1
|
Rabaan AA, Alfaresi M, Alrasheed HA, Al Kaabi NA, Abduljabbar WA, Al Fares MA, Al-Subaie MF, Alissa M. Network-Based Drug Repurposing and Genomic Analysis to Unveil Potential Therapeutics for Monkeypox Virus. Chem Biodivers 2024; 21:e202400895. [PMID: 39082609 DOI: 10.1002/cbdv.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 10/10/2024]
Abstract
The emergence of the human monkeypox virus (MPXV) and the lack of effective medications have necessitated the exploration of various strategies to combat its infection. This study employs a network-based approach to drug discovery, utilizing the BLASTn and phylogenetic analysis to compare the MPXV genome with those of 18 related orthopoxviruses, revealing over 75 % genomic similarity. Through a literature review, 160 human-host proteins linked to MPXV and its relatives were identified, leading to the construction of a human-host protein interactome. Analysis of this interactome highlighted 39 central hub proteins, which were then examined for potential drug targets. The process successfully revealed 15 targets already approved for use with medications. Additionally, the functional enrichment analysis provided insights into potential pathways and disorders connected with these targets. Four medications, namely Baricitinib, Infliximab, Adalimumab, and Etanercept, have been identified as potential candidates for repurposing to combat MPXV. In addition, the pharmacophore-based screening identified a molecule that is comparable to Baricitinib and has the potential to be effective against MPXV. The findings of the study suggest that ZINC22060520 is a promising medication for treating MPXV infection and proposes these medications as potential options for additional experimental and clinical assessment in the battle against MPXV.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, 92323, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid, University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Wesam A Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah, 21134, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, 13328, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Wang T, Song X, Tan J, Xian W, Zhou X, Yu M, Wang X, Xu Y, Wu T, Yuan K, Ran Y, Yang B, Fan G, Liu X, Zhou Y, Zhu Y. Legionella effector LnaB is a phosphoryl-AMPylase that impairs phosphosignalling. Nature 2024; 631:393-401. [PMID: 38776962 DOI: 10.1038/s41586-024-07573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
AMPylation is a post-translational modification in which AMP is added to the amino acid side chains of proteins1,2. Here we show that, with ATP as the ligand and actin as the host activator, the effector protein LnaB of Legionella pneumophila exhibits AMPylase activity towards the phosphoryl group of phosphoribose on PRR42-Ub that is generated by the SidE family of effectors, and deubiquitinases DupA and DupB in an E1- and E2-independent ubiquitination process3-7. The product of LnaB is further hydrolysed by an ADP-ribosylhydrolase, MavL, to Ub, thereby preventing the accumulation of PRR42-Ub and ADPRR42-Ub and protecting canonical ubiquitination in host cells. LnaB represents a large family of AMPylases that adopt a common structural fold, distinct from those of the previously known AMPylases, and LnaB homologues are found in more than 20 species of bacterial pathogens. Moreover, LnaB also exhibits robust phosphoryl AMPylase activity towards phosphorylated residues and produces unique ADPylation modifications in proteins. During infection, LnaB AMPylates the conserved phosphorylated tyrosine residues in the activation loop of the Src family of kinases8,9, which dampens downstream phosphorylation signalling in the host. Structural studies reveal the actin-dependent activation and catalytic mechanisms of the LnaB family of AMPylases. This study identifies, to our knowledge, an unprecedented molecular regulation mechanism in bacterial pathogenesis and protein phosphorylation.
Collapse
Affiliation(s)
- Ting Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaonan Song
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiaxing Tan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
| | - Wei Xian
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xingtong Zhou
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Mingru Yu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaofei Wang
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yan Xu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ting Wu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Keke Yuan
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yu Ran
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Bing Yang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyun Liu
- Department of Microbiology and Infectious Disease Center, NHC Key Laboratory of Medical Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Yan Zhou
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | - Yongqun Zhu
- Department of Gastroenterology of the Second Affiliated Hospital, School of Medicine and College of Animal Sciences, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- MOE Key Laboratory of Biosystems Homeostasis and Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, China.
- MOA Key Laboratory of Animal Virology, Center for Veterinary Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Marcano VC, Cardenas-Garcia S, Diel DG, Antoniassi da Silva LH, Gogal RM, Miller PJ, Brown CC, Butt SL, Goraichuk IV, Dimitrov KM, Taylor TL, Williams-Coplin D, Olivier TL, Stanton JB, Afonso CL. A Novel Recombinant Newcastle Disease Vaccine Improves Post- In Ovo Vaccination Survival with Sustained Protection against Virulent Challenge. Vaccines (Basel) 2021; 9:vaccines9090953. [PMID: 34579191 PMCID: PMC8472951 DOI: 10.3390/vaccines9090953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 01/23/2023] Open
Abstract
In ovo vaccination has been employed by the poultry industry for over 20 years to control numerous avian diseases. Unfortunately, in ovo live vaccines against Newcastle disease have significant limitations, including high embryo mortality and the inability to induce full protection during the first two weeks of life. In this study, a recombinant live attenuated Newcastle disease virus vaccine containing the antisense sequence of chicken interleukin 4 (IL-4), rZJ1*L-IL4R, was used. The rZJ1*L-IL4R vaccine was administered in ovo to naïve specific pathogen free embryonated chicken eggs (ECEs) and evaluated against a homologous challenge. Controls included a live attenuated recombinant genotype VII vaccine based on the virus ZJ1 (rZJ1*L) backbone, the LaSota vaccine and diluent alone. In the first of two experiments, ECEs were vaccinated at 18 days of embryonation (DOE) with either 104.5 or 103.5 50% embryo infectious dose (EID50/egg) and chickens were challenged at 21 days post-hatch (DPH). In the second experiment, 103.5 EID50/egg of each vaccine was administered at 19 DOE, and chickens were challenged at 14 DPH. Chickens vaccinated with 103.5 EID50/egg of rZJ1*L-IL4R had hatch rates comparable to the group that received diluent alone, whereas other groups had significantly lower hatch rates. All vaccinated chickens survived challenge without displaying clinical disease, had protective hemagglutination inhibition titers, and shed comparable levels of challenge virus. The recombinant rZJ1*L-IL4R vaccine yielded lower post-vaccination mortality rates compared with the other in ovo NDV live vaccine candidates as well as provided strong protection post-challenge.
Collapse
Affiliation(s)
- Valerie C. Marcano
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (C.C.B.); (J.B.S.)
| | - Stivalis Cardenas-Garcia
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (C.C.B.); (J.B.S.)
| | - Diego G. Diel
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Luciana H. Antoniassi da Silva
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Robert M. Gogal
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA;
| | - Patti J. Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Corrie C. Brown
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (C.C.B.); (J.B.S.)
| | - Salman Latif Butt
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (C.C.B.); (J.B.S.)
- Department of Pathology, UAF Sub Campus TTS, University of Agriculture Faisalabad, Punjab 38000, Pakistan
| | - Iryna V. Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinska St., 61023 Kharkiv, Ukraine
| | - Kiril M. Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Tonya L. Taylor
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Dawn Williams-Coplin
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - Timothy L. Olivier
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
| | - James B. Stanton
- Department of Veterinary Pathology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; (C.C.B.); (J.B.S.)
| | - Claudio L. Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Rd., Athens, GA 30605, USA; (V.C.M.); (S.C.-G.); (D.G.D.); (L.H.A.d.S.); (P.J.M.); (S.L.B.); (I.V.G.); (K.M.D.); (T.L.T.); (D.W.-C.); (T.L.O.)
- Correspondence:
| |
Collapse
|
4
|
Soriano Jerez EM, Gibbins JM, Hughes CE. Targeting platelet inhibition receptors for novel therapies: PECAM-1 and G6b-B. Platelets 2021; 32:761-769. [PMID: 33646086 DOI: 10.1080/09537104.2021.1882668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While current oral antiplatelet therapies benefit many patients, they deregulate the hemostatic balance leaving patients at risk of systemic side-effects such as hemorrhage. Dual antiplatelet treatment is the standard approach, combining aspirin with P2Y12 blockers. These therapies mainly target autocrine activation mechanisms (TxA2, ADP) and, more recently, the use of thrombin or thrombin receptor antagonists have been added to the available approaches. Recent efforts to develop new classes of anti-platelet drugs have begun to focus on primary platelet activation pathways such as through the immunoreceptor tyrosine-based activation motif (ITAM)-containing collagen receptor GPVI/FcRγ-chain complex. There are already encouraging results from targeting GPVI, with reduced aggregation and smaller arterial thrombi, without major bleeding complications, likely due to overlapping activation signaling pathways with other receptors such as the GPIb-V-IX complex. An alternative approach to reduce platelet activation could be to inhibit this signaling pathway by targeting the inhibitory pathways intrinsic to platelets. Stimulation of endogenous negative modulators could provide more specific inhibition of platelet function, but is this feasible? In this review, we explore the potential of the two major platelet immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing inhibitory receptors, G6b-B and PECAM-1, as antithrombotic targets.
Collapse
Affiliation(s)
- Eva M Soriano Jerez
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK.,Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - Craig E Hughes
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| |
Collapse
|
5
|
Therapeutic Targeting of Autoreactive B Cells: Why, How, and When? Biomedicines 2021; 9:biomedicines9010083. [PMID: 33467130 PMCID: PMC7829839 DOI: 10.3390/biomedicines9010083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/20/2022] Open
Abstract
B lymphocytes play critical roles in the development of autoimmunity, acting as autoantibody manufacturers, antigen-presenting cells, and producers of cytokines. Pan-B cell depletion has demonstrated efficacy in treatment of many autoimmune disorders, but carries with it an unfavorable safety profile due to global immune suppression. Hence, attention has turned to the potential of autoantigen-specific B cell targeted therapies, which would deplete or silence pathogenic self-antigen-reactive cells while sparing B cells needed for immune defense. Here, we discuss the antigen-specific B cell-targeted approaches that are under development or are under consideration, that could be employed to allow for more precise therapy in the treatment of autoimmunity. Lastly, we discuss some of the challenges associated with antigen-specific B cell targeting that may impact their clinical applicability.
Collapse
|
6
|
Enhanced BCR signaling inflicts early plasmablast and germinal center B cell death. iScience 2021; 24:102038. [PMID: 33532715 PMCID: PMC7822941 DOI: 10.1016/j.isci.2021.102038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 01/01/2023] Open
Abstract
It is still not clear how B cell receptor (BCR) signaling intensity affects plasma cell (PC) and germinal center (GC) B cell differentiation. We generated Cγ1 Cre/wt Ptpn6 fl/fl mice where SHP-1, a negative regulator of BCR signaling, is deleted rapidly after B cell activation. Although immunization with T-dependent antigens increased BCR signaling, it led to PC reduction and increased apoptosis. Dependent on the antigen, the early GC B cell response was equally reduced and apoptosis increased. At the same time, a higher proportion of GC B cells expressed cMYC, suggesting GC B cell-Tfh cell interactions may be increased. GC B cell numbers returned to normal at later stages, whereas affinity maturation was suppressed in the long term. This confirms that BCR signaling not only directs affinity-dependent B cell selection but also, without adequate further stimulation, can inflict cell death, which may be important for the maintenance of B cell tolerance.
Collapse
|
7
|
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG Antibodies as Regulators of Mast Cell and Basophil Functions in Food Allergy. Front Immunol 2020; 11:603050. [PMID: 33362785 PMCID: PMC7759531 DOI: 10.3389/fimmu.2020.603050] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Food allergy is a major health issue, affecting the lives of 8% of U.S. children and their families. There is an urgent need to identify the environmental and endogenous signals that induce and sustain allergic responses to ingested allergens. Acute reactions to foods are triggered by the activation of mast cells and basophils, both of which release inflammatory mediators that lead to a range of clinical manifestations, including gastrointestinal, cutaneous, and respiratory reactions as well as systemic anaphylaxis. Both of these innate effector cell types express the high affinity IgE receptor, FcϵRI, on their surface and are armed for adaptive antigen recognition by very-tightly bound IgE antibodies which, when cross-linked by polyvalent allergen, trigger degranulation. These cells also express inhibitory receptors, including the IgG Fc receptor, FcγRIIb, that suppress their IgE-mediated activation. Recent studies have shown that natural resolution of food allergies is associated with increasing food-specific IgG levels. Furthermore, oral immunotherapy, the sequential administration of incrementally increasing doses of food allergen, is accompanied by the strong induction of allergen-specific IgG antibodies in both human subjects and murine models. These can deliver inhibitory signals via FcγRIIb that block IgE-induced immediate food reactions. In addition to their role in mediating immediate hypersensitivity reactions, mast cells and basophils serve separate but critical functions as adjuvants for type 2 immunity in food allergy. Mast cells and basophils, activated by IgE, are key sources of IL-4 that tilts the immune balance away from tolerance and towards type 2 immunity by promoting the induction of Th2 cells along with the innate effectors of type 2 immunity, ILC2s, while suppressing the development of regulatory T cells and driving their subversion to a pathogenic pro-Th2 phenotype. This adjuvant effect of mast cells and basophils is suppressed when inhibitory signals are delivered by IgG antibodies signaling via FcγRIIb. This review summarizes current understanding of the immunoregulatory effects of mast cells and basophils and how these functions are modulated by IgE and IgG antibodies. Understanding these pathways could provide important insights into innovative strategies for preventing and/or reversing food allergy in patients.
Collapse
Affiliation(s)
- Cynthia Kanagaratham
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Yasmeen S. El Ansari
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Owen L. Lewis
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
| | - Hans C. Oettgen
- Division of Immunology, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
El Ansari YS, Kanagaratham C, Lewis OL, Oettgen HC. IgE and mast cells: The endogenous adjuvant. Adv Immunol 2020; 148:93-153. [PMID: 33190734 DOI: 10.1016/bs.ai.2020.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and IgE are most familiar as the effectors of type I hypersensitivity reactions including anaphylaxis. It is becoming clear however that this pair has important immunomodulatory effects on innate and adaptive cells of the immune system. In this purview, they act as endogenous adjuvants to ignite evolving immune responses, promote the transition of allergic disease into chronic illness and disrupt the development of active mechanisms of tolerance to ingested foods. Suppression of IgE-mediated mast cell activation can be exerted by molecules targeting IgE, FcɛRI or signaling kinases including Syk, or by IgG antibodies acting via inhibitory Fcγ receptors. In 2015 we reviewed the evidence for the adjuvant functions of mast cells. This update includes the original text, incorporates some important developments in the field over the past five years and discusses how interventions targeting these pathways might have promise in the development of strategies to treat allergic disease.
Collapse
Affiliation(s)
- Yasmeen S El Ansari
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Institute of Laboratory Medicine, Philipps University Marburg, Marburg, Germany
| | - Cynthia Kanagaratham
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Owen L Lewis
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Hans C Oettgen
- Division of Immunology, Boston Children's Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
9
|
Crute BW, Sheraden R, Ott VL, Harley ITW, Getahun A, Cambier JC. Inhibitory Receptor Trap: A Platform for Discovery of Inhibitory Receptors That Utilize Inositol Lipid and Phosphotyrosine Phosphatase Effectors. Front Immunol 2020; 11:592329. [PMID: 33193438 PMCID: PMC7641642 DOI: 10.3389/fimmu.2020.592329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/29/2020] [Indexed: 01/06/2023] Open
Abstract
Among the areas of most impactful recent progress in immunology is the discovery of inhibitory receptors and the subsequent translation of this knowledge to the clinic. Although the original and canonical member of this family is FcγRIIB, more recent studies defined PD1 as an inhibitory receptor that constrains T cell immunity to tumors. These studies led to development of “checkpoint blockade” immunotherapies (CBT) for cancers in which PD1 interactions with its ligand are blocked. Unfortunately, although very effective in some patients, only a small proportion respond to this therapy. This suggests that additional as yet undescribed inhibitory receptors exist, which could be exploited. Here, we describe a new platform, termed inhibitory receptor trap (IRT), for discovery of members of this family. The approach takes advantage of the fact that many of the known inhibitory receptors mediate signaling by phospho-immunoreceptor tyrosine-based inhibition motif (ITIM) mediated recruitment of Src Homology 2 (SH2) domain-containing phosphatases including the SH2 domain-containing inositol phosphatase SHIP1 encoded by the INPP5D gene and the SH2 domain-containing phosphotyrosine phosphatases SHP1 and SHP2 encoded by the PTPN6 and PTPN11 genes respectively. Here, we describe the IRT discovery platform in which the SH2 domains of inhibitory phosphatases are used for affinity-based isolation and subsequent identification of candidate effectors via immunoblotting and high sensitivity liquid chromatography–mass spectrometry. These receptors may represent alternative targets that can be exploited for improved CBT. Salient observations from these studies include the following: SH2 domains derived from the respective phosphatases bind distinct sets of candidates from different cell types. Thus, cells of different identity and different activation states express partially distinct repertoires of up and downstream phosphatase effectors. Phosphorylated PD1 binds not only SHP2 but also SHIP1, thus the latter may be important in its inhibitory function. B cell antigen receptor signaling leads predominantly to CD79 mono-phosphorylation as indicated by much greater binding to LynSH2 than Syk(SH2)2. This balance of ITAM mono- versus bi-phosphorylation likely tunes signaling by varying activation of inhibitory (Lyn) and stimulatory (Syk) pathways.
Collapse
Affiliation(s)
- Bergren W Crute
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Rachel Sheraden
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vanessa L Ott
- Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - Isaac T W Harley
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Sciences, National Jewish Health, Denver, CO, United States
| |
Collapse
|
10
|
The regulators of BCR signaling during B cell activation. BLOOD SCIENCE 2019; 1:119-129. [PMID: 35402811 PMCID: PMC8975005 DOI: 10.1097/bs9.0000000000000026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 07/25/2019] [Indexed: 11/26/2022] Open
Abstract
B lymphocytes produce antibodies under the stimulation of specific antigens, thereby exerting an immune effect. B cells identify antigens by their surface B cell receptor (BCR), which upon stimulation, directs the cell to activate and differentiate into antibody generating plasma cells. Activation of B cells via their BCRs involves signaling pathways that are tightly controlled by various regulators. In this review, we will discuss three major BCR mediated signaling pathways (the PLC-γ2 pathway, PI3K pathway and MAPK pathway) and related regulators, which were roughly divided into positive, negative and mutual-balanced regulators, and the specific regulators of the specific signaling pathway based on regulatory effects.
Collapse
|
11
|
Acevedo OA, Díaz FE, Beals TE, Benavente FM, Soto JA, Escobar-Vera J, González PA, Kalergis AM. Contribution of Fcγ Receptor-Mediated Immunity to the Pathogenesis Caused by the Human Respiratory Syncytial Virus. Front Cell Infect Microbiol 2019; 9:75. [PMID: 30984626 PMCID: PMC6450440 DOI: 10.3389/fcimb.2019.00075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022] Open
Abstract
The human Respiratory Syncytial Virus (hRSV) is the leading cause of severe acute lower respiratory tract infections (ALRTIs) in humans at all ages and is the main cause of hospitalization due to pneumonia, asthma, and bronchiolitis in infants. hRSV symptoms mainly develop due to an excessive host immune and inflammatory response in the respiratory tissue. hRSV infection during life is frequent and likely because of non-optimal immunological memory is developed against this virus. Vaccine development against this pathogen has been delayed after the detrimental effects produced in children by vaccination with a formalin-inactivated hRSV preparation (FI-hRSV), which caused enhanced disease upon natural viral infection. Since then, several studies have focused on understanding the mechanisms underlying such disease exacerbation. Along these lines, several studies have suggested that antibodies elicited by immunization with FI-hRSV show low neutralizing capacity and promote the formation of immune complexes containing hRSV (hRSV-ICs), which contribute to hRSV pathogenesis through the engagement of Fc gamma receptors (FcγRs) expressed on the surface of immune cells. Furthermore, a role for FcγRs is supported by studies evaluating the contribution of these molecules to hRSV-induced disease. These studies have shown that FcγRs can modulate viral clearance by the host and the inflammatory response triggered by hRSV infection. In addition, ICs can facilitate viral entry into host cells expressing FcγRs, thus extending hRSV infectivity. In this article, we discuss current knowledge relative to the contribution of hRSV-ICs and FcγRs to the pathogenesis caused by hRSV and their putative role in the exacerbation of the disease caused by this virus after FI-hRSV vaccination. A better understanding FcγRs involvement in the immune response against hRSV will contribute to the development of new prophylactic or therapeutic tools to promote virus clearance with limited inflammatory damage to the airways.
Collapse
Affiliation(s)
- Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E Díaz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomas E Beals
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe M Benavente
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Escobar-Vera
- Laboratorio de Genética, Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Franks SE, Cambier JC. Putting on the Brakes: Regulatory Kinases and Phosphatases Maintaining B Cell Anergy. Front Immunol 2018; 9:665. [PMID: 29681901 PMCID: PMC5897502 DOI: 10.3389/fimmu.2018.00665] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
B cell antigen receptor (BCR) signaling is a tightly regulated process governed by both positive and negative mediators/regulators to ensure appropriate responses to exogenous and autologous antigens. Upon naïve B cell recognition of antigen CD79 [the immunoreceptor tyrosine-based activation motif (ITAM)-containing signaling subunit of the BCR] is phosphorylated and recruits Src and Syk family kinases that then phosphorylate proximal intermediaries linked to downstream activating signaling circuitry. This plasma membrane localized signalosome activates PI3K leading to generation of PIP3 critical for membrane localization and activation of plecktrin homology domain-containing effectors. Conversely, in anergic B cells, chronic antigen stimulation drives biased monophosphorylation of CD79 ITAMs leading to recruitment of Lyn, but not Syk, which docks only to bi-phosphorylated ITAMS. In this context, Lyn appears to function primarily as a driver of inhibitory signaling pathways promoting the inhibition of the PI3K pathway by inositol phosphatases, SHIP-1 and PTEN, which hydrolyze PIP3 to PIP2. Lyn may also exert negative regulation of signaling through recruitment of SHP-1, a tyrosine phosphatase that dephosphorylates activating signaling molecules. Alleles of genes that encode or regulate expression of components of this axis, including SHIP-1, SHP-1, Csk/PTPn22, and Lyn, have been shown to confer risk of autoimmunity. This review will discuss functional interplay of components of this pathway and the impact of risk alleles on its function.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO, United States
| |
Collapse
|
13
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Choi YR, Cha SH, Kang SJ, Kim JB, Jou I, Park SM. Prion-like Propagation of α-Synuclein Is Regulated by the FcγRIIB-SHP-1/2 Signaling Pathway in Neurons. Cell Rep 2018; 22:136-148. [DOI: 10.1016/j.celrep.2017.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/01/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022] Open
|
16
|
Abstract
Many Siglecs function as inhibitory receptors on innate and adaptive immune cells and may contribute to the attenuation of immune responses to tumors. Siglec 9 on neutrophils and Siglec 7 on NK cells are prominent examples of inhibitory Siglecs that can potentially dampen anti-tumor immunity. CD169 is a Siglec that may function as an adhesion molecule and a facilitator of the recognition and internalization of sialic acid decorated apoptotic bodies and exosomes derived from tumors. It can potentially contribute to both the attenuation as well as the facilitation of anti-tumor immunity. Siglecs have been best studied in the tumor context in animal models of cancer. Modulators of Siglec function are likely to be developed and investigated clinically in a cancer context over the next few years.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| | - Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Harvard Medical School, Cambridge, MA, USA
| |
Collapse
|
17
|
Franks SE, Getahun A, Hogarth PM, Cambier JC. Targeting B cells in treatment of autoimmunity. Curr Opin Immunol 2016; 43:39-45. [PMID: 27718447 DOI: 10.1016/j.coi.2016.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/10/2016] [Accepted: 09/13/2016] [Indexed: 01/06/2023]
Abstract
B cells have emerged as effective targets for therapeutic intervention in autoimmunities in which the ultimate effectors are antibodies, as well as those in which T cells are primary drivers of inflammation. Proof of this principle has come primarily from studies of the efficacy of Rituximab, an anti-CD20 mAb that depletes B cells, in various autoimmune settings. These successes have inspired efforts to develop more effective anti-CD20s tailored for specific needs, as well as biologicals and small molecules that suppress B cell function without the risks inherent in B cell depletion. Here we review the current status of B cell-targeted therapies for autoimmunity.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA
| | - Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA; Department of Biomedical Research, National Jewish Health, Denver, CO, USA
| | - P Mark Hogarth
- Centre for Biomedicine, Burnet Institute, Melbourne, Vic., Australia; Department of Immunology, Monash University, Melbourne, Vic., Australia; Department of Pathology, University of Melbourne, Melbourne, Vic., Australia
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA; Department of Biomedical Research, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
18
|
Getahun A, Cambier JC. Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 2016; 268:66-73. [PMID: 26497513 DOI: 10.1111/imr.12336] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors for immunoglobulin Fc regions play multiple critical roles in the immune system, mediating functions as diverse as phagocytosis, triggering degranulation of basophils and mast cells, promoting immunoglobulin class switching, and preventing excessive activation. Transmembrane signaling associated with these functions is mediated primarily by two amino acid sequence motifs, ITAMs (immunoreceptor tyrosine-based activation motifs) and ITIMs (immunoreceptor tyrosine-based inhibition motifs) that act as the receptors' interface with activating and inhibitory signaling pathways, respectively. While ITAMs mobilize activating tyrosine kinases and their consorts, ITIMs mobilize opposing tyrosine and inositol-lipid phosphatases. In this review, we will discuss our current understanding of signaling by these receptors/motifs and their sometimes blurred lines of function.
Collapse
Affiliation(s)
- Andrew Getahun
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
19
|
Rahim MMA, Makrigiannis AP. Ly49 receptors: evolution, genetic diversity, and impact on immunity. Immunol Rev 2016; 267:137-47. [PMID: 26284475 DOI: 10.1111/imr.12318] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells express cell surface receptors that recognize class I major histocompatibility complex (MHC-I) molecules to distinguish between healthy and unhealthy cells. The multigenic and polymorphic nature of the MHC-I genes has influenced the convergent evolution of similarly polymorphic and diversified NK cell receptor families: the C-type lectin-like Ly49 receptors in mice, and the killer cell immunoglobulin-like receptors (KIRs) in humans. Although structurally distinct, both receptor families have similar functions in terms of MHC-I recognition and downstream signal transduction, and they regulate multiple aspects of NK cell biology during development and after maturation as fully differentiated and functionally competent cells. The Ly49 gene locus has undergone rapid, lineage-specific expansions and contractions resulting in multiple distinct haplotypes of variable gene number, allelic diversity, and MHC-I ligand specificity. This in turn has influenced the type and degree of Ly49 receptor expression on NK cells, and their contribution to immunity in different mouse strains. In this review, we have attempted to describe the evolutionary processes that have shaped strain-specific Ly49 receptor repertoires, and their impact on NK cell functions during health and disease.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
20
|
Crow AR, Lazarus AH. Mechanistic properties of intravenous immunoglobulin in murine immune thrombocytopenia: support for FcγRIIB falls by the wayside. Semin Hematol 2016; 53 Suppl 1:S20-2. [DOI: 10.1053/j.seminhematol.2016.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Abou Elazab MF, Horiuchi H, Furusawa S. Induction of non-specific suppression in chicks by specific combination of maternal antibody and related antigen. J Vet Med Sci 2015; 77:1363-9. [PMID: 26050841 PMCID: PMC4667651 DOI: 10.1292/jvms.14-0525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Specific immune suppression in newly hatched chicks induced by specific
maternal antibodies has been reported. Laying hens were immunized with
dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH). Purified maternal anti-DNP and
non-specific immunoglobulin (Ig) Y antibodies were transferred by yolk sac inoculation to
newly hatched chicks, and then, they were immunized with an optimum immunogenic dose of
DNP-KLH at 1 and 4 weeks of age. Concentrations of anti-DNP antibodies in serum samples of
these chicks were measured by using Enzyme-linked immunosorbent assay (ELISA). Proportions
of T-cell subsets in peripheral blood of these chicks were also measured by flow
cytometric analysis at 5 weeks of age (one week after the second immunization).
Suppression of anti-DNP antibody response and down-regulation of
CD3+CD4+ cells were observed in the chicks received high dose of
maternal anti-DNP antibodies and immunized with DNP-KLH. On the other hand, normal
anti-DNP antibody response and normal proportion of CD3+CD4+ cells
were observed in the chicks received high dose of non-specific IgY antibodies and
immunized with DNP-KLH. Furthermore, when chicks received high dose of maternal anti-DNP
antibodies and immunized with DNP-KLH at 1 and 4 weeks of age and then with rabbit serum
albumin (RSA) at 5 and 8 weeks of age, their primary anti-RSA response was also
significantly suppressed. We indicate here that specific maternal antibodies can affect
both B and T cell responses and induce non-specific suppression against different
antigens. However, this non-specific suppression does not continue for a long time.
Collapse
Affiliation(s)
- Mohamed Fahmy Abou Elazab
- Laboratory of Immunobiology, Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | |
Collapse
|
22
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
23
|
Abstract
The mammary gland (MG) lacks a mucosa but is part of the mucosal immune system because of its role in passive mucosal immunity. The MG is not an inductive site for mucosal immunity. Rather, synthesis of immunoglobulin (Ig)A by plasma cells stimulated at distal inductive sites dominate in the milk of rodents, humans, and swine whereas IgG1 derived from serum predominates in ruminants. Despite the considerable biodiversity in the role of the MG, IgG passively transfers the maternal systemic immunological experience whereas IgA transfers the mucosal immunological experience. Although passive antibodies are protective, they and other lacteal constituents can be immunoregulatory. Immune protection of the MG largely depends on the innate immune system; the monocytes–macrophages group together with intraepithelial lymphocytes is dominant in the healthy gland. An increase in somatic cells (neutrophils) and various interleukins signal infection (mastitis) and a local immune response in the MG. The major role of the MG to mucosal immunity is the passive immunity supplied to the suckling neonate.
Collapse
|
24
|
|
25
|
Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, Shaheen S, Li J, Wang L, Yue C, Zhao Y, Wang F, Brzostowski J, Chen YH, Zheng W, Liu W. Through an ITIM-Independent Mechanism the FcγRIIB Blocks B Cell Activation by Disrupting the Colocalized Microclustering of the B Cell Receptor and CD19. THE JOURNAL OF IMMUNOLOGY 2014; 192:5179-91. [DOI: 10.4049/jimmunol.1400101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Rahim MMA, Tu MM, Mahmoud AB, Wight A, Abou-Samra E, Lima PDA, Makrigiannis AP. Ly49 receptors: innate and adaptive immune paradigms. Front Immunol 2014; 5:145. [PMID: 24765094 PMCID: PMC3980100 DOI: 10.3389/fimmu.2014.00145] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 11/13/2022] Open
Abstract
The Ly49 receptors are type II C-type lectin-like membrane glycoproteins encoded by a family of highly polymorphic and polygenic genes within the mouse natural killer (NK) gene complex. This gene family is designated Klra, and includes genes that encode both inhibitory and activating Ly49 receptors in mice. Ly49 receptors recognize class I major histocompatibility complex-I (MHC-I) and MHC-I-like proteins on normal as well as altered cells. Their functional homologs in humans are the killer cell immunoglobulin-like receptors, which recognize HLA class I molecules as ligands. Classically, Ly49 receptors are described as being expressed on both the developing and mature NK cells. The inhibitory Ly49 receptors are involved in NK cell education, a process in which NK cells acquire function and tolerance toward cells that express “self-MHC-I.” On the other hand, the activating Ly49 receptors recognize altered cells expressing activating ligands. New evidence shows a broader Ly49 expression pattern on both innate and adaptive immune cells. Ly49 receptors have been described on multiple NK cell subsets, such as uterine NK and memory NK cells, as well as NKT cells, dendritic cells, plasmacytoid dendritic cells, macrophages, neutrophils, and cells of the adaptive immune system, such as activated T cells and regulatory CD8+ T cells. In this review, we discuss the expression pattern and proposed functions of Ly49 receptors on various immune cells and their contribution to immunity.
Collapse
Affiliation(s)
- Mir Munir A Rahim
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Megan M Tu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Ahmad Bakur Mahmoud
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada ; College of Applied Medical Sciences, Taibah University , Madinah Munawwarah , Kingdom of Saudi Arabia
| | - Andrew Wight
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Elias Abou-Samra
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| | - Patricia D A Lima
- Biomedical and Molecular Sciences, Queen's University , Kingston, ON , Canada
| | - Andrew P Makrigiannis
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
27
|
Panda S, Zhang J, Tan NS, Ho B, Ding JL. Natural IgG antibodies provide innate protection against ficolin-opsonized bacteria. EMBO J 2013; 32:2905-19. [PMID: 24002211 PMCID: PMC3831310 DOI: 10.1038/emboj.2013.199] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/08/2013] [Indexed: 11/09/2022] Open
Abstract
For nearly five decades since its discovery, the role of natural IgG, which pre-exists in neonates and uninfected individuals, has remained unclear due to the general perception that natural antibodies lack affinity for pathogens. Here, we show for the first time that natural IgG recognizes a spectrum of bacteria through lectins like ficolin and mannose binding lectin (MBL). Infection-inflammation condition markedly increased the affinity of natural IgG for bacteria associated with ficolins. After opsonization with IgG:ficolin complex, the bacteria were phagocytosed by monocytes via FcγRI. Infection of C3(-/-) mice indicated that the natural IgG-mediated immune complex was formed independently of C3. AID(-/-) mice lacking IgG were susceptible to infection, unless reconstituted with natural IgG. Thus, we have proven that natural IgG is not quiescent; rather, it plays a vital and immediate role in immune defense. Our findings provide a fresh perspective on natural antibodies, opening new avenues to explore host-microbe interaction.
Collapse
Affiliation(s)
- Saswati Panda
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Jing Zhang
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Bow Ho
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Singapore MIT Alliance, National University of Singapore, Singapore, Singapore
| |
Collapse
|
28
|
Held W. Inhibitory receptors and their mode of action: key insights from NK cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:3489-90. [PMID: 24058191 DOI: 10.4049/jimmunol.1302158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Werner Held
- Department of Oncology, Ludwig Center for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
29
|
Sarkar S, Salyer ACD, Wall KA, Sucheck SJ. Synthesis and immunological evaluation of a MUC1 glycopeptide incorporated into l-rhamnose displaying liposomes. Bioconjug Chem 2013; 24:363-75. [PMID: 23444835 PMCID: PMC3623543 DOI: 10.1021/bc300422a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
MUC1 variable number tandem repeats (VNTRs) conjugated to tumor-associated carbohydrate antigens (TACAs) have been shown to break self-tolerance in humanized MUC1 transgenic mice. Therefore, we hypothesize that a MUC1 VNTR TACA-conjugate can be successfully formulated into a liposome-based anticancer vaccine. The immunogenicity of the vaccine should be further augmented by incorporating surface-displayed l-rhamnose (Rha) epitopes onto the liposomes to take advantage of a natural antibody-dependent antigen uptake mechanism. To validate our hypothesis, we synthesized a 20-amino-acid MUC1 glycopeptide containing a GalNAc-O-Thr (Tn) TACA by SPPS and conjugated it to a functionalized Toll-like receptor ligand (TLRL). An l-Rha-cholesterol conjugate was prepared using tetra(ethylene glycol) (TEG) as a linker. The liposome-based anticancer vaccine was formulated by the extrusion method using TLRL-MUC1-Tn conjugate, Rha-TEG-cholesterol, and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in a total lipid concentration of 30 mM. The stability, homogeneity, and size characterization of the liposomes was evaluated by SEM and DLS measurements. The formulated liposomes demonstrated positive binding with both anti-Rha and mouse anti-human MUC1 antibodies. Groups of female BALB/c mice were immunized and boosted with a rhamnose-Ficoll (Rha-Ficoll) conjugate formulated with alum as adjuvant to generate the appropriate concentration of anti-Rha antibodies in the mice. Anti-Rha antibody titers were >25-fold higher in the groups of mice immunized with the Rha-Ficoll conjugate than the nonimmunized control groups. The mice were then immunized with the TLRL-MUC1-Tn liposomal vaccine formulated either with or without the surface displaying Rha epitopes. Sera collected from the groups of mice initially immunized with Rha-Ficoll and later vaccinated with the Rha-displaying TLRL-MUC1-Tn liposomes showed a >8-fold increase in both anti-MUC1-Tn and anti-Tn antibody titers in comparison to the groups of mice that did not receive Rha-Ficoll. T-cells from BALB/c mice primed with a MUC1-Tn peptide demonstrated increased proliferation to the Rha-liposomal vaccine in the presence of antibodies isolated from Rha-Ficoll immunized mice compared to nonimmune mice, supporting the proposed effect on antigen presentation. The anti-MUC1-Tn antibodies in the vaccinated mice serum recognized MUC1 on human leukemia U266 cells. Because this vaccine uses separate rhamnose and antigenic epitope components, the vaccine can easily be targeted to different antigens or epitopes by changing the peptide without having to change the other components.
Collapse
Affiliation(s)
- Sourav Sarkar
- Department of Chemistry, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Alex C. D. Salyer
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Katherine A. Wall
- Department of Medicinal and Biological Chemistry, The University of Toledo Health Science Campus, 3000 Arlington Avenue, Toledo, Ohio 43614, United States
| | - Steven J. Sucheck
- Department of Chemistry, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
30
|
Karsten CM, Köhl J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2013; 217:1067-79. [PMID: 22964232 DOI: 10.1016/j.imbio.2012.07.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/19/2023]
Abstract
Immunoglobulin G (IgG)-mediated activation of complement and IgG Fc receptors (FcγRs) are important defense mechanisms of the innate immune system to ward off infections. However, the same mechanisms can drive severe and harmful inflammation, when IgG antibodies react with self-antigens in solution or tissues, as described for several autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, and immune vasculitis. More specifically, IgG immune complexes (ICs) can activate all three pathways of the complement system resulting in the generation of C3 and C5 cleavage products that can activate a panel of different complement receptors on innate and adaptive immune cells. Importantly, complement and FcγRs are often co-expressed on inflammatory immune cells such as neutrophils, monocytes, macrophages or dendritic cells and act in concert to mediate the inflammatory response in autoimmune diseases. In this context, the cross-talk between the receptor for the anaphylatoxin C5a, i.e. C5ar1 (CD88) and FcγRs is of major importance. Recent data suggest a model of bidirectional regulation, in which CD88 acts upstream of FcγRs and sets the threshold for FcγR-dependent effector responses by regulating the ratio between activating and inhibitory FcγRs. Vice versa, FcγR ligation can either amplify or block C5aR-mediated effector functions, depending on whether IgG IC aggregate activating or inhibitory FcγRs. Further, complement and FcγRs cooperate on B cells and on follicular dendritic cells to regulate the development of autoreactive B cells, their differentiation into plasma cells and, eventually, the production of autoantibodies. Here, we will give an update on recent findings regarding this complex regulatory network between complement and FcγRs, which may also regulate the inflammatory response in allergy, cancer and infection.
Collapse
Affiliation(s)
- Christian M Karsten
- Institute for Systemic Inflammation Research, University of Lübeck, 23538 Lübeck, Germany
| | | |
Collapse
|
31
|
Involvement of Stat1 in the phagocytosis of M. avium. Clin Dev Immunol 2012; 2012:652683. [PMID: 22811740 PMCID: PMC3395244 DOI: 10.1155/2012/652683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/24/2012] [Accepted: 04/09/2012] [Indexed: 01/14/2023]
Abstract
Mycobacterium avium is an intracellular pathogen preferentially infecting human macrophages where they activate the JAK/STAT1 pathway. This activation enhances the survival of infected cells, but, at the same time, makes macrophages optimal targets for drugs development against p-tyr701stat1. In this study, we demonstrate that the fast and transient activity of the JAK/STAT1 pathway occurs immediately after macrophages internalization of heat-killed M. avium or inert particles. Furthermore, we show that a persistent Stat1 pathway activation occurs only when an intracellular M. avium infection is established in macrophages. These results strongly indicate different mechanisms of p-tyr701Stat1 activation. In particular, here we report findings aiming at explaining the short-time enhancement of p-tyr701Stat1 and shows its predominant relationship with FcγRs engagement during the internalization process. Furthermore, we demonstrate that opsonized live M. avium is phagocytosed by macrophages involving membrane receptors not related with JAK/STAT1 signalling pathway. On the contrary, heat-inactivated bacilli or latex particles seem to be internalized only after involvement of FcγRs and subsequent Stat1 phosphorylation.
Collapse
|
32
|
Wang Y, Sugita N, Kikuchi A, Iwanaga R, Hirano E, Shimada Y, Sasahara J, Tanaka K, Yoshie H. FcγRIIB-nt645+25A/G gene polymorphism and periodontitis in Japanese women with preeclampsia. Int J Immunogenet 2012; 39:492-500. [DOI: 10.1111/j.1744-313x.2012.01124.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Mouse background and IVIG dosage are critical in establishing the role of inhibitory Fcγ receptor for the amelioration of experimental ITP. Blood 2012; 119:5261-4. [PMID: 22508937 DOI: 10.1182/blood-2012-03-415695] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A recognized paradigm for the therapeutic action of intravenous immunoglobulin (IVIG) in immune thrombocytopenia (ITP) involves up-regulation of the inhibitory Fcγ receptor (FcγRIIB) in splenic macrophages. However, published data have indicated that opposing results are obtained when using FcγRIIB-deficient mice on different strain backgrounds. Herein we show BALB/c FcγRIIB(-/-) and wild-type, with or without spleens, all recover ITP with similar dynamics after IVIG (1 g/kg) treatment; however, this was not the case for C57BL/6 (B6) FcγRIIB(-/-). In investigating this conundrum, we found that wild-type B6 mice are much less sensitive than BALB/c to IVIG-mediated amelioration of ITP, requiring approximately 2- to 2.5-fold more IVIG than BALB/c. When using 2.5 g/kg IVIG in FcγRIIB(-/-) B6 mice, amelioration of ITP was as in wild-type in all animals. Our findings led us to the conclusion that different strains of mice respond differently to IVIG and that FcγRIIB plays no role in the mechanism of effect of IVIG in experimental ITP.
Collapse
|
34
|
Antibody repertoire development in fetal and neonatal piglets. XXIII: fetal piglets infected with a vaccine strain of PRRS Virus display the same immune dysregulation seen in isolator piglets. Vaccine 2012; 30:3646-52. [PMID: 22465749 DOI: 10.1016/j.vaccine.2012.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/16/2012] [Indexed: 01/22/2023]
Abstract
The Ig levels and antibody repertoire diversification in fetal piglets infected with an attenuated Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) were measured. Serum Ig levels were greatly elevated in PRRSV-infected fetuses; IgG was elevated >50-fold, IgM>5-15-fold and IgA>2-fold compared to control fetuses. Their IgM to IgG to IgA profile was the same as that in isolator piglets infected for the same period with wild-type PRRSV. Fetal animals showed less repertoire diversification than even isolator piglets that were maintained germfree (GF) while the repertoire diversification index (RDI) for PRRSV-infected isolator piglets was 10-fold higher and comparable to littermates infected with swine influenza (S-FLU). However, when expressed as the RDI:Ig ratio, infected fetuses appeared 10-fold less capable of repertoire diversification than uninfected littermates and GF isolator piglets. Compared to S-FLU isolator piglets that resolve the infection, the RDI:Ig of PRRSV-infected isolator piglets was 100-fold lower. Overall, infection of fetuses with an attenuated virus shows the same immune dysregulation seen postnatally in wild type infected isolator piglets, indicating that: (a) attenuation did not alter the ability of the virus to cause dysregulation and (b) the isolator infectious model reflects the fetal disease.
Collapse
|
35
|
Baba Y, Kurosaki T. Impact of Ca2+ signaling on B cell function. Trends Immunol 2011; 32:589-94. [PMID: 22000665 DOI: 10.1016/j.it.2011.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
|
36
|
Sugita N, Iwanaga R, Kobayashi T, Yoshie H. Association of the FcγRIIB-nt645+25A/G polymorphism with the expression level of the FcγRIIb receptor, the antibody response to Porphyromonas gingivalis and the severity of periodontitis. J Periodontal Res 2011; 47:105-13. [PMID: 21906057 DOI: 10.1111/j.1600-0765.2011.01411.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVE Human FcγRIIb is an immunoglobulin G (IgG) receptor that inhibits the activation of B lymphocytes through cross-linking with the B-cell receptor via immune complexes. This function acts as a negative regulator of antibody production. Our previous studies have demonstrated the gene polymorphisms in FcγRIIb to be associated with periodontitis. In this study, we presented a polymorphism--FcγRIIB-nt645+25A/G (rs2125685)--in intron 4 and analyzed its functional relevance to periodontitis. We examined whether the FcγRIIB-nt645+25A/G polymorphism is associated with periodontal parameters, the IgG response to the periodontopathic bacterium Porphyromonas gingivalis and/or the expression level of FcγRIIb on peripheral B lymphocytes. MATERIAL AND METHODS Thirty-two patients with chronic periodontitis were genotyped with nested PCR and by direct sequencing of genome DNA. The levels of serum IgG and of specific IgG subclasses for P. gingivalis sonicate and for the recombinant 40-kDa outer membrane protein (OMP) were determined. The expression levels of FcγRIIb on peripheral B lymphocytes from 19 healthy donors were measured by flow cytometry. RESULTS Patients with the FcγRIIB-nt645+25AA genotype showed significantly higher mean clinical attachment levels compared to patients with the FcγRIIB-nt645+25GG genotype (p = 0.003) and a significantly lower IgG response to P. gingivalis sonicate and to the 40-kDa OMP. The expression levels of FcγRIIb protein on the cell surface in peripheral B lymphocytes were higher in healthy donors with the FcγRIIB-nt645+25AA genotype than in those with the FcγRIIB-nt645+25GG genotype (p = 0.03). CONCLUSION The higher expression levels of FcγRIIb in subjects with the FcγRIIB-nt645+25AA genotype may induce a lower level of production of IgG against P. gingivalis and therefore more severe periodontitis.
Collapse
Affiliation(s)
- N Sugita
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
37
|
Kim D, Huey D, Oglesbee M, Niewiesk S. Insights into the regulatory mechanism controlling the inhibition of vaccine-induced seroconversion by maternal antibodies. Blood 2011; 117:6143-51. [PMID: 21357766 PMCID: PMC3122939 DOI: 10.1182/blood-2010-11-320317] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 02/05/2011] [Indexed: 11/20/2022] Open
Abstract
The inhibition of vaccination by maternal antibodies is a widely observed phenomenon in human and veterinary medicine. Maternal antibodies are known to suppress the B-cell response. This is similar to antibody feedback mechanism studies where passively transferred antibody inhibits the B-cell response against particulate antigens because of epitope masking. In the absence of experimental data addressing the mechanism underlying inhibition by maternal antibodies, it has been suggested that epitope masking explains the inhibition by maternal antibodies, too. Here we report that in the cotton rat model of measles virus (MV) vaccination passively transferred MV-specific immunoglobulin G inhibit B-cell responses through cross-linking of the B-cell receptor with FcγRIIB. The extent of inhibition increases with the number of antibodies engaging FcγRIIB and depends on the Fc region of antibody and its isotype. This inhibition can be partially overcome by injection of MV-specific monoclonal IgM antibody. IgM stimulates the B-cell directly through cross-linking the B-cell receptor via complement protein 3d and antigen to the complement receptor 2 signaling complex. These data demonstrate that maternal antibodies inhibit B-cell responses by interaction with the inhibitory/regulatory FcγRIIB receptor and not through epitope masking.
Collapse
Affiliation(s)
- Dhohyung Kim
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | | | | | | |
Collapse
|
38
|
Iwanaga R, Sugita N, Hirano E, Sasahara J, Kikuchi A, Tanaka K, Yoshie H. FcγRIIB polymorphisms, periodontitis and preterm birth in Japanese pregnant women. J Periodontal Res 2011; 46:292-302. [DOI: 10.1111/j.1600-0765.2010.01338.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Acar N, Ustunel I, Demir R. Uterine natural killer (uNK) cells and their missions during pregnancy: a review. Acta Histochem 2011; 113:82-91. [PMID: 20047753 DOI: 10.1016/j.acthis.2009.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 11/18/2022]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. The aim of this review is to describe the properties and roles of NK cells in the human uterus during pregnancy. Uterine natural killer cells (uNK) constitute a major lymphocyte population during early gestation in the uterus. The uterine natural killer cells are recognized owing to their CD56(bright), CD16(-), CD3(-) phenotype. Their number increases in the first trimester with a subsequent decline as pregnancy progresses. They have been shown to be closely associated with cells of the extravillous trophoblast (EVT) and spiral arteries. They play important roles in remodeling of the spiral arteries, control of trophoblast invasion and in the development of the placenta. Some studies have shown the number and repertoire of receptors of uNK differ between women with healthy pregnancies and those with pathologic pregnancies, such as pre-eclampsia or intrauterine growth retardation. During pregnancy, the cytotoxic characteristics of the uterine killer cells are not directed towards the fetus, and scientists continue to question and explore this phenomenon with increasing evidence that these cells may perform differing beneficial roles during pregnancy. Contrary to their previously suspected "hostile" characteristics, the uterine killer cells are considered to be "friendly" and appear to be essential and very important regulators of successful implantation and pregnancy.
Collapse
Affiliation(s)
- Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | | | | |
Collapse
|
40
|
Ardia DR, Parmentier HK, Vogel LA. The role of constraints and limitation in driving individual variation in immune response. Funct Ecol 2011. [DOI: 10.1111/j.1365-2435.2010.01759.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Daniel R. Ardia
- Department of Biology, Franklin & Marshall College, Lancaster, Pennsylvania 17604, USA
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen Institute of Animal Sciences, Marijkeweg 40, 6709 PG Wageningen, The Netherlands
| | - Laura A. Vogel
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA
| |
Collapse
|
41
|
Waterman PM, Cambier JC. The conundrum of inhibitory signaling by ITAM-containing immunoreceptors: potential molecular mechanisms. FEBS Lett 2010; 584:4878-82. [PMID: 20875413 PMCID: PMC2998577 DOI: 10.1016/j.febslet.2010.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/14/2010] [Accepted: 09/17/2010] [Indexed: 11/28/2022]
Abstract
Immunoreceptor signals must be appropriately transduced and regulated to achieve effective immunity while controlling inflammation and autoimmunity. It is generally held that these processes are mediated by the interplay of distinct activating and inhibitory receptors via conserved activating (ITAM) and inhibitory (ITIM) signaling motifs. However, recent evidence indicates that under certain conditions incomplete phosphorylation of ITAM tyrosines leads to inhibitory signaling. This new regulatory function of ITAMs has been termed ITAMi (inhibitory ITAM). Here we discuss the potential molecular mechanisms of inhibitory signaling by ITAM-containing receptors.
Collapse
Affiliation(s)
- Paul M Waterman
- Integrated Department of Immunology, University of Colorado School of Medicine, Denver CO 80206, USA
| | | |
Collapse
|
42
|
Hegazy SA, Wang P, Anand M, Ingham RJ, Gelebart P, Lai R. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions. J Biol Chem 2010; 285:19813-20. [PMID: 20424160 DOI: 10.1074/jbc.m110.121988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic tyrosine phosphatase SHP1 has been shown to inhibit the oncogenic fusion protein nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK), and loss of SHP1 contributes to NPM-ALK-mediated tumorigenesis. In this study, we aimed to further understand how SHP1 interacts and regulates NPM-ALK. We employed an in vitro model in which GP293 cells were transfected with various combinations of NPM-ALK (or mutants) and SHP1 (or mutants) expression vectors. We found that SHP1 co-immunoprecipitated with NPM-ALK, but not the enzymatically inactive NPM-ALK(K210R) mutant, or the mutant in which all three functionally important tyrosine residues (namely, Tyr(338), Tyr(342), and Tyr(343)) in the kinase activation loop (KAL) of ALK were mutated. Interestingly, whereas mutation of Tyr(338) or Tyr(342) did not result in any substantial change in the NPM-ALK/SHP1 binding (assessed by co-immunoprecipitation), mutation of Tyr(343) abrogated this interaction. Furthermore, the NPM-ALK/SHP1 binding was readily detectable when each of the remaining 8 tyrosine residues known to be phosphorylated were mutated. Although the expression of SHP1 effectively reduced the level of tyrosine phosphorylation of NPM-ALK, it did not affect that of the NPM-ALK(Y343F) mutant. In soft agar clonogenic assay, SHP1 expression significantly reduced the tumorigenicity of NPM-ALK but not that of NPM-ALK(Y343F). In conclusion, we identified Tyr(343) of NPM-ALK as the crucial site for mediating the NPM-ALK/SHP1 interaction. Our results also support the notion that the tumor suppressor effects of SHP1 on NPM-ALK are dependent on its ability to bind to this oncogenic protein.
Collapse
Affiliation(s)
- Samar A Hegazy
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | | | | | | | | | | |
Collapse
|
43
|
Ahmed Z, George R, Lin CC, Suen KM, Levitt JA, Suhling K, Ladbury JE. Direct binding of Grb2 SH3 domain to FGFR2 regulates SHP2 function. Cell Signal 2010; 22:23-33. [DOI: 10.1016/j.cellsig.2009.08.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 01/08/2023]
|
44
|
Bakken T, He M, Cannon ML. The phosphatase Shp2 is required for signaling by the Kaposi's sarcoma-associated herpesvirus viral GPCR in primary endothelial cells. Virology 2009; 397:379-88. [PMID: 20004456 DOI: 10.1016/j.virol.2009.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 11/16/2009] [Accepted: 11/18/2009] [Indexed: 12/22/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), an AIDS-related endothelial cell malignancy that is the most common cancer in central and southern Africa. The KSHV viral G protein-coupled receptor (vGPCR) is a viral oncogene that conveys a survival advantage to endothelial cells and causes KS-like tumors in mouse models. In this study we investigate the role of Shp2, a protein tyrosine phosphatase in vGPCR signaling. Shp2 is vital to many cytokine-induced signaling pathways and is dysregulated in various infections and malignancies. It has also recently been implicated in angiogenesis. We find that vGPCR activity results in phosphorylation of regulatory tyrosines in Shp2 and that in turn, Shp2 is required for vGPCR-mediated activation of MEK, NFkappaB, and AP-1. Furthermore, both genetic and chemical inhibition of Shp2 abrogate vGPCR-induced enhancement of endothelial cell migration. This establishes Shp2 as an important point of convergence of KSHV vGPCR signaling and a potential molecular target in the design of an anti-KSHV therapeutic regimen.
Collapse
Affiliation(s)
- Thomas Bakken
- The Department of Medicine, The University of Minnesota, 2001 6(th) St SE, MTRF Room 3-216, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
45
|
Abstract
Abstract
The germinal center (GC) is a transient lymphoid tissue microenvironment that fosters T cell–dependent humoral immunity. Within the GC, the B cell–specific enzyme, activation-induced cytidine deaminase (AID), mutates the immunoglobulin locus, thereby altering binding affinity for antigen. In the absence of AID, larger GC structures are observed in both humans and mice, but the reason for this phenomenon is unclear. Because significant apoptosis occurs within the GC niche to cull cells that have acquired nonproductive mutations, we have examined whether a defect in apoptosis could account for the larger GC structures in the absence of AID. In this report, we reveal significantly reduced death of B cells in AID−/− mice as well as in B cells derived from AID−/− bone marrow in mixed bone marrow chimeric mice. Furthermore, AID-expressing B cells show decreased proliferation and survival compared with AID−/− B cells, indicating an AID-mediated effect on cellular viability. The GC is an etiologic site for B-cell autoimmunity and lymphomagenesis, both of which have been linked to aberrant AID activity. We report a link between AID-induced DNA damage and B-cell apoptosis that has implications for the development of B-cell disorders.
Collapse
|
46
|
Toma-Hirano M, Namiki S, Shibata Y, Ishida K, Arase H, Miyatake S, Arai KI, Kamogawa-Schifter Y. Ly49Q ligand expressed by activated B cells induces plasmacytoid DC maturation. Eur J Immunol 2009; 39:1344-52. [PMID: 19350550 DOI: 10.1002/eji.200838363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ly49Q, a type II C-type lectin expressed on mouse plasmacytoid DC (pDC), contains a single carbohydrate recognition domain in its extracellular region and an ITIM in its cytoplasmic domain. We have identified the MHC class I molecule H-2K(b) as a Ly49Q ligand, confirming prior reports. Although H-2K(b) is expressed on essentially all hematopoietic cells, we found that only CpG-stimulated B cells were able to activate Ly49Q. This discovery correlated with our finding that although H-2K(b) forms clusters on CpG-activated B cells, it is diffusely expressed on resting B cells. Furthermore, CpG-stimulated, but not resting, B cells up-regulated co-stimulatory molecules on pDC. This finding was confirmed by the fact that binding by anti-Ly49Q mAb to Ly49Q led to pDC maturation in vitro. Our results suggest that clustered H-2K(b) on activated B cells act as ligands for Ly49Q and induce pDC maturation in vitro.
Collapse
Affiliation(s)
- Makiko Toma-Hirano
- Department of Otolaryngology - Head and Neck Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lobo EO, Zhang Z, Shively JE. Pivotal advance: CEACAM1 is a negative coreceptor for the B cell receptor and promotes CD19-mediated adhesion of B cells in a PI3K-dependent manner. J Leukoc Biol 2009; 86:205-18. [PMID: 19454653 DOI: 10.1189/jlb.0109037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Upon antigen binding, the BCR transduces a signal culminating in proliferation or in AICD of the B cell. Coreceptor engagement and subsequent modification of the BCR signal pathway are mechanisms that guide the B cell to its appropriate fate. For example, in the absence of coreceptor engagement, anti-sIgM antibodies induce apoptosis in the human Daudi B cell lymphoma cell line. ITIM-bearing B cell coreceptors that potentially may act as negative coreceptors include FcRgammaIIb, CD22, CD72, and CEACAM1 (CD66a). Although the role of CEACAM1 as an inhibitory coreceptor in T cells has been established, its role in B cells is poorly defined. We show that anti-sIgM antibody and PI3K inhibitor LY294002-induced apoptosis are reduced significantly in CEACAM1 knock-down clones compared with WT Daudi cells and that anti-sIgM treatment induced CEACAM1 tyrosine phosphorylation and association with SHP-1 in WT cells. In contrast, treatment of WT Daudi cells with anti-CD19 antibodies does not induce apoptosis and has reduced tyrosine phosphorylation and SHP-1 recruitment to CEACAM1. Thus, similar to its function in T cells, CEACAM1 may act as an inhibitory B cell coreceptor, most likely through recruitment of SHP-1 and inhibition of a PI3K-promoted activation pathway. Activation of B cells by anti-sIgM or anti-CD19 antibodies also leads to cell aggregation that is promoted by CEACAM1, also in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Elizabeth O Lobo
- Division of Immunology, Beckman Research Institute at City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
48
|
Abstract
The immune response to cancer has been long recognized, including both innate and adaptive responses, showing that the immune system can recognize protein products of genetic and epigenetic changes in transformed cells. The accumulation of antigen-specific T cells within the tumor, the draining lymph node, and the circulation, either in newly diagnosed patients or resultant from experimental immunotherapy, proves that tumors produce antigens and that priming occurs. Unfortunately, just as obviously, tumors grow, implying that anti-tumor immune responses are either not sufficiently vigorous to eliminate the cancer or that anti-tumor immunity is suppressed. Both possibilities are supported by current data. In experimental animal models of cancer and also in patients, systemic immunity is usually not dramatically suppressed, because tumor-bearing animals and patients develop T-cell-dependent immune responses to microbes and to either model antigens or experimental cancer vaccines. However, inhibition of specific anti-tumor immunity is common, and several possible explanations of tolerance to tumor antigens or tumor-induced immunesuppression have been proposed. Inhibition of effective anti-tumor immunity results from the tumor or the host response to tumor growth, inhibiting the activation, differentiation, or function of anti-tumor immune cells. As a consequence, anti-tumor T cells cannot respond productively to developmental, targeting, or activation cues. While able to enhance the number and phenotype of anti-tumor T cells, the modest success of immunotherapy has shown the necessity to attempt to reverse tolerance in anti-tumor T cells, and the vanguard of experimental therapy now focuses on vaccination in combination with blockade of immunosuppressive mechanisms. This review discusses several potential mechanisms by which anti-tumor T cells may be inhibited in function.
Collapse
Affiliation(s)
- Alan B Frey
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
49
|
Honma Y, Sugita N, Kobayashi T, Abiko Y, Yoshie H. Lower antibody response toPorphyromonas gingivalisassociated with immunoglobulin G Fcγ receptor IIBpolymorphism. J Periodontal Res 2008; 43:706-11. [DOI: 10.1111/j.1600-0765.2007.01078.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Rosshart S, Hofmann M, Schweier O, Pfaff AK, Yoshimoto K, Takeuchi T, Molnar E, Schamel WW, Pircher H. Interaction of KLRG1 with E-cadherin: New functional and structural insights. Eur J Immunol 2008; 38:3354-64. [DOI: 10.1002/eji.200838690] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|