G. Diversity of cilia-based mechanosensory systems and their functions in marine animal behaviour. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190376. [PMID: 31884914 PMCID: PMC7017336 DOI: 10.1098/rstb.2019.0376] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Sensory cells that detect mechanical forces usually have one or more specialized cilia. These mechanosensory cells underlie hearing, proprioception or gravity sensation. To date, it is unclear how cilia contribute to detecting mechanical forces and what is the relationship between mechanosensory ciliated cells in different animal groups and sensory systems. Here, we review examples of ciliated sensory cells with a focus on marine invertebrate animals. We discuss how various ciliated cells mediate mechanosensory responses during feeding, tactic responses or predator-prey interactions. We also highlight some of these systems as interesting and accessible models for future in-depth behavioural, functional and molecular studies. We envisage that embracing a broader diversity of organisms could lead to a more complete view of cilia-based mechanosensation. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
Collapse
Affiliation(s)
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
29
|
Abstract
Nematocysts are stinging organelles used by members of the phylum Cnidaria (e.g., jellyfish, anemones, hydrozoans) for a variety of important functions including capturing prey and defense. Nematocysts are the fastest-known accelerating structures in the animal world. The small scale (microns) coupled with rapid acceleration (in excess of 5 million g) present significant challenges in imaging that prevent detailed descriptions of their kinematics. The immersed boundary method was used to numerically simulate the dynamics of a barb-like structure accelerating a short distance across Reynolds numbers ranging from 0.9–900 towards a passive elastic target in two dimensions. Results indicate that acceleration followed by coasting at lower Reynolds numbers is not sufficient for a nematocyst to reach its target. The nematocyst’s barb-like projectile requires high accelerations in order to transition to the inertial regime and overcome the viscous damping effects normally encountered at small cellular scales. The longer the barb is in the inertial regime, the higher the final velocity of the projectile when it touches its target. We find the size of the target prey does not dramatically affect the barb’s approach for large enough values of the Reynolds number, however longer barbs are able to accelerate a larger amount of surrounding fluid, which in turn allows the barb to remain in the inertial regime for a longer period of time. Since the final velocity is proportional to the force available for piercing the membrane of the prey, high accelerations that allow the system to persist in the inertial regime have implications for the nematocyst’s ability to puncture surfaces such as cellular membranes or even crustacean cuticle.
Collapse
|
30
|
Krohne G. Hydra nematocysts in the flatworm Microstomum lineare: in search for alterations preceding their disappearance from the new host. Cell Tissue Res 2019; 379:63-71. [PMID: 31848750 DOI: 10.1007/s00441-019-03149-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 11/21/2019] [Indexed: 11/26/2022]
Abstract
Nematocysts are characteristic organelles of the phylum Cnidaria. The free-living Platyhelminth Microstomum lineare preys on Hydra oligactis and sequesters nematocysts. All nematocyst types become phagocytosed without adherent cytoplasm by intestinal cnidophagocytes. Desmoneme and isorhiza nematocysts disappear within 2 days after ingestion whereas cnidophagocytes containing the venom-loaded stenotele nematocysts migrate out of the intestinal epithelia through the parenchyma to the epidermis. Epidermally localized stenoteles are still able to discharge suggesting that this hydra organelle does preserve its physiological properties. Three to four weeks after ingestion, the majority of stenoteles disappear from M. lineare. To search for alterations of nematocysts that might precede their disappearance, flatworms were stained with acridine orange, a dye that binds to poly-γ-glutamic acid present in hydra nematocysts. The staining properties of all three nematocyst types were indistinguishable during the first 60 min after ingestion of hydra tissue whereas 15 h later, the majority of desmoneme and isorhiza had lost their stainability in striking contrast to stenoteles. In M. lineare inspected 2, 4 and 10 days after feeding, 20-40% of stenoteles had lost their stainability with acridine orange. Non-stained stenoteles had sizes similar to their stained counterparts but some of them were slightly deformed. The presented data indicate that acridine orange staining allows the detection of early alterations of all three ingested nematocyst types preceding their disappearance from M. lineare. Furthermore, they support the notion that the transport of venom-loaded stenoteles to the epidermis provides a strategy of excretion.
Collapse
Affiliation(s)
- Georg Krohne
- Imaging Core Facility Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
31
|
Bentele T, Amadei F, Kimmle E, Veschgini M, Linke P, Sontag-González M, Tennigkeit J, Ho AD, Özbek S, Tanaka M. New Class of Crosslinker-Free Nanofiber Biomaterials from Hydra Nematocyst Proteins. Sci Rep 2019; 9:19116. [PMID: 31836799 PMCID: PMC6910907 DOI: 10.1038/s41598-019-55655-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/30/2019] [Indexed: 11/10/2022] Open
Abstract
Nematocysts, the stinging organelles of cnidarians, have remarkable mechanical properties. Hydra nematocyst capsules undergo volume changes of 50% during their explosive exocytosis and withstand osmotic pressures of beyond 100 bar. Recently, two novel protein components building up the nematocyst capsule wall in Hydra were identified. The cnidarian proline-rich protein 1 (CPP-1) characterized by a "rigid" polyproline motif and the elastic Cnidoin possessing a silk-like domain were shown to be part of the capsule structure via short cysteine-rich domains that spontaneously crosslink the proteins via disulfide bonds. In this study, recombinant Cnidoin and CPP-1 are expressed in E. coli and the elastic modulus of spontaneously crosslinked bulk proteins is compared with that of isolated nematocysts. For the fabrication of uniform protein nanofibers by electrospinning, the preparative conditions are systematically optimized. Both fibers remain stable even after rigorous washing and immersion into bulk water owing to the simultaneous crosslinking of cysteine-rich domains. This makes our nanofibers clearly different from other protein nanofibers that are not stable without chemical crosslinkers. Following the quantitative assessment of mechanical properties, the potential of Cnidoin and CPP-1 nanofibers is examined towards the maintenance of human mesenchymal stem cells.
Collapse
Affiliation(s)
- Theresa Bentele
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Federico Amadei
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Esther Kimmle
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariam Veschgini
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Philipp Linke
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Mariana Sontag-González
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
- School of Earth and Environmental Sciences, Science Medicine and Health, University of Wollongong, NSW 2522, Wollongong, Australia
| | - Jutta Tennigkeit
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, 69120, Heidelberg, Germany
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Suat Özbek
- Centre for Organismal Studies, Department of Molecular Evolution and Genomics, Heidelberg University, 69120, Heidelberg, Germany.
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany.
- Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan.
| |
Collapse
|
32
|
Coherent Aspects of Multifaceted Eco-friendly Biopolymer - Polyglutamic Acid from the Microbes. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Anderson PSL. Making a point: shared mechanics underlying the diversity of biological puncture. ACTA ACUST UNITED AC 2018; 221:221/22/jeb187294. [PMID: 30446527 DOI: 10.1242/jeb.187294] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A viper injecting venom into a target, a mantis shrimp harpooning a fish, a cactus dispersing itself via spines attaching to passing mammals; all these are examples of biological puncture. Although disparate in terms of materials, kinematics and phylogeny, all three examples must adhere to the same set of fundamental physical laws that govern puncture mechanics. The diversity of biological puncture systems is a good case study for how physical laws can be used as a baseline for comparing disparate biological systems. In this Review, I explore the diversity of biological puncture and identify key variables that influence these systems. First, I explore recent work on biological puncture in a diversity of organisms, based on their hypothesized objectives: gripping, injection, damage and defence. Variation within each category is discussed, such as the differences between gripping for prey capture, gripping for dispersal of materials or gripping during reproduction. The second half of the Review is focused on specific physical parameters that influence puncture mechanics, such as material properties, stress, energy, speed and the medium within which puncture occurs. I focus on how these parameters have been examined in biology, and how they influence the evolution of biological systems. The ultimate objective of this Review is to outline an initial framework for examining the mechanics and evolution of puncture systems across biology. This framework will not only allow for broad biological comparisons, but also create a baseline for bioinspired design of both tools that puncture efficiently and materials that can resist puncture.
Collapse
Affiliation(s)
- Philip S L Anderson
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Yan H, Chircov C, Zhong X, Winkeljann B, Dobryden I, Nilsson HE, Lieleg O, Claesson PM, Hedberg Y, Crouzier T. Reversible Condensation of Mucins into Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13615-13625. [PMID: 30350704 DOI: 10.1021/acs.langmuir.8b02190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mucins are high molar mass glycoproteins that assume an extended conformation and can assemble into mucus hydrogels that protect our mucosal epithelium. In nature, the challenging task of generating a mucus layer, several hundreds of micrometers in thickness, from micrometer-sized cells is elegantly solved by the condensation of mucins inside vesicles and their on-demand release from the cells where they suddenly expand to form the extracellular mucus hydrogel. We aimed to recreate and control the process of compaction for mucins, the first step toward a better understanding of the process and creating biomimetic in vivo delivery strategies of macromolecules. We found that by adding glycerol to the aqueous solvent, we could induce drastic condensation of purified mucin molecules, reducing their size by an order of magnitude down to tens of nanometers in diameter. The condensation effect of glycerol was fully reversible and could be further enhanced and partially stabilized by cationic cross-linkers such as calcium and polylysine. The change of structure of mucins from extended molecules to nano-sized particles in the presence of glycerol translated into macroscopic rheological changes, as illustrated by a dampened shear-thinning effect with increasing glycerol concentration. This work provides new insight into mucin condensation, which could lead to new delivery strategies mimicking cell release of macromolecules condensed in vesicles such as mucins and heparin.
Collapse
Affiliation(s)
- Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Cristina Chircov
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| | - Xueying Zhong
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 141 83 Huddinge , Sweden
| | - Benjamin Winkeljann
- Department of Mechanical Engineering and Munich School of Bioengineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Illia Dobryden
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Harriet Elisabeth Nilsson
- Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 141 83 Huddinge , Sweden
- Department of Biosciences and Nutrition , Karolinska Institutet , 141 83 Huddinge , Sweden
| | - Oliver Lieleg
- Department of Mechanical Engineering and Munich School of Bioengineering , Technical University of Munich , Boltzmannstrasse 11 , 85748 Garching , Germany
| | - Per Martin Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Yolanda Hedberg
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , Drottning Kristinas väg 51 , 10044 Stockholm , Sweden
| | - Thomas Crouzier
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology, AlbaNova University Center , 106 91 Stockholm , Sweden
| |
Collapse
|
35
|
Desax-Willer D, Krebs T, Christen S. Delayed deep dermal necrosis after jellyfish sting in a 4-year-old female infant. CASE REPORTS IN PLASTIC SURGERY AND HAND SURGERY 2018; 5:75-79. [PMID: 30397636 PMCID: PMC6211318 DOI: 10.1080/23320885.2018.1533407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/04/2018] [Indexed: 01/22/2023]
Abstract
We report the case of a 4-year-old female infant who developed ongoing deep dermal necrosis of the bilateral legs after jellyfish contact in Thailand. Stepwise radical debridement and vacuum assisted wound therapy seemed to be an effective strategy to prevent progressive soft tissue loss.
Collapse
Affiliation(s)
- Diana Desax-Willer
- Children´s Hospital of Eastern Switzerland, St. Gallen/Hospital of St. Gallen, St. Gallen, Switzerland
| | - Thomas Krebs
- Children´s Hospital of Eastern Switzerland, St. Gallen/Hospital of St. Gallen, St. Gallen, Switzerland
| | - Samuel Christen
- Children´s Hospital of Eastern Switzerland, St. Gallen/Hospital of St. Gallen, St. Gallen, Switzerland.,Department for Hand, Plastic and Reconstructive Surgery, Cantonal Hospital of St. Gallen, St. Gallen, Switzerland
| |
Collapse
|
36
|
Organelle survival in a foreign organism: Hydra nematocysts in the flatworm Microstomum lineare. Eur J Cell Biol 2018; 97:289-299. [DOI: 10.1016/j.ejcb.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 01/21/2023] Open
|
37
|
Park S, Piriatinskiy G, Zeevi D, Ben-David J, Yossifon G, Shavit U, Lotan T. The nematocyst's sting is driven by the tubule moving front. J R Soc Interface 2017; 14:rsif.2016.0917. [PMID: 28250103 DOI: 10.1098/rsif.2016.0917] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
The nematocyst is the explosive injection system of the phylum Cnidaria, and is one of the fastest delivery systems found in Nature. Exploring its injection mechanism is key for understanding predator-prey interactions and protection against jellyfish stinging. Here we analyse the injection of jellyfish nematocysts and ask how the build-up of the poly-γ-glutamate (pγGlu) osmotic potential inside the nematocyst drives its discharge. To control the osmotic potential, we used a two-channel microfluidic system to direct the elongating nematocyst tubule through oil, where no osmotic potential can develop, while keeping the nematocyst capsule in water at all times. In addition, the flow inside the tubule and the pγGlu concentration profiles were calculated by applying a one-dimensional mathematical model. We found that tubule elongation through oil is orders of magnitude slower than through water and that the injection rate of the nematocyst content is reduced. These results imply that the capsule's osmotic potential is not sufficient to drive the tubule beyond the initial stage. Our proposed model shows that the tubule is pulled by the high osmotic potential that develops at the tubule moving front. This new understanding is vital for future development of nematocyst-based systems such as osmotic nanotubes and transdermal drug delivery.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
| | - Gadi Piriatinskiy
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Dan Zeevi
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel
| | - Jonathan Ben-David
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
| | - Uri Shavit
- Faculty of Civil and Environmental Engineering, Technion, Haifa 32000, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 31905, Israel
| |
Collapse
|
38
|
Envenimation par une méduse d’eau douce ( Craspedacusta sowerbii ) en France métropolitaine. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2017. [DOI: 10.1016/j.toxac.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Functional and proteomic analysis of Ceratonova shasta (Cnidaria: Myxozoa) polar capsules reveals adaptations to parasitism. Sci Rep 2017; 7:9010. [PMID: 28827642 PMCID: PMC5566210 DOI: 10.1038/s41598-017-09955-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022] Open
Abstract
Myxozoa is a diverse, speciose group of microscopic parasites, recently placed within the phylum Cnidaria. Myxozoans are highly reduced in size and complexity relative to free-living cnidarians, yet they have retained specialized organelles known as polar capsules, akin to the nematocyst stinging capsules of free-living species. Whereas in free-living cnidarians the stinging capsules are used for prey capture or defense, in myxozoans they have the essential function of initiating the host infection process. To explore the evolutionary adaptation of polar capsules to parasitism, we used as a model organism Ceratonova shasta, which causes lethal disease in salmonids. Here, we report the first isolation of C. shasta myxospore polar capsules using a tailored dielectrophoresis-based microfluidic chip. Using electron microscopy and functional analysis we demonstrated that C. shasta tubules have no openings and are likely used to anchor the spore to the host. Proteomic analysis of C. shasta polar capsules suggested that they have retained typical structural and housekeeping proteins found in nematocysts of jellyfish, sea anemones and Hydra, but have lost the most important functional group in nematocysts, namely toxins. Our findings support the hypothesis that polar capsules and nematocysts are homologous organelles, which have adapted to their distinct functions.
Collapse
|
40
|
Park S, Capelin D, Piriatinskiy G, Lotan T, Yossifon G. Dielectrophoretic characterization and isolation of jellyfish stinging capsules. Electrophoresis 2017; 38:1996-2003. [PMID: 28613387 DOI: 10.1002/elps.201700072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
Abstract
Jellyfish stinging capsules known as nematocysts are explosive, natural-injection systems with high potential as a natural drug-delivery system. These organelles consist of a capsule containing a highly folded thin needle-like tubule and a matrix highly concentrated with charged constituents that enable the tubule to fire and penetrate a target. For the purpose of using these nematocysts as drug delivery system it is first required to purify subpopulations from heterogeneous population of capsules and to investigate each subpopulation's distinct function and characteristics. Here, the nematocysts' dielectric properties were experimentally investigated using dielectrophoretic and electrorotational spectra with best fits derived from theoretical models. The dielectric characterization adds to our understanding of the nematocysts' structure and function and is necessary for the dielectrophoretic isolation and manipulation of populations. As expected, the effect of monovalent and divalent exchange cations resulted in higher inner conductivity for the NaCl treated capsules; this result stands in agreement with their relative higher osmotic pressure. In addition, an efficient dielectrophoretic isolation of different nematocyst subpopulations was demonstrated, paving the way to an understanding of nematocysts' functional diversity and the development of an efficient drug delivery platform.
Collapse
Affiliation(s)
- Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Daniel Capelin
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| | - Gadi Piriatinskiy
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City, Israel
| |
Collapse
|
41
|
Affiliation(s)
- Anne Pringle
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Sheila N. Patek
- Department of Integrative Biology, University of California, Berkeley, California 94720-3140
| | - Mark Fischer
- Department of Chemistry and Physical Science, College of Mount St Joseph, Cincinnati, Ohio 45233-1670
| | | | | |
Collapse
|
42
|
Ben-David J, Atkinson SD, Pollak Y, Yossifon G, Shavit U, Bartholomew JL, Lotan T. Myxozoan polar tubules display structural and functional variation. Parasit Vectors 2016; 9:549. [PMID: 27741948 PMCID: PMC5064783 DOI: 10.1186/s13071-016-1819-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/28/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myxozoa is a speciose group of endoparasitic cnidarians that can cause severe ecological and economic effects. Although highly reduced compared to free-living cnidarians, myxozoans have retained the phylum-defining stinging organelles, known as cnidae or polar capsules, which are essential to initiating host infection. To explore the adaptations of myxozoan polar capsules, we compared the structure, firing process and content release mechanism of polar tubules in myxospores of three Myxobolus species including M. cerebralis, the causative agent of whirling disease. RESULTS We found novel functions and morphologies in myxozoan polar tubules. High-speed video analysis of the firing process of capsules from the three Myxobolus species showed that all polar tubules rapidly extended and then contracted, an elasticity phenomenon that is unknown in free-living cnidarians. Interestingly, the duration of the tubule release differed among the three species by more than two orders of magnitude, ranging from 0.35 to 10 s. By dye-labeling the polar capsules prior to firing, we discovered that two of the species could release their entire capsule content, a delivery process not previously known from myxozoans. Having the role of content delivery and not simply anchoring suggests that cytotoxic or proteolytic compounds may be present in the capsule. Moreover, while free-living cnidarians inject most of the toxic content through the distal tip of the tubule, our video and ultrastructure analyses of the myxozoan tubules revealed patterns of double spirals of nodules and pores along parts of the tubules, and showed that the distal tip of the tubules was sealed. This helical pattern and distribution of openings may minimize the tubule mechanical weakness and improve resistance to the stress impose by firing. The finding that myxozoan tubule characteristics are very different from those of free-living cnidarians is suggestive of their adaptation to parasitic life. CONCLUSIONS These findings show that myxozoan polar tubules have more functions than previously assumed, and provide insight into their evolution from free-living ancestors.
Collapse
Affiliation(s)
- Jonathan Ben-David
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, OR, 97331, USA
| | - Yulia Pollak
- Electron Microscopy Unit, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Technion, Haifa, 32000, Israel
| | - Uri Shavit
- Faculty of Civil and Environmental Engineering, Technion, Haifa, 32000, Israel
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, OR, 97331, USA
| | - Tamar Lotan
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|
43
|
Anderson PSL, LaCosse J, Pankow M. Point of impact: the effect of size and speed on puncture mechanics. Interface Focus 2016; 6:20150111. [PMID: 27274801 PMCID: PMC4843624 DOI: 10.1098/rsfs.2015.0111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of high-speed puncture mechanics for prey capture has been documented across a wide range of organisms, including vertebrates, arthropods, molluscs and cnidarians. These examples span four phyla and seven orders of magnitude difference in size. The commonality of these puncture systems offers an opportunity to explore how organisms at different scales and with different materials, morphologies and kinematics perform the same basic function. However, there is currently no framework for combining kinematic performance with cutting mechanics in biological puncture systems. Our aim here is to establish this framework by examining the effects of size and velocity in a series of controlled ballistic puncture experiments. Arrows of identical shape but varying in mass and speed were shot into cubes of ballistic gelatine. Results from high-speed videography show that projectile velocity can alter how the target gel responds to cutting. Mixed models comparing kinematic variables and puncture patterns indicate that the kinetic energy of a projectile is a better predictor of penetration than either momentum or velocity. These results form a foundation for studying the effects of impact on biological puncture, opening the door for future work to explore the influence of morphology and material organization on high-speed cutting dynamics.
Collapse
Affiliation(s)
| | - J. LaCosse
- Department of Physics, Charles E. Jordan High School, Durham, NC 27707, USA
| | - M. Pankow
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
44
|
Borenstein DB, Ringel P, Basler M, Wingreen NS. Established Microbial Colonies Can Survive Type VI Secretion Assault. PLoS Comput Biol 2015; 11:e1004520. [PMID: 26485125 PMCID: PMC4619000 DOI: 10.1371/journal.pcbi.1004520] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/24/2015] [Indexed: 12/28/2022] Open
Abstract
Type VI secretion (T6S) is a cell-to-cell injection system that can be used as a microbial weapon. T6S kills vulnerable cells, and is present in close to 25% of sequenced Gram-negative bacteria. To examine the ecological role of T6S among bacteria, we competed self-immune T6S+ cells and T6S-sensitive cells in simulated range expansions. As killing takes place only at the interface between sensitive and T6S+ strains, while growth takes place everywhere, sufficiently large domains of sensitive cells can achieve net growth in the face of attack. Indeed T6S-sensitive cells can often outgrow their T6S+ competitors. We validated these findings through in vivo competition experiments between T6S+ Vibrio cholerae and T6S-sensitive Escherichia coli. We found that E. coli can survive and even dominate so long as they have an adequate opportunity to form microcolonies at the outset of the competition. Finally, in simulated competitions between two equivalent and mutually sensitive T6S+ strains, the more numerous strain has an advantage that increases with the T6S attack rate. We conclude that sufficiently large domains of T6S-sensitive individuals can survive attack and potentially outcompete self-immune T6S+ bacteria.
Collapse
Affiliation(s)
- David Bruce Borenstein
- Princeton University, Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, United States of America
| | - Peter Ringel
- Universität Basel, Biozentrum, Basel, Switzerland
| | - Marek Basler
- Universität Basel, Biozentrum, Basel, Switzerland
| | - Ned S. Wingreen
- Princeton University, Lewis-Sigler Institute for Integrative Genomics, Princeton, New Jersey, United States of America
- Princeton University, Department of Molecular Biology, Princeton, New Jersey, United States of America
| |
Collapse
|
45
|
Kitatani R, Yamada M, Kamio M, Nagai H. Length Is Associated with Pain: Jellyfish with Painful Sting Have Longer Nematocyst Tubules than Harmless Jellyfish. PLoS One 2015; 10:e0135015. [PMID: 26309256 PMCID: PMC4550354 DOI: 10.1371/journal.pone.0135015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/03/2015] [Indexed: 12/18/2022] Open
Abstract
A large number of humans are stung by jellyfish all over the world. The stings cause acute pain followed by persistent pain and local inflammation. Harmful jellyfish species typically cause strong pain, whereas harmless jellyfish cause subtle or no pain. Jellyfish sting humans by injecting a tubule, contained in the nematocyst, the stinging organ of jellyfish. The tubule penetrates into the skin leading to venom injection. The detailed morphology of the nematocyst tubule and molecular structure of the venom in the nematocyst has been reported; however, the mechanism responsible for the difference in pain that is caused by harmful and harmless jellyfish sting has not yet been explored or explained. Therefore, we hypothesized that differences in the length of the nematocyst tubule leads to different degrees of epithelial damage. The initial acute pain might be generated by penetration of the tubule, which stimulates pain receptor neurons, whilst persistent pain might be caused by injection of venom into the epithelium. To test this hypothesis we compared the lengths of discharged nematocyst tubules from harmful and harmless jellyfish species and evaluated their ability to penetrate human skin. The results showed that the harmful jellyfish species, Chrysaora pacifica, Carybdea brevipedalia, and Chironex yamaguchii, causing moderate to severe pain, have nematocyst tubules longer than 200 μm, compared with a jellyfish species that cause little or no pain, Aurelia aurita. The majority of the tubules of harmful jellyfishes, C. yamaguchii and C. brevipedalia, were sufficiently long to penetrate the human epidermis and physically stimulate the free nerve endings of Aδ pain receptor fibers around plexuses to cause acute pain and inject the venom into the human skin epithelium to cause persistent pain and inflammation.
Collapse
Affiliation(s)
- Ryuju Kitatani
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Mayu Yamada
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Michiya Kamio
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hiroshi Nagai
- Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| |
Collapse
|
46
|
Schüler A, Schmitz G, Reft A, Özbek S, Thurm U, Bornberg-Bauer E. The Rise and Fall of TRP-N, an Ancient Family of Mechanogated Ion Channels, in Metazoa. Genome Biol Evol 2015; 7:1713-27. [PMID: 26100409 PMCID: PMC4494053 DOI: 10.1093/gbe/evv091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mechanoreception, the sensing of mechanical forces, is an ancient means of orientation and communication and tightly linked to the evolution of motile animals. In flies, the transient-receptor-potential N protein (TRP-N) was found to be a cilia-associated mechanoreceptor. TRP-N belongs to a large and diverse family of ion channels. Its unusually long N-terminal repeat of 28 ankyrin domains presumably acts as the gating spring by which mechanical energy induces channel gating. We analyzed the evolutionary origins and possible diversification of TRP-N. Using a custom-made set of highly discriminative sequence profiles we scanned a representative set of metazoan genomes and subsequently corrected several gene models. We find that, contrary to other ion channel families, TRP-N is remarkably conserved in its domain arrangements and copy number (1) in all Bilateria except for amniotes, even in the wake of several whole-genome duplications. TRP-N is absent in Porifera but present in Ctenophora and Placozoa. Exceptional multiplications of TRP-N occurred in Cnidaria, independently along the Hydra and the Nematostella lineage. Molecular signals of subfunctionalization can be attributed to different mechanisms of activation of the gating spring. In Hydra this is further supported by in situ hybridization and immune staining, suggesting that at least three paralogs adapted to nematocyte discharge, which is key for predation and defense. We propose that these new candidate proteins help explain the sensory complexity of Cnidaria which has been previously observed but so far has lacked a molecular underpinning. Also, the ancient appearance of TRP-N supports a common origin of important components of the nervous systems in Ctenophores, Cnidaria, and Bilateria.
Collapse
Affiliation(s)
- Andreas Schüler
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Gregor Schmitz
- Institute for Evolution and Biodiversity, University of Muenster, Germany
| | - Abigail Reft
- Centre for Organismal Studies, University of Heidelberg, Germany
| | - Suat Özbek
- Centre for Organismal Studies, University of Heidelberg, Germany HEIKA-Heidelberg Karlsruhe Research Partnership, Heidelberg University, Karlsruhe Institute of Technology (KIT), Heidelberg and Karlsruhe, Germany
| | - Ulrich Thurm
- Institute for Neurobiology and Behavioural Biology, University of Muenster, Germany
| | | |
Collapse
|
47
|
Jouiaei M, Yanagihara AA, Madio B, Nevalainen TJ, Alewood PF, Fry BG. Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel) 2015; 7:2251-71. [PMID: 26094698 PMCID: PMC4488701 DOI: 10.3390/toxins7062251] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 01/22/2023] Open
Abstract
Cnidarians are the oldest extant lineage of venomous animals. Despite their simple anatomy, they are capable of subduing or repelling prey and predator species that are far more complex and recently evolved. Utilizing specialized penetrating nematocysts, cnidarians inject the nematocyst content or "venom" that initiates toxic and immunological reactions in the envenomated organism. These venoms contain enzymes, potent pore forming toxins, and neurotoxins. Enzymes include lipolytic and proteolytic proteins that catabolize prey tissues. Cnidarian pore forming toxins self-assemble to form robust membrane pores that can cause cell death via osmotic lysis. Neurotoxins exhibit rapid ion channel specific activities. In addition, certain cnidarian venoms contain or induce the release of host vasodilatory biogenic amines such as serotonin, histamine, bunodosine and caissarone accelerating the pathogenic effects of other venom enzymes and porins. The cnidarian attacking/defending mechanism is fast and efficient, and massive envenomation of humans may result in death, in some cases within a few minutes to an hour after sting. The complexity of venom components represents a unique therapeutic challenge and probably reflects the ancient evolutionary history of the cnidarian venom system. Thus, they are invaluable as a therapeutic target for sting treatment or as lead compounds for drug design.
Collapse
Affiliation(s)
- Mahdokht Jouiaei
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Angel A Yanagihara
- Pacific Cnidaria Research Lab, Department of Tropical Medicine, University of Hawaii, Honolulu, HI 96822, USA.
| | - Bruno Madio
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Timo J Nevalainen
- Department of Pathology, University of Turku, Turku FIN-20520, Finland.
| | - Paul F Alewood
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, the University of Queensland, St. Lucia 4072, QLD, Australia.
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia 4072, QLD, Australia.
| |
Collapse
|
48
|
Beckmann A, Xiao S, Müller JP, Mercadante D, Nüchter T, Kröger N, Langhojer F, Petrich W, Holstein TW, Benoit M, Gräter F, Özbek S. A fast recoiling silk-like elastomer facilitates nanosecond nematocyst discharge. BMC Biol 2015; 13:3. [PMID: 25592740 PMCID: PMC4321713 DOI: 10.1186/s12915-014-0113-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/24/2014] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The discharge of the Cnidarian stinging organelle, the nematocyst, is one of the fastest processes in biology and involves volume changes of the highly pressurised (150 bar) capsule of up to 50%. Hitherto, the molecular basis for the unusual biomechanical properties of nematocysts has been elusive, as their structure was mainly defined as a stress-resistant collagenous matrix. RESULTS Here, we characterise Cnidoin, a novel elastic protein identified as a structural component of Hydra nematocysts. Cnidoin is expressed in nematocytes of all types and immunostainings revealed incorporation into capsule walls and tubules concomitant with minicollagens. Similar to spider silk proteins, to which it is related at sequence level, Cnidoin possesses high elasticity and fast coiling propensity as predicted by molecular dynamics simulations and quantified by force spectroscopy. Recombinant Cnidoin showed a high tendency for spontaneous aggregation to bundles of fibrillar structures. CONCLUSIONS Cnidoin represents the molecular factor involved in kinetic energy storage and release during the ultra-fast nematocyst discharge. Furthermore, it implies an early evolutionary origin of protein elastomers in basal metazoans.
Collapse
Affiliation(s)
- Anna Beckmann
- Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| | - Senbo Xiao
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
| | - Jochen P Müller
- Applied Physics and Center for NanoScience, Ludwig Maximilian University, Amalienstr. 54, 80799, München, Germany.
| | - Davide Mercadante
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
| | - Timm Nüchter
- Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| | - Niels Kröger
- Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69210, Heidelberg, Germany.
| | | | - Wolfgang Petrich
- Kirchhoff Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69210, Heidelberg, Germany.
| | - Thomas W Holstein
- Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| | - Martin Benoit
- Applied Physics and Center for NanoScience, Ludwig Maximilian University, Amalienstr. 54, 80799, München, Germany.
| | - Frauke Gräter
- Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, 69118, Heidelberg, Germany.
| | - Suat Özbek
- Department of Molecular Evolution and Genomics, University of Heidelberg, Centre for Organismal Studies, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Rachamim T, Morgenstern D, Aharonovich D, Brekhman V, Lotan T, Sher D. The Dynamically Evolving Nematocyst Content of an Anthozoan, a Scyphozoan, and a Hydrozoan. Mol Biol Evol 2014; 32:740-53. [DOI: 10.1093/molbev/msu335] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
50
|
Babonis LS, Martindale MQ. Old cell, new trick? Cnidocytes as a model for the evolution of novelty. Integr Comp Biol 2014; 54:714-22. [PMID: 24771087 DOI: 10.1093/icb/icu027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding how new cell types arise is critical for understanding the evolution of organismal complexity. Questions of this nature, however, can be difficult to answer due to the challenge associated with defining the identity of a truly novel cell. Cnidarians (anemones, jellies, and their allies) provide a unique opportunity to investigate the molecular regulation and development of cell-novelty because they possess a cell that is unique to the cnidarian lineage and that also has a very well-characterized phenotype: the cnidocyte (stinging cell). Because cnidocytes are thought to differentiate from the cell lineage that also gives rise to neurons, cnidocytes can be expected to express many of the same genes expressed in their neural "sister" cells. Conversely, only cnidocytes posses a cnidocyst (the explosive organelle that gives cnidocytes their sting); therefore, those genes or gene-regulatory relationships required for the development of the cnidocyst can be expected to be expressed uniquely (or in unique combination) in cnidocytes. This system provides an important opportunity to: (1) construct the gene-regulatory network (GRN) underlying the differentiation of cnidocytes, (2) assess the relative contributions of both conserved and derived genes in the cnidocyte GRN, and (3) test hypotheses about the role of novel regulatory relationships in the generation of novel cell types. In this review, we summarize common challenges to studying the evolution of novelty, introduce the utility of cnidocyte differentiation in the model cnidarian, Nematostella vectensis, as a means of overcoming these challenges, and describe an experimental approach that leverages comparative tissue-specific transcriptomics to generate hypotheses about the GRNs underlying the acquisition of the cnidocyte identity.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Oceanshore Blvd, St. Augustine, FL 32080, USA
| |
Collapse
|