1
|
Hall JE, Freites JA, Tobias DJ. Experimental and Simulation Studies of Aquaporin 0 Water Permeability and Regulation. Chem Rev 2019; 119:6015-6039. [PMID: 31026155 DOI: 10.1021/acs.chemrev.9b00106] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We begin with the history of aquaporin zero (AQP0), the most prevalent membrane protein in the eye lens, from the early days when AQP0 was a protein of unknown function known as Major Intrinsic Protein 26. We progress through its joining the aquaporin family as a water channel in its own right and discuss how regulation of its water permeability by pH and calcium came to be discovered experimentally and linked to lens homeostasis and development. We review the development of molecular dynamics (MD) simulations of lipid bilayers and membrane proteins, including aquaporins, with an emphasis on simulation studies that have elucidated the mechanisms of water conduction, selectivity, and proton exclusion by aquaporins in general. We also review experimental and theoretical progress toward understanding why mammalian AQP0 has a lower water permeability than other aquaporins and the evolution of our present understanding of how its water permeability is regulated by pH and calcium. Finally, we discuss how MD simulations have elucidated the nature of lipid interactions with AQP0.
Collapse
|
2
|
Sasaki S. Aquaporin 2: From its discovery to molecular structure and medical implications. Mol Aspects Med 2012; 33:535-46. [DOI: 10.1016/j.mam.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/12/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
|
3
|
Tamma G, Procino G, Svelto M, Valenti G. Cell culture models and animal models for studying the patho-physiological role of renal aquaporins. Cell Mol Life Sci 2012; 69:1931-46. [PMID: 22189994 PMCID: PMC11114724 DOI: 10.1007/s00018-011-0903-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/29/2011] [Indexed: 12/29/2022]
Abstract
Aquaporins (AQPs) are key players regulating urinary-concentrating ability. To date, eight aquaporins have been characterized and localized along the nephron, namely, AQP1 located in the proximal tubule, thin descending limb of Henle, and vasa recta; AQP2, AQP3 and AQP4 in collecting duct principal cells; AQP5 in intercalated cell type B; AQP6 in intercalated cells type A in the papilla; AQP7, AQP8 and AQP11 in the proximal tubule. AQP2, whose expression and cellular distribution is dependent on vasopressin stimulation, is involved in hereditary and acquired diseases affecting urine-concentrating mechanisms. Due to the lack of selective aquaporin inhibitors, the patho-physiological role of renal aquaporins has not yet been completely clarified, and despite extensive studies, several questions remain unanswered. Until the recent and large-scale development of genetic manipulation technology, which has led to the generation of transgenic mice models, our knowledge on renal aquaporin regulation was mainly based on in vitro studies with suitable renal cell models. Transgenic and knockout technology approaches are providing pivotal information on the role of aquaporins in health and disease. The main goal of this review is to update and summarize what we can learn from cell and animal models that will shed more light on our understanding of aquaporin-dependent renal water regulation.
Collapse
Affiliation(s)
- G Tamma
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Italy
| | | | | | | |
Collapse
|
4
|
|
5
|
Kaissling B, Kriz W. Morphology of the Loop of Henle, Distal Tubule, and Collecting Duct. Compr Physiol 2011. [DOI: 10.1002/cphy.cp080103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
|
7
|
Nedvetsky PI, Tamma G, Beulshausen S, Valenti G, Rosenthal W, Klussmann E. Regulation of aquaporin-2 trafficking. Handb Exp Pharmacol 2009:133-157. [PMID: 19096775 DOI: 10.1007/978-3-540-79885-9_6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Principal cells lining renal collecting ducts control the fine-tuning of body water homeostasis by regulating water reabsorption through the water channels aquaporin-2 (AQP2), aquaporin-3 (AQP3), and aquaporin-4 (AQP4). While the localization of AQP2 is subject to regulation by arginine-vasopressin (AVP), AQP3 and AQP4 are constitutively expressed in the basolateral plasma membrane. AVP adjusts the amount of AQP2 in the plasma membrane by triggering its redistribution from intracellular vesicles into the plasma membrane. This permits water entry into the cells and water exit through AQP3 and AQP4. The translocation of AQP2 is initiated by an increase in cAMP following V2R activation through AVP. The AVP-induced rise in cAMP activates protein kinase A (PKA), which in turn phosphorylates AQP2, and thereby triggers the redistribution of AQP2. Several proteins participating in the control of cAMP-dependent AQP2 trafficking have been identified; for example, A kinase anchoring proteins (AKAPs) tethering PKA to cellular compartments; phosphodiesterases (PDEs) regulating the local cAMP level; cytoskeletal components such as F-actin and microtubules; small GTPases of the Rho family controlling cytoskeletal dynamics; motor proteins transporting AQP2-bearing vesicles to and from the plasma membrane for exocytic insertion and endocytic retrieval; SNAREs inducing membrane fusions, hsc70, a chaperone, important for endocytic retrieval. In addition, cAMP-independent mechanisms of translocation mainly involving the F-actin cytoskeleton have been uncovered. Defects of AQP2 trafficking cause diseases such as nephrogenic diabetes insipidus (NDI), a disorder characterized by a massive loss of hypoosmotic urine.This review summarizes recent data elucidating molecular mechanisms underlying the trafficking of AQP2. In particular, we focus on proteins involved in the regulation of trafficking, and physiological and pathophysiological stimuli determining the cellular localization of AQP2. The identification of proteins and protein-protein interactions may lead to the development of drugs targeting AQP2 trafficking. Such drugs may be suitable for the treatment of diseases associated with dysregulation of body water homeostasis, including NDI or cardiovascular diseases (e.g., chronic heart failure) where the AVP level is elevated, inducing excessive water retention.
Collapse
Affiliation(s)
- Pavel I Nedvetsky
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Campus Berlin-Buch, Berlin, 13125, Germany
| | | | | | | | | | | |
Collapse
|
8
|
Affiliation(s)
- Tae-Hwan Kwon
- Water and Salt Research Center, Institute of Anatomy, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Cartledge VA, Withers PC, Bradshaw SD. Water balance and arginine vasotocin in the cocooning frog Cyclorana platycephala (hylidae). Physiol Biochem Zool 2007; 81:43-53. [PMID: 18040971 DOI: 10.1086/523856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2007] [Indexed: 11/03/2022]
Abstract
It is well established that forming a cocoon, for frog species capable of doing so, markedly reduces evaporative water loss; however, the capacity of cocooned frogs to maintain hydration during extended estivation is not well understood. The combined effects of long-term estivation and water loss were examined in the cocoon-forming species Cyclorana platycephala by assessing the hydration state of the frogs throughout a 15-mo estivation period. Frogs lost mass throughout the 15-mo period to a maximum of 36%+/-6.5% of their initial standard mass. Plasma osmolality reached maximal levels by the ninth month of estivation at 487 mOsm kg(-1) and then remained stable to the fifteenth month of estivation. Urine osmolality continued to increase to the fifteenth month of estivation, at which point plasma and urine concentrations were isosmotic. The use of bladder water to counter losses from circulation was indicated by the relatively slow rate of increase in plasma osmolality with mass loss and the progressive increase in urine osmolality. For estivating frogs, evidence was found for a possible threshold relationship between plasma osmolality and plasma arginine vasotocin (AVT) concentration. After estivation, plasma AVT concentrations decreased markedly after 15-mo estivators were placed in water for 2 h, suggesting that high levels of AVT may not be integral to rapid rehydration in this species.
Collapse
Affiliation(s)
- Victoria A Cartledge
- Zoology, School of Animal Biology, MO92, University of Western Australia, Crawley, Western Australia 6009, Australia.
| | | | | |
Collapse
|
10
|
Garcia-España A, Chung PJ, Zhao X, Lee A, Pellicer A, Yu J, Sun TT, Desalle R. Origin of the tetraspanin uroplakins and their co-evolution with associated proteins: implications for uroplakin structure and function. Mol Phylogenet Evol 2006; 41:355-67. [PMID: 16814572 DOI: 10.1016/j.ympev.2006.04.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 03/24/2006] [Accepted: 04/01/2006] [Indexed: 01/14/2023]
Abstract
Genome level information coupled with phylogenetic analysis of specific genes and gene families allow for a better understanding of the structure and function of their protein products. In this study, we examine the mammalian uroplakins (UPs) Ia and Ib, members of the tetraspanin superfamily, that interact with uroplakins UPII and UPIIIa/IIIb, respectively, using a phylogenetic approach of these genes from whole genome sequences. These proteins interact to form urothelial plaques that play a central role in the permeability barrier function of the apical urothelial surface of the urinary bladder. Since these plaques are found exclusively in mammalian urothelium, it is enigmatic that UP-like genomic sequences were recently found in lower vertebrates without a typical urothelium. We have cloned full-length UP-related cDNAs from frog (Xenopus laevis), chicken (Gallus gallus), and zebrafish (Danio rerio), and combined these data with sequence information from their orthologs in all the available fully sequenced and annotated animal genomes. Phylogenetic analyses of all the available uroplakin sequences, and an understanding of their distribution in several animal taxa, suggest that: (i) the UPIa/UPIb and UPII/UPIII genes evolved by gene duplication in the common ancestor of vertebrates; (ii) uroplakins can be lost in different combinations in vertebrate lineages; and (iii) there is a strong co-evolutionary relationship between UPIa and UPIb and their partners UPII and UPIIIa/IIIb, respectively. The co-evolution of the tetraspanin UPs and their associated proteins may fine-tune the structure and function of uroplakin complexes enabling them to perform diverse species- and tissue-specific functions. The structure and function of uroplakins, which are also expressed in Xenopus kidney, oocytes and fat body, are much more versatile than hitherto appreciated.
Collapse
Affiliation(s)
- Antonio Garcia-España
- Unitat de Recerca, University Hospital Joan XXIII, Universitat Rovira i Virgili, 46007 Tarragona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hasegawa T, Suzuki M, Tanaka S. Immunocytochemical studies on translocation of phosphorylated aquaporin-h2 protein in granular cells of the frog urinary bladder before and after stimulation with vasotocin. Cell Tissue Res 2005; 322:407-15. [PMID: 16047161 DOI: 10.1007/s00441-005-0037-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
We have generated a specific antibody against phosphorylated aquaporin-h2 (pAQP-h2) protein to investigate the role of phosphorylation in the translocation of AQP-h2 protein within the granule cells of the urinary bladder of the frog (Hyla japonica). The antibody was generated against a synthetic peptide (ST-160) corresponding to amino acids 255-268, with a phosphorylated Ser-262, a residue that is putatively phosphorylated by protein A kinase. Using this antibody, we found, by Western blot analysis, that phosphorylation of the AQP-h2 protein rapidly increased within 2 min after vasotocin (AVT) stimulation and remained at a higher than normal level for 15 min. Moreover, quantitative immunoelectron microscopy indicated that the location of the AQP-h2 protein dramatically changed after AVT stimulation. Before stimulation, pAQP-h2 protein was localized in only a small number of intracellular vesicles near the nucleus of the granular cells, whereas the labeling density of the intracellular vesicles and the apical membrane rapidly increased after stimulation. This finding was also confirmed by the results of an immunofluorescence study. Thus, phosphorylation of AQP-h2 protein seems to be essential for translocation of the protein from the cytoplasmic pool to the apical plasma membrane of the granular cells in frog urinary bladder.
Collapse
Affiliation(s)
- Takahiro Hasegawa
- Department of Biology, Faculty of Science, Shizuoka University, Ohya 836, Shizuoka, 422-8529, Japan
| | | | | |
Collapse
|
12
|
Hasegawa T, Tanii H, Suzuki M, Tanaka S. Regulation of water absorption in the frog skins by two vasotocin-dependent water-channel aquaporins, AQP-h2 and AQP-h3. Endocrinology 2003; 144:4087-96. [PMID: 12933683 DOI: 10.1210/en.2003-0418] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A new frog aquaporin (AQP) cDNA was cloned from a cDNA library constructed from the ventral skin of the tree frog Hyla japonica. This AQP (Hyla AQP-h2) consisted of 268 amino acid residues with a high homology to mammalian AQP2. The predicted amino acid sequence contained the two conserved Asn-Pro-Ala motifs found in all the major intrinsic protein family members and the putative six transmembrane domains. The sequence also contained a mercurial compound: cysteine, one potential N-glycosylation site at Asn-124, and a putative phosphorylation site recognized by protein kinase A at Ser-262. In a swelling assay using Xenopus oocytes, AQP-h2 facilitated water permeability, especially in response to cAMP. Expression of AQP-h2 mRNA was restricted to several tissues including the ventral skin, kidney, and urinary bladder; but with immunofluorescence staining using an antipeptide antibody (ST-140) against the AQP-h2 protein, immunopositive cells were found only in the ventral skin and urinary bladder. In the ventral pelvic skin, the label for AQP-h2 was localized in the entire plasma membrane of the granular cells beneath the outmost layer of the skin and in the basolateral membrane of the granular cells in this layer. In response to vasotocin, however, the label for AQP-h2 became more intense in the apical membrane in the granular cells of the outermost layer, similar to the case for the earlier studied AQP-h3, which was specifically expressed in the ventral skin. Taken together, these findings suggest that not only AQP-h3, but also AQP-h2 acts as a regulator of the water balance in this frog.
Collapse
Affiliation(s)
- Takahiro Hasegawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
13
|
Sun TX, Van Hoek A, Huang Y, Bouley R, McLaughlin M, Brown D. Aquaporin-2 localization in clathrin-coated pits: inhibition of endocytosis by dominant-negative dynamin. Am J Physiol Renal Physiol 2002; 282:F998-1011. [PMID: 11997316 DOI: 10.1152/ajprenal.00257.2001] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Before the identification of aquaporin (AQP) proteins, vasopressin-regulated "water channels" were identified by freeze-fracture electron microscopy as aggregates or clusters of intramembraneous particles (IMPs) on hormonally stimulated target cell membranes. In the kidney collecting duct, these IMP clusters were subsequently identified as possible sites of clathrin-coated pit formation on the plasma membrane, and a clathrin-mediated mechanism for internalization of vasopressin-sensitive water channels was suggested. Using an antibody raised against the extracellular C loop of AQP2, we now provide direct evidence that AQP2 is concentrated in clathrin-coated pits on the apical surface of collecting duct principal cells. Furthermore, by using a fracture-label technique applied to LLC-PK(1) cells expressing an AQP2-c-myc construct, we show that AQP2 is located in IMP aggregates and is concentrated in shallow membrane invaginations on the surface of forskolin-stimulated cells. We also studied the functional role of clathrin-coated pits in AQP2 trafficking by using a GTPase-deficient dynamin mutation (K44A) to inhibit clathrin-mediated endocytosis. Immunofluorescence labeling and freeze-fracture electron microscopy showed that dominant-negative dynamin 1 and dynamin 2 mutants prevent the release of clathrin-coated pits from the plasma membrane and induce an accumulation of AQP2 on the plasma membrane of AQP2-transfected cells. These data provide the first direct evidence that AQP2 is located in clathrin-coated pits and show that AQP2 recycles between the plasma membrane and intracellular vesicles via a dynamin-dependent endocytotic pathway. We propose that the IMP clusters previously associated with vasopressin action represent sites of dynamin-dependent, clathrin-mediated endocytosis in which AQP2 is concentrated before internalization.
Collapse
Affiliation(s)
- Tian-Xiao Sun
- Program in Membrane Biology and Renal Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
14
|
Nielsen S, Frøkiaer J, Marples D, Kwon TH, Agre P, Knepper MA. Aquaporins in the kidney: from molecules to medicine. Physiol Rev 2002; 82:205-44. [PMID: 11773613 DOI: 10.1152/physrev.00024.2001] [Citation(s) in RCA: 853] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The discovery of aquaporin-1 (AQP1) answered the long-standing biophysical question of how water specifically crosses biological membranes. In the kidney, at least seven aquaporins are expressed at distinct sites. AQP1 is extremely abundant in the proximal tubule and descending thin limb and is essential for urinary concentration. AQP2 is exclusively expressed in the principal cells of the connecting tubule and collecting duct and is the predominant vasopressin-regulated water channel. AQP3 and AQP4 are both present in the basolateral plasma membrane of collecting duct principal cells and represent exit pathways for water reabsorbed apically via AQP2. Studies in patients and transgenic mice have demonstrated that both AQP2 and AQP3 are essential for urinary concentration. Three additional aquaporins are present in the kidney. AQP6 is present in intracellular vesicles in collecting duct intercalated cells, and AQP8 is present intracellularly at low abundance in proximal tubules and collecting duct principal cells, but the physiological function of these two channels remains undefined. AQP7 is abundant in the brush border of proximal tubule cells and is likely to be involved in proximal tubule water reabsorption. Body water balance is tightly regulated by vasopressin, and multiple studies now have underscored the essential roles of AQP2 in this. Vasopressin regulates acutely the water permeability of the kidney collecting duct by trafficking of AQP2 from intracellular vesicles to the apical plasma membrane. The long-term adaptational changes in body water balance are controlled in part by regulated changes in AQP2 and AQP3 expression levels. Lack of functional AQP2 is seen in primary forms of diabetes insipidus, and reduced expression and targeting are seen in several diseases associated with urinary concentrating defects such as acquired nephrogenic diabetes insipidus, postobstructive polyuria, as well as acute and chronic renal failure. In contrast, in conditions with water retention such as severe congestive heart failure, pregnancy, and syndrome of inappropriate antidiuretic hormone secretion, both AQP2 expression levels and apical plasma membrane targetting are increased, suggesting a role for AQP2 in the development of water retention. Continued analysis of the aquaporins is providing detailed molecular insight into the fundamental physiology and pathophysiology of water balance and water balance disorders.
Collapse
Affiliation(s)
- Søren Nielsen
- The Water and Salt Research Center, Institute of Anatomy, and Institute of Experimental Clinical Research, University of Aarhus, Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Snigirevskaya ES. Structural correlates of the transepithelial water transport. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 198:203-75. [PMID: 10804464 DOI: 10.1016/s0074-7696(00)98006-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Transepithelial permeability is one of the fundamental problems in cell biology. Epithelial cell layers protect the organism from its environment and form a selective barrier to the exchange of molecules between the lumen of an organ and an underlying tissue. This chapter discusses some problems and analyzes the participation of intercellular junctions in the paracellular transport of water, migration of intramembrane particles in the apical membrane during its permeability changes for isotonic fluid in cells of leaky epithelia, insertion of water channels into the apical membrane and their cytoplasmic sources in cells of tight epithelia under ADH (antidiuretic hormone)-induced water flows, the osmoregulating function of giant vacuoles in the transcellular fluxes of hypotonic fluid across tight epithelia, and the role of actin filaments and microtubules in the transcellular transport of water across epithelia.
Collapse
Affiliation(s)
- E S Snigirevskaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
17
|
Bron P, Lagrée V, Froger A, Rolland JP, Hubert JF, Delamarche C, Deschamps S, Pellerin I, Thomas D, Haase W. Oligomerization state of MIP proteins expressed in Xenopus oocytes as revealed by freeze-fracture electron-microscopy analysis. J Struct Biol 1999; 128:287-96. [PMID: 10633068 DOI: 10.1006/jsbi.1999.4196] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MIP (major intrinsic protein) family is a widespread family of membrane proteins exhibiting two major types of channel properties: aquaporins and solute facilitators. In the present study, freeze-fracture electron microscopy was used to investigate the oligomerization state of two MIP proteins heterologously expressed in the plasma membrane of Xenopus laevis oocytes: AQPcic, an aquaporin from the insect Cicadella viridis, and GlpF, a glycerol facilitator from Escherichia coli. Swelling assays performed on oocytes 48 and 72 h following cRNA microinjections showed that these proteins were functionally expressed. Particle density determinations indicated that expression of proteins is related to an increase in particle density on the P fracture face of oocyte plasma membranes. Statistical analysis of particle sizes was performed on protoplasmic fracture faces of the plasma membrane of oocytes expressing AQPcic and GlpF 72 h after cRNA microinjections. Compared to control oocytes, AQPcic-expressing oocytes exhibited a specific population of particles with a mean diameter of 8.7 +/- 0.1 nm. This value is consistent with the previously reported tetrameric organization of AQPcic. In addition, AQPcic particles aggregate and form orthogonal arrays similar to those observed in native membranes of C. viridis, consisting of homotetramers of AQPcic. On the protoplasmic fracture face of oocytes expressing GlpF, the particle density is increased by 4.1-fold and the mean diameter of specifically added particles is 5.8 +/- 0.1 nm. This value fits with a monomer of the 28-kDa GlpF protein plus the platinum-carbon layer. These results clearly demonstrate that GlpF is a monomer when functionally expressed in plasma membranes of Xenopus oocytes and therefore emphasize the key role of the oligomerization state of MIP proteins with respect to their function.
Collapse
Affiliation(s)
- P Bron
- Equipe Canaux et Récepteurs Membranaires, UPRES-A CNRS 6026, Rennes Cedex, Bretagne, 35042, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hillyard SD, Cantiello HF, Van Driessche W. K+ transport and capacitance of the basolateral membrane of the larval frog skin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:C1995-2001. [PMID: 9435506 DOI: 10.1152/ajpcell.1997.273.6.c1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skin from larval bullfrogs was mounted in an Ussing-type chamber in which the apical surface was bathed with a Ringer solution containing 115 mM K+ and the basolateral surface was bathed with a Ringer solution containing 115 mM Na+. Ion transport was measured as the short-circuit current (Isc) with a low-noise voltage clamp, and skin resistance (Rm) was measured by applying a direct current voltage pulse. Membrane impedance was calculated by applying a voltage signal consisting of 53 sine waves to the command stage of the voltage clamp. From the ratio of the Fourier-transformed voltage and current signals, it was possible to calculate the resistance and capacitance of the apical and basolateral membranes of the epithelium (Ra and Rb, Ca and Cb, respectively). With SO4(2-) as the anion, Rm decreased rapidly within 5 min following the addition of 150 U/ml nystatin to the apical solution, whereas Isc increased from 0.66 to 52.03 microA/cm2 over a 60-min period. These results indicate that nystatin becomes rapidly incorporated into the apical membrane and that the increase in basolateral K+ permeability requires a more prolonged time course. Intermediate levels of Isc were obtained by adding 50, 100, and 150 U/ml nystatin to the apical solution. This produced a progressive decrease in Ra and Rb while Ca and Cb remained constant. With Cl- as the anion, Isc values increased from 2.03 to 89.57 microA/cm2 following treatment with 150 U/ml nystatin, whereas with gluconate as the anion Isc was only increased from 0.63 to 11.64 microA/cm2. This suggests that the increase in basolateral K+ permeability produced by nystatin treatment, in the presence of more permeable anions, is due to swelling of the epithelial cells of the tissue rather than the gradient for apical K+ entry. Finally, Cb was not different among skins exposed to Cl-, SO4(2-), or gluconate, despite the large differences in Isc, nor did inhibition of Isc by treatment with hyperosmotic dextrose cause significant changes in Cb. These results support the hypothesis that increases in cell volume activate K+ channels that are already present in the basolateral membrane of epithelial cells.
Collapse
Affiliation(s)
- S D Hillyard
- Department of Biological Sciences, University of Nevada, Las Vegas 89154, USA
| | | | | |
Collapse
|
19
|
Yang B, Brown D, Verkman A. The Mercurial Insensitive Water Channel (AQP-4) Forms Orthogonal Arrays in Stably Transfected Chinese Hamster Ovary Cells. J Biol Chem 1996. [DOI: 10.1074/jbc.271.9.4577] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Abstract
The longstanding puzzle of membrane water permeability was advanced by the discovery of channel-forming integral protein (CHIP). This protein was shown to function as a water channel when expressed in Xenopus oocytes or when reconstituted into synthetic membranes. Site-directed mutagenesis and electron crystallography reveal tetrameric organization of CHIP, and the two halves of CHIP are tandem repeats folded into an obversely symmetric structure which resembles an hourglass. Each tetramer is comprised of functionally independent subunits. CHIP is the archetypal member of a newly-recognized family of membrane water transporters known as the "Aquaporins" (AQPs). AQP1 (CHIP) is abundant in the apical and basolateral membranes of renal proximal tubules and descending thin limbs, and is also present in a number of extra renal tissues. In the collecting duct, AQP2 is the predominant vasopressin-sensitive water channel. AQP2 is localized in the apical membrane and in intracellular vesicles which are targeted to the apical plasma membranes when stimulated by antidiuretic hormone. Humans are identified with mutations in AQP1 and AQP2 and exhibit contrasting clinical phenotypes. AQP3 resides in the basolateral membranes of collecting duct principal cells providing an exit pathway for water, and AQP4 is abundant in brain, where it apparently functions as the hypothalamic osmoreceptor responsible for secretion of antidiuretic hormone. Continued analysis of the aquaporins is providing detailed molecular insight into the fundamental physiological problems of water balance and water balance disorders.
Collapse
Affiliation(s)
- S Nielsen
- Department of Cell Biology, University of Aarhus, Denmark
| | | |
Collapse
|
21
|
Brown D, Katsura T, Kawashima M, Verkman AS, Sabolic I. Cellular distribution of the aquaporins: a family of water channel proteins. Histochem Cell Biol 1995; 104:1-9. [PMID: 7584554 DOI: 10.1007/bf01464780] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A group of transmembrane proteins that are related to the major intrinsic protein of lens fibers (MIP26) have been named "aquaporins" to reflect their role as water channels. These proteins are located at strategic membrane sites in a variety of epithelia, most of which have well-defined physiological functions in fluid absorption or secretion. However, some aquaporins have been localized in cell types where their role is at present unknown. Most of the aquaporins are delivered to the plasma membrane in a non-regulated (constitutive) fashion, but AQP2 enters the regulated exocytotic pathway and its membrane expression is controlled by the action of the antidiuretic hormone, vasopressin. These pathways of constitutive versus regulated delivery to the plasma membrane have been reconstituted in transfected LLC-PK1 epithelial cells, indicating that the information encoded within the protein sequence is sufficient to allow sorting of newly synthesized protein into distinct intracellular vesicles. Finally, different members of the aquaporin family can be targeted to apical, basolateral or both apical and basolateral plasma membrane domains of polarized epithelial cells. This implies that signals for the polarized targeting of these proteins also is located in non-homologous regions of these similar proteins. Thus, future investigations on the aquaporin family of proteins will provide important information not only on the physiology of membrane transport processes in many cell types, but also on the targeting and trafficking signals that allow proteins to enter distinct intracellular vesicular pathways in epithelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Brown
- Renal Unit, Massachusetts General Hospital, Boston, USA
| | | | | | | | | |
Collapse
|
22
|
Danechi K, Hoang T, Bergeron M. Reversible histochemical modifications of endoplasmic reticulum following arginine vasopressin stimulation of granular cells of toad bladder. Cell Tissue Res 1995; 280:365-70. [PMID: 7781034 DOI: 10.1007/bf00307809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The endoplasmic reticulum is generally absent from schematic representations of transport phenomena, although it shows a well-organized network in most transport epithelial cells. In order to examine the correlation between this organelle and cellular activity, bladders of Bufo marinus were studied under different experimental conditions and fixed by immersion in glutaraldehyde, followed by OsO4 impregnation for 3 days. Normal granular and mitochondria-rich cells showed a rich cytoplasmic network of canaliculi, well-impregnated by osmium deposits. Following a 2 to 15-min stimulation (serosal bath) with arginine vasopressin, the V2 receptor agonist dD-arginine-vasopressin or cyclic AMP (cAMP), the staining of endoplasmic reticulum in granular cells disappeared. After washing out of the hormone or the agonist, impregnation of the endoplasmic reticulum could be observed once again. Arginine vasopressin did not modify the impregnation of endoplasmic reticulum of either mitochondria-rich or basal cells. Our data indicate a correlation between the reactivity of endoplasmic reticulum to osmium, and a cAMP-dependent effect of arginine vasopressin through its V2 receptors. Incubation of arginine vasopressin through its V2 receptors. Incubation of toad bladders carried out with agents interfering with cellular calcium (calcium ionophores, high or low bath calcium) or with calcium release from the endoplasmic reticulum (TMB-8, thapsigargin) suggested that an early step in the cAMP-dependent effect of arginine vasopressin must involve the release of intracellular calcium from the endoplasmic reticulum. However, calcium ATPases in this organelle do not seem to participate in the hormonal effect.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Danechi
- Department of Physiology, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
23
|
Nielsen S, Chou CL, Marples D, Christensen EI, Kishore BK, Knepper MA. Vasopressin increases water permeability of kidney collecting duct by inducing translocation of aquaporin-CD water channels to plasma membrane. Proc Natl Acad Sci U S A 1995; 92:1013-7. [PMID: 7532304 PMCID: PMC42627 DOI: 10.1073/pnas.92.4.1013] [Citation(s) in RCA: 733] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Water excretion by the kidney is regulated by the peptide hormone vasopressin. Vasopressin increases the water permeability of the renal collecting duct cells, allowing more water to be reabsorbed from collecting duct urine to blood. Despite long-standing interest in this process, the mechanism of the water permeability increase has remained undetermined. Recently, a molecular water channel (AQP-CD) has been cloned whose expression appears to be limited to the collecting duct. Previously, we immunolocalized this water channel to the apical plasma membrane (APM) and to intracellular vesicles (IVs) of collecting duct cells. Here, we test the hypothesis that vasopressin increases cellular water permeability by inducing exocytosis of AQP-CD-laden vesicles, transferring water channels from IVs to APM. Rat collecting ducts were perfused in vitro to determine water permeability and subcellular distribution of AQP-CD in the same tubules. The collecting ducts were fixed for immunoelectron microscopy before, during, and after exposure to vasopressin. Vasopressin exposure induced increases in water permeability and the absolute labeling density of AQP-CD in the APM. In parallel, the APM:IV labeling ratio increased. Furthermore, in response to vasopressin withdrawal, AQP-CD labeling density in the APM and the APM:IV labeling ratio decreased in parallel to a measured decrease in osmotic water permeability. We conclude that vasopressin increases the water permeability of collecting duct cells by inducing a reversible translocation of AQP-CD water channels from IVs to the APM.
Collapse
Affiliation(s)
- S Nielsen
- Department of Cell Biology, University of Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
24
|
van Os CH, Deen PM, Dempster JA. Aquaporins: water selective channels in biological membranes. Molecular structure and tissue distribution. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:291-309. [PMID: 7529562 DOI: 10.1016/0304-4157(94)90011-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- C H van Os
- Department of Cell Physiology, University of Nijmegen, The Netherlands
| | | | | |
Collapse
|
25
|
van Os CH, Deen PM, Dempster JA. Aquaporins: Water selective channels in biological membranes. Molecular structure and tissue distribution. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0167-4781(94)00010-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Bradbury NA, Bridges RJ. Role of membrane trafficking in plasma membrane solute transport. THE AMERICAN JOURNAL OF PHYSIOLOGY 1994; 267:C1-24. [PMID: 7519393 DOI: 10.1152/ajpcell.1994.267.1.c1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cells can rapidly and reversibly alter solute transport rates by changing the kinetics of transport proteins resident within the plasma membrane. Most notably, this can be brought about by reversible phosphorylation of the transporter. An additional mechanism for acute regulation of plasma membrane transport rates is by the regulated exocytic insertion of transport proteins from intracellular vesicles into the plasma membrane and their subsequent regulated endocytic retrieval. Over the past few years, the number of transporters undergoing this regulated trafficking has increased dramatically, such that what was once an interesting translocation of a few transporters has now become a widespread modality for regulating plasma membrane solute permeabilities. The aim of this article is to review the models proposed for the regulated trafficking of transport proteins and what lines of evidence should be obtained to document regulated exocytic insertion and endocytic retrieval of transport proteins. We highlight four transporters, the insulin-responsive glucose transporter, the antidiuretic hormone-responsive water channel, the urinary bladder H(+)-ATPase, and the cystic fibrosis transmembrane conductance regulator Cl- channel, and discuss the various approaches taken to document their regulated trafficking. Finally, we discuss areas of uncertainty that remain to be investigated concerning the molecular mechanisms involved in regulating the trafficking of proteins.
Collapse
Affiliation(s)
- N A Bradbury
- Department of Physiology and Biophysics, University of Alabama at Birmingham 35294
| | | |
Collapse
|
27
|
Verbavatz JM, Brown D, Sabolić I, Valenti G, Ausiello DA, Van Hoek AN, Ma T, Verkman AS. Tetrameric assembly of CHIP28 water channels in liposomes and cell membranes: a freeze-fracture study. J Cell Biol 1993; 123:605-18. [PMID: 7693713 PMCID: PMC2200118 DOI: 10.1083/jcb.123.3.605] [Citation(s) in RCA: 205] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Channel forming integral protein of 28 kD (CHIP28) functions as a water channel in erythrocytes, kidney proximal tubule and thin descending limb of Henle. CHIP28 morphology was examined by freeze-fracture EM in proteoliposomes reconstituted with purified CHIP28, CHO cells stably transfected with CHIP28k cDNA, and rat kidney tubules. Liposomes reconstituted with HPLC-purified CHIP28 from human erythrocytes had a high osmotic water permeability (Pf0.04 cm/s) that was inhibited by HgCl2. Freeze-fracture replicas showed a fairly uniform set of intramembrane particles (IMPs); no IMPs were observed in liposomes without incorporated protein. By rotary shadowing, the IMPs had a diameter of 8.5 +/- 1.3 nm (mean +/- SD); many IMPs consisted of a distinct arrangement of four smaller subunits surrounding a central depression. IMPs of similar size and appearance were seen on the P-face of plasma membranes from CHIP28k-transfected (but not mock-transfected) CHO cells, rat thin descending limb (TDL) of Henle, and S3 segment of proximal straight tubules. A distinctive network of complementary IMP imprints was observed on the E-face of CHIP28-containing plasma membranes. The densities of IMPs in the size range of CHIP28 IMPs, determined by non-linear regression, were (in IMPs/microns 2): 2,494 in CHO cells, 5,785 in TDL, and 1,928 in proximal straight tubules; predicted Pf, based on the CHIP28 single channel water permeability of 3.6 x 10(-14) cm3/S (10 degrees C), was in good agreement with measured Pf of 0.027 cm/S, 0.075 cm/S, and 0.031 cm/S, respectively, in these cell types. Assuming that each CHIP28 monomer is a right cylindrical pore of length 5 nm and density 1.3 g/cm3, the monomer diameter would be 3.2 nm; a symmetrical arrangement of four cylinders would have a greatest diameter of 7.2 nm, which after correction for the thickness of platinum deposit, is similar to the measured IMP diameter of approximately 8.5 nm. These results provide a morphological signature for CHIP28 water channels and evidence for a tetrameric assembly of CHIP28 monomers in reconstituted proteoliposomes and cell membranes.
Collapse
|
28
|
Schafer JA, Reeves WB, Andreoli TE. Mechanisms of Fluid Transport Across Renal Tubules. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Baker CA, Hillyard SD. Capacitance, short-circuit current and osmotic water flow across different regions of the isolated toad skin. J Comp Physiol B 1992; 162:707-13. [PMID: 1494029 DOI: 10.1007/bf00301620] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amphibian antidiuretic hormone, arginine vasotocin, stimulated osmotic water flow across isolated skin from the pelvic but not the pectoral skin of the toad, Bufo woodhouseii. Changes in the apical membrane capacitance were not observed for either region of the skin following treatment with arginine vasotocin when there was an osmotic gradient across the tissue. In the absence of an osmotic pressure gradient, the apical membrane capacitance of the pelvic skin increased from 2.8 +/- 0.5 to 3.3 +/- 0.6 microF.cm-2 after treatment with 5 x 10(-8) M arginine vasotocin. Under these conditions, apical membrane capacitance of the pectoral skin was 1.8 +/- 0.1 microF.cm-2 and did not change significantly after arginine vasotocin treatment. The amiloride-sensitive short-circuit current across the pelvic skin was stimulated by arginine vasotocin as was the density of channels in the apical membrane as determined by fluctuation analysis. Values for channel density in the pelvic skin also correlated with apical membrane capacitance and increased from 90 to 273 channels per micron2 of estimated membrane area following arginine vasotocin treatment. In the pectoral skin the stimulation of short-circuit current following arginine vasotocin treatment was small and an increase in channel density could not be demonstrated. The current through single Na+ channels in both regions of the skin did not different either before or after arginine vasotocin treatment.
Collapse
Affiliation(s)
- C A Baker
- Department of Biological Sciences, University of Nevada, Las Vegas 89154
| | | |
Collapse
|
30
|
Skorecki KL, Brown D, Ercolani L, Ausiello DA. Molecular Mechanisms of Vasopressin Action in the Kidney. Compr Physiol 1992. [DOI: 10.1002/cphy.cp080226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Phillips ME, Taylor A. Effect of colcemid on the water permeability response to vasopressin in isolated perfused rabbit collecting tubules. J Physiol 1992; 456:591-608. [PMID: 1338105 PMCID: PMC1175700 DOI: 10.1113/jphysiol.1992.sp019355] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The effect of the microtubule-disruptive agent, colcemid (N-deacetyl-N-methyl-colchicine), on the water permeability response to vasopressin has been investigated in isolated cortical collecting tubules from the rabbit kidney perfused in vitro. 2. Pretreatment of collecting tubules with colcemid inhibited the increase in water permeability elicited by vasopressin, 50 microU ml-1, in a time- and dose-dependent manner. After 75 min exposure to the drug, inhibition of the response to the hormone averaged 72 +/- 6% (n = 4, P < 0.01) at a colcemid concentration of 7.2 x 10(-5) M. Inhibition was estimated to be half-maximal at a colcemid concentration of 1.9 x 10(-6) M. 3. Colcemid, 2.7 x 10(-7) to 7.2 x 10(-5) M, had no effect on basal water permeability nor on the increase in lumen negative potential difference (PD) induced by the hormone. 4. Lumicolcemid, an isomer of colcemid that does not disrupt microtubules, had no influence on the water permeability response to vasopressin. 5. Pretreatment with colcemid, 2.7 x 10(-5) M, for 45 min inhibited the water permeability response to 8-CPT-cAMP, 1.8 x 10(-5) M, by 38 +/- 4% (n = 5, P < 0.01). 6. When collecting tubules were exposed to colcemid, 5.5 x 10(-5) M, for 45 min after the hydrosmotic response to vasopressin had been established, the drug had no influence on the maintenance of the raised water permeability. 7. The results provide further evidence that cytoplasmic microtubules play a role in the initiation of the hydrosmotic response to vasopressin in the mammalian collecting tubule at a site distal to the generation of cyclic AMP.
Collapse
|
32
|
Schultz SG, Hudson RL. Biology Of Sodium‐Absorbing Epithelial Cells: Dawning of a New Era. Compr Physiol 1991. [DOI: 10.1002/cphy.cp060402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Van der Goot F, Corman B, Ripoche P. Evidence for permanent water channels in the basolateral membrane of an ADH-sensitive epithelium. J Membr Biol 1991; 120:59-65. [PMID: 1708428 DOI: 10.1007/bf01868591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The transepithelial water permeability in frog urinary bladder is believed to be essentially dependent on the ADH-regulated apical water permeability. To get a better understanding of the transmural water movement, the diffusional water permeability (Pd) of the basolateral membrane of urinary bladder was studied. Access to this post-luminal barrier was made possible by "perforating" the apical membrane with amphotericin B. The addition of this antibiotic increased Pd from 1.12 +/- 0.10 x 10(-4) cm/sec (n = 7) to 4.08 +/- 0.33 x 10(-4) cm/sec (n = 7). The effect of mercuric sulfhydryl reagents, which are commonly used to characterize water channels, was tested on amphotericin B-treated bladders. HgCl2 (10(-3) M) decreased Pd by 52% and parachloromercuribenzoic acid (pCMB) (1.4 x 10(-4) M) by 34%. The activation energy for the diffusional water transport was found to increase from 4.52 +/- 0.23 kcal/mol (n = 3), in the control situation, to 9.99 +/- 0.91 kcal/mol (n = 4) in the presence of 1.4 x 10(-4) M pCMB. Our second approach was to measure the kinetics of water efflux, by stop-flow light scattering, on isolated epithelial cells from urinary bladders. pCMB (0.5 or 1.4 x 10(-4) M) was found to inhibit water exit by 91 +/- 2%. These data strongly support the existence of proteins responsible for water transport across the basolateral membrane, which are permanently present.
Collapse
Affiliation(s)
- F Van der Goot
- Département de Biologie Cellulaire et Moléculaire, CEN Saclay, Gif-sur-Yvette, France
| | | | | |
Collapse
|
34
|
Ibarra C, Ripoche P, Parisi M, Bourguet J. Effects of PCMBS on the water and small solute permeabilities in frog urinary bladder. J Membr Biol 1990; 116:57-64. [PMID: 2165176 DOI: 10.1007/bf01871672] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED It has been reported that PCMBS (p-chloromercuribenzene sulfonate) blocks the water permeability of red cells and of the tubular kidney membranes. In this study we compare the effects of this mercurial compound on the permeability of water and other small solutes in the frog urinary bladder. We observed that: (i) 5 mM PCMBS applied at pH 5.0 to the mucosal side inhibited the net and unidirectional water fluxes induced by oxytocin without changing the delta Pf/delta Pd ratio. (ii) The oxytocin-induced urea and Na+ influxes were also inhibited by PCMBS. (iii) The unidirectional Cl- movement was first reduced and then increased during the course of PCMBS treatment. (iv) The short-circuit measured at low mucosal Na+ concentration (10 mM), diminished continuously, whereas the transepithelial resistance first increased and then diminished. (v) Mannitol, raffinose, alpha-methyl-glucose, antipyrine, caffeine and Rb+ movements were not changed significantly during the first 26 min of the water permeability inhibition. IN CONCLUSION (i) The ADH-sensitive water, urea and Na+ transport systems were inhibited by PCMBS, (ii) PCMBS did not induce a nonspecific and general effect on the permeability of the membrane during the development of the water permeability inhibition, and (iii) in terms of water channels, the inhibition of water transport with the maintenance of a high Pf/Pd ratio suggests that PCMBS closes the water channels in an all or none manner, reducing their operative number in the apical border of frog bladder.
Collapse
Affiliation(s)
- C Ibarra
- Départment de Biologie, Centre d'Etudes Nucléaires de Saclay, Gif-Sur-Yvette, France
| | | | | | | |
Collapse
|
35
|
Kachadorian WA, Spring KR, Shinowara NL, Muller J, Palaia TA, DiScala VA. Effects of serosal hypertonicity on water permeability in toad urinary bladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:C871-8. [PMID: 2110422 DOI: 10.1152/ajpcell.1990.258.5.c871] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We studied in toad urinary bladder the effects of serosal hypertonicity on tissue water permeability, granular cell luminal membrane water permeability, and granular cell luminal membrane particle aggregates and compared them with effects of antidiuretic hormone (ADH). In tissues challenged by a hypertonic (447 mosmol/kgH2O) serosal bath, luminal membrane aggregates were structurally similar to those caused by ADH. The tissue water permeability increase induced by serosal hypertonicity was much less than that caused by a maximally stimulating concentration of ADH on tissue in isotonic serosal baths with approximately the same transmural gradient. The difference is explained not only by a reduced incidence of luminal membrane aggregates but also by an increased resistance to water movement at a postluminal membrane site. Measurements of luminal membrane water permeability showed a close correlation with luminal membrane aggregate frequency, indicating that the calculated permeability of an individual aggregate was a constant. Thus the relation of luminal membrane aggregates to tissue osmotic permeability is modified by serosal hypertonicity. Morphological examination of these tissues suggested that luminal membrane aggregates may be less stable in the absence of hormone. This was evident by the proportionally greater number of structures interpreted as aggregates captured in the process of disassembly ("patches"). Membrane depressions containing intramembrane particles ("craters") were also observed. They corresponded in terms of frequency and size to coated pits as seen in thin sections.
Collapse
Affiliation(s)
- W A Kachadorian
- Gerontology Research Center, National Institute on Aging, Baltimore 21224
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Ibarra C, Ripoche P, Bourguet J. Effect of mercurial compounds on net water transport and intramembrane particle aggregates in ADH-treated frog urinary bladder. J Membr Biol 1989; 110:115-26. [PMID: 2553973 DOI: 10.1007/bf01869467] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It has been suggested that during the oxytocin-induced hydrosmotic response, water crosses the luminal membrane of urinary bladder epithelium cells through membrane-spanning proteins. Although specific inhibitors of osmotic water transport have not been found, certain sulfhydryl reagents such as mercurial compounds may help to identify the proteins involved in this permeation process. We tested the effects of p-chloromercuribenzene sulfonate (PCMBS) and of fluorescein-mercuric acetate (FMA) on the net water flux, the microtubule and microfilament structures of the frog urinary bladder, and the distribution of intramembrane particle aggregates in the luminal membrane. We observed that: (i) 5 mM PCMBS at pH 5 and 0.5 mM FMA at pH 8 added to the mucosal bath at the maximum of the response to oxytocin partially inhibited the net water flux. Inhibition then increased progressively when the preparation was repeatedly or continuously stimulated, until it reached a maximal inhibition at 120 min. This inhibition was not reversed even when cystein was added in the mucosal bath. PCMBS and FMA effects were also observed when cyclic AMP (3',5' cyclic adenosine monophosphate) was used to increase water permeability, (ii) PCMBS mucosal pretreatment did not modify the basal water flux but potentiated the inhibitory effect of PCMBS or FMA on the hydrosmotic response to oxytocin. (iii) Microtubule and microfilament network, visualized in target cells by immunofluorescence, was not affected by PCMBS. (iv) The maximal PCMBS or FMA inhibition was not associated with a reduction of aggregate surface area in the apical membrane. The persistence of the intramembrane particle aggregates associated with the oxytocin-induced hydrosmotic response during the net water flux inhibition by PCMBS, suggests that the PCMBS effect occurs possibly at the level of sulfhydryl groups of the water channel itself.
Collapse
Affiliation(s)
- C Ibarra
- Département de Biologie, Centre d'Etudes Nucléaires de Saclay, Gif-sur-Yvette, France
| | | | | |
Collapse
|
38
|
Silver RB, Palmer LG. 8-BrcAMP-induced capacitance and transport of H2O and Na in skin and urinary bladder of urodele amphibians. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 256:C1145-52. [PMID: 2735392 DOI: 10.1152/ajpcell.1989.256.6.c1145] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effects of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) on capacitance (C), osmotic water flow (Jv), and amiloride-sensitive short-circuit current (INa) were studied in bladder and skin derived from the tiger salamander (aquatic and postmetamorphosed terrestrial phase). 8-BrcAMP-dependent increases in C, measured from the transepithelial voltage response to constant current pulses, occurred in aquatic (delta C = 44%) and terrestrial (delta C = 61%) bladders and terrestrial skin (delta C = 19%). Jv (200-mosM gradient, mucosal side hypotonic) was observed in the bladders and was further enhanced by addition of 8-BrcAMP [10(-3) M; delta Jv = 0.42 microliter.min-1.microF-1 (aquatic) and 0.32 microliter.min-1.microF-1 (terrestrial)]. The aquatic and terrestrial skins were relatively impermeable to water, but the terrestrial skin showed a small response to 8-BrcAMP (delta Jv = 0.04 microliter.min-1.microF-1). 8-BrcAMP-mediated natriferic responses were observed in aquatic bladder (delta INa = 62%) and terrestrial skin (delta INa = 105%). Antidiuretic hormone (ADH)-induced Jv was also observed in the aquatic bladder (delta Jv = 0.33 microliter.min-1.microF-1) and was similar to the 8-BrcAMP-mediated Jv measured in this tissue. The terrestrial bladder displayed a more vigorous response to 8-BrcAMP than to ADH (delta JvADH = 0.09 microliter.min-1.microF-1 and delta Jv8-BrcAMP = 0.32 microliter.min-1.microF-1), suggesting that diminished sensitivity to ADH accompanies the transition from water to land in this species.
Collapse
Affiliation(s)
- R B Silver
- Department of Physiology, Cornell University Medical College, New York, New York 10021
| | | |
Collapse
|
39
|
Wade JB, Coleman RA. Direct visualization of the interrelationship between intramembrane and extracellular structures. Proc Natl Acad Sci U S A 1989; 86:2723-7. [PMID: 2495534 PMCID: PMC286990 DOI: 10.1073/pnas.86.8.2723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The apical surface of the toad urinary bladder is covered by an interconnected mesh of glycocalyx, which appears to attach to the plasma membrane bilayer. To evaluate the interrelationship between these extracellular elements and intramembrane structures, a strategy was devised to produce composite replicas that allow the simultaneous visualization of intramembrane particles by freeze-fracture while the glycocalyx mesh is replicated by rotary shadowing of the extracellular surface after freeze-drying. Evaluation of these composite replicas by electron microscopy reveals that contacts occur between extracellular filamentous elements and intramembrane particles. This structural organization may be important for stabilizing intramembrane components and for anchoring extracellular elements to the membrane.
Collapse
Affiliation(s)
- J B Wade
- Department of Physiology, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
40
|
Phillips ME, Taylor A. Effect of nocodazole on the water permeability response to vasopressin in rabbit collecting tubules perfused in vitro. J Physiol 1989; 411:529-44. [PMID: 2559198 PMCID: PMC1190539 DOI: 10.1113/jphysiol.1989.sp017588] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. The effect of the microtubule-disruptive agent, nocodazole (methyl [5-(2-thienylcarbonyl)-1H-benzimidazol-2-yl] carbamate), on the water permeability response to vasopressin or the synthetic cyclic AMP analogue, 8-parachlorophenylthio-cyclic AMP (8-CPT-cAMP), has been investigated in isolated cortical collecting tubules from rabbit kidneys, perfused in vitro. 2. Pre-treatment with nocodazole, 1-4 micrograms ml-1, had no significant effect on basal water permeability, but inhibited the increase in hydraulic conductivity elicited by vasopressin, 50 microU ml-1, in a dose-dependent manner. Inhibition of the response to the hormone averaged 65 +/- 6% (n = 8, P less than 0.001) at a nocodazole concentration of 4 micrograms ml-1. 3. Nocodazole, 1-4 micrograms ml-1, had no effect on the increase in lumen-negative potential difference (PD) induced by the hormone. 4. Pre-treatment with nocodazole, 4 micrograms ml-1, inhibited the development of the water permeability response to 8-CPT-cAMP, 1.8 x 10(-5) M, by 45 +/- 7% (n = 7, P less than 0.001). 5. When collecting tubules were exposed to nocodazole, 4 micrograms ml-1, after the hydrosmotic response to vasopressin had been fully established, the drug had no inhibitory effect on the maintenance of a high water permeability. 6. The results are consistent with the view that cytoplasmic microtubules play a role in the initiation of the water permeability response to vasopressin in the mammalian cortical collecting tubule at a cellular site beyond the generation of cyclic AMP.
Collapse
|
41
|
Harris HW, Handler JS. The role of membrane turnover in the water permeability response to antidiuretic hormone. J Membr Biol 1988; 103:207-16. [PMID: 3054115 DOI: 10.1007/bf01993980] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- H W Harris
- Division of Nephrology, Children's Hospital, Boston, Massachusetts 02115
| | | |
Collapse
|
42
|
Strange K, Willingham MC, Handler JS, Harris HW. Apical membrane endocytosis via coated pits is stimulated by removal of antidiuretic hormone from isolated, perfused rabbit cortical collecting tubule. J Membr Biol 1988; 103:17-28. [PMID: 2903250 DOI: 10.1007/bf01871929] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Antidiuretic hormone increases the water permeability of the cortical collecting tubule and causes the appearance of intramembrane particle aggregates in the apical plasma membrane of principal cells. Particle aggregates are located in apical membrane coated pits during stimulation of collecting ducts with ADH in situ. Removal of ADH causes a rapid decline in water permeability. We evaluated apical membrane retrieval associated with removal of ADH by studying the endocytosis of horseradish peroxidase (HRP) from an isotonic solution in the lumen. HRP uptake was quantified enzymatically and its intracellular distribution examined by electron microscopy. When tubules were perfused with HRP for 20 min in the absence of ADH, HRP uptake was 0.5 +/- 0.3 pg/min/micron tubule length (n = 6). The uptake of HRP in tubules exposed continuously to ADH during the 20-min HRP perfusion period was 1.3 +/- 0.8 pg/min/micron (n = 8). HRP uptake increased markedly to 3.2 +/- 1.1 pg/min/micron (n = 14), when the 20-min period of perfusion with HRP began immediately after removal of ADH from the peritubular bath. Endocytosis of HRP occurred in both principal and intercalated cells via apical membrane coated pits. We suggest that the rapid decline in cortical collecting duct water permeability which occurs following removal of ADH is mediated by retrieval of water permeable membrane via coated pits.
Collapse
Affiliation(s)
- K Strange
- Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
43
|
Verkman AS, Lencer WI, Brown D, Ausiello DA. Endosomes from kidney collecting tubule cells contain the vasopressin-sensitive water channel. Nature 1988; 333:268-9. [PMID: 3368004 DOI: 10.1038/333268a0] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanism by which vasopressin rapidly and dramatically increases the water permeability of target epithelial cell membranes is thought to involve a cycle of exo- and endocytosis during which vesicles carrying 'water channels' are successively inserted into, and removed from the apical plasma membrane of epithelial cells. Clusters of intramembranous particles, visible by freeze-fracture electron microscopy and presumed to represent water channels, appear on apical membranes in parallel with increased transepithelial water flow. In the collecting duct, these clusters are located in clathrin-coated pits which are subsequently internalized. There has been no direct evidence, however, that subcellular membranes in vasopressin-sensitive epithelia contain functional water channels. In this report, we have used fluorophores that are sensitive to volume and do not pass through membranes to label and to measure directly the osmotic water permeability of endocytosed vesicles isolated from renal papilla. We present direct evidence that vasopressin induces the appearance of a population of endocytic vesicles whose limiting membranes contain water channels.
Collapse
Affiliation(s)
- A S Verkman
- Cardiovascular Research Institute, University of California, San Francisco 94143
| | | | | | | |
Collapse
|
44
|
Taylor A, Marples D. Regulation of membrane permeability by vasopressin; activation of the water permeability pathway in toad urinary bladder by N-ethyl-maleimide. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1988; 90:661-8. [PMID: 2902974 DOI: 10.1016/0300-9629(88)90681-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. Vasopressin induces a rapid increase in water permeability and stimulates net sodium transport in responsive epithelia through the mediation of cAMP. 2. In amphibian urinary bladder, the increase in water permeability is dependent on an intact cytoskeleton and is associated with the exocytotic insertion of tubular vesicles containing particle aggregates (the putative water channels) into the apical membrane of the granular epithelial cells. 3. In the toad bladder, mucosal addition of NEM, 0.1 mM, elicits a slow and irreversible increase in transepithelial water flow, whilst decreasing net sodium transport. 4. The hydrosmotic response to mucosal NEM is inhibited by cellular acidification, by pretreatment with cytoskeleton-disruptive drugs, and by agents that increase cytosolic calcium. 5. Mucosal NEM potentiates the hydrosmotic response to a submaximal, but not a maximal, dose of vasopressin. 6. Mucosal NEM, like vasopressin, induces both vesicle fusion and the appearance of particle aggregates at the granular cell apical surface. 7. NEM, unlike vasopressin, does not increase cellular cAMP content. 8. Mucosal NEM appears to increase transcellular water flow by activating cellular processes normally triggered by vasopressin, at a step beyond cAMP.
Collapse
Affiliation(s)
- A Taylor
- University Laboratory of Physiology, Oxford, UK
| | | |
Collapse
|
45
|
Bourguet J, Hugon JS, Valenti G, Svelto M. ADH-induced water permeability: what role for the microtubular network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. A, COMPARATIVE PHYSIOLOGY 1988; 90:669-72. [PMID: 2902975 DOI: 10.1016/0300-9629(88)90682-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. ADH-induced intramembrane particle aggregates in the apical membrane of the epithelial cells are specifically related to water permeability in the epithelium. 2. Colchicine and nocadozole (both of which bind to tubulin) inhibit ADH-induced osmotic water flow in the amphibian bladder. 3. Microtubules may be involved in the translocation of the aggrephores prior to their insertion into the plasma membrane.
Collapse
Affiliation(s)
- J Bourguet
- Département de Biologie, CEN SACLAY, Gif sur Yvette, France
| | | | | | | |
Collapse
|
46
|
Parisi M, Ibarra C, Porta M. Intracellular Ca2+ concentration and the antidiuretic hormone-induced increase in water permeability: effects of ionophore A23187 and quinidine. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 905:399-408. [PMID: 2825786 DOI: 10.1016/0005-2736(87)90469-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hydroosmotic responses induced by oxytocin and 8-bromo-cyclic AMP, in frog and toad urinary bladders, were recorded minute by minute. 3HHO and 45Ca unidirectional fluxes as well as prostaglandin B2 liberation were also measured. It was observed that: (1) Addition of the calcium ionophore A23187 or quinidine to the serosal bath inhibited the response to oxytocin, but not to 8-bromo-cyclic AMP, while increasing prostaglandin E1 liberation into the serosal but not into the mucosal bath. (2) Addition of A23187 to the mucosal bath induced a transient and temperature-dependent inhibition of the response elicited by 8-bromo-cyclic AMP. The time-course of this reduction in water permeability and its sensitivity to medium temperature were similar to those observed after the withdrawal of agonist, but clearly different of those observed after intracellular acidification. (3) The hydroosmotic response was also transitorily inhibited when the Ca2+ concentration was step-changed in the mucosal bath. (4) When added to the mucosal or to the serosal baths, the ionophore increased either the apical or the laterobasal Ca2+ permeabilities. It is concluded that manipulation of intracellular Ca2+ interferes with the hydroosmotic response at two different levels. (1) A first target point located 'pre-cyclic-AMP production'. This effect would be mediated by prostaglandin liberation. (2) A second target point located after cyclic AMP production and before the 'temperature-dependent rate-limiting step'. This effect is probably related to the mechanism controlling the insertion and removal of water channels.
Collapse
Affiliation(s)
- M Parisi
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
47
|
Chevalier J, Pinto da Silva P. Osmotic reversal induces assembly of tight junction strands at the basal pole of toad bladder epithelial cells but does not reverse cell polarity. J Membr Biol 1987; 95:199-208. [PMID: 3108510 DOI: 10.1007/bf01869482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper reports the effect of reversing the osmotic environment between luminal and serosal compartments of a toad urinary bladder on the polarity of assembly of tight junction strands. Toad bladders were filled with Ringer's solution (220 mOsm) and were immersed in distilled water at room temperature or at 37 degrees C. Within two minutes, new tight junction strands are assembled. The new tight junctional strands unite the basal pole of epithelial cells with the apical side of basal cells. Physiological studies show that oxytocin, a synthetic analog of antidiuretic hormone, is still capable of inducing increases in water transport in epithelia which were osmotically reversed. This capacity decreases significantly for longer periods of osmotic reversal. Osmotic reversal does not alter the original polarity of epithelial cells: the apical tight junction belt, at the apical pole, is not displaced; the freeze-fracture morphology typical of apical plasma membrane (particle-rich E faces; particle-poor P faces) is not altered; oxytocin and cyclic AMP induce aggregates which are observed only at the apical plasma membrane. Massive assembly of junctional elements occurs even in epithelia preincubated in the presence of cycloheximide (an inhibitor of protein synthesis) or of cytoskeleton perturbers. Our experiments show that the polarity of assembly of tight junction strands depends on the vectorial orientation of the osmotic environment of the epithelium.
Collapse
|
48
|
Valtin H, Edwards BR. GFR and the concentration of urine in the absence of vasopressin. Berliner-Davidson re-explored. Kidney Int 1987; 31:634-40. [PMID: 3550234 DOI: 10.1038/ki.1987.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Mia AJ, Oakford LX, Torres L, Herman C, Yorio T. Morphometric analysis of epithelial cells of frog urinary bladder. I. Effect of antidiuretic hormone, calcium ionophore (A23187) and PGE2. Tissue Cell 1987; 19:437-50. [PMID: 3112995 DOI: 10.1016/0040-8166(87)90038-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Changes in epithelial cell morphology, especially at the apical plasma membrane, are frequently cited as initial evidence for antidiuretic hormone (ADH)-induced increase in membrane permeability. The effects of ADH and agents that alter and modify calcium and prostaglandin concentrations on the morphology and cytology of the epithelial cells of frog (Rana pipiens) urinary bladder are presented using the techniques of transmission and scanning electron microscopy. It was found that, like ADH, calcium ionophore, A23187, produce intense microvilli formation, microfilament mobilization and an increase in the density of granules and membrane associated vesicles, suggesting a prominent role of calcium in these processes. Moreover, our results suggest that these membrane and cytosolic transformations may be mediated in part through prostaglandin formation, as exogenous PGE2 mimicked these effects, and indomethacin, a prostaglandin synthesis inhibitor, attenuated ionophore's effect on luminal cytomorphology. However, unlike ADH, prostaglandins and ionophore inhibit hormonal-induced increase in transepithelial water flow. These results suggest that other components more distal to the luminal membrane, perhaps the basolateral membrane, may be rate-limiting for transepithelial water flow and possibly are regulated by either changes in calcium concentrations or prostaglandins.
Collapse
|
50
|
Adragna N, Bourguet J. Effect of SH-group reagents on net water transport in frog urinary bladder. MEMBRANE BIOCHEMISTRY 1987; 7:23-39. [PMID: 3501531 DOI: 10.3109/09687688709029427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The basal rate of water reabsorption and its acceleration by oxytocin, cyclic AMP (cAMP) or serosal hypertonicity in frog urinary bladders were monitored before and after exposure of the mucosal surface to sulfhydryl (SH) reactive reagents. The following observations were made: 1. N-ethylmaleimide (NEM, 10(-5)M) did not modify the basal water flux, but did potentiate the hydrosmotic response to oxytocin. At higher NEM concentrations, an increase in the basal flux was observed, while the oxytocin-induced water flux was strongly inhibited, if not, nullified. 2. Iodoacetamide (IAM, 10(-3)M) did not modify the basal water flux but did inhibit the oxytocin-, cAMP-, and serosal hypertonicity-induced increase in water permeability. Furthermore, the time course of the hydrosmotic response to oxytocin was significantly increased. 3. 5,5' dithio-bis-(2-nitrobenzoic acid) (DTNB, 10(-3)M) modified neither the basal nor the oxytocin-induced water flux when incubated at pH 8.1, but potentiated the inhibitory effect of NEM. However, at a mucosal pH of 6.5, DTNB inhibited the response to oxytocin by 30%. These results suggest that: (1) the three SH reagents affect differently the basal and the oxytocin-induced water pathways; and that (2) each of the changes in the oxytocin-induced paths occurs at a step following the hormonally-induced increase in intracellular cAMP concentration.
Collapse
Affiliation(s)
- N Adragna
- Department of Pharamacology and Toxicology, Wright State University, Dayton, OH 45435
| | | |
Collapse
|