1
|
Madison FN, Conte MA, Brown JA, Carleton KL, Dooling RJ. Whole genome sequencing identifies genetic candidates for high-frequency hearing loss in canaries (serinus canaria). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2025; 157:2330-2335. [PMID: 40167343 DOI: 10.1121/10.0036218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025]
Abstract
Over hundreds of years, breeders have selectively bred different strains of canaries for plumage and song characteristics. One strain, the Belgian Waterslager canary, has been bred for loud, low frequency song and coincidently has been found to have a high-frequency hearing loss due to damaged and missing hair cells in the basilar papilla. Here, we investigated the possible genetic basis for this hearing loss in the Belgian Waterslager canary by conducting whole-genome Illumina (San Diego, CA) sequencing in three canary strains. We identified a total of 16 Belgian Waterslager male-specific "high-impact" single nucleotide polymorphisms (SNP) variants with three mutations occurring within genes previously identified in mammalian hair cell abnormalities and hearing loss disorders: pericentriolar material 1 (PCM1), p21 (RAC1) activated kinase 3 (PAK3)-like, and protein tyrosine phosphatase receptor type K (PTPRK). Interestingly, we also identified three male-specific "high-impact" SNP variants in one of our control strains: the American Singer canary. One of these mutations occurs within genes previously associated with hearing loss in mammals. Since songbirds rely on hearing to develop a normal vocal repertoire, investigating the role of these genes in hearing loss at the molecular level may provide a valuable animal model for examining the relationship between hearing loss and vocal development in humans.
Collapse
Affiliation(s)
- Farrah N Madison
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, Maryland 20742, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Matthew A Conte
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | - Jane A Brown
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
| | - Karen L Carleton
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Robert J Dooling
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA
- Program in Neuroscience and Cognitive Sciences, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
2
|
Lahlou H, Zhu H, Zhou W, Edge AS. Pharmacological regeneration of sensory hair cells restores afferent innervation and vestibular function. J Clin Invest 2024; 134:e181201. [PMID: 39316439 PMCID: PMC11563683 DOI: 10.1172/jci181201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024] Open
Abstract
The sensory cells that transduce the signals for hearing and balance are highly specialized mechanoreceptors called hair cells that together with supporting cells comprise the sensory epithelia of the inner ear. Loss of hair cells from toxin exposure and age can cause balance disorders and is essentially irreversible due to the inability of mammalian vestibular organs to regenerate physiologically active hair cells. Here, we show substantial regeneration of hair cells in a mouse model of vestibular damage by treatment with a combination of glycogen synthase kinase 3β and histone deacetylase inhibitors. The drugs stimulated supporting cell proliferation and differentiation into hair cells. The new hair cells were reinnervated by vestibular afferent neurons, rescuing otolith function by restoring head translation-evoked otolith afferent responses and vestibuloocular reflexes. Drugs that regenerate hair cells thus represent a potential therapeutic approach to the treatment of balance disorders.
Collapse
Affiliation(s)
- Hanae Lahlou
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
| | - Hong Zhu
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wu Zhou
- Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Albert S.B. Edge
- Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, USA
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, Massachusetts, USA
- Harvard Stem Cell Institute; Cambridge, Massachusetts, USA
| |
Collapse
|
3
|
Osaki D, Ouji Y, Sakagami M, Kitamura T, Misu M, Kitahara T, Yoshikawa M. Culture of organoids with vestibular cell-derived factors promotes differentiation of embryonic stem cells into inner ear vestibular hair cells. J Biosci Bioeng 2023; 135:143-150. [PMID: 36503871 DOI: 10.1016/j.jbiosc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Vestibular hair cells (V-HCs) residing in the inner ear have important roles related to balance. Although differentiation of pluripotent stem cells into HCs has been shown, an effective method has yet to be established. We previously reported that use of vestibular cell-derived conditioned medium (V-CM) was helpful to induce embryonic stem (ES) cells to differentiate into V-HC-like cells in two-dimensional (2D) cultures of ES-derived embryoid bodies (EBs). In the present report, V-CM was used with three-dimensional (3D) cultures of EBs, which resulted in augmented expression of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5), but not of the cochlear HC-related marker Lmod3. Gene expression analyses of both 2D and 3D EBs cultured for two weeks revealed a greater level of augmented induction of HC-related markers in the 3D-cultured EBs. These results indicate that a 3D culture in combination with use of V-CM is an effective method for producing V-HCs.
Collapse
Affiliation(s)
- Daisuke Osaki
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masaharu Sakagami
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Tadashi Kitahara
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
4
|
Iyer AA, Hosamani I, Nguyen JD, Cai T, Singh S, McGovern MM, Beyer L, Zhang H, Jen HI, Yousaf R, Birol O, Sun JJ, Ray RS, Raphael Y, Segil N, Groves AK. Cellular reprogramming with ATOH1, GFI1, and POU4F3 implicate epigenetic changes and cell-cell signaling as obstacles to hair cell regeneration in mature mammals. eLife 2022; 11:e79712. [PMID: 36445327 PMCID: PMC9708077 DOI: 10.7554/elife.79712] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/16/2022] [Indexed: 11/30/2022] Open
Abstract
Reprogramming of the cochlea with hair-cell-specific transcription factors such as ATOH1 has been proposed as a potential therapeutic strategy for hearing loss. ATOH1 expression in the developing cochlea can efficiently induce hair cell regeneration but the efficiency of hair cell reprogramming declines rapidly as the cochlea matures. We developed Cre-inducible mice to compare hair cell reprogramming with ATOH1 alone or in combination with two other hair cell transcription factors, GFI1 and POU4F3. In newborn mice, all transcription factor combinations tested produced large numbers of cells with the morphology of hair cells and rudimentary mechanotransduction properties. However, 1 week later, only a combination of ATOH1, GFI1 and POU4F3 could reprogram non-sensory cells of the cochlea to a hair cell fate, and these new cells were less mature than cells generated by reprogramming 1 week earlier. We used scRNA-seq and combined scRNA-seq and ATAC-seq to suggest at least two impediments to hair cell reprogramming in older animals. First, hair cell gene loci become less epigenetically accessible in non-sensory cells of the cochlea with increasing age. Second, signaling from hair cells to supporting cells, including Notch signaling, can prevent reprogramming of many supporting cells to hair cells, even with three hair cell transcription factors. Our results shed light on the molecular barriers that must be overcome to promote hair cell regeneration in the adult cochlea.
Collapse
Affiliation(s)
- Amrita A Iyer
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Ishwar Hosamani
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
| | - John D Nguyen
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
| | - Tiantian Cai
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Sunita Singh
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Melissa M McGovern
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Lisa Beyer
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Hongyuan Zhang
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Hsin-I Jen
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Rizwan Yousaf
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Onur Birol
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
| | - Jenny J Sun
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Russell S Ray
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, University of MichiganAnn ArborUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Biology at USCLos AngelesUnited States
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Department of Molecular & Human Genetics, Baylor College of MedicineHoustonUnited States
- Program in Developmental Biology, Baylor College of MedicineHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
| |
Collapse
|
5
|
You D, Guo J, Zhang Y, Guo L, Lu X, Huang X, Sun S, Li H. The heterogeneity of mammalian utricular cells over the course of development. Clin Transl Med 2022; 12:e1052. [PMID: 36178017 PMCID: PMC9523683 DOI: 10.1002/ctm2.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The inner ear organ is a delicate tissue consisting of hair cells (HCs) and supporting cells (SCs).The mammalian inner ear HCs are terminally differentiated cells that cannot spontaneously regenerate in adults. Epithelial non-hair cells (ENHCs) in the utricle include HC progenitors and SCs, and the progenitors share similar characteristics with SCs in the neonatal inner ear. METHODS We applied single-cell sequencing to whole mouse utricles from the neonatal period to adulthood, including samples from postnatal day (P)2, P7 and P30 mice. Furthermore, using transgenic mice and immunostaining, we traced the source of new HC generation. RESULTS We identified several sensory epithelial cell clusters and further found that new HCs arose mainly through differentiation from Sox9+ progenitor cells and that only a few cells were produced by mitotic proliferation in both neonatal and adult mouse utricles. In addition, we identified the proliferative cells using the marker UbcH10 and demonstrated that in adulthood the mitotically generated HCs were primarily found in the extrastriola. Moreover, we observed that not only Type II, but also Type I HCs could be regenerated by either mitotic cell proliferation or progenitor cell differentiation. CONCLUSIONS Overall, our findings expand our understanding of ENHC cell fate and the characteristics of the vestibular organs in mammals over the course of development.
Collapse
Affiliation(s)
- Dan You
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Jin Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Yunzhong Zhang
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Luo Guo
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Xinsheng Huang
- Department of Otorhinolaryngology‐Head and Neck SurgeryZhongshan HospitalFudan UniversityShanghaiChina
| | - Shan Sun
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina,Institutes of Biomedical SciencesFudan UniversityShanghaiChina,NHC Key Laboratory of Hearing Medicine, Fudan UniversityShanghaiChina,The Institutes of Brain Science and the Collaborative Innovation Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
7
|
Huang Y, Mao H, Chen Y. Regeneration of Hair Cells in the Human Vestibular System. Front Mol Neurosci 2022; 15:854635. [PMID: 35401109 PMCID: PMC8987309 DOI: 10.3389/fnmol.2022.854635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The vestibular system is a critical part of the human balance system, malfunction of this system will lead to balance disorders, such as vertigo. Mammalian vestibular hair cells, the mechanical receptors for vestibular function, are sensitive to ototoxic drugs and virus infection, and have a limited restorative capacity after damage. Considering that no artificial device can be used to replace vestibular hair cells, promoting vestibular hair cell regeneration is an ideal way for vestibular function recovery. In this manuscript, the development of human vestibular hair cells during the whole embryonic stage and the latest research on human vestibular hair cell regeneration is summarized. The limitations of current studies are emphasized and future directions are discussed.
Collapse
Affiliation(s)
- Yikang Huang
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Huanyu Mao
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Yan Chen
- State Key Laboratory of Medical Neurobiology, Department of Otorhinolaryngology, Eye and ENT Hospital, MOE Frontiers Center for Brain Science, ENT Institute, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
- *Correspondence: Yan Chen,
| |
Collapse
|
8
|
Gómez-Dorado M, Daudet N, Gale JE, Dawson SJ. Differential regulation of mammalian and avian ATOH1 by E2F1 and its implication for hair cell regeneration in the inner ear. Sci Rep 2021; 11:19368. [PMID: 34588543 PMCID: PMC8481459 DOI: 10.1038/s41598-021-98816-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals.
Collapse
Affiliation(s)
| | - Nicolas Daudet
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Jonathan E Gale
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | - Sally J Dawson
- UCL Ear Institute, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
9
|
Verdoodt D, Eens S, Van Dam D, De Deyn PP, Vanderveken OM, Szewczyk K, Saldien V, Ponsaerts P, Van Rompaey V. Effect of Oral Allylnitrile Administration on Cochlear Functioning in Mice Following Comparison of Different Anesthetics for Hearing Assessment. FRONTIERS IN TOXICOLOGY 2021; 3:641569. [PMID: 35295154 PMCID: PMC8915850 DOI: 10.3389/ftox.2021.641569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Allylnitrile is a compound found in cruciferous vegetables and has the same lethality and toxic effects as the other nitriles. In 2013, a viable allylnitrile ototoxicity mouse model was established. The toxicity of allylnitrile was limited through inhibition of CYP2E1 with trans-1,2-dichloroethylene (TDCE). The allylnitrile intoxication model has been extensively tested in the 129S1 mouse strain for vestibular function, which showed significant HC loss in the vestibular organ accompanied by severe behavioral abnormalities. However, the effect of allylnitrile on auditory function remains to be evaluated. Commonly used anesthetics to conduct hearing measurements are isoflurane and ketamine/xylazine anesthesia but the effect of these anesthetics on hearing assessment is still unknown. In this study we will evaluate the otovestibular effects of oral allylnitrile administration in mice. In addition, we will compare the influence of isoflurane and ketamine/xylazine anesthesia on hearing thresholds.Methods and Materials: Fourteen Coch+/– CBACa mice were randomly allocated into an allylnitrile (n = 8) and a control group (n = 6). Baseline measurements were done with isoflurane and 1 week later under ketamine/xylazine anesthesia. After baseline audiovestibular measurements, mice were co-administered with a single dose of allylnitrile and, to reduce systemic toxicity, three intraperitoneal injections of TDCE were given. Hearing loss was evaluated by recordings of auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE). Specific behavioral test batteries for vestibular function were used to assess alterations in vestibular function.Results: Hearing thresholds were significantly elevated when using isoflurane anesthesia compared to ketamine/xylazine anesthesia for all frequencies of the ABR and the mid-to-high frequencies in DPOAE. Allylnitrile-treated mice lacked detectable ABR thresholds at each frequency tested, while DPOAE thresholds were significantly elevated in the low-frequency region of the cochlea and completely lacking in the mid-to high frequency region. Vestibular function was not affected by allylnitrile administration.Conclusion: Isoflurane anesthesia has a negative confounding effect on the measurement of hearing thresholds in mice. A single oral dose of allylnitrile induced hearing loss but did not significantly alter vestibular function in mice. This is the first study to show that administration of allylnitrile can cause a complete loss of hearing function in mice.
Collapse
Affiliation(s)
- Dorien Verdoodt
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- *Correspondence: Dorien Verdoodt
| | - Sander Eens
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behaviour, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Department of Neurology and Alzheimer Research Center, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
- Department of Neurology, Memory Clinic of Hospital Network Antwerp (ZNA) Middelheim and Hoge Beuken, Antwerp, Belgium
| | - Olivier M. Vanderveken
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| | - Krystyna Szewczyk
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Vera Saldien
- Department of Anaesthesiology, Antwerp University Hospital, Edegem, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine and Health Sciences, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Vincent Van Rompaey
- Department of Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology and Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
10
|
Qian X, Ma R, Wang X, Xu X, Yang J, Chi F, Ren D. Simultaneous gentamicin-mediated damage and Atoh1 overexpression promotes hair cell regeneration in the neonatal mouse utricle. Exp Cell Res 2020; 398:112395. [PMID: 33279477 DOI: 10.1016/j.yexcr.2020.112395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 11/17/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Loss of hair cells from vestibular epithelium results in balance dysfunction. The current therapeutic regimen for vestibular diseases is limited. Upon injury or Atoh1 overexpression, hair cell replacement occurs rapidly in the mammalian utricle, suggesting a promising approach to induce vestibular hair cell regeneration. In this study, we applied simultaneous gentamicin-mediated hair cell ablation and Atoh1 overexpression to induce neonatal utricular hair cell formation in vitro. We confirmed that type I hair cells were the primary targets of gentamicin. Furthermore, injury and Atoh1 overexpression promoted hair cell regeneration in a timely and efficient manner through robust viral transfection. Hair cells regenerated with type II characteristics in the striola and type I/II characteristics in non-sensory regions. Rare EdU+/myosin7a+ cells in sensory regions and robust EdU+/myosin7a+ signals in ectopic regions indicate that transdifferentiation of supporting cells in situ, and mitosis and differentiation of non-sensory epithelial cells in ectopic regions, are sources of regenerative hair cells. Distinct regeneration patterns in in situ and ectopic regions suggested robust plasticity of vestibular non-sensory epithelium, generating more developed hair cell subtypes and thus providing a promising stem cell-like source of hair cells. These findings suggest that simultaneously causing injury and overexpressing Atoh1 promotes hair cell regeneration efficacy and maturity, thus expanding the understanding of ectopic plasticity in neonatal vestibular organs.
Collapse
Affiliation(s)
- Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Rui Ma
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinwei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Xinda Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Juanmei Yang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
11
|
Zhang Y, Zhang S, Zhang Z, Dong Y, Ma X, Qiang R, Chen Y, Gao X, Zhao C, Chen F, He S, Chai R. Knockdown of Foxg1 in Sox9+ supporting cells increases the trans-differentiation of supporting cells into hair cells in the neonatal mouse utricle. Aging (Albany NY) 2020; 12:19834-19851. [PMID: 33099273 PMCID: PMC7655167 DOI: 10.18632/aging.104009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/15/2020] [Indexed: 05/30/2023]
Abstract
Foxg1 plays important roles in regeneration of hair cell (HC) in the cochlea of neonatal mouse. Here, we used Sox9-CreER to knock down Foxg1 in supporting cells (SCs) in the utricle in order to investigate the role of Foxg1 in HC regeneration in the utricle. We found Sox9 an ideal marker of utricle SCs and bred Sox9CreER/+Foxg1loxp/loxp mice to conditionally knock down Foxg1 in utricular SCs. Conditional knockdown (cKD) of Foxg1 in SCs at postnatal day one (P01) led to increased number of HCs at P08. These regenerated HCs had normal characteristics, and could survive to at least P30. Lineage tracing showed that a significant portion of newly regenerated HCs originated from SCs in Foxg1 cKD mice compared to the mice subjected to the same treatment, which suggested SCs trans-differentiate into HCs in the Foxg1 cKD mouse utricle. After neomycin treatment in vitro, more HCs were observed in Foxg1 cKD mice utricle compared to the control group. Together, these results suggest that Foxg1 cKD in utricular SCs may promote HC regeneration by inducing trans-differentiation of SCs. This research therefore provides theoretical basis for the effects of Foxg1 in trans-differentiation of SCs and regeneration of HCs in the mouse utricle.
Collapse
Affiliation(s)
- Yuan Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Shasha Zhang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Zhonghong Zhang
- Department of Ophthalmology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ying Dong
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xiangyu Ma
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Ruiying Qiang
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yin Chen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
| | - Chunjie Zhao
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuangba He
- Department of Otolaryngology Head and Neck, Nanjing Tongren Hospital, School of Medicine, Southeast University, China
| | - Renjie Chai
- MOE Key Laboratory for Developmental Genes and Human Disease, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Wu J, Dong X, Li W, Zhao L, Zhou L, Sun S, Li H. Dibenzazepine promotes cochlear supporting cell proliferation and hair cell regeneration in neonatal mice. Cell Prolif 2020; 53:e12872. [PMID: 32677724 PMCID: PMC7507434 DOI: 10.1111/cpr.12872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the role of dibenzazepine (DBZ) in promoting supporting cell (SC) proliferation and hair cell (HC) regeneration in the inner ear. Materials and Methods Postnatal day 1 wild‐type or neomycin‐damaged mouse cochleae were cultured with DBZ. Immunohistochemistry and scanning electron microscopy were used to examine the morphology of cochlear cells, and high‐throughput RNA‐sequencing was used to measure gene expression levels. Results We found that DBZ promoted SC proliferation and HC regeneration in a dose‐dependent manner in both normal and damaged cochleae. In addition, most of the newly regenerated HCs induced by DBZ had visible and relatively mature stereocilia bundle structures. Finally, RNA sequencing detected the differentially expressed genes between DBZ treatment and controls, and interaction networks were constructed for the most highly differentially expressed genes. Conclusions Our study demonstrates that DBZ can significantly promote SC proliferation and increase the number of mitotically regenerated HCs with relatively mature stereocilia bundles in the neonatal mouse cochlea by inhibiting Notch signalling and activating Wnt signalling, suggesting the DBZ might be a new therapeutic target for stimulating HC regeneration.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Liping Zhao
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Li Zhou
- Shanghai High School, Shanghai, China
| | - Shan Sun
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Huawei Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Toxic Effects of 3,3'-Iminodipropionitrile on Vestibular System in Adult C57BL/6J Mice In Vivo. Neural Plast 2020; 2020:1823454. [PMID: 32714382 PMCID: PMC7354661 DOI: 10.1155/2020/1823454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 11/18/2022] Open
Abstract
The utricle is one of the five sensory organs in the mammalian vestibular system, and while the utricle has a limited ability to repair itself, this is not sufficient for the recovery of vestibular function after hair cell (HC) loss induced by ototoxic drugs. In order to further explore the possible self-recovery mechanism of the adult mouse vestibular system, we established a reliable utricle epithelium injury model for studying the regeneration of HCs and examined the toxic effects of 3,3'-iminodiproprionitrile (IDPN) on the utricle in vivo in C57BL/6J mice, which is one of the most commonly used strains in inner ear research. This work focused on the epithelial cell loss, vestibular dysfunction, and spontaneous cell regeneration after IDPN administration. HC loss and supporting cell (SC) loss after IDPN treatment was dose-dependent and resulted in dysfunction of the vestibular system, as indicated by the swim test and the rotating vestibular ocular reflex (VOR) test. EdU-positive SCs were observed only in severely injured utricles wherein above 47% SCs were dead. No EdU-positive HCs were observed in either control or injured utricles. RT-qPCR showed transient upregulation of Hes5 and Hey1 and fluctuating upregulation of Axin2 and β-catenin after IDPN administration. We conclude that a single intraperitoneal injection of IDPN is a practical way to establish an injured utricle model in adult C57BL/6J mice in vivo. We observed activation of Notch and Wnt signaling during the limited spontaneous HC regeneration after vestibular sensory epithelium damage, and such signaling might act as the promoting factors for tissue self-repair in the inner ear.
Collapse
|
14
|
Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res 2019; 397:107859. [PMID: 31810596 DOI: 10.1016/j.heares.2019.107859] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is the most common sensory deficit in humans. Despite the global scale of the problem, only limited treatment options are available today. The mammalian inner ear is a highly specialized postmitotic organ, which lacks proliferative or regenerative capacity. Since the discovery of hair cell regeneration in non-mammalian species however, much attention has been placed on identifying possible strategies to reactivate similar responses in humans. The development of successful regenerative approaches for hearing loss strongly depends on a detailed understanding of the mechanisms that control human inner ear cellular specification, differentiation and function, as well as on the development of robust in vitro cellular assays, based on human inner ear cells, to study these processes and optimize therapeutic interventions. We summarize here some aspects of inner ear development and strategies to induce regeneration that have been investigated in rodents. Moreover, we discuss recent findings in human inner ear development and compare the results with findings from animal models. Finally, we provide an overview of strategies for in vitro generation of human sensory cells from pluripotent and somatic progenitors that may provide a platform for drug development and validation of therapeutic strategies in vitro.
Collapse
|
15
|
Kinoshita M, Fujimoto C, Iwasaki S, Kashio A, Kikkawa YS, Kondo K, Okano H, Yamasoba T. Alteration of Musashi1 Intra-cellular Distribution During Regeneration Following Gentamicin-Induced Hair Cell Loss in the Guinea Pig Crista Ampullaris. Front Cell Neurosci 2019; 13:481. [PMID: 31708751 PMCID: PMC6824208 DOI: 10.3389/fncel.2019.00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/10/2019] [Indexed: 11/13/2022] Open
Abstract
The mechanism underlying hair cell (HC) regeneration in the mammalian inner ear is still under debate. Understanding what molecules regulate the HC regeneration in mature mammals will be the key to the treatment of the inner ear disorder. Musashi1 (MSI1) is an RNA binding protein associated with asymmetric division and maintenance of stem cell function as a modulator of the Notch-1 signaling pathway. In this study, we investigated the cellular proliferative activity and changes in spatiotemporal pattern of MSI1 expression in the gentamicin (GM)-treated crista ampullaris (CA) in guinea pigs. Although the vestibular HCs in the CA almost disappeared at 14 days after injecting GM in the inner ear, the density of vestibular HCs spontaneously increased by up to 50% relative to controls at 56 days post-GM treatment (PT). The number of the type II HCs was significantly increased at 28 days PT relative to 14 days PT (p < 0.01) while that of type I HCs or supporting cells (SCs) did not change. The number of SCs did not change through the observational period. Administration of bromodeoxyuridine with the same GM treatment showed that the cell proliferation activity was high in SCs between 14 and 28 days PT. The changes in spatiotemporal patterns of MSI1 expression during spontaneous HC regeneration following GM treatment showed that MSI1-immunoreactivity was diffusely spread into the cytoplasm of the SCs during 7–21 days PT whereas the expression of MSI1 was confined to the nucleus of SCs in the other period. The MSI1/MYO7A double-positive cells were observed at 21 days PT. These results suggest that regeneration of vestibular HCs might originate in the asymmetric cell division and differentiation of SCs and that MSI1 might be involved in controlling the process of vestibular HC regeneration.
Collapse
Affiliation(s)
- Makoto Kinoshita
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Shinichi Iwasaki
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Akinori Kashio
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Yayoi S Kikkawa
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Kenji Kondo
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
White DT, Saxena MT, Mumm JS. Let's get small (and smaller): Combining zebrafish and nanomedicine to advance neuroregenerative therapeutics. Adv Drug Deliv Rev 2019; 148:344-359. [PMID: 30769046 PMCID: PMC6937731 DOI: 10.1016/j.addr.2019.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 01/18/2023]
Abstract
Several key attributes of zebrafish make them an ideal model system for the discovery and development of regeneration promoting therapeutics; most notably their robust capacity for self-repair which extends to the central nervous system. Further, by enabling large-scale drug discovery directly in living vertebrate disease models, zebrafish circumvent critical bottlenecks which have driven drug development costs up. This review summarizes currently available zebrafish phenotypic screening platforms, HTS-ready neurodegenerative disease modeling strategies, zebrafish small molecule screens which have succeeded in identifying regeneration promoting compounds and explores how intravital imaging in zebrafish can facilitate comprehensive analysis of nanocarrier biodistribution and pharmacokinetics. Finally, we discuss the benefits and challenges attending the combination of zebrafish and nanoparticle-based drug optimization, highlighting inspiring proof-of-concept studies and looking toward implementation across the drug development community.
Collapse
Affiliation(s)
- David T White
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Meera T Saxena
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA; Luminomics Inc., Baltimore, MD 21286, USA
| | - Jeff S Mumm
- Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
17
|
Wang T, Niwa M, Sayyid ZN, Hosseini DK, Pham N, Jones SM, Ricci AJ, Cheng AG. Uncoordinated maturation of developing and regenerating postnatal mammalian vestibular hair cells. PLoS Biol 2019; 17:e3000326. [PMID: 31260439 PMCID: PMC6602158 DOI: 10.1371/journal.pbio.3000326] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 05/30/2019] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells are mechanoreceptors required for hearing and balance functions. From embryonic development, hair cells acquire apical stereociliary bundles for mechanosensation, basolateral ion channels that shape receptor potential, and synaptic contacts for conveying information centrally. These key maturation steps are sequential and presumed coupled; however, whether hair cells emerging postnatally mature similarly is unknown. Here, we show that in vivo postnatally generated and regenerated hair cells in the utricle, a vestibular organ detecting linear acceleration, acquired some mature somatic features but hair bundles appeared nonfunctional and short. The utricle consists of two hair cell subtypes with distinct morphological, electrophysiological and synaptic features. In both the undamaged and damaged utricle, fate-mapping and electrophysiology experiments showed that Plp1+ supporting cells took on type II hair cell properties based on molecular markers, basolateral conductances and synaptic properties yet stereociliary bundles were absent, or small and nonfunctional. By contrast, Lgr5+ supporting cells regenerated hair cells with type I and II properties, representing a distinct hair cell precursor subtype. Lastly, direct physiological measurements showed that utricular function abolished by damage was partially regained during regeneration. Together, our data reveal a previously unrecognized aberrant maturation program for hair cells generated and regenerated postnatally and may have broad implications for inner ear regenerative therapies. During development, sensory hair cells undergo a series of critical maturation steps that are sequential and presumed coupled, but whether regenerated hair cells mature similarly is unknown. This study shows that regenerated vestibular hair cells acquired some mature somatic features, but the apical bundles remained immature.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mamiko Niwa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Zahra N. Sayyid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davood K. Hosseini
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Anthony J. Ricci
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (AGC); (AJR)
| |
Collapse
|
18
|
|
19
|
Sakagami M, Ouji Y, Kawai N, Misu M, Yoshikawa M, Kitahara T. Differentiation of embryonic stem cells into inner ear vestibular hair cells using vestibular cell derived-conditioned medium. Biochem Biophys Rep 2019; 19:100649. [PMID: 31193276 PMCID: PMC6525281 DOI: 10.1016/j.bbrep.2019.100649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/19/2019] [Accepted: 05/03/2019] [Indexed: 01/12/2023] Open
Abstract
Vestibular hair cells (V-HCs) in the inner ear have important roles and various functions. When V-HCs are damaged, crippling symptoms, such as vertigo, visual field oscillation, and imbalance, are often seen. Recently, several studies have reported differentiation of embryonic stem (ES) cells, as pluripotent stem cells, to HCs, though a method for producing V-HCs has yet to be established. In the present study, we used vestibular cell conditioned medium (V-CM) and effectively induced ES cells to differentiate into V-HCs. Expressions of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5) were significantly increased in ES cells cultured in V-CM for 2 weeks, while those were not observed in ES cells cultured without V-CM. On the other hand, the cochlear HC-related marker Lmod3 was either not detected or detected only faintly in those cells when cultured in V-CM. Our results demonstrate that V-CM has an ability to specifically induce differentiation of ES cells into V-HCs.
Collapse
Affiliation(s)
- Masaharu Sakagami
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan.,Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Norikazu Kawai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
20
|
Jen HI, Hill MC, Tao L, Sheng K, Cao W, Zhang H, Yu HV, Llamas J, Zong C, Martin JF, Segil N, Groves AK. Transcriptomic and epigenetic regulation of hair cell regeneration in the mouse utricle and its potentiation by Atoh1. eLife 2019; 8:e44328. [PMID: 31033441 PMCID: PMC6504235 DOI: 10.7554/elife.44328] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/28/2019] [Indexed: 12/30/2022] Open
Abstract
The mammalian cochlea loses its ability to regenerate new hair cells prior to the onset of hearing. In contrast, the adult vestibular system can produce new hair cells in response to damage, or by reprogramming of supporting cells with the hair cell transcription factor Atoh1. We used RNA-seq and ATAC-seq to probe the transcriptional and epigenetic responses of utricle supporting cells to damage and Atoh1 transduction. We show that the regenerative response of the utricle correlates with a more accessible chromatin structure in utricle supporting cells compared to their cochlear counterparts. We also provide evidence that Atoh1 transduction of supporting cells is able to promote increased transcriptional accessibility of some hair cell genes. Our study offers a possible explanation for regenerative differences between sensory organs of the inner ear, but shows that additional factors to Atoh1 may be required for optimal reprogramming of hair cell fate.
Collapse
Affiliation(s)
- Hsin-I Jen
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Matthew C Hill
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
| | - Litao Tao
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Kuanwei Sheng
- Program in Integrative Molecular and Biomedical SciencesBaylor College of MedicineHoustonUnited States
| | - Wenjian Cao
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - Hongyuan Zhang
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| | - Haoze V Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Juan Llamas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Chenghang Zong
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonUnited States
| | - James F Martin
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonUnited States
- The Texas Heart InstituteHoustonUnited States
| | - Neil Segil
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
- Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesUnited States
| | - Andrew K Groves
- Program in Developmental BiologyBaylor College of MedicineHoustonUnited States
- Department of NeuroscienceBaylor College of MedicineHoustonUnited States
| |
Collapse
|
21
|
Lee MY, Park YH. Potential of Gene and Cell Therapy for Inner Ear Hair Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8137614. [PMID: 30009175 PMCID: PMC6020521 DOI: 10.1155/2018/8137614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023]
Abstract
Sensorineural hearing loss is caused by the loss of sensory hair cells (HCs) or a damaged afferent nerve pathway to the auditory cortex. The most common option for the treatment of sensorineural hearing loss is hearing rehabilitation using hearing devices. Various kinds of hearing devices are available but, despite recent advancements, their perceived sound quality does not mimic that of the "naïve" cochlea. Damage to crucial cochlear structures is mostly irreversible and results in permanent hearing loss. Cochlear HC regeneration has long been an important goal in the field of hearing research. However, it remains challenging because, thus far, no medical treatment has successfully regenerated cochlear HCs. Recent advances in genetic modulation and developmental techniques have led to novel approaches to generating HCs or protecting against HC loss, to preserve hearing. In this review, we present and review the current status of two different approaches to restoring or protecting hearing, gene therapy, including the newly introduced CRISPR/Cas9 genome editing, and stem cell therapy, and suggest the future direction.
Collapse
Affiliation(s)
- Min Yong Lee
- Department of Otorhinolaryngology and Head & Neck Surgery, Dankook University Hospital, Cheonan, Chungnam, Republic of Korea
| | - Yong-Ho Park
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
22
|
LI Z, CUI L. The effect of acupuncture at Jǐngjiājǐ (颈夹脊) on the repair and regeneration of cochlear hair cells of rats with sensorineural deafness. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2018. [DOI: 10.1016/j.wjam.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Wang GP, Basu I, Beyer LA, Wong HT, Swiderski DL, Gong SS, Raphael Y. Severe streptomycin ototoxicity in the mouse utricle leads to a flat epithelium but the peripheral neural degeneration is delayed. Hear Res 2017; 355:33-41. [PMID: 28931463 DOI: 10.1016/j.heares.2017.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 01/15/2023]
Abstract
The damaged vestibular sensory epithelium of mammals has a limited capacity for spontaneous hair cell regeneration, which largely depends on the transdifferentiation of surviving supporting cells. Little is known about the response of vestibular supporting cells to a severe insult. In the present study, we evaluated the impact of a severe ototoxic insult on the histology of utricular supporting cells and the changes in innervation that ensued. We infused a high dose of streptomycin into the mouse posterior semicircular canal to induce a severe lesion in the utricle. Both scanning electron microscopy and light microscopy of plastic sections showed replacement of the normal cytoarchitecture of the epithelial layer with a flat layer of cells in most of the samples. Immunofluorescence staining showed numerous cells in the severely damaged epithelial layer that were negative for hair cell and supporting cell markers. Nerve fibers under the flat epithelium had high density at the 1 month time point but very low density by 3 months. Similarly, the number of vestibular ganglion neurons was unchanged at 1 month after the lesion, but was significantly lower at 3 months. We therefore determined that the mouse utricular epithelium turns into a flat epithelium after a severe lesion, but the degeneration of neural components is slow, suggesting that treatments to restore balance by hair cell regeneration, stem cell therapy or vestibular prosthesis implantation will likely benefit from the short term preservation of the neural substrate.
Collapse
Affiliation(s)
- Guo-Peng Wang
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ishani Basu
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiu Tung Wong
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shu-Sheng Gong
- Department of Otolaryngology - Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Gnedeva K, Jacobo A, Salvi JD, Petelski AA, Hudspeth AJ. Elastic force restricts growth of the murine utricle. eLife 2017; 6. [PMID: 28742024 PMCID: PMC5550282 DOI: 10.7554/elife.25681] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
Dysfunctions of hearing and balance are often irreversible in mammals owing to the inability of cells in the inner ear to proliferate and replace lost sensory receptors. To determine the molecular basis of this deficiency we have investigated the dynamics of growth and cellular proliferation in a murine vestibular organ, the utricle. Based on this analysis, we have created a theoretical model that captures the key features of the organ’s morphogenesis. Our experimental data and model demonstrate that an elastic force opposes growth of the utricular sensory epithelium during development, confines cellular proliferation to the organ’s periphery, and eventually arrests its growth. We find that an increase in cellular density and the subsequent degradation of the transcriptional cofactor Yap underlie this process. A reduction in mechanical constraints results in accumulation and nuclear translocation of Yap, which triggers proliferation and restores the utricle’s growth; interfering with Yap’s activity reverses this effect. DOI:http://dx.doi.org/10.7554/eLife.25681.001
Collapse
Affiliation(s)
- Ksenia Gnedeva
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, United States
| | - Adrian Jacobo
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Joshua D Salvi
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - Aleksandra A Petelski
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| | - A J Hudspeth
- Howard Hughes Medical Institute and Laboratory of Sensory Neuroscience, The Rockefeller University, New York, United States
| |
Collapse
|
25
|
Burns JC, Stone JS. Development and regeneration of vestibular hair cells in mammals. Semin Cell Dev Biol 2017; 65:96-105. [PMID: 27864084 PMCID: PMC5423856 DOI: 10.1016/j.semcdb.2016.11.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened.
Collapse
Affiliation(s)
- Joseph C Burns
- Decibel Therapeutics, 215 First St., Suite 430, Cambridge, MA 02142, USA.
| | - Jennifer S Stone
- Department of Otolaryngology/Head and Neck Surgery and The Virginia Merrill Bloedel Hearing Research Center, University of Washington School of Medicine, Box 357923, Seattle, WA 98195-7923, USA.
| |
Collapse
|
26
|
Kelley MW, Stone JS. Development and Regeneration of Sensory Hair Cells. AUDITORY DEVELOPMENT AND PLASTICITY 2017. [DOI: 10.1007/978-3-319-21530-3_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Bucks SA, Cox BC, Vlosich BA, Manning JP, Nguyen TB, Stone JS. Supporting cells remove and replace sensory receptor hair cells in a balance organ of adult mice. eLife 2017; 6:e18128. [PMID: 28263708 PMCID: PMC5338920 DOI: 10.7554/elife.18128] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 01/20/2017] [Indexed: 01/20/2023] Open
Abstract
Vestibular hair cells in the inner ear encode head movements and mediate the sense of balance. These cells undergo cell death and replacement (turnover) throughout life in non-mammalian vertebrates. However, there is no definitive evidence that this process occurs in mammals. We used fate-mapping and other methods to demonstrate that utricular type II vestibular hair cells undergo turnover in adult mice under normal conditions. We found that supporting cells phagocytose both type I and II hair cells. Plp1-CreERT2-expressing supporting cells replace type II hair cells. Type I hair cells are not restored by Plp1-CreERT2-expressing supporting cells or by Atoh1-CreERTM-expressing type II hair cells. Destruction of hair cells causes supporting cells to generate 6 times as many type II hair cells compared to normal conditions. These findings expand our understanding of sensorineural plasticity in adult vestibular organs and further elucidate the roles that supporting cells serve during homeostasis and after injury.
Collapse
Affiliation(s)
- Stephanie A Bucks
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, United States,Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, United States
| | - Brittany A Vlosich
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - James P Manning
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Tot B Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States
| | - Jennifer S Stone
- Department of Otolaryngology-Head and Neck Surgery, Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, United States,
| |
Collapse
|
28
|
McGovern MM, Brancheck J, Grant AC, Graves KA, Cox BC. Quantitative Analysis of Supporting Cell Subtype Labeling Among CreER Lines in the Neonatal Mouse Cochlea. J Assoc Res Otolaryngol 2016; 18:227-245. [PMID: 27873085 DOI: 10.1007/s10162-016-0598-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 10/17/2016] [Indexed: 11/30/2022] Open
Abstract
Four CreER lines that are commonly used in the auditory field to label cochlear supporting cells (SCs) are expressed in multiple SC subtypes, with some lines also showing reporter expression in hair cells (HCs). We hypothesized that altering the tamoxifen dose would modify CreER expression and target subsets of SCs. We also used two different reporter lines, ROSA26 tdTomato and CAG-eGFP, to achieve the same goal. Our results confirm previous reports that Sox2 CreERT2 and Fgfr3-iCreER T2 are not only expressed in neonatal SCs but also in HCs. Decreasing the tamoxifen dose did not reduce HC expression for Sox2 CreERT2 , but changing to the CAG-eGFP reporter decreased reporter-positive HCs sevenfold. However, there was also a significant decrease in the number of reporter-positive SCs. In contrast, there was a large reduction in reporter-positive HCs in Fgfr3-iCreER T2 mice with the lowest tamoxifen dose tested yet only limited reduction in SC labeling. The targeting of reporter expression to inner phalangeal and border cells was increased when Plp-CreER T2 was paired with the CAG-eGFP reporter; however, the total number of labeled cells decreased. Changes to the tamoxifen dose or reporter line with Prox1 CreERT2 caused minimal changes. Our data demonstrate that modifications to the tamoxifen dose or the use of different reporter lines may be successful in narrowing the numbers and/or types of cells labeled, but each CreER line responded differently. When the ROSA26 tdTomato reporter was combined with any of the four CreER lines, there was no difference in the number of tdTomato-positive cells after one or two injections of tamoxifen given at birth. Thus, tamoxifen-mediated toxicity could be reduced by only giving one injection. While the CAG-eGFP reporter consistently labeled fewer cells, both reporter lines are valuable depending on the goal of the study.
Collapse
Affiliation(s)
- Melissa M McGovern
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Joseph Brancheck
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Auston C Grant
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Kaley A Graves
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA
| | - Brandon C Cox
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
- Department of Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL, 62711, USA.
| |
Collapse
|
29
|
Wu J, Li W, Lin C, Chen Y, Cheng C, Sun S, Tang M, Chai R, Li H. Co-regulation of the Notch and Wnt signaling pathways promotes supporting cell proliferation and hair cell regeneration in mouse utricles. Sci Rep 2016; 6:29418. [PMID: 27435629 PMCID: PMC4951696 DOI: 10.1038/srep29418] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/16/2016] [Indexed: 02/07/2023] Open
Abstract
This work sought to determine the crosstalk between the Notch and Wnt signaling pathways in regulating supporting cell (SC) proliferation and hair cell (HC) regeneration in mouse utricles. We cultured postnatal day (P)3 and P60 mouse utricles, damaged the HCs with gentamicin, and treated the utricles with the γ-secretase inhibitor DAPT to inhibit the Notch pathway and with the Wnt agonist QS11 to active the Wnt pathway. We also used Sox2-CreER, Notch1-flox (exon 1), and Catnb-flox (exon 3) transgenic mice to knock out the Notch pathway and activate the Wnt pathway in Sox2+ SCs. Notch inhibition alone increased SC proliferation and HC number in both undamaged and damaged utricles. Wnt activation alone promoted SC proliferation, but the HC number was not significantly increased. Here we demonstrated the cumulative effects of Notch inhibition and Wnt activation in regulating SC proliferation and HC regeneration. Simultaneously inhibiting Notch and overexpressing Wnt led to significantly greater SC proliferation and greater numbers of HCs than manipulating either pathway alone. Similar results were observed in the transgenic mice. This study suggests that the combination of Notch inhibition and Wnt activation can significantly promote SC proliferation and increase the number of regenerated HCs in mouse utricle.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Chen Lin
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China
| | - Yan Chen
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Cheng Cheng
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Shan Sun
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Central laboratory, Affiliated Eye and ENT Hospital of Fudan University, Shanghai, 200031, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| | - Mingliang Tang
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Renjie Chai
- MOE Key Laboratory of Developmental Genes and Human Disease, State Key Laboratory of Bioelectronics, Institute of Life Sciences, Southeast University, Nanjing 210096, PR China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, PR China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, PR China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China.,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, 200031, PR China
| |
Collapse
|
30
|
Li W, You D, Chen Y, Chai R, Li H. Regeneration of hair cells in the mammalian vestibular system. Front Med 2016; 10:143-51. [DOI: 10.1007/s11684-016-0451-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
31
|
A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae. Dev Biol 2016; 411:1-14. [PMID: 26826497 DOI: 10.1016/j.ydbio.2016.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 01/15/2023]
Abstract
The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled.
Collapse
|
32
|
He Y, Tang D, Cai C, Chai R, Li H. LSD1 is Required for Hair Cell Regeneration in Zebrafish. Mol Neurobiol 2015; 53:2421-34. [PMID: 26008620 DOI: 10.1007/s12035-015-9206-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023]
Abstract
Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.
Collapse
Affiliation(s)
- Yingzi He
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Dongmei Tang
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China
| | - Chengfu Cai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | - Huawei Li
- Department of Otorhinolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, 200031, People's Republic of China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, People's Republic of China. .,Institute of Stem Cell and Regeneration Medicine, Institute of Biomedical Science, Fudan University, Shanghai, People's Republic of China. .,Key Laboratory of Hearing Science, Ministry of Health, EENT Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Wang T, Chai R, Kim GS, Pham N, Jansson L, Nguyen DH, Kuo B, May L, Zuo J, Cunningham LL, Cheng AG. Lgr5+ cells regenerate hair cells via proliferation and direct transdifferentiation in damaged neonatal mouse utricle. Nat Commun 2015; 6:6613. [PMID: 25849379 PMCID: PMC4391285 DOI: 10.1038/ncomms7613] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 02/11/2015] [Indexed: 01/10/2023] Open
Abstract
Recruitment of endogenous progenitors is critical during tissue repair. The inner ear utricle requires mechanosensory hair cells (HCs) to detect linear acceleration. After damage, non-mammalian utricles regenerate HCs via both proliferation and direct transdifferentiation. In adult mammals, limited transdifferentiation from unidentified progenitors occurs to regenerate extrastriolar Type II HCs. Here we show that HC damage in neonatal mouse utricle activates the Wnt target gene Lgr5 in striolar supporting cells. Lineage tracing and time-lapse microscopy reveal that Lgr5+ cells transdifferentiate into HC-like cells in vitro. In contrast to adults, HC ablation in neonatal utricles in vivo recruits Lgr5+ cells to regenerate striolar HCs through mitotic and transdifferentiation pathways. Both Type I and II HCs are regenerated, and regenerated HCs display stereocilia and synapses. Lastly, stabilized ß-catenin in Lgr5+ cells enhances mitotic activity and HC regeneration. Thus Lgr5 marks Wnt-regulated, damage-activated HC progenitors and may help uncover factors driving mammalian HC regeneration.
Collapse
Affiliation(s)
- Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Grace S. Kim
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nicole Pham
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Duc-Huy Nguyen
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bryan Kuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38103, USA
| | - Lindsey May
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, 38103, USA
| | - Lisa L. Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Corresponding author: Alan G. Cheng, M.D., 801 Welch Road, Department of Otolaryngology-HNS, Stanford, CA 94305, Phone: (650) 725-6500, Fax: (650) 721-2163,
| |
Collapse
|
34
|
Phillips C, Ling L, Oxford T, Nowack A, Nie K, Rubinstein JT, Phillips JO. Longitudinal performance of an implantable vestibular prosthesis. Hear Res 2015; 322:200-11. [PMID: 25245586 PMCID: PMC4369472 DOI: 10.1016/j.heares.2014.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Abstract
Loss of vestibular function may be treatable with an implantable vestibular prosthesis that stimulates semicircular canal afferents with biphasic pulse trains. Several studies have demonstrated short-term activation of the vestibulo-ocular reflex (VOR) with electrical stimulation. Fewer long-term studies have been restricted to small numbers of animals and stimulation designed to produce adaptive changes in the electrically elicited response. This study is the first large consecutive series of implanted rhesus macaque to be studied longitudinally using brief stimuli designed to limit adaptive changes in response, so that the efficacy of electrical activation can be studied over time, across surgeries, canals and animals. The implantation of a vestibular prosthesis in animals with intact vestibular end organs produces variable responses to electrical stimulation across canals and animals, which change in threshold for electrical activation of eye movements and in elicited slow phase velocities over time. These thresholds are consistently lower, and the slow phase velocities higher, than those obtained in human subjects. The changes do not appear to be correlated with changes in electrode impedance. The variability in response suggests that empirically derived transfer functions may be required to optimize the response of individual canals to a vestibular prosthesis, and that this function may need to be remapped over time. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
| | - Leo Ling
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Trey Oxford
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Amy Nowack
- Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| | - Kaibao Nie
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Jay T Rubinstein
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Bioengineering, University of Washington, Seattle, WA, USA
| | - James O Phillips
- Otolaryngology - HNS, University of Washington, Seattle, WA, USA; Washington National Primate Research Center, University of Washington, Seattle, WA, USA.
| |
Collapse
|
35
|
Lin J, Zhang X, Wu F, Lin W. Hair cell damage recruited Lgr5-expressing cells are hair cell progenitors in neonatal mouse utricle. Front Cell Neurosci 2015; 9:113. [PMID: 25883551 PMCID: PMC4381628 DOI: 10.3389/fncel.2015.00113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
Damage-activated stem/progenitor cells play important roles in regenerating lost cells and in tissue repair. Previous studies reported that the mouse utricle has limited hair cell regeneration ability after hair cell ablation. However, the potential progenitor cell population regenerating new hair cells remains undiscovered. In this study, we first found that Lgr5, a Wnt target gene that is not usually expressed in the neonatal mouse utricle, can be activated by 24 h neomycin treatment in a sub-population of supporting cells in the striolar region of the neonatal mouse utricle. Lineage tracing demonstrated that these Lgr5-positive supporting cells could regenerate new hair cells in explant culture. We isolated the damage-activated Lgr5-positive cells with flow cytometry and found that these Lgr5-positive supporting cells could regenerate hair cells in vitro, and self-renew to form spheres, which maintained the capacity to differentiate into hair cells over seven generations of passages. Our results suggest that damage-activated Lgr5-positive supporting cells act as hair cell progenitors in the neonatal mouse utricle, which may help to uncover a potential route to regenerate hair cell in mammals.
Collapse
Affiliation(s)
- Jinchao Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Xiaodong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Fengfang Wu
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| | - Weinian Lin
- Department of Otolaryngology-Head and Neck Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University Quanzhou, Fujian, China
| |
Collapse
|
36
|
pRb phosphorylation regulates the proliferation of supporting cells in gentamicin-damaged neonatal avian utricle. Neuroreport 2015; 25:1144-50. [PMID: 25100553 DOI: 10.1097/wnr.0000000000000241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ability of nonmammalian vertebrates to regenerate hair cells (HCs) after damage-induced HC loss has stimulated and inspired research in the field of HC regeneration. The protein pRb encoded by retinoblastoma gene Rb1 forces sensory progenitor cells to exit cell cycle and maintain differentiated HCs and supporting cells (SCs) in a quiescent state. pRb function is regulated by phosphorylation through the MEK/ERK or the pRb/Raf-1 signaling pathway. In our previous study, we have shown that pRb phosphorylation is crucial for progenitor cell proliferation and survival during the early embryonic stage of avian otocyst sensory epithelium development. However, in damaged avian utricle, the role of pRb in regulating the cell cycling of SCs or HCs regeneration still remains unclear. To further elucidate the function of pRb phosphorylation on SCs re-entering the cell cycle triggered by gentamycin-induced HCs damage, we isolated neonatal chicken utricles and treated them with the MEK inhibitor U0126 or the pRb/Raf-1 inhibitor RRD-251, respectively in vitro. We found that after gentamycin-induced HCs damage, pRb phosphorylation is important for the quiescent SCs re-entering the cell cycle in the neonatal chicken utricle. In addition, the proliferation of SCs decreased in a dose-dependent manner in response to both U0126 and RRD-251, which indicates that both the MEK/ERK and the pRb/Raf-1 signaling pathway play important roles in pRb phosphorylation in damaged neonatal chicken utricle. Together, these findings on the function of pRb in damaged neonatal chicken utricle improve our understanding of the regulation of the cell cycle of SCs after HCs loss and may shed light on the mammalian HC regeneration from SCs in damaged organs.
Collapse
|
37
|
Adeno-associated virus-mediated gene transfer targeting normal and traumatized mouse utricle. Gene Ther 2014; 21:958-66. [PMID: 25119376 DOI: 10.1038/gt.2014.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 11/08/2022]
Abstract
Balance dysfunction is closely associated with loss of vestibular hair cells (HCs). Gene therapy shows promise when used to protect or regenerate vestibular HCs to preserve or restore adequate vestibular function. Adeno-associated virus (AAV) vectors allow long-term gene expression in the absence of toxicity. To noninvasively define an AAV serotype exhibiting favorable tropism toward the vestibular sensory epithelium, we characterized the transgene expression potential of AAV vectors (serotypes 1, 2, 5, 6 and 8) inoculated into adult mouse utricle via canalostomy. We found that AAV8 was the most effective AAV vector in utricular gene transfer. Swim tests and measurements of auditory brainstem response revealed minimal loss of vestibular function and hearing after canalostomy. In the normal utricle after AAV8 infusion, transduction efficiency peaked at 7 days, and was maintained thereafter, in vestibular HCs, and at 3 days in supporting cells (SCs). In the streptomycin-lesioned utricle, the SC transduction efficiency peaked at 7 days and decreased at 30 days. In conclusion, AAV8-mediated gene transfer via canalostomy facilitates efficient and safe transduction in mouse vestibular sensory epithelium, and may in the future become clinically relevant for human vestibular gene therapy.
Collapse
|
38
|
Pujol R, Pickett SB, Nguyen TB, Stone JS. Large basolateral processes on type II hair cells are novel processing units in mammalian vestibular organs. J Comp Neurol 2014; 522:3141-59. [PMID: 24825750 DOI: 10.1002/cne.23625] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 12/29/2022]
Abstract
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates.
Collapse
Affiliation(s)
- Rémy Pujol
- The Virginia Merrill Bloedel Hearing Research Center, and the Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, Washington, 98195-7923; INSERM Unit 1051, Institute of Neuroscience, 34091, Montpellier, France
| | | | | | | |
Collapse
|
39
|
|
40
|
Bramhall NF, Shi F, Arnold K, Hochedlinger K, Edge ASB. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Reports 2014; 2:311-22. [PMID: 24672754 PMCID: PMC3964281 DOI: 10.1016/j.stemcr.2014.01.008] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 01/27/2023] Open
Abstract
The prevalence of hearing loss after damage to the mammalian cochlea has been thought to be due to a lack of spontaneous regeneration of hair cells, the primary receptor cells for sound. Here, we show that supporting cells, which surround hair cells in the normal cochlear epithelium, differentiate into new hair cells in the neonatal mouse following ototoxic damage. Using lineage tracing, we show that new hair cells, predominantly outer hair cells, arise from Lgr5-expressing inner pillar and third Deiters cells and that new hair cell generation is increased by pharmacological inhibition of Notch. These data suggest that the neonatal mammalian cochlea has some capacity for hair cell regeneration following damage alone and that Lgr5-positive cells act as hair cell progenitors in the cochlea. Hair cells regenerate after damage to the neonatal mouse cochlea Generation of hair cells is increased by inhibition of Notch Hair cells regenerate by transdifferentiation with minimal proliferation Regenerated hair cells arise from Lgr5-positive supporting cells
Collapse
Affiliation(s)
- Naomi F Bramhall
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA ; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA ; Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard and MIT, Cambridge, MA 02139, USA
| | - Fuxin Shi
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA ; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Katrin Arnold
- Massachusetts General Hospital Center for Regenerative Medicine, Boston, MA 02114, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Center for Regenerative Medicine, Boston, MA 02114, USA
| | - Albert S B Edge
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA 02115, USA ; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA ; Program in Speech and Hearing Bioscience and Technology, Division of Health Sciences and Technology, Harvard and MIT, Cambridge, MA 02139, USA
| |
Collapse
|
41
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
42
|
Bremer HG, Versnel H, Hendriksen FG, Topsakal V, Grolman W, Klis SF. Does Vestibular End-Organ Function Recover after Gentamicin-Induced Trauma in Guinea Pigs? ACTA ACUST UNITED AC 2014; 19:135-50. [DOI: 10.1159/000357587] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/26/2013] [Indexed: 11/19/2022]
|
43
|
Hair cell generation by notch inhibition in the adult mammalian cristae. J Assoc Res Otolaryngol 2013; 14:813-28. [PMID: 23989618 DOI: 10.1007/s10162-013-0414-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
Balance disorders caused by hair cell loss in the sensory organs of the vestibular system pose a significant health problem worldwide, particularly in the elderly. Currently, this hair cell loss is permanent as there is no effective treatment. This is in stark contrast to nonmammalian vertebrates who robustly regenerate hair cells after damage. This disparity in regenerative potential highlights the need for further manipulation in order to stimulate more robust hair cell regeneration in mammals. In the utricle, Notch signaling is required for maintaining the striolar support cell phenotype into the second postnatal week. Notch signaling has further been implicated in hair cell regeneration after damage in the mature utricle. Here, we investigate the role of Notch signaling in the mature mammalian cristae in order to characterize the Notch-mediated regenerative potential of these sensory organs. For these studies, we used the γ-secretase inhibitor, N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT), in conjunction with a method we developed to culture cristae in vitro. In postnatal and adult cristae, we found that 5 days of DAPT treatment resulted in a downregulation of the Notch effectors Hes1 and Hes5 and also an increase in the total number of Gfi1(+) hair cells. Hes5, as reported by Hes5-GFP, was downregulated specifically in peripheral support cells. Using lineage tracing with proteolipid protein (PLP)/CreER;mTmG mice, we found that these hair cells arose through transdifferentiation of support cells in cristae explanted from mice up to 10 weeks of age. These transdifferentiated cells arose without proliferation and were capable of taking on a hair cell morphology, migrating to the correct cell layer, and assembling what appears to be a stereocilia bundle with a long kinocilium. Overall, these data show that Notch signaling is active in the mature cristae and suggest that it may be important in maintaining the support cell fate in a subset of peripheral support cells.
Collapse
|
44
|
Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 2013; 24:448-59. [PMID: 23545368 DOI: 10.1016/j.semcdb.2013.03.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/21/2013] [Indexed: 11/21/2022]
Abstract
Sensory epithelia of the inner ear contain two major cell types: hair cells and supporting cells. It has been clear for a long time that hair cells play critical roles in mechanoreception and synaptic transmission. In contrast, until recently the more abundant supporting cells were viewed as serving primarily structural and homeostatic functions. In this review, we discuss the growing information about the roles that supporting cells play in the development, function and maintenance of the inner ear, their activities in pathological states, their potential for hair cell regeneration, and the mechanisms underlying these processes.
Collapse
|
45
|
Rubel EW, Furrer SA, Stone JS. A brief history of hair cell regeneration research and speculations on the future. Hear Res 2013; 297:42-51. [PMID: 23321648 DOI: 10.1016/j.heares.2012.12.014] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Abstract
Millions of people worldwide suffer from hearing and balance disorders caused by loss of the sensory hair cells that convert sound vibrations and head movements into electrical signals that are conveyed to the brain. In mammals, the great majority of hair cells are produced during embryogenesis. Hair cells that are lost after birth are virtually irreplaceable, leading to permanent disability. Other vertebrates, such as fish and amphibians, produce hair cells throughout life. However, hair cell replacement after damage to the mature inner ear was either not investigated or assumed to be impossible until studies in the late 1980s proved this to be false. Adult birds were shown to regenerate lost hair cells in the auditory sensory epithelium after noise- and ototoxic drug-induced damage. Since then, the field of hair cell regeneration has continued to investigate the capacity of the auditory and vestibular epithelia in vertebrates (fishes, birds, reptiles, and mammals) to regenerate hair cells and to recover function, the molecular mechanisms governing these regenerative capabilities, and the prospect of designing biologically-based treatments for hearing loss and balance disorders. Here, we review the major findings of the field during the past 25 years and speculate how future inner ear repair may one day be achieved.
Collapse
Affiliation(s)
- Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center and Department of Otolaryngology and Head & Neck Surgery, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
46
|
Hair cell replacement in adult mouse utricles after targeted ablation of hair cells with diphtheria toxin. J Neurosci 2013; 32:15093-105. [PMID: 23100430 DOI: 10.1523/jneurosci.1709-12.2012] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We developed a transgenic mouse to permit conditional and selective ablation of hair cells in the adult mouse utricle by inserting the human diphtheria toxin receptor (DTR) gene into the Pou4f3 gene, which encodes a hair cell-specific transcription factor. In adult wild-type mice, administration of diphtheria toxin (DT) caused no significant hair cell loss. In adult Pou4f3(+/DTR) mice, DT treatment reduced hair cell numbers to 6% of normal by 14 days post-DT. Remaining hair cells were located primarily in the lateral extrastriola. Over time, hair cell numbers increased in these regions, reaching 17% of untreated Pou4f3(+/DTR) mice by 60 days post-DT. Replacement hair cells were morphologically distinct, with multiple cytoplasmic processes, and displayed evidence for active mechanotransduction channels and synapses characteristic of type II hair cells. Three lines of evidence suggest replacement hair cells were derived via direct (nonmitotic) transdifferentiation of supporting cells: new hair cells did not incorporate BrdU, supporting cells upregulated the pro-hair cell gene Atoh1, and supporting cell numbers decreased over time. This study introduces a new method for efficient conditional hair cell ablation in adult mouse utricles and demonstrates that hair cells are spontaneously regenerated in vivo in regions where there may be ongoing hair cell turnover.
Collapse
|
47
|
Jongkamonwiwat N, Rivolta MN. The Development of a Stem Cell Therapy for Deafness. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
48
|
Taniguchi M, Yamamoto N, Nakagawa T, Ogino E, Ito J. Identification of tympanic border cells as slow-cycling cells in the cochlea. PLoS One 2012; 7:e48544. [PMID: 23119055 PMCID: PMC3485350 DOI: 10.1371/journal.pone.0048544] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/27/2012] [Indexed: 01/18/2023] Open
Abstract
Mammalian cochlear sensory epithelial cells are believed to possess minimal regenerative potential because they halt proliferation during late stage of embryogenesis and never regenerate after birth. This means that sensorineural hearing loss caused by the death of cochlear sensory epithelial cells is a permanent condition. However, stem cells were recently identified in neonatal mice following dissociation of their inner ear organs. This suggests that regenerative therapy for sensorineural hearing loss may be possible. Unfortunately, dissociation distorts the microanatomy of the inner ear, making it difficult to determine the precise location of stem cells in unaltered specimens. To develop new therapeutic approaches based on sensory epithelial cell regeneration, the location of these stem cells must be elucidated. Stem cells normally proliferate at a slow rate in adult organs. In fact, so-called label-retaining cells, or slow-cycling cells, of the brain and skin are recognized as stem cells. In this study, using the exogenous proliferation marker, 5′-bromo-2′-deoxyuridine (BrdU) in combination with the endogenous proliferation marker Ki-67, we identified tympanic border cells. These cells, which are located beneath the basilar membrane in vivo, represent slow-cycling cells of the murine cochlea. Immunohistochemically, these cells stained positive for the immature cell marker Nestin. But it will be difficult to achieve regeneration of the cochlear function because these slow-cycling cells disappear in the mature murine cochlea.
Collapse
Affiliation(s)
- Mirei Taniguchi
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norio Yamamoto
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Takayuki Nakagawa
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eriko Ogino
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Juichi Ito
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
49
|
Mackenzie SM, Raible DW. Proliferative regeneration of zebrafish lateral line hair cells after different ototoxic insults. PLoS One 2012; 7:e47257. [PMID: 23094043 PMCID: PMC3475690 DOI: 10.1371/journal.pone.0047257] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022] Open
Abstract
Sensory hair cells in the zebrafish lateral line regenerate rapidly and completely after damage. Previous studies have used a variety of ototoxins to kill lateral line hair cells to study different phenomena including mechanisms of hair cell death and regeneration. We sought to directly compare these ototoxins to determine if they differentially affected the rate and amount of hair cell replacement. In addition, previous studies have found evidence of proliferative hair cell regeneration in zebrafish, but both proliferation and non-mitotic direct transdifferentiation have been observed during hair cell regeneration in the sensory epithelia of birds and amphibians. We sought to test whether a similar combination of regenerative mechanisms exist in the fish. We analyzed the time course of regeneration after treatment with different ototoxic compounds and also labeled dividing hair cell progenitors. Certain treatments, including cisplatin and higher concentrations of dissolved copper, significantly delayed regeneration by one or more days. However, cisplatin did not block all regeneration as observed previously in the chick basilar papilla. The particular ototoxin did not appear to affect the mechanism of regeneration, as we observed evidence of recent proliferation in the majority of new hair cells in all cases. Inhibiting proliferation with flubendazole blocked the production of new hair cells and prevented the accumulation of additional precursors, indicating that proliferation has a dominant role during regeneration of lateral line hair cells.
Collapse
Affiliation(s)
- Scott M. Mackenzie
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington, United States of America
| | - David W. Raible
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
50
|
Magnetic Resonance Imaging Fails to Show Evidence of Reduced Endolymphatic Hydrops in Gentamicin Treatment of Ménière’s Disease. Otol Neurotol 2012; 33:629-33. [DOI: 10.1097/mao.0b013e318248ee1f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|