1
|
Aréchiga-Figueroa IA, Marmolejo-Murillo LG, Delgado-Ramírez M, Zamora-Cárdenas R, Moreno-Galindo EG, Ferrer T, Navarro-Polanco RA, Sánchez-Chapula JA, Rodríguez-Menchaca AA. Intracellular pH regulates the strength of the intrinsic inward rectification of Kir4.1/Kir5.1 channels. Pflugers Arch 2025; 477:741-752. [PMID: 40133722 DOI: 10.1007/s00424-025-03079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Kir4.1/Kir5.1 channels play a crucial role in important physiological functions, notably in the kidneys and brain. A hallmark of these channels is the coexistence of two mechanisms of inward rectification: the classical "extrinsic" inward rectification induced by polyamines and Mg2+ blocking the pore, and a novel "intrinsic" voltage-dependent mechanism driven by K+ flux. Previous studies have shown that Kir4.1/Kir5.1 channels are modulated by the intracellular pH in the physiological range. Here, we investigated the influence of the intracellular pH on the extent of the intrinsic inward rectification of Kir4.1/Kir5.1 channels expressed in HEK-293 cells and recorded using the inside-out configuration of the patch-clamp technique. We found that mutations that are known to modulate the pH sensitivity of Kir4.1/Kir5.1 channels attenuated inward rectification. The combination of these mutations in the triple mutant channel Kir4.1(K67M)/Kir5.1(N161E-R230E) virtually abolished inward rectification at pH 7.4; however, this property was re-established at acidic pH values. Consistently, the strong inward rectification of wild-type Kir4.1/Kir5.1 channels was reduced by intracellular alkalinization and further enhanced by acidification. Altogether, these experiments indicate that the intracellular pH strongly regulates the strength of the intrinsic inward rectification. Furthermore, triple mutant channels retained the extrinsic mechanism of inward rectification at pH 7.4, as can be blocked by spermine, but lost the ability to respond to elevated levels of PIP2, unlike wild-type channels. Interestingly, whole-cell recordings of wild-type and triple mutant channels imply that the mechanism of intrinsic inward rectification is an important contributor to the overall rectification of Kir4.1/Kir5.1 channels in basal conditions.
Collapse
Affiliation(s)
- Iván A Aréchiga-Figueroa
- Consejo Nacional de Humanidades, Ciencias y Tecnologías, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Leticia G Marmolejo-Murillo
- Departamento de Medicina y Nutrición, Universidad de Guanajuato, División de Ciencias de La Salud, León, México
| | - Mayra Delgado-Ramírez
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | | | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Tania Ferrer
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | | | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Aldo A Rodríguez-Menchaca
- Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México.
| |
Collapse
|
2
|
Tu YC, Lee IC, Chang TW, Lee V, Chao FY, Geltser ER, Tsai MF. Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex. J Biol Chem 2025; 301:108218. [PMID: 39863104 PMCID: PMC11871460 DOI: 10.1016/j.jbc.2025.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The mitochondrial Ca2+ uniporter is the Ca2+ channel responsible for mitochondrial Ca2+ uptake. It plays crucial physiological roles in regulating oxidative phosphorylation, intracellular Ca2+ signaling, and cell death. The uniporter contains the pore-forming MCU subunit, the auxiliary EMRE protein, and the regulatory MICU1 subunit, which blocks the MCU pore under resting cellular Ca2+ concentrations. It has been known for decades that spermine, a biological polyamine ubiquitously present in animal cells, can enhance mitochondrial Ca2+ uptake, but the underlying mechanisms remain incompletely understood. In this study, we demonstrate that spermine exerts both potentiation and inhibitory effects on the uniporter. At physiological concentrations, spermine binds to membranes and disrupts MCU-MICU1 interactions, thereby opening the uniporter to import more Ca2+. However, at millimolar concentrations, spermine also inhibits the uniporter by targeting the pore-forming region in a MICU1-independent manner. These findings provide molecular insights into how cells can use spermine to control the critical processes of mitochondrial Ca2+ signaling and homeostasis.
Collapse
Affiliation(s)
- Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - I-Chi Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Tsai-Wei Chang
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Vivian Lee
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eitel R Geltser
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
3
|
Perucca E, Taglialatela M. Targeting Kv7 Potassium Channels for Epilepsy. CNS Drugs 2025; 39:263-288. [PMID: 39853501 PMCID: PMC11850491 DOI: 10.1007/s40263-024-01155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2024] [Indexed: 01/26/2025]
Abstract
Voltage-gated Kv7 potassium channels, particularly Kv7.2 and Kv.7.3 channels, play a critical role in modulating susceptibility to seizures, and mutations in genes that encode these channels cause heterogeneous epilepsy phenotypes. On the basis of this evidence, activation of Kv7.2 and Kv.7.3 channels has long been considered an attractive target in the search for novel antiseizure medications. Ezogabine (retigabine), the first Kv7.2/3 activator introduced in 2011 for the treatment of focal seizures, was withdrawn from the market in 2017 due to declining use after discovery of its association with pigmentation changes in the retina, skin, and mucosae. A novel formulation of ezogabine for pediatric use (XEN496) has been recently investigated in children with KCNQ2-related developmental and epileptic encephalopathy, but the trial was terminated prematurely for reasons unrelated to safety. Among novel Kv7.2/3 openers in clinical development, azetukalner has shown dose-dependent efficacy against drug-resistant focal seizures with a good tolerability profile and no evidence of pigmentation-related adverse effects in early clinical studies, and it is now under investigation in phase III trials for the treatment of focal seizures, generalized tonic-clonic seizures, and major depressive disorder. Another Kv7.2/3 activator, BHV-7000, has completed phase I studies in healthy subjects, with excellent tolerability at plasma drug concentrations that exceed the median effective concentrations in a preclinical model of anticonvulsant activity, but no efficacy data in patients with epilepsy are available to date. Among other Kv7.2/3 activators in clinical development as potential antiseizure medications, pynegabine and CB-003 have completed phase I safety and pharmacokinetic studies, but results have not been yet reported. Overall, interest in targeting Kv7 channels for the treatment of epilepsy and for other indications remains strong. Future breakthroughs in this area could come from exploitation of mechanistic differences in the action of Kv7 activators, and from the development of molecules that combine Kv7 activation with other mechanisms of action.
Collapse
Affiliation(s)
- Emilio Perucca
- Department of Medicine (Austin Health), Melbourne Brain Center, The University of Melbourne, 245 Burgundy St., Heidelberg, VIC, 3084, Australia.
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
4
|
Tamura R, Chen J, De Jaeger M, Morris JF, Scott DA, Vangheluwe P, Looger LL. Genetically encoded fluorescent sensors for visualizing polyamine levels, uptake, and distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609037. [PMID: 39229183 PMCID: PMC11370472 DOI: 10.1101/2024.08.21.609037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Polyamines are abundant and physiologically essential biomolecules that play a role in numerous processes, but are disrupted in diseases such as cancer, and cardiovascular and neurological disorders. Despite their importance, measuring free polyamine concentrations and monitoring their metabolism and uptake in cells in real-time remains impossible due to the lack of appropriate biosensors. Here we engineered, characterized, and validated the first genetically encoded biosensors for polyamines, named iPASnFRs. We demonstrate the utility of iPASnFR for detecting polyamine import into mammalian cells, to the cytoplasm, mitochondria, and the nucleus. We demonstrate that these sensors are useful to probe the activity of polyamine transporters and to uncover biochemical pathways underlying the distribution of polyamines amongst organelles. The sensors powered a high-throughput small molecule compound library screen, revealing multiple compounds in different chemical classes that strongly modulate cellular polyamine levels. These sensors will be powerful tools to investigate the complex interplay between polyamine uptake and metabolic pathways, address open questions about their role in health and disease, and enable screening for therapeutic polyamine modulators.
Collapse
|
5
|
Li E, van der Heyden MAG. The network of cardiac K IR2.1: its function, cellular regulation, electrical signaling, diseases and new drug avenues. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6369-6389. [PMID: 38683369 PMCID: PMC11422472 DOI: 10.1007/s00210-024-03116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
The functioning of the human heart relies on complex electrical and communication systems that coordinate cardiac contractions and sustain rhythmicity. One of the key players contributing to this intricate system is the KIR2.1 potassium ion channel, which is encoded by the KCNJ2 gene. KIR2.1 channels exhibit abundant expression in both ventricular myocytes and Purkinje fibers, exerting an important role in maintaining the balance of intracellular potassium ion levels within the heart. And by stabilizing the resting membrane potential and contributing to action potential repolarization, these channels have an important role in cardiac excitability also. Either gain- or loss-of-function mutations, but also acquired impairments of their function, are implicated in the pathogenesis of diverse types of cardiac arrhythmias. In this review, we aim to elucidate the system functions of KIR2.1 channels related to cellular electrical signaling, communication, and their contributions to cardiovascular disease. Based on this knowledge, we will discuss existing and new pharmacological avenues to modulate their function.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM, Utrecht, Netherlands.
| |
Collapse
|
6
|
Mӓnnikkӧ R, Kullmann DM. Structure-function and pharmacologic aspects of ion channels relevant to neurologic channelopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:1-23. [PMID: 39174242 DOI: 10.1016/b978-0-323-90820-7.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Ion channels are membrane proteins that allow the passage of ions across the membrane. They characteristically contain a pore where the selectivity of certain ion species is determined and gates that open and close the pore are found. The pore is often connected to additional domains or subunits that regulate its function. Channels are grouped into families based on their selectivity for specific ions and the stimuli that control channel opening and closing, such as voltage or ligands. Ion channels are fundamental to the electrical properties of excitable tissues. Dysfunction of channels can lead to abnormal electrical signaling of neurons and muscle cells, accompanied by clinical manifestations, known as channelopathies. Many naturally occurring toxins target ion channels and affect excitable cells where the channels are expressed. Furthermore, ion channels, as membrane proteins and key regulators of a number of physiologic functions, are an important target for drugs in clinical use. In this chapter, we give a general overview of the classification, genetics and structure-function features of the main ion channel families, and address some pharmacologic aspects relevant to neurologic channelopathies.
Collapse
Affiliation(s)
- Roope Mӓnnikkӧ
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| |
Collapse
|
7
|
Tu YC, Chao FY, Tsai MF. Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543936. [PMID: 37333420 PMCID: PMC10274775 DOI: 10.1101/2023.06.06.543936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The mitochondrial Ca 2 + uniporter mediates the crucial cellular process of mitochondrial Ca 2 + uptake, which regulates cell bioenergetics, intracellular Ca 2 + signaling, and cell death initiation. The uniporter contains the pore-forming MCU subunit, an EMRE protein that binds to MCU, and the regulatory MICU1 subunit, which can dimerize with MICU1 or MICU2 and under resting cellular [Ca 2 + ] occludes the MCU pore. It has been known for decades that spermine, which is ubiquitously present in animal cells, can enhance mitochondrial Ca 2 + uptake, but the underlying mechanisms remain unclear. Here, we show that spermine exerts dual modulatory effects on the uniporter. In physiological concentrations of spermine, it enhances uniporter activity by breaking the physical interactions between MCU and the MICU1-containing dimers to allow the uniporter to constitutively take up Ca 2 + even in low [Ca 2 + ] conditions. This potentiation effect does not require MICU2 or the EF-hand motifs in MICU1. When [spermine] rises to millimolar levels, it inhibits the uniporter by targeting the pore region in a MICU-independent manner. The MICU1-dependent spermine potentiation mechanism proposed here, along with our previous finding that cardiac mitochondria have very low MICU1, can explain the puzzling observation in the literature that mitochondria in the heart show no response to spermine.
Collapse
Affiliation(s)
- Yung-Chi Tu
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Fan-Yi Chao
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ming-Feng Tsai
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
8
|
Li E, Kool W, Woolschot L, van der Heyden MAG. Chronic Propafenone Application Increases Functional K IR2.1 Expression In Vitro. Pharmaceuticals (Basel) 2023; 16:ph16030404. [PMID: 36986503 PMCID: PMC10056987 DOI: 10.3390/ph16030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/28/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Expression and activity of inwardly rectifying potassium (KIR) channels within the heart are strictly regulated. KIR channels have an important role in shaping cardiac action potentials, having a limited conductance at depolarized potentials but contributing to the final stage of repolarization and resting membrane stability. Impaired KIR2.1 function causes Andersen-Tawil Syndrome (ATS) and is associated with heart failure. Restoring KIR2.1 function by agonists of KIR2.1 (AgoKirs) would be beneficial. The class 1c antiarrhythmic drug propafenone is identified as an AgoKir; however, its long-term effects on KIR2.1 protein expression, subcellular localization, and function are unknown. Propafenone's long-term effect on KIR2.1 expression and its underlying mechanisms in vitro were investigated. KIR2.1-carried currents were measured by single-cell patch-clamp electrophysiology. KIR2.1 protein expression levels were determined by Western blot analysis, whereas conventional immunofluorescence and advanced live-imaging microscopy were used to assess the subcellular localization of KIR2.1 proteins. Acute propafenone treatment at low concentrations supports the ability of propafenone to function as an AgoKir without disturbing KIR2.1 protein handling. Chronic propafenone treatment (at 25-100 times higher concentrations than in the acute treatment) increases KIR2.1 protein expression and KIR2.1 current densities in vitro, which are potentially associated with pre-lysosomal trafficking inhibition.
Collapse
Affiliation(s)
- Encan Li
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Willy Kool
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Liset Woolschot
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, Yalelaan 50, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
9
|
Jogini V, Jensen MØ, Shaw DE. Gating and modulation of an inward-rectifier potassium channel. J Gen Physiol 2022; 155:213765. [PMID: 36524993 PMCID: PMC9764021 DOI: 10.1085/jgp.202213085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Inward-rectifier potassium channels (Kirs) are lipid-gated ion channels that differ from other K+ channels in that they allow K+ ions to flow more easily into, rather than out of, the cell. Inward rectification is known to result from endogenous magnesium ions or polyamines (e.g., spermine) binding to Kirs, resulting in a block of outward potassium currents, but questions remain regarding the structural and dynamic basis of the rectification process and lipid-dependent channel activation. Here, we present the results of long-timescale molecular dynamics simulations starting from a crystal structure of phosphatidylinositol 4,5-bisphosphate (PIP2)-bound chicken Kir2.2 with a non-conducting pore. After introducing a mutation (G178R) that is known to increase the open probability of a homologous channel, we were able to observe transitions to a stably open, ion-conducting pore, during which key conformational changes occurred in the main activation gate and the cytoplasmic domain. PIP2 binding appeared to increase stability of the pore in its open and conducting state, as PIP2 removal resulted in pore closure, with a median closure time about half of that with PIP2 present. To investigate structural details of inward rectification, we simulated spermine binding to and unbinding from the open pore conformation at positive and negative voltages, respectively, and identified a spermine-binding site located near a previously hypothesized site between the pore cavity and the selectivity filter. We also studied the effects of long-range electrostatics on conduction and spermine binding by mutating charged residues in the cytoplasmic domain and found that a finely tuned charge density, arising from basic and acidic residues within the cytoplasmic domain, modulated conduction and rectification.
Collapse
Affiliation(s)
| | | | - David E. Shaw
- D. E. Shaw Research, New York, NY, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Schwarz C, Benson GS, Horn N, Wurdack K, Grittner U, Schilling R, Märschenz S, Köbe T, Hofer SJ, Magnes C, Stekovic S, Eisenberg T, Sigrist SJ, Schmitz D, Wirth M, Madeo F, Flöel A. Effects of Spermidine Supplementation on Cognition and Biomarkers in Older Adults With Subjective Cognitive Decline: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2213875. [PMID: 35616942 PMCID: PMC9136623 DOI: 10.1001/jamanetworkopen.2022.13875] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
Importance Developing interventions against age-related memory decline and for older adults experiencing neurodegenerative disease is one of the greatest challenges of our generation. Spermidine supplementation has shown beneficial effects on brain and cognitive health in animal models, and there has been preliminary evidence of memory improvement in individuals with subjective cognitive decline. Objective To determine the effect of longer-term spermidine supplementation on memory performance and biomarkers in this at-risk group. Design, Setting, and Participants This 12-month randomized, double-masked, placebo-controlled phase 2b trial (the SmartAge trial) was conducted between January 2017 and May 2020. The study was a monocenter trial carried out at an academic clinical research center in Germany. Eligible individuals were aged 60 to 90 years with subjective cognitive decline who were recruited from health care facilities as well as through advertisements in the general population. Data analysis was conducted between January and March 2021. Interventions One hundred participants were randomly assigned (1:1 ratio) to 12 months of dietary supplementation with either a spermidine-rich dietary supplement extracted from wheat germ (0.9 mg spermidine/d) or placebo (microcrystalline cellulose). Eighty-nine participants (89%) successfully completed the trial intervention. Main Outcomes and Measures Primary outcome was change in memory performance from baseline to 12-month postintervention assessment (intention-to-treat analysis), operationalized by mnemonic discrimination performance assessed by the Mnemonic Similarity Task. Secondary outcomes included additional neuropsychological, behavioral, and physiological parameters. Safety was assessed in all participants and exploratory per-protocol, as well as subgroup, analyses were performed. Results A total of 100 participants (51 in the spermidine group and 49 in the placebo group) were included in the analysis (mean [SD] age, 69 [5] years; 49 female participants [49%]). Over 12 months, no significant changes were observed in mnemonic discrimination performance (between-group difference, -0.03; 95% CI, -0.11 to 0.05; P = .47) and secondary outcomes. Exploratory analyses indicated possible beneficial effects of the intervention on inflammation and verbal memory. Adverse events were balanced between groups. Conclusions and Relevance In this randomized clinical trial, longer-term spermidine supplementation in participants with subjective cognitive decline did not modify memory and biomarkers compared with placebo. Exploratory analyses indicated possible beneficial effects on verbal memory and inflammation that need to be validated in future studies at higher dosage. Trial Registration ClinicalTrials.gov Identifier: NCT03094546.
Collapse
Affiliation(s)
- Claudia Schwarz
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gloria S. Benson
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Geriatric Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nora Horn
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katharina Wurdack
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Ralph Schilling
- Institute of Biometry and Clinical Epidemiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Institute of Social Medicine, Epidemiology and Health Economics, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefanie Märschenz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Theresa Köbe
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Christoph Magnes
- HEALTH–Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft mbH, Graz, Austria
| | - Slaven Stekovic
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Stephan J. Sigrist
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Dietmar Schmitz
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miranka Wirth
- Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Agnes Flöel
- German Center for Neurodegenerative Diseases, Greifswald, Germany
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Akyuz E, Koklu B, Uner A, Angelopoulou E, Paudel YN. Envisioning the role of inwardly rectifying potassium (Kir) channel in epilepsy. J Neurosci Res 2021; 100:413-443. [PMID: 34713909 DOI: 10.1002/jnr.24985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 01/29/2023]
Abstract
Epilepsy is a devastating neurological disorder characterized by recurrent seizures attributed to the disruption of the dynamic excitatory and inhibitory balance in the brain. Epilepsy has emerged as a global health concern affecting about 70 million people worldwide. Despite recent advances in pre-clinical and clinical research, its etiopathogenesis remains obscure, and there are still no treatment strategies modifying disease progression. Although the precise molecular mechanisms underlying epileptogenesis have not been clarified yet, the role of ion channels as regulators of cellular excitability has increasingly gained attention. In this regard, emerging evidence highlights the potential implication of inwardly rectifying potassium (Kir) channels in epileptogenesis. Kir channels consist of seven different subfamilies (Kir1-Kir7), and they are highly expressed in both neuronal and glial cells in the central nervous system. These channels control the cell volume and excitability. In this review, we discuss preclinical and clinical evidence on the role of the several subfamilies of Kir channels in epileptogenesis, aiming to shed more light on the pathogenesis of this disorder and pave the way for future novel therapeutic approaches.
Collapse
Affiliation(s)
- Enes Akyuz
- Faculty of International Medicine, Department of Biophysics, University of Health Sciences, Istanbul, Turkey
| | - Betul Koklu
- Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Arda Uner
- Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
12
|
Takla M, Edling CE, Zhang K, Saadeh K, Tse G, Salvage SC, Huang CL, Jeevaratnam K. Transcriptional profiles of genes related to electrophysiological function in Scn5a +/- murine hearts. Physiol Rep 2021; 9:e15043. [PMID: 34617689 PMCID: PMC8495800 DOI: 10.14814/phy2.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
The Scn5a gene encodes the major pore-forming Nav 1.5 (α) subunit, of the voltage-gated Na+ channel in cardiomyocytes. The key role of Nav 1.5 in action potential initiation and propagation in both atria and ventricles predisposes organisms lacking Scn5a or carrying Scn5a mutations to cardiac arrhythmogenesis. Loss-of-function Nav 1.5 genetic abnormalities account for many cases of the human arrhythmic disorder Brugada syndrome (BrS) and related conduction disorders. A murine model with a heterozygous Scn5a deletion recapitulates many electrophysiological phenotypes of BrS. This study examines the relationships between its Scn5a+/- genotype, resulting transcriptional changes, and the consequent phenotypic presentations of BrS. Of 62 selected protein-coding genes related to cardiomyocyte electrophysiological or homeostatic function, concentrations of mRNA transcribed from 15 differed significantly from wild type (WT). Despite halving apparent ventricular Scn5a transcription heterozygous deletion did not significantly downregulate its atrial expression, raising possibilities of atria-specific feedback mechanisms. Most of the remaining 14 genes whose expression differed significantly between WT and Scn5a+/- animals involved Ca2+ homeostasis specifically in atrial tissue, with no overlap with any ventricular changes. All statistically significant changes in expression were upregulations in the atria and downregulations in the ventricles. This investigation demonstrates the value of future experiments exploring for and clarifying links between transcriptional control of Scn5a and of genes whose protein products coordinate Ca2+ regulation and examining their possible roles in BrS.
Collapse
Affiliation(s)
- Michael Takla
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Christ’s CollegeUniversity of CambridgeCambridgeUK
| | | | - Kevin Zhang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- School of MedicineImperial College LondonLondonUK
| | - Khalil Saadeh
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Clinical SchoolUniversity of CambridgeCambridgeUK
| | - Gary Tse
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Second Hospital of Tianjin Medical UniversityTianjinChina
| | | | - Christopher L.‐H. Huang
- Faculty of Health and Medical ScienceUniversity of SurreyGuildfordUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
13
|
Kanamori Y, Finotti A, Di Magno L, Canettieri G, Tahara T, Timeus F, Greco A, Tirassa P, Gasparello J, Fino P, Di Liegro CM, Proia P, Schiera G, Di Liegro I, Gambari R, Agostinelli E. Enzymatic Spermine Metabolites Induce Apoptosis Associated with Increase of p53, caspase-3 and miR-34a in Both Neuroblastoma Cells, SJNKP and the N-Myc-Amplified Form IMR5. Cells 2021; 10:1950. [PMID: 34440719 PMCID: PMC8393918 DOI: 10.3390/cells10081950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma (NB) is a common malignant solid tumor in children and accounts for 15% of childhood cancer mortality. Amplification of the N-Myc oncogene is a well-established poor prognostic marker in NB patients and strongly correlates with higher tumor aggression and resistance to treatment. New therapies for patients with N-Myc-amplified NB need to be developed. After treating NB cells with BSAO/SPM, the detection of apoptosis was determined after annexin V-FITC labeling and DNA staining with propidium iodide. The mitochondrial membrane potential activity was checked, labeling cells with the probe JC-1 dye. We analyzed, by real-time RT-PCR, the transcript of genes involved in the apoptotic process, to determine possible down- or upregulation of mRNAs after the treatment on SJNKP and the N-Myc-amplified IMR5 cell lines with BSAO/SPM. The experiments were carried out considering the proapoptotic genes Tp53 and caspase-3. After treatment with BSAO/SPM, both cell lines displayed increased mRNA levels for all these proapoptotic genes. Western blotting analysis with PARP and caspase-3 antibody support that BSAO/SPM treatment induces high levels of apoptosis in cells. The major conclusion is that BSAO/SPM treatment leads to antiproliferative and cytotoxic activity of both NB cell lines, associated with activation of apoptosis.
Collapse
Affiliation(s)
- Yuta Kanamori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessia Finotti
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Laura Di Magno
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.M.); (G.C.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy; (L.D.M.); (G.C.)
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Tomoaki Tahara
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
| | - Fabio Timeus
- Paediatric Onco-haematology, Regina Margherita Children’s Hospital and Paediatric Department, Chivasso Hospital, 10034 Turin, Italy;
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, Research Council of Italy (CNR), 00161 Rome, Italy;
| | - Jessica Gasparello
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Pasquale Fino
- UOC of Dermatology, Policlinico Umberto I Hospital, Sapienza Medical School of Rome, Viale del Policlinico 155, 00161 Rome, Italy;
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement (Dipartimento di Scienze Psicologiche, Pedagogiche, dell’Esercizio fisico e della Formazione), University of Palermo, 90128 Palermo, Italy;
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy; (C.M.D.L.); (G.S.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, Biochemistry and Molecular Biology Section, University of Ferrara, 44121 Ferrara, Italy; (A.F.); (J.G.); (R.G.)
| | - Enzo Agostinelli
- Department of Sensory Organs, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico 155, 00161 Rome, Italy; (A.G.); (T.T.)
- International Polyamines Foundation ‘ETS-ONLUS’ Via del Forte Tiburtino 98, 00159 Rome, Italy
| |
Collapse
|
14
|
Vila A, Shihabeddin E, Zhang Z, Santhanam A, Ribelayga CP, O’Brien J. Synaptic Scaffolds, Ion Channels and Polyamines in Mouse Photoreceptor Synapses: Anatomy of a Signaling Complex. Front Cell Neurosci 2021; 15:667046. [PMID: 34393723 PMCID: PMC8356055 DOI: 10.3389/fncel.2021.667046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Synaptic signaling complexes are held together by scaffold proteins, each of which is selectively capable of interacting with a number of other proteins. In previous studies of rabbit retina, we found Synapse-Associated Protein-102 (SAP102) and Channel Associated Protein of Synapse-110 (Chapsyn110) selectively localized in the tips of horizontal cell processes at contacts with rod and cone photoreceptors, along with several interacting ion channels. We have examined the equivalent suites of proteins in mouse retina and found similarities and differences. In the mouse retina we identified Chapsyn110 as the scaffold selectively localized in the tips of horizontal cells contacting photoreceptors, with Sap102 more diffusely present. As in rabbit, the inward rectifier potassium channel Kir2.1 was present with Chapsyn110 on the tips of horizontal cell dendrites within photoreceptor invaginations, where it could provide a hyperpolarization-activated current that could contribute to ephaptic signaling in the photoreceptor synapses. Pannexin 1 and Pannexin 2, thought to play a role in ephaptic and/or pH mediated signaling, were present in the outer plexiform layer, but likely not in the horizontal cells. Polyamines regulate many ion channels and control the degree of rectification of Kir2.1 by imposing a voltage-dependent block. During the day polyamine immunolabeling was unexpectedly high in photoreceptor terminals compared to other areas of the retina. This content was significantly lower at night, when polyamine content was predominantly in Müller glia, indicating daily rhythms of polyamine content. Both rod and cone terminals displayed the same rhythm. While polyamine content was not prominent in horizontal cells, if polyamines are released, they may regulate the activity of Kir2.1 channels located in the tips of HCs. The rhythmic change in polyamine content of photoreceptor terminals suggests that a daily rhythm tunes the behavior of suites of ion channels within the photoreceptor synapses.
Collapse
Affiliation(s)
- Alejandro Vila
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Eyad Shihabeddin
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Zhijing Zhang
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Abirami Santhanam
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Christophe P. Ribelayga
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| | - John O’Brien
- Richard S. Ruiz M.D. Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, TX, United States
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
15
|
Weaver CD, Denton JS. Next-generation inward rectifier potassium channel modulators: discovery and molecular pharmacology. Am J Physiol Cell Physiol 2021; 320:C1125-C1140. [PMID: 33826405 DOI: 10.1152/ajpcell.00548.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inward rectifying potassium (Kir) channels play important roles in both excitable and nonexcitable cells of various organ systems and could represent valuable new drug targets for cardiovascular, metabolic, immune, and neurological diseases. In nonexcitable epithelial cells of the kidney tubule, for example, Kir1.1 (KCNJ1) and Kir4.1 (KCNJ10) are linked to sodium reabsorption in the thick ascending limb of Henle's loop and distal convoluted tubule, respectively, and have been explored as novel-mechanism diuretic targets for managing hypertension and edema. G protein-coupled Kir channels (Kir3) channels expressed in the central nervous system are critical effectors of numerous signal transduction pathways underlying analgesia, addiction, and respiratory-depressive effects of opioids. The historical dearth of pharmacological tool compounds for exploring the therapeutic potential of Kir channels has led to a molecular target-based approach using high-throughput screen (HTS) of small-molecule libraries and medicinal chemistry to develop "next-generation" Kir channel modulators that are both potent and specific for their targets. In this article, we review recent efforts focused specifically on discovery and improvement of target-selective molecular probes. The reader is introduced to fluorescence-based thallium flux assays that have enabled much of this work and then provided with an overview of progress made toward developing modulators of Kir1.1 (VU590, VU591), Kir2.x (ML133), Kir3.X (ML297, GAT1508, GiGA1, VU059331), Kir4.1 (VU0134992), and Kir7.1 (ML418). We discuss what is known about the small molecules' molecular mechanisms of action, in vitro and in vivo pharmacology, and then close with our view of what critical work remains to be done.
Collapse
Affiliation(s)
- C David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Department of Chemistry, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee.,Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee.,Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
16
|
Zhang Y, Wang Y, Meng L, Huang Q, Zhu Y, Cui W, Cheng Y, Liu R. Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer. J Nanobiotechnology 2021; 19:17. [PMID: 33422073 PMCID: PMC7796562 DOI: 10.1186/s12951-020-00756-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemotherapy and gene therapy are used in clinical practice for the treatment of castration-resistant prostate cancer. However, the poor efficiency of drug delivery and serious systemic side effects remain an obstacle to wider application of these drugs. Herein, we report newly designed PEO-PCL micelles that were self-assembled and modified by spermine ligand, DCL ligand and TAT peptide to carry docetaxel and anti-nucleostemin siRNA. RESULTS The particle size of the micelles was 42 nm, the zeta potential increased from - 12.8 to 15 mV after grafting with spermine, and the optimal N/P ratio was 25:1. Cellular MTT experiments suggested that introduction of the DCL ligand resulted in high toxicity toward PSMA-positive cells and that the TAT peptide enhanced the effect. The expression of nucleostemin was significantly suppressed in vitro and in vivo, and the tumour-inhibition experiment showed that the dual-drug delivery system suppressed CRPC tumour proliferation. CONCLUSIONS This targeted drug delivery system inhibited the G1/S and G2/M mitotic cycle via synergistic interaction of chemotherapeutics and gene drugs.
Collapse
Affiliation(s)
- Yiran Zhang
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.,Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yanming Wang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Li Meng
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Qingqing Huang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Ranlu Liu
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
17
|
Yamazawa T, Yamada S. [Role of skeletal muscle homeostasis of functional food material]. Nihon Yakurigaku Zasshi 2020; 155:236-240. [PMID: 32612036 DOI: 10.1254/fpj19151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Functional food material, polyamines are considered to be essential for growth factors in virtually all cells. The polyamines putrescine, spermidine and spermine are low molecular weight organic polycations, well known as mediators involved in cell homeostasis. The proposed functions of polyamines are the regulation of ion channels, nucleic acid packaging, signal transduction, cell proliferation, and differentiation, as well as gene expression. In skeletal muscle, regulation of polyamine levels is associated with muscle hypertrophy and atrophy, yet detailed studies are remained to be undergoing. Here, we studied how polyamines may affect the proliferation and/or differentiation of murine myoblast progenitor C2C12 cell line. Upon polyamine treatment of C2C12 cells during induction of myogenic differentiation, the number of myotubes significantly increased. Morphologically, polyamine-treated myotubes exhibited elongated cell body and contained larger amount of nuclei in the cell. On the other hand, the polyamine did not have influence on myoblasts proliferation. Furthermore, compensatory muscle hypertrophy of C57BL6 mice that underwent sciatic nerve transection of the left hindlimb was enhanced by administration of polyamines. Therefore, our study demonstrates that polyamines may play an important role in regulating myogenic differentiation rather than myoblasts proliferation.
Collapse
Affiliation(s)
- Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine
| | - Shizuo Yamada
- Center for Pharma-Food Research, Graduate School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
18
|
A constricted opening in Kir channels does not impede potassium conduction. Nat Commun 2020; 11:3024. [PMID: 32541684 PMCID: PMC7295778 DOI: 10.1038/s41467-020-16842-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The canonical mechanistic model explaining potassium channel gating is of a conformational change that alternately dilates and constricts a collar-like intracellular entrance to the pore. It is based on the premise that K+ ions maintain a complete hydration shell while passing between the transmembrane cavity and cytosol, which must be accommodated. To put the canonical model to the test, we locked the conformation of a Kir K+ channel to prevent widening of the narrow collar. Unexpectedly, conduction was unimpaired in the locked channels. In parallel, we employed all-atom molecular dynamics to simulate K+ ions moving along the conduction pathway between the lower cavity and cytosol. During simulations, the constriction did not significantly widen. Instead, transient loss of some water molecules facilitated K+ permeation through the collar. The low free energy barrier to partial dehydration in the absence of conformational change indicates Kir channels are not gated by the canonical mechanism.
Collapse
|
19
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
20
|
Chen X, Bründl M, Friesacher T, Stary-Weinzinger A. Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K + Channel. Front Pharmacol 2020; 11:721. [PMID: 32499707 PMCID: PMC7243266 DOI: 10.3389/fphar.2020.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Inwardly rectifying potassium (KIR) channels play important roles in controlling cellular excitability and K+ ion homeostasis. Under physiological conditions, KIR channels allow large K+ influx at potentials negative to the equilibrium potential of K+ but permit little outward current at potentials positive to the equilibrium potential of K+, due to voltage dependent block of outward K+ flux by cytoplasmic polyamines. These polycationic molecules enter the KIR channel pore from the intracellular side. They block K+ ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a KIR channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K+ channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.
Collapse
|
21
|
Walsh KB. Screening Technologies for Inward Rectifier Potassium Channels: Discovery of New Blockers and Activators. SLAS DISCOVERY 2020; 25:420-433. [PMID: 32292089 DOI: 10.1177/2472555220905558] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
K+ channels play a critical role in maintaining the normal electrical activity of excitable cells by setting the cell resting membrane potential and by determining the shape and duration of the action potential. In nonexcitable cells, K+ channels establish electrochemical gradients necessary for maintaining salt and volume homeostasis of body fluids. Inward rectifier K+ (Kir) channels typically conduct larger inward currents than outward currents, resulting in an inwardly rectifying current versus voltage relationship. This property of inward rectification results from the voltage-dependent block of the channels by intracellular polyvalent cations and makes these channels uniquely designed for maintaining the resting potential near the K+ equilibrium potential (EK). The Kir family of channels consist of seven subfamilies of channels (Kir1.x through Kir7.x) that include the classic inward rectifier (Kir2.x) channel, the G-protein-gated inward rectifier K+ (GIRK) (Kir3.x), and the adenosine triphosphate (ATP)-sensitive (KATP) (Kir 6.x) channels as well as the renal Kir1.1 (ROMK), Kir4.1, and Kir7.1 channels. These channels not only function to regulate electrical/electrolyte transport activity, but also serve as effector molecules for G-protein-coupled receptors (GPCRs) and as molecular sensors for cell metabolism. Of significance, Kir channels represent promising pharmacological targets for treating a number of clinical conditions, including cardiac arrhythmias, anxiety, chronic pain, and hypertension. This review provides a brief background on the structure, function, and pharmacology of Kir channels and then focuses on describing and evaluating current high-throughput screening (HTS) technologies, such as membrane potential-sensitive fluorescent dye assays, ion flux measurements, and automated patch clamp systems used for Kir channel drug discovery.
Collapse
Affiliation(s)
- Kenneth B Walsh
- Department of Pharmacology, Physiology & Neuroscience, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
22
|
Moriyama Y, Hatano R, Moriyama S, Uehara S. Vesicular polyamine transporter as a novel player in amine-mediated chemical transmission. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183208. [PMID: 32004521 DOI: 10.1016/j.bbamem.2020.183208] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023]
Abstract
The solute carrier 18B1 (SLC18B1) is the most recently identified gene of the vesicular amine transporter family and is conserved in the animal kingdom from insects to humans. Proteoliposomes containing the purified human SLC18B1 protein transport not only monoamines, but also polyamines, such as spermidine (Spd) and spermine (Spm), using an electrochemical gradient of H+ established by vacuolar H+-ATPase (V-ATPase) as the driving force. SLC18B1 gene knockdown abolished the exocytosis of polyamines from mast cells, which affected the secretion of histamine. SLC18B1 gene knockout decreased polyamine levels by ~20% in the brain, and impaired short- and long-term memory. Thus, the SLC18B1 protein is responsible for the vesicular storage and release of polyamines, and functions as a vesicular polyamine transporter (VPAT). VPAT may define when, where, and how polyamine-mediated chemical transmission occurs, providing insights into the more versatile and complex features of amine-mediated chemical transmission than currently considered.
Collapse
Affiliation(s)
- Yoshinori Moriyama
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan; Division of Endocrinology and Metabolism, Department of Internal Medicine, Kurume University School of Medicine, Kurume 830-0011, Japan; CYRIC Tohoku University, Sendai 980-8578, Japan.
| | - Ryo Hatano
- Department of Medicinal Physiology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Satomi Moriyama
- Laboratory of Bio-Molecular Dynamics, Department of Collaborative Research, Nara Medical University, Kashihara 634-8521, Japan
| | - Shunsuke Uehara
- Department of Biochemistry, Matsumoto Dental University, Shiojiri 399-0781, Japan
| |
Collapse
|
23
|
Shinohara S, Okamoto T, Motose H, Takahashi T. Salt hypersensitivity is associated with excessive xylem development in a thermospermine-deficient mutant of Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:374-383. [PMID: 31257654 DOI: 10.1111/tpj.14448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
In Arabidopsis, spermine is produced in most tissues and has been implicated in stress response, while its structural isomer thermospermine is only in xylem precursor cells. Studies on acaulis5 (acl5), a mutant defective in the biosynthesis of thermospermine, have revealed that thermospermine plays a repressive role in xylem development through enhancement of mRNA translation of the SAC51 family. In contrast, the pao5 mutant defective in the degradation of thermospermine has high levels of thermospermine and shows increased salt tolerance, suggesting a role of thermospermine in salt stress response. Here we compared acl5 with a mutant of spermine synthase, spms, in terms of abiotic stress tolerance and found that acl5 was much more sensitive to sodium than the wild-type and spms. A double-mutant of acl5 and sac51-d, which suppresses the excessive xylem phenotype of acl5, recovered normal sensitivity, while a quadruple T-DNA insertion mutant of the SAC51 family, which has an increased thermospermine level but shows excessive xylem development, showed increased salt sensitivity, unlike pao5. Together with the result that the salt tolerance of both wild-type and acl5 seedlings was improved by long-term treatment with thermospermine, we suggest a correlation of the salt tolerance with reduced xylem development rather than with the thermospermine level. We further found that the mutants containing high thermospermine levels showed increased tolerance to drought and heat stress, suggesting another role of thermospermine that may be common with that of spermine and secondary to that in restricting excess xylem development associated with salt hypersensitivity.
Collapse
Affiliation(s)
- Shiori Shinohara
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Takashi Okamoto
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Hiroyasu Motose
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| | - Taku Takahashi
- Division of Earth, Life, and Molecular Sciences, Graduate School of Natural Science and Technology, Okayama University, 700-8530, Okayama, Japan
| |
Collapse
|
24
|
Ohkubo S, Mancinelli R, Miglietta S, Cona A, Angelini R, Canettieri G, Spandidos DA, Gaudio E, Agostinelli E. Maize polyamine oxidase in the presence of spermine/spermidine induces the apoptosis of LoVo human colon adenocarcinoma cells. Int J Oncol 2019; 54:2080-2094. [PMID: 31081059 PMCID: PMC6521933 DOI: 10.3892/ijo.2019.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Amine oxidases, which contribute to the regulation of polyamine levels, catalyze the oxidative deamination of polyamines to generate H2O2 and aldehyde(s). In this study, and at least to the best of our knowledge, maize polyamine oxidase (ZmPAO) was used for the first time with the aim of identifying a novel strategy for cancer therapy. The cytotoxicity and the mechanisms of cell death induced by the enzymatic oxidation products of polyamine generated by ZmPAO were investigated. Exogenous spermine and ZmPAO treatment decreased cell viability in a spermine dose‑ and time‑dependent manner, particularly, the viability of the multidrug‑resistant (MDR) colon adenocarcinoma cells, LoVo DX, when compared with drug‑sensitive ones (LoVo WT). Further analyses revealed that H2O2 derived from spermine was mainly responsible for the cytotoxicity. Flow cytometric analysis revealed that treatment with ZmPAO and spermine increased the apoptotic population of LoVo WT and LoVo DX cells. In addition, we found that treatment with ZmPAO and spermine markedly reduced mitochondrial membrane potential in the LoVo DX cells, in agreement with the results of cell viability and apoptosis assays. Transmission electron microscopic observations supported the involvement of mitochondrial depolarization in the apoptotic process. Therefore, the dysregulation of polyamine metabolism in tumor cells may be a potential therapeutic target. In addition, the development of MDR tumor cells is recognized as a major obstacle in cancer therapy. Therefore, the design of a novel therapeutic strategy based on the use of this combination may be taken into account, making this approach attractive mainly in treating MDR cancer patients.
Collapse
Affiliation(s)
- Shinji Ohkubo
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, I-00185 Rome
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | - Selenia Miglietta
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | | | | | - Gianluca Canettieri
- Pasteur Laboratory, Department of Molecular Medicine, Sapienza University of Rome, I-00161 Rome, Italy
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, University of Crete School of Medicine, Heraklion 71003, Greece
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, I-00161 Rome
| | - Enzo Agostinelli
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Rome, I-00185 Rome
- International Polyamines Foundation - ONLUS, I-00159 Rome, Italy
| |
Collapse
|
25
|
The functional role of polyamines in eukaryotic cells. Int J Biochem Cell Biol 2018; 107:104-115. [PMID: 30578954 DOI: 10.1016/j.biocel.2018.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/22/2022]
Abstract
Polyamines, consisting of putrescine, spermidine and spermine are essential for normal cell growth and viability in eukaryotic cells. Since polyamines are cations, they interact with DNA, ATP, phospholipids, specific kinds of proteins, and especially with RNA. Consequently, the functions of these acidic compounds and some proteins are modified by polyamines. In this review, the functional modifications of these molecules by polyamines are presented. Structural change of specific mRNAs by polyamines causes the stimulation of the synthesis of several different proteins, which are important for cell growth and viability. eIF5 A, the only known protein containing a spermidine derivative, i.e. hypusine, also functions at the level of translation. Experimental results thus far obtained strongly suggest that the most important function of polyamines is at the level of translation.
Collapse
|
26
|
Abstract
Potassium channels that exhibit the property of inward rectification (Kir channels) are present in most cells. Cloning of the first Kir channel genes 25 years ago led to recognition that inward rectification is a consequence of voltage-dependent block by cytoplasmic polyamines, which are also ubiquitously present in animal cells. Upon cellular depolarization, these polycationic metabolites enter the Kir channel pore from the intracellular side, blocking the movement of K+ ions through the channel. As a consequence, high K+ conductance at rest can provide very stable negative resting potentials, but polyamine-mediated blockade at depolarized potentials ensures, for instance, the long plateau phase of the cardiac action potential, an essential feature for a stable cardiac rhythm. Despite much investigation of the polyamine block, where exactly polyamines get to within the Kir channel pore and how the steep voltage dependence arises remain unclear. This Minireview will summarize current understanding of the relevance and molecular mechanisms of polyamine block and offer some ideas to try to help resolve the fundamental issue of the voltage dependence of polyamine block.
Collapse
Affiliation(s)
- Colin G Nichols
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Sun-Joo Lee
- From the Department of Cell Biology and Physiology, Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, Missouri 63110
| |
Collapse
|
27
|
Sigg DM, Chang HK, Shieh RC. Linkage analysis reveals allosteric coupling in Kir2.1 channels. J Gen Physiol 2018; 150:1541-1553. [PMID: 30327330 PMCID: PMC6219689 DOI: 10.1085/jgp.201812127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/28/2018] [Indexed: 12/04/2022] Open
Abstract
Inwardly rectifying potassium (Kir) channels experience strong (blocking) and weak (intrinsic) rectification. Linkage analysis in the form of a conductance Hill plot is a sensitive method of resolving allosteric interactions between the pore and mediators of the Kir gating process. Potassium-selective inward rectifier (Kir) channels are a class of membrane proteins necessary for maintaining stable resting membrane potentials, controlling excitability, and shaping the final repolarization of action potentials in excitable cells. In addition to the strong inward rectification of the ionic current caused by intracellular blockers, Kir2.1 channels possess “weak” inward rectification observed in inside-out patches after prolonged washout of intracellular blockers. The mechanisms underlying strong inward rectification have been attributed to voltage-dependent block by intracellular Mg2+ and polyamines; however, the mechanism responsible for weak rectification remains elusive. Hypotheses include weak voltage-dependent block and intrinsic voltage-dependent gating. Here, we performed a conductance Hill analysis of currents recorded with a double-ramp protocol to evaluate different mechanisms proposed for weak inward rectification of Kir2.1 channels. Linkage analysis in the form of a Hill plot revealed that the ramp currents could be best explained by allosteric coupling between a mildly voltage-dependent pore gate (gating charge ∼0.18 eo) and a voltage sensor (gating charge ∼1.7 eo). The proposed voltage sensor stabilized the closing of the pore gate (coupling factor ∼31). We anticipate that the use of linkage analysis will broaden understanding of functional coupling in ion channels and proteins in general.
Collapse
Affiliation(s)
| | - Hsueh-Kai Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ru-Chi Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
28
|
Tinker A, Aziz Q, Li Y, Specterman M. ATP‐Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol 2018; 8:1463-1511. [DOI: 10.1002/cphy.c170048] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Salazar-Fajardo PD, Aréchiga-Figueroa IA, López-Serrano AL, Rodriguez-Elias JC, Alamilla J, Sánchez-Chapula JA, Tristani-Firouzi M, Navarro-Polanco RA, Moreno-Galindo EG. The voltage-sensitive cardiac M 2 muscarinic receptor modulates the inward rectification of the G protein-coupled, ACh-gated K + current. Pflugers Arch 2018; 470:1765-1776. [PMID: 30155776 DOI: 10.1007/s00424-018-2196-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 11/25/2022]
Abstract
The acetylcholine (ACh)-gated inwardly rectifying K+ current (IKACh) plays a vital role in cardiac excitability by regulating heart rate variability and vulnerability to atrial arrhythmias. These crucial physiological contributions are determined principally by the inwardly rectifying nature of IKACh. Here, we investigated the relative contribution of two distinct mechanisms of IKACh inward rectification measured in atrial myocytes: a rapid component due to KACh channel block by intracellular Mg2+ and polyamines; and a time- and concentration-dependent mechanism. The time- and ACh concentration-dependent inward rectification component was eliminated when IKACh was activated by GTPγS, a compound that bypasses the muscarinic-2 receptor (M2R) and directly stimulates trimeric G proteins to open KACh channels. Moreover, the time-dependent component of IKACh inward rectification was also eliminated at ACh concentrations that saturate the receptor. These observations indicate that the time- and concentration-dependent rectification mechanism is an intrinsic property of the receptor, M2R; consistent with our previous work demonstrating that voltage-dependent conformational changes in the M2R alter the receptor affinity for ACh. Our analysis of the initial and time-dependent components of IKACh indicate that rapid Mg2+-polyamine block accounts for 60-70% of inward rectification, with M2R voltage sensitivity contributing 30-40% at sub-saturating ACh concentrations. Thus, while both inward rectification mechanisms are extrinsic to the KACh channel, to our knowledge, this is the first description of extrinsic inward rectification of ionic current attributable to an intrinsic voltage-sensitive property of a G protein-coupled receptor.
Collapse
Affiliation(s)
- Pedro D Salazar-Fajardo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Iván A Aréchiga-Figueroa
- CONACyT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Ana Laura López-Serrano
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Julio C Rodriguez-Elias
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Javier Alamilla
- CONACyT, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, COL, Mexico
| | - José A Sánchez-Chapula
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico
| | - Martin Tristani-Firouzi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Ricardo A Navarro-Polanco
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| | - Eloy G Moreno-Galindo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Av. 25 de Julio 965, Colonia Villa San Sebastián, C.P, 28045, Colima, COL, Mexico.
| |
Collapse
|
30
|
Jackson WF. Boosting the signal: Endothelial inward rectifier K + channels. Microcirculation 2018; 24. [PMID: 27652592 DOI: 10.1111/micc.12319] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022]
Abstract
Endothelial cells express a diverse array of ion channels including members of the strong inward rectifier family composed of KIR 2 subunits. These two-membrane spanning domain channels are modulated by their lipid environment, and exist in macromolecular signaling complexes with receptors, protein kinases and other ion channels. Inward rectifier K+ channel (KIR ) currents display a region of negative slope conductance at membrane potentials positive to the K+ equilibrium potential that allows outward current through the channels to be activated by membrane hyperpolarization, permitting KIR to amplify hyperpolarization induced by other K+ channels and ion transporters. Increases in extracellular K+ concentration activate KIR allowing them to sense extracellular K+ concentration and transduce this change into membrane hyperpolarization. These properties position KIR to participate in the mechanism of action of hyperpolarizing vasodilators and contribute to cell-cell conduction of hyperpolarization along the wall of microvessels. The expression of KIR in capillaries in electrically active tissues may allow KIR to sense extracellular K+ , contributing to functional hyperemia. Understanding the regulation of expression and function of microvascular endothelial KIR will improve our understanding of the control of blood flow in the microcirculation in health and disease and may provide new targets for the development of therapeutics in the future.
Collapse
Affiliation(s)
- William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
31
|
Kharade SV, Sheehan JH, Figueroa EE, Meiler J, Denton JS. Pore Polarity and Charge Determine Differential Block of Kir1.1 and Kir7.1 Potassium Channels by Small-Molecule Inhibitor VU590. Mol Pharmacol 2017; 92:338-346. [PMID: 28619748 PMCID: PMC5553192 DOI: 10.1124/mol.117.108472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/12/2017] [Indexed: 12/28/2022] Open
Abstract
VU590 was the first publicly disclosed, submicromolar-affinity (IC50 = 0.2 μM), small-molecule inhibitor of the inward rectifier potassium (Kir) channel and diuretic target, Kir1.1. VU590 also inhibits Kir7.1 (IC50 ∼ 8 μM), and has been used to reveal new roles for Kir7.1 in regulation of myometrial contractility and melanocortin signaling. Here, we employed molecular modeling, mutagenesis, and patch clamp electrophysiology to elucidate the molecular mechanisms underlying VU590 inhibition of Kir1.1 and Kir7.1. Block of both channels is voltage- and K+-dependent, suggesting the VU590 binding site is located within the pore. Mutagenesis analysis in Kir1.1 revealed that asparagine 171 (N171) is the only pore-lining residue required for high-affinity block, and that substituting negatively charged residues (N171D, N171E) at this position dramatically weakens block. In contrast, substituting a negatively charged residue at the equivalent position in Kir7.1 enhances block by VU590, suggesting the VU590 binding mode is different. Interestingly, mutations of threonine 153 (T153) in Kir7.1 that reduce constrained polarity at this site (T153C, T153V, T153S) make wild-type and binding-site mutants (E149Q, A150S) more sensitive to block by VU590. The Kir7.1-T153C mutation enhances block by the structurally unrelated inhibitor VU714 but not by a higher-affinity analog ML418, suggesting that the polar side chain of T153 creates a barrier to low-affinity ligands that interact with E149 and A150. Reverse mutations in Kir1.1 suggest that this mechanism is conserved in other Kir channels. This study reveals a previously unappreciated role of membrane pore polarity in determination of Kir channel inhibitor pharmacology.
Collapse
Affiliation(s)
- Sujay V Kharade
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jonathan H Sheehan
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Eric E Figueroa
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| | - Jerod S Denton
- Department of Anesthesiology (S.V.K., E.E.F., J.S.D.), Department of Pharmacology (E.E.F., J.S.D.), Department of Biochemistry (J.H.S., J.M.), Center for Structural Biology (J.H.S., J.M.), Department of Chemistry (J.M.), Institute of Chemical Biology (J.S.D.), Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
32
|
Sung W, Avazbaeva Z, Kim D. Salt Promotes Protonation of Amine Groups at Air/Water Interface. J Phys Chem Lett 2017; 8:3601-3606. [PMID: 28722420 DOI: 10.1021/acs.jpclett.7b01198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interfacial water reorientation caused by charged Langmuir monolayers consisting of primary fatty amine (ODA) and cationic lipid having quaternary amine headgroup (DPTAP) were investigated by interface-selective vibrational sum-frequency generation spectroscopy. For DPTAP monolayer, initially large sum-frequency intensity from interfacial water OH band decreased steadily by increasing monovalent salt (NaCl, NaI) concentration due to counterion adsorption. On the other hand, ODA/water exhibited significantly smaller sum-frequency intensity than DPTAP/water, implying only small portion of protonated amine group (-NH3+) initially existed. By increasing the ionic strength, however, SF intensity of water OH band was enhanced markedly up to ∼1 mM, and then decreased in both NaCl and NaI solutions. By measuring the phase of the sum-frequency spectra, it was found that water dipoles under the ODA headgroup point downward, indicating that the surfaces were always positively charged. This demonstrated that increasing ionic strength facilitates protonation of primary amine headgroups. A simple model based on Poisson-Boltzmann (PB) theory explained this protonation behavior of primary amines.
Collapse
Affiliation(s)
- Woongmo Sung
- Department of Physics, Sogang University , Seoul 04107, Korea
| | - Zaure Avazbaeva
- Department of Physics, Sogang University , Seoul 04107, Korea
| | - Doseok Kim
- Department of Physics, Sogang University , Seoul 04107, Korea
| |
Collapse
|
33
|
Hydrocinnamic Acid Inhibits the Currents of WT and SQT3 Syndrome-Related Mutants of Kir2.1 Channel. J Membr Biol 2017; 250:425-432. [PMID: 28660286 DOI: 10.1007/s00232-017-9964-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/01/2017] [Indexed: 01/27/2023]
Abstract
Gain of function in mutations, D172N and E299V, of Kir2.1 will induce type III short QT syndrome. In our previous work, we had identified that a mixture of traditional Chinese medicine, styrax, is a blocker of Kir2.1. Here, we determined a monomer, hydrocinnamic acid (HA), as the effective component from 18 compounds of styrax. Our data show that HA can inhibit the currents of Kir2.1 channel in both excised inside-out and whole-cell patch with the IC50 of 5.21 ± 1.02 and 10.08 ± 0.46 mM, respectively. The time course of HA blockage and washout are 2.3 ± 0.6 and 10.5 ± 2.6 s in the excised inside-out patch. Moreover, HA can also abolish the currents of D172N and E299V with the IC50 of 6.66 ± 0.57 and 5.81 ± 1.10 mM for D172N and E299V, respectively. Molecular docking results determine that HA binds with Kir2.1 at K182, K185, and K188, which are phosphatidylinositol 4,5-bisphosphate (PIP2) binding residues. Our results indicate that HA competes with PIP2 to bind with Kir2.1 and inhibits the currents.
Collapse
|
34
|
Hu B, Cilz NI, Lei S. Somatostatin depresses the excitability of subicular bursting cells: Roles of inward rectifier K + channels, KCNQ channels and Epac. Hippocampus 2017; 27:971-984. [PMID: 28558129 DOI: 10.1002/hipo.22744] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/08/2017] [Accepted: 05/18/2017] [Indexed: 12/17/2022]
Abstract
The hippocampus is a crucial component for cognitive and emotional processing. The subiculum provides much of the output for this structure but the modulation and function of this region is surprisingly under-studied. The neuromodulator somatostatin (SST) interacts with five subtypes of SST receptors (sst1 to sst5 ) and each of these SST receptor subtypes is coupled to Gi proteins resulting in inhibition of adenylyl cyclase (AC) and decreased level of intracellular cAMP. SST modulates many physiological functions including cognition, emotion, autonomic responses and locomotion. Whereas SST has been shown to depress neuronal excitability in the subiculum, the underlying cellular and molecular mechanisms have not yet been determined. Here, we show that SST hyperpolarized two classes of subicular neurons with a calculated EC50 of 0.1 μM. Application of SST (1 μM) induced outward holding currents by primarily activating K+ channels including the G-protein-activated inwardly-rectifying potassium channels (GIRK) and KCNQ (M) channels, although inhibition of cation channels in some cells may also be implicated. SST-elicited hyperpolarization was mediated by activation of sst2 receptors and required the function of G proteins. The SST-induced hyperpolarization resulted from decreased activity of AC and reduced levels of cAMP but did not require the activity of either PKA or PKC. Inhibition of Epac2, a guanine nucleotide exchange factor, partially blocked SST-mediated hyperpolarization of subicular neurons. Furthermore, application of SST resulted in a robust depression of subicular action potential firing and the SST-induced hyperpolarization was responsible for its inhibitory action on LTP at the CA1-subicilum synapses. Our results provide a novel cellular and molecular mechanism that may explain the roles of SST in modulation of subicular function and be relevant to SST-related physiological functions.
Collapse
Affiliation(s)
- Binqi Hu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Nicholas I Cilz
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| | - Saobo Lei
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58203
| |
Collapse
|
35
|
Eskova A, Chauvigné F, Maischein HM, Ammelburg M, Cerdà J, Nüsslein-Volhard C, Irion U. Gain-of-function mutations in Aqp3a influence zebrafish pigment pattern formation through the tissue environment. Development 2017; 144:2059-2069. [PMID: 28506994 PMCID: PMC5482984 DOI: 10.1242/dev.143495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/24/2017] [Indexed: 01/26/2023]
Abstract
The development of the pigmentation pattern in zebrafish is a tightly regulated process that depends on both the self-organizing properties of pigment cells and extrinsic cues from other tissues. Many of the known mutations that alter the pattern act cell-autonomously in pigment cells, and our knowledge about external regulators is limited. Here, we describe novel zebrafish mau mutants, which encompass several dominant missense mutations in Aquaporin 3a (Aqp3a) that lead to broken stripes and short fins. A loss-of-function aqp3a allele, generated by CRISPR-Cas9, has no phenotypic consequences, demonstrating that Aqp3a is dispensable for normal development. Strikingly, the pigment cells from dominant mau mutants are capable of forming a wild-type pattern when developing in a wild-type environment, but the surrounding tissues in the mutants influence pigment cell behaviour and interfere with the patterning process. The mutated amino acid residues in the dominant alleles line the pore surface of Aqp3a and influence pore permeability. These results demonstrate an important effect of the tissue environment on pigment cell behaviour and, thereby, on pattern formation. Summary: Dominant mutations in the water channel Aquaporin 3a cause defective pigment patterning in zebrafish, due at least in part to an effect of the mutant tissue environment on the pigment cells.
Collapse
Affiliation(s)
- Anastasia Eskova
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Francois Chauvigné
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | - Moritz Ammelburg
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Joan Cerdà
- IRTA-Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | | | - Uwe Irion
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Scherer D, Schworm B, Seyler C, Xynogalos P, Scholz EP, Thomas D, Katus HA, Zitron E. Inhibition of inwardly rectifying Kir2.x channels by the novel anti-cancer agent gambogic acid depends on both pore block and PIP 2 interference. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:701-710. [PMID: 28365825 DOI: 10.1007/s00210-017-1372-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/23/2017] [Indexed: 12/21/2022]
Abstract
The caged xanthone gambogic acid (GA) is a novel anti-cancer agent which exhibits anti-proliferative, anti-inflammatory and cytotoxic effects in many types of cancer tissues. In a recent phase IIa study, GA exhibits a favourable safety profile. However, limited data are available concerning its interaction with cardiac ion channels. Heteromeric assembly of Kir2.x channels underlies the cardiac inwardly rectifying IK1 current which is responsible for the stabilization of the diastolic resting membrane potential. Inhibition of the cardiac IK1 current may lead to ventricular arrhythmia due to delayed afterdepolarizations. Compared to Kv2.1, hERG and Kir1.1, a slow, delayed inhibition of Kir2.1 channels by GA in a mammalian cell line was reported before but no data exist in literature concerning action of GA on homomeric Kir2.2 and Kir2.3 and heteromeric Kir2.x channels. Therefore, the aim of this study was to provide comparative data on the effect of GA on homomeric and heteromeric Kir2.x channels. Homomeric and heteromeric Kir2.x channels were heterologously expressed in Xenopus oocytes, and the two-microelectrode voltage-clamp technique was used to record Kir2.x currents. To investigate the mechanism of the channel inhibition by GA, alanine-mutated Kir2.x channels with modifications in the channels pore region or at phosphatidylinositol 4,5-bisphosphate (PIP2)-binding sites were employed. GA caused a slow inhibition of homomeric and heteromeric Kir2.x channels at low micromolar concentrations (with IC50 Kir2.1/2.2 < Kir2.2 < Kir2.2/2.3 < Kir2.3 < Kir2.1 < Kir2.1/2.3). The effect did not reach saturation within 60 min and was not reversible upon washout for 30 min. The inhibition showed no strong voltage dependence. We provide evidence for a combination of direct channel pore blockade and a PIP2-dependent mechanism as a molecular basis for the observed effect. We conclude that Kir2.x channel inhibition by GA may be relevant in patients with pre-existing cardiac disorders such as chronic heart failure or certain rhythm disorders and recommend a close cardiac monitoring for those patients when treated with GA.
Collapse
Affiliation(s)
- Daniel Scherer
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.
| | - Benedikt Schworm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Claudia Seyler
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Panagiotis Xynogalos
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Eberhard P Scholz
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Edgar Zitron
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, D-69120, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
37
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
38
|
Badr A, Hassinen M, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on action potentials and sarcolemmal K+ currents in roach (Rutilus rutilus) cardiac myocytes. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:15-27. [DOI: 10.1016/j.cbpa.2016.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 01/10/2023]
|
39
|
Ren S, Pang C, Li J, Huang Y, Zhang S, Zhan Y, An H. Styrax blocks inward and outward current of Kir2.1 channel. Channels (Austin) 2017; 11:46-54. [PMID: 27540685 DOI: 10.1080/19336950.2016.1207022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Kir2.1 plays key roles in setting rest membrane potential and modulation of cell excitability. Mutations of Kir2.1, such as D172N or E299V, inducing gain-of-function, can cause type3 short QT syndrome (SQT3) due to the enlarged outward currents. So far, there is no clinical drug target to block the currents of Kir2.1. Here, we identified a novel blocker of Kir2.1, styrax, which is a kind of natural compound selected from traditional Chinese medicine. Our data show that styrax can abolish the inward and outward currents of Kir2.1. The IC50 of styrax for WT, D172N and E299V are 0.0113 ± 0.00075, 0.0204 ± 0.0048 and 0.0122 ± 0.0012 (in volume), respectively. The results indicate that styrax can serve as a novel blocker for Kir2.1.
Collapse
Affiliation(s)
- Shuxi Ren
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Chunli Pang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Junwei Li
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Yayue Huang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Suhua Zhang
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Yong Zhan
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| | - Hailong An
- a Key Laboratory of Molecular Biophysics, Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology , Tianjin , China
| |
Collapse
|
40
|
|
41
|
Ser/Thr kinases and polyamines in the regulation of non-canonical functions of elongation factor 1A. Amino Acids 2016; 48:2339-52. [DOI: 10.1007/s00726-016-2311-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
|
42
|
Grancara S, Dalla Via L, García-Argáez AN, Ohkubo S, Pacella E, Manente S, Bragadin M, Toninello A, Agostinelli E. Spermine cycling in mitochondria is mediated by adenine nucleotide translocase activity: mechanism and pathophysiological implications. Amino Acids 2016; 48:2327-37. [PMID: 27255894 DOI: 10.1007/s00726-016-2264-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Spermine, besides to be transported in mitochondria by an energy dependent electrophoretic mechanism, can be also released by two different mechanisms. The first one is induced in deenergizing conditions by FCCP or antimycin A and it is mediated by an electroneutral exchange spermine protons. The second one takes place in energizing conditions during the activity of the adenine nucleotide translocase and is mediated by an electroneutral symport mechanism involving the efflux in co-transport of spermine and phosphate and the exchange of exogenous ADP with endogenous ATP. The triggering of this mechanism permits an alternating cycling of spermine across the mitochondrial membrane, that is spermine is transported or released by energized mitochondria in the absence or presence of ATP synthesis, respectively. The physiological implications of this cycling of spermine are related to the induction or prevention of mitochondrial permeability transition and, consequently, on apoptosis or its prevention.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Lisa Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Aida Nelly García-Argáez
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Shinji Ohkubo
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Elena Pacella
- Department of Sense Organs, Faculty Medicine and Dentistry, SAPIENZA University of Rome, Viale del Policlinico 155, 00161, Rome, Italy
| | - Sabrina Manente
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Marcantonio Bragadin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Antonio Toninello
- Department of Biomedical Sciences, University of Padua, Viale U. Bassi 58 B, 35131, Padua, Italy. .,Department of Biomedical Sciences, University of Padua, Viale G. Colombo 3, 35131, Padua, Italy.
| | - Enzo Agostinelli
- Department of Biochemical Sciences, SAPIENZA University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
43
|
Downregulation of Spermine Augments Dendritic Persistent Sodium Currents and Synaptic Integration after Status Epilepticus. J Neurosci 2016; 35:15240-53. [PMID: 26586813 DOI: 10.1523/jneurosci.0493-15.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Dendritic voltage-gated ion channels profoundly shape the integrative properties of neuronal dendrites. In epilepsy, numerous changes in dendritic ion channels have been described, all of them due to either their altered transcription or phosphorylation. In pilocarpine-treated chronically epileptic rats, we describe a novel mechanism that causes an increased proximal dendritic persistent Na(+) current (INaP). We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of dendritic INaP is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic INaP causes augmented dendritic summation of excitatory inputs. These results establish a novel post-transcriptional modification of ion channels in chronic epilepsy and may provide a novel avenue for treatment of temporal lobe epilepsy. SIGNIFICANCE STATEMENT In this paper, we describe a novel mechanism that causes increased dendritic persistent Na(+) current. We demonstrate using a combination of electrophysiology and molecular approaches that the upregulation of persistent Na(+) currents is due to a relief from polyamine-dependent inhibition. The polyamine deficit in hippocampal neurons is likely caused by an upregulation of the degrading enzyme spermidine/spermine acetyltransferase. Multiphoton glutamate uncaging experiments revealed that the increase in dendritic persistent Na current causes augmented dendritic summation of excitatory inputs. We believe that these results establish a novel post-transcriptional modification of ion channels in chronic epilepsy.
Collapse
|
44
|
Abstract
KATP channels are integral to the functions of many cells and tissues. The use of electrophysiological methods has allowed for a detailed characterization of KATP channels in terms of their biophysical properties, nucleotide sensitivities, and modification by pharmacological compounds. However, even though they were first described almost 25 years ago (Noma 1983, Trube and Hescheler 1984), the physiological and pathophysiological roles of these channels, and their regulation by complex biological systems, are only now emerging for many tissues. Even in tissues where their roles have been best defined, there are still many unanswered questions. This review aims to summarize the properties, molecular composition, and pharmacology of KATP channels in various cardiovascular components (atria, specialized conduction system, ventricles, smooth muscle, endothelium, and mitochondria). We will summarize the lessons learned from available genetic mouse models and address the known roles of KATP channels in cardiovascular pathologies and how genetic variation in KATP channel genes contribute to human disease.
Collapse
Affiliation(s)
- Monique N Foster
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| | - William A Coetzee
- Departments of Pediatrics, Physiology & Neuroscience, and Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, New York
| |
Collapse
|
45
|
Irion U, Singh AP, Nüsslein-Volhard C. The Developmental Genetics of Vertebrate Color Pattern Formation. Curr Top Dev Biol 2016; 117:141-69. [DOI: 10.1016/bs.ctdb.2015.12.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Chang HK, Iwamoto M, Oiki S, Shieh RC. Mechanism for attenuated outward conductance induced by mutations in the cytoplasmic pore of Kir2.1 channels. Sci Rep 2015; 5:18404. [PMID: 26678093 PMCID: PMC4683409 DOI: 10.1038/srep18404] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/18/2015] [Indexed: 01/12/2023] Open
Abstract
Outward currents through Kir2.1 channels regulate the electrical properties of excitable cells. These currents are subject to voltage-dependent attenuation by the binding of polyamines to high- and low-affinity sites, which leads to inward rectification, thereby controlling cell excitability. To examine the effects of positive charges at the low-affinity site in the cytoplasmic pore on inward rectification, we studied a mutant Kir channel (E224K/H226E) and measured single-channel currents and streaming potentials (Vstream), the latter provide the ratio of water to ions queued in a single-file permeation process in the selectivity filter. The water-ion coupling ratio was near one at a high K+ concentration ([K+]) for the wild-type channel and increased substantially as [K+] decreased. On the other hand, fewer ions occupied the selectivity filter in the mutant at all [K+]. A model for the Kir channel involving a K+ binding site in the wide pore was introduced. Model analyses revealed that the rate constants associated with the binding and release to and from the wide-pore K+ binding site was modified in the mutant. These effects lead to the reduced contribution of a conventional two-ion permeation mode to total conductance, especially at positive potentials, thereby inward rectification.
Collapse
Affiliation(s)
- Hsueh-Kai Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Ru-Chi Shieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, ROC
| |
Collapse
|
47
|
Kim J, Moon SH, Shin YC, Jeon JH, Park KJ, Lee KP, So I. Intracellular spermine blocks TRPC4 channel via electrostatic interaction with C-terminal negative amino acids. Pflugers Arch 2015; 468:551-61. [PMID: 26631167 DOI: 10.1007/s00424-015-1753-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/27/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023]
Abstract
Transient receptor potential canonical (TRPC) 4 channels are calcium-permeable, nonselective cation channels and are widely expressed in mammalian tissue, especially in the GI tract and brain. TRPC4 channels are known to be involved in neurogenic contraction of ileal smooth muscle cells via generating cationic current after muscarinic stimulation (muscarinic cationic current (mIcat)). Polyamines exist in numerous tissues and are believed to be involved in cell proliferation, differentiation, scar formation, wound healing, and carcinogenesis. Besides, physiological polyamines are essential to maintain inward rectification of cardiac potassium channels (Kir2.1). At membrane potentials more positive than equilibrium potential, intracellular polyamines plug the cytosolic surface of the Kir2.1 so that potassium ions cannot pass through the pore. Recently, it was reported that polyamines inhibit not only cardiac potassium channels but also nonselective cation channels that mediate the generation of mIcat. Here, we report that TRPC4, a definite mIcat mediator, is inhibited by intracellular spermine with great extent. The inhibition was specific to TRPC4 and TRPC5 channels but was not effective to TRPC1/4, TRPC1/5, and TRPC3 channels. For this inhibition to occur, we found that glutamates at 728th and 729th position of TRPC4 channels are essential whereby we conclude that spermine blocks the TRPC4 channel with electrostatic interaction between negative amino acids at the C-terminus of the channel.
Collapse
Affiliation(s)
- Jinsung Kim
- College of Medicine, Catholic University of Korea, Seoul, 137-701, Republic of Korea.,Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Sang Hui Moon
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Young-Cheul Shin
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Kyu Joo Park
- Department of Surgery, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, 305-764, Republic of Korea.
| | - Insuk So
- Department of Physiology, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
48
|
KCNJ15/Kir4.2 couples with polyamines to sense weak extracellular electric fields in galvanotaxis. Nat Commun 2015; 6:8532. [PMID: 26449415 PMCID: PMC4603535 DOI: 10.1038/ncomms9532] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/01/2015] [Indexed: 01/09/2023] Open
Abstract
Weak electric fields guide cell migration, known as galvanotaxis/electrotaxis. The sensor(s) cells use to detect the fields remain elusive. Here we perform a large-scale screen using an RNAi library targeting ion transporters in human cells. We identify 18 genes that show either defective or increased galvanotaxis after knockdown. Knockdown of the KCNJ15 gene (encoding inwardly rectifying K+ channel Kir4.2) specifically abolishes galvanotaxis, without affecting basal motility and directional migration in a monolayer scratch assay. Depletion of cytoplasmic polyamines, highly positively charged small molecules that regulate Kir4.2 function, completely inhibits galvanotaxis, whereas increase of intracellular polyamines enhances galvanotaxis in a Kir4.2-dependent manner. Expression of a polyamine-binding defective mutant of KCNJ15 significantly decreases galvanotaxis. Knockdown or inhibition of KCNJ15 prevents phosphatidylinositol 3,4,5-triphosphate (PIP3) from distributing to the leading edge. Taken together these data suggest a previously unknown two-molecule sensing mechanism in which KCNJ15/Kir4.2 couples with polyamines in sensing weak electric fields. Directed cell migration in weak electric fields is known as galvanotaxis, but the cellular sensor and mechanism is not known. Here Nakajima et al. identify inwardly rectifying K+ channel Kir4.2 as an important mediator of galvanotaxis, that depends on the cytoplasmic distribution of intracellular polyamines.
Collapse
|
49
|
Traeger LL, Volkening JD, Moffett H, Gallant JR, Chen PH, Novina CD, Phillips GN, Anand R, Wells GB, Pinch M, Güth R, Unguez GA, Albert JS, Zakon H, Sussman MR, Samanta MP. Unique patterns of transcript and miRNA expression in the South American strong voltage electric eel (Electrophorus electricus). BMC Genomics 2015; 16:243. [PMID: 25887781 PMCID: PMC4393597 DOI: 10.1186/s12864-015-1288-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background With its unique ability to produce high-voltage electric discharges in excess of 600 volts, the South American strong voltage electric eel (Electrophorus electricus) has played an important role in the history of science. Remarkably little is understood about the molecular nature of its electric organs. Results We present an in-depth analysis of the genome of E. electricus, including the transcriptomes of eight mature tissues: brain, spinal cord, kidney, heart, skeletal muscle, Sachs’ electric organ, main electric organ, and Hunter’s electric organ. A gene set enrichment analysis based on gene ontology reveals enriched functions in all three electric organs related to transmembrane transport, androgen binding, and signaling. This study also represents the first analysis of miRNA in electric fish. It identified a number of miRNAs displaying electric organ-specific expression patterns, including one novel miRNA highly over-expressed in all three electric organs of E. electricus. All three electric organ tissues also express three conserved miRNAs that have been reported to inhibit muscle development in mammals, suggesting that miRNA-dependent regulation of gene expression might play an important role in specifying an electric organ identity from its muscle precursor. These miRNA data were supported using another complete miRNA profile from muscle and electric organ tissues of a second gymnotiform species. Conclusions Our work on the E. electricus genome and eight tissue-specific gene expression profiles will greatly facilitate future research on determining the coding and regulatory sequences that specify the function, development, and evolution of electric organs. Moreover, these data and future studies will be informed by the first comprehensive analysis of miRNA expression in an electric fish presented here. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1288-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lindsay L Traeger
- Department of Genetics, University of Wisconsin, Madison, WI, 53706, USA. .,Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA.
| | - Jeremy D Volkening
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA. .,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.
| | - Howell Moffett
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jason R Gallant
- Department of Zoology, Michigan State University, East Lansing, MI, 48824, USA. .,BEACON Center for the Study of Evolution in Action, Lansing, USA.
| | - Po-Hao Chen
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02141, USA.
| | - Carl D Novina
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, 02115, USA. .,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02141, USA.
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX, 77005, USA.
| | - Rene Anand
- Department of Pharmacology and Department of Neuroscience, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| | - Gregg B Wells
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, TX, 77483, USA.
| | - Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Graciela A Unguez
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - James S Albert
- Department of Biology, University of Louisiana, Lafayette, LA, 70503, USA.
| | - Harold Zakon
- BEACON Center for the Study of Evolution in Action, Lansing, USA. .,University of Texas, Austin, TX, 78712, USA. .,The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, The Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| | - Michael R Sussman
- Biotechnology Center, University of Wisconsin, Madison, WI, 53706, USA. .,Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.
| | | |
Collapse
|
50
|
Identification of a mammalian vesicular polyamine transporter. Sci Rep 2014; 4:6836. [PMID: 25355561 PMCID: PMC4213795 DOI: 10.1038/srep06836] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 10/10/2014] [Indexed: 01/11/2023] Open
Abstract
Spermine and spermidine act as neuromodulators upon binding to the extracellular site(s) of various ionotropic receptors, such as N-methyl-d-aspartate receptors. To gain access to the receptors, polyamines synthesized in neurons and astrocytes are stored in secretory vesicles and released upon depolarization. Although vesicular storage is mediated in an ATP-dependent, reserpine-sensitive fashion, the transporter responsible for this process remains unknown. SLC18B1 is the fourth member of the SLC18 transporter family, which includes vesicular monoamine transporters and vesicular acetylcholine transporter. Proteoliposomes containing purified human SLC18B1 protein actively transport spermine and spermidine by exchange of H(+). SLC18B1 protein is predominantly expressed in the hippocampus and is associated with vesicles in astrocytes. SLC18B1 gene knockdown decreased both SLC18B1 protein and spermine/spermidine contents in astrocytes. These results indicated that SLC18B1 encodes a vesicular polyamine transporter (VPAT).
Collapse
|