1
|
Choudhary N, Lodha ML, Baranwal VK. The role of enzymatic activities of antiviral proteins from plants for action against plant pathogens. 3 Biotech 2020; 10:505. [PMID: 33184592 PMCID: PMC7642053 DOI: 10.1007/s13205-020-02495-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/19/2020] [Indexed: 11/25/2022] Open
Abstract
Antiviral proteins (AVPs) from plants possess multiple activities, such as N-glycosidase, RNase, DNase enzymatic activity, and induce pathogenesis-related proteins, salicylic acid, superoxide dismutase, peroxidase, and catalase. The N-glycosidase activity releases the adenine residues from sarcin/ricin (S/R) loop of large subunit of ribosomes and interfere the host protein synthesis process and this activity has been attributed for antiviral activity in plant. It has been shown that AVP binds directly to viral genome-linked protein of plant viruses and interfere with protein synthesis of virus. AVPs also possess the RNase and DNase like activity and may be targeting nucleic acid of viruses directly. Recently, the antifungal, antibacterial, and antiinsect properties of AVPs have also been demonstrated. Gene encoding for AVPs has been used for the development of transgenic resistant crops to a broad range of plant pathogens and insect pests. However, the cytotoxicity has been observed in transgenic crops using AVP gene in some cases which can be a limiting factor for its application in agriculture. In this review, we have reviewed various aspects of AVPs particularly their characteristics, possible mode of action and application.
Collapse
Affiliation(s)
- Nandlal Choudhary
- Amity Institute of Virology & Immunology, Amity University Uttar Pradesh, Noida, 201313 India
| | - M. L. Lodha
- Division of Biochemistry, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| | - V. K. Baranwal
- Division of Plant Pathology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012 India
| |
Collapse
|
2
|
Carrasco JL, Sánchez-Navarro JA, Elena SF. Exploring the role of cellular homologous of the 30K-superfamily of plant virus movement proteins. Virus Res 2018; 262:54-61. [PMID: 29475053 DOI: 10.1016/j.virusres.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 12/22/2022]
Abstract
Genes orthologous to the 30K-superfamily of movement proteins (MP) from plant viruses have been recently discovered by bioinformatics analyses as integrated elements in the genome of most vascular plants. However, their functional relevance for plants is still unclear. Here, we undertake some preliminary steps into the functional characterization of one of these putative MP genes found in Arabidopsis thaliana. We found that the AtMP gene is expressed at different stages of the plant development, with accumulation being highest in flowers but lowest in mature siliques. We also found down-regulation of the gene may result in a small delay in plant development and in an exacerbation of the negative effect of salinity in germination efficiency. We have also explored whether changes in expression of the endogenous AtMP have any effect on susceptibility to infection with several viruses, and found that the infectivity of tobacco rattle tobravirus was strongly dependent on the expression of the endogenous AtMP. Finally, we have cloned the endogenous MP from four different plant species into an expression vector that allows for specifically assessing their activity as cell-to-cell movement proteins and have shown that though some may still retain the ancestral activity, they do so in a quite inefficient manner, thus suggesting they have acquired a novel function during adaptation to the host genome.
Collapse
Affiliation(s)
- José L Carrasco
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-UPV, Campus UPV CPI 8E, Ingeniero Fausto Elio s/n, 46022, València, Spain; Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Parc Científic UV, Catedrático Agustín Escardino 9, 46980, Paterna, València, Spain; The Santa Fe Institute,1399 Hyde Park Road, Santa Fe, NM, 87501, USA.
| |
Collapse
|
3
|
Hily J, Demanèche S, Poulicard N, Tannières M, Djennane S, Beuve M, Vigne E, Demangeat G, Komar V, Gertz C, Marmonier A, Hemmer C, Vigneron S, Marais A, Candresse T, Simonet P, Lemaire O. Metagenomic-based impact study of transgenic grapevine rootstock on its associated virome and soil bacteriome. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:208-220. [PMID: 28544449 PMCID: PMC5785345 DOI: 10.1111/pbi.12761] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus-resistant transgenic plants based on the pathogen-derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root-associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.
Collapse
Affiliation(s)
| | - Sandrine Demanèche
- Laboratoire Ampère (CNRS UMR5005), Environmental Microbial GenomicsÉcole Centrale de LyonUniversité de LyonEcullyFrance
| | | | - Mélanie Tannières
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
- Present address:
European Biological Control LaboratoryUSDA‐ARSCampus International de Baillarguet CS 90013 Montferrier‐Sur‐Lez34988Saint Gely‐Du‐Fesc CedexFrance
| | | | - Monique Beuve
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
| | | | | | | | - Claude Gertz
- INRASVQV UMR‐A 1131Université de StrasbourgColmarFrance
| | | | | | | | - Armelle Marais
- UMR 1332 Biologie du Fruit et PathologieINRAUniversité de BordeauxVillenave d'Ornon CedexFrance
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et PathologieINRAUniversité de BordeauxVillenave d'Ornon CedexFrance
| | - Pascal Simonet
- Laboratoire Ampère (CNRS UMR5005), Environmental Microbial GenomicsÉcole Centrale de LyonUniversité de LyonEcullyFrance
| | | |
Collapse
|
4
|
Tepfer M, Jacquemond M, García-Arenal F. A critical evaluation of whether recombination in virus-resistant transgenic plants will lead to the emergence of novel viral diseases. THE NEW PHYTOLOGIST 2015; 207:536-41. [PMID: 25982848 DOI: 10.1111/nph.13358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/10/2015] [Indexed: 05/07/2023]
Abstract
In the evaluation of the potential impacts of first-generation genetically modified (GM) crops, one of the most complex issues has been whether the expression of viral sequences would lead to the emergence of novel viruses, which could occur through recombination between transgene mRNA and that of an infecting non-target virus. Here, we examine this issue, focusing on Cucumber mosaic virus (CMV), which is a particularly pertinent choice, as it is both a major plant pathogen and also the virus with which this question has been studied in the most detail. Using recent results on recombination in CMV, we employ a novel framework giving particular prominence to the formulation of the risk hypothesis and to hypothesis testing via examination of the potential pathway to harm. This allows us to conclude with greater certainty that the likelihood of this potential harm, the emergence of novel viruses, is low.
Collapse
Affiliation(s)
- Mark Tepfer
- INRA UMR1318 Institut Jean-Pierre Bourgin, 78026, Versailles Cedex, France
- INRA UR407 Pathologie Végétale, 84143, Montfavet Cedex, France
| | | | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and ETSI Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
5
|
Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA). Mol Biotechnol 2014; 55:87-100. [PMID: 23381873 DOI: 10.1007/s12033-013-9648-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.
Collapse
|
6
|
Lin KY, Hsu YH, Chen HC, Lin NS. Transgenic resistance to Bamboo mosaic virus by expression of interfering satellite RNA. MOLECULAR PLANT PATHOLOGY 2013; 14:693-707. [PMID: 23675895 PMCID: PMC6638707 DOI: 10.1111/mpp.12040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant genetic engineering has broadened the options for plant virus resistance and is mostly based on pathogen-derived resistance. Previously, we have shown that interfering satellite RNA (satRNA) of Bamboo mosaic virus (satBaMV) greatly reduces Bamboo mosaic virus (BaMV) accumulation and BaMV-induced symptoms in co-inoculated plants. Here, we generated a nonviral source of virus-resistant transgenic Nicotiana benthamiana and Arabidopsis thaliana by introducing interfering satBaMV. Asymptomatic transgenic N. benthamiana lines were highly resistant to BaMV virion and viral RNA infection, and the expression of the transgene BSL6 was higher in asymptomatic than mildly symptomatic lines. In addition, BaMV- and satBaMV-specific small RNAs were detectable only after BaMV challenge, and their levels were associated with genomic viral RNA or satRNA levels. By transcriptomic analysis, the salicylic acid (SA) signalling pathway was not induced in satBaMV transgenic A. thaliana in mock conditions, suggesting that two major antiviral mechanisms, RNA silencing and SA-mediated resistance, are not involved directly in transgenic satBaMV-mediated BaMV interference. In contrast, resistance is associated with the level of the interfering satBaMV transgene. We propose satBaMV-mediated BaMV interference in transgenic plants by competition for replicase with BaMV.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | |
Collapse
|
7
|
Boulila M. Positive selection, molecular recombination structure and phylogenetic reconstruction of members of the family Tombusviridae: Implication in virus taxonomy. Genet Mol Biol 2011; 34:647-60. [PMID: 22215970 PMCID: PMC3229121 DOI: 10.1590/s1415-47572011005000046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/13/2011] [Indexed: 11/22/2022] Open
Abstract
A detailed study of putative recombination events and their evolution frequency in the whole genome of the currently known members of the family Tombusviridae, comprising 79 accessions retrieved from the international databases, was carried out by using the RECCO and RDP version 3.31β algorithms. The first program allowed the detection of potential recombination sites in seven out of eight virus genera (Aureusvirus, Avenavirus, Carmovirus, Dianthovirus, Necrovirus, Panicovirus, and Tombusvirus), the second program provided the same results except for genus Dianthovirus. On the other hand, both methods failed to detect recombination breakpoints in the genome of members of genus Machlomovirus. Furthermore, based on Fisher's Exact Test of Neutrality, positive selection exerted on protein-coding genes was detected in 17 accession pairs involving 15 different lineages. Except genera Machlomovirus, and Panicovirus along with unclassified Tombusviridae, all the other taxonomical genera and the unassigned Tombusviridae encompassed representatives under positive selection. The evolutionary history of all members of the Tombusviridae family showed that they segregated into eight distinct groups corresponding to the eight genera which constitute this family. The inferred phylogeny reshuffled the classification currently adopted by the International Committee on Taxonomy of Viruses. A reclassification was proposed.
Collapse
|
8
|
Abid NBS, Chupin SA, Bjadovskaya OP, Andreeva OG, Aouni M, Buesa J, Baybikov TZ, Prokhvatilova LB. Molecular study of porcine transmissible gastroenteritis virus after serial animal passages revealed point mutations in S protein. Virus Genes 2011; 42:212-9. [PMID: 21188626 PMCID: PMC7089490 DOI: 10.1007/s11262-010-0562-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 12/11/2010] [Indexed: 11/07/2022]
Abstract
Porcine respiratory coronavirus is related genetically to porcine transmissible gastroenteritis virus with a large deletion in S protein. The respiratory virus is a mutated form that may be a consequence of the gastroenteritis virus's evolution. Intensive passages of the virus in its natural host may enhance the appearance of mutations and therefore may contribute to any attenuated form of the virus. The objective of this study was to characterize the porcine transmissible gastroenteritis virus TMK22 strain after passages in piglets from 1992 until 2007. A typical experimental infection, molecular characterization, and serological analysis were also carried out to further characterize and to evaluate any significant difference between strains. The sequence analysis showed two amino acid deletions and loss of an N-glycosylation site in transmissible gastroenteritis virus S protein after passages in piglets. Although these deletions were positioned at the beginning of the antigenic site B of S protein, no clinical differences were observed in piglets infected experimentally either with the native virus or the mutated one. Serological tests did not show any antibody reactivity difference between the two strains. In this article, we report that the S protein deletion did not affect the virus's pathogenicity. The variety of the virus's evolutionary forms may be a result, not only of the multiple passages in natural hosts, but also of other factors, such as different pathogens co-infection, nutrition, immunity, and others. Further studies need to be carried out to characterize the mutated strain.
Collapse
Affiliation(s)
- Nabil Ben Salem Abid
- Laboratory for Diagnosis of Porcine and Bovine Viral Diseases, Federal Centre for Animal Health, FGI ARRIAH, Vladimir, Yur'evets 600901, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
10
|
Thompson JR, Tepfer M. Assessment of the Benefits and Risks for Engineered Virus Resistance. Adv Virus Res 2010; 76:33-56. [DOI: 10.1016/s0065-3527(10)76002-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Abstract
It has been demonstrated that HIV-1 gp120 resembles several important properties of immunoglobulins allowing it strong influence on the human immune system, especially through induction of the deceptive imprinting and deregulation of the immune network. On the other hand there are many unanswered questions concerning properties and control of the genetically modified viruses and bacteria used as vectors in AIDS vaccines. This situation opens a serious question about the safety of vectored AIDS vaccine and the ethics of their trials in humans.
Collapse
Affiliation(s)
- Veljko Veljkovic
- Center for Multidisciplinary Research, Institute of Nuclear Sciences VINCA, Belgrade, Yugoslavia.
| | | | | |
Collapse
|
12
|
Draghici HK, Varrelmann M. Evidence that the linker between the methyltransferase and helicase domains of potato virus X replicase is involved in homologous RNA recombination. J Virol 2009; 83:7761-9. [PMID: 19439477 PMCID: PMC2708637 DOI: 10.1128/jvi.00179-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 05/07/2009] [Indexed: 12/29/2022] Open
Abstract
Recombination in RNA viruses, one of the main factors contributing to their genetic variability and evolution, is a widespread phenomenon. In this study, an in vivo assay to characterize RNA recombination in potato virus X (PVX), under high selection pressure, was established. Agrobacterium tumefaciens was used to express in Nicotiana benthamiana leaf tissue both a PVX isolate labeled with green fluorescent protein (GFP) containing a coat protein deletion mutation (DeltaCP) and a transcript encoding a functional coat protein +3'-ntr. Coexpression of the constructs led to virus movement and systemic infection; reconstituted recombinants were observed in 92% of inoculated plants. Similar results were obtained using particle bombardment, demonstrating that recombination mediated by A. tumefaciens was not responsible for the occurrence of PXC recombinants. The speed of recombination could be estimated by agroinfection of two PVX mutants lacking the 3' and 5' halves of the genome, respectively, with an overlap in the triple gene block 1 gene, allowing GFP expression only in the case of recombination. Ten different pentapeptide insertion scanning replicase mutants with replication abilities comparable to wild-type virus were applied in the different recombination assays. Two neighboring mutants affecting the linker between the methyltransferase and helicase domains were shown to be strongly debilitated in their ability to recombine. The possible functional separation of replication and recombination in the replicase molecule supports the model that RNA recombination represents a distinct function of this protein, although the underlying mechanism still needs to be investigated.
Collapse
Affiliation(s)
- Heidrun-Katharina Draghici
- Department of Crop Sciences, Section Plant Virology, University of Göttingen, Grisebachstrasse 6, D-37077 Göttingen, Germany
| | | |
Collapse
|
13
|
Anne Ingeborg Myhr, Terje Traavik. The Precautionary Principle Applied to Deliberate Release of Genetically Modified Organisms (GMOs). MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106099435790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Ho MW. Hazards of transgenic plants containing the cauliflower mosaic viral promoter: Authors' reply to critiques of "The Cauliflower Mosaic Viral Promoter - a Recipe for Disaster?". MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106000435536-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mae-Wan Ho
- Biology Department, Open University, Walton Hall, Milton Kenyes, UK
| |
Collapse
|
15
|
Boulila M. Recombination structure and genetic relatedness among members of the family Bromoviridae based on their RNAs 1 and 2 sequence analyses. Virus Genes 2009; 38:435-44. [DOI: 10.1007/s11262-009-0340-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 02/12/2009] [Indexed: 12/01/2022]
|
16
|
Lemaux PG. Genetically engineered plants and foods: a scientist's analysis of the issues (part II). ANNUAL REVIEW OF PLANT BIOLOGY 2009; 60:511-59. [PMID: 19400729 DOI: 10.1146/annurev.arplant.043008.092013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic engineering provides a means to introduce genes into plants via mechanisms that are different in some respects from classical breeding. A number of commercialized, genetically engineered (GE) varieties, most notably canola, cotton, maize and soybean, were created using this technology, and at present the traits introduced are herbicide and/or pest tolerance. In 2007 these GE crops were planted in developed and developing countries on more than 280 million acres (113 million hectares) worldwide, representing nearly 10% of rainfed cropland. Although the United States leads the world in acres planted with GE crops, the majority of this planting is on large acreage farms. In developing countries, adopters are mostly small and resource-poor farmers. For farmers and many consumers worldwide, planting and eating GE crops and products made from them are acceptable and even welcomed; for others GE crops raise food and environmental safety questions, as well as economic and social issues. In Part I of this review, some general and food issues related to GE crops and foods were discussed. In Part II, issues related to certain environmental and socioeconomic aspects of GE crops and foods are addressed, with responses linked to the scientific literature.
Collapse
Affiliation(s)
- Peggy G Lemaux
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
17
|
Nickel H, Kawchuk L, Twyman RM, Zimmermann S, Junghans H, Winter S, Fischer R, Prüfer D. Plantibody-mediated inhibition of the Potato leafroll virus P1 protein reduces virus accumulation. Virus Res 2008; 136:140-5. [PMID: 18573562 DOI: 10.1016/j.virusres.2008.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/29/2008] [Accepted: 05/05/2008] [Indexed: 11/17/2022]
Abstract
The P1 protein of Potato leafroll virus (PLRV) is thought to play a major role in the replication cycle by promoting the maturation of the genome-linked virion protein VPg. To study the relevance of P1 and its autoproteolytic derivative P1-C25 in the viral life cycle, the V H and V L domains of monoclonal antibody mAbP1-1, raised against the C-terminus of P1, were used to develop a single chain variable fragment antibody scFvP1-1 for expression in plants. The transient expression of scFvP1-1 in tobacco (Nicotiana tabacum) strongly reduced virus accumulation, while transgenic potato (Solanum tuberosum) plants expressing scFvP1-1 showed high levels of resistance following PLRV inoculation by viruliferous aphids. This is the first report that conclusively demonstrates that a PLRV gene product is essential for the completion of the virus life cycle in vivo without genetic alteration of the viral genome. This is also the first time plantibody-mediated resistance has been demonstrated with a luteovirus.
Collapse
Affiliation(s)
- Holger Nickel
- Fraunhofer Institute for Molecular Biotechnology and Applied Ecology (IME), Forckenbeckstrasse 6, 52074 Aachen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lei W, Fang R, Zhang G, Chen X, Zhang X. Recombination with coat protein transgene in a complementation system based onCucumber mosaic virus (CMV). SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 44:263-73. [PMID: 18726406 DOI: 10.1007/bf02879333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Indexed: 10/22/2022]
Abstract
In order to study the feasibility ofCucumber mosaic virus (CMV) as an expression vector, the full-length cDNA of RNA 3 from strain SD was cloned and the sequence around the start codon of the coat protein (CP) gene was modified to create anNsi I site for insertion of foreign genes. The CP gene was replaced by the green fluorescent protein (GFP) gene. The cDNAs of Fny RNAs 1 and 2 and the chimeric SD RNA 3 were cloned between the modified 35S promoter and terminator. Tobacco protoplasts were transfected with a mixture of the viral cDNAs containing 35S promoter and terminator as a replacement vector and expressed GFP. A complementation system was established when the replacement vector was inoculated onto the transgenic tobacco plants expressing SD-CMV CP. GFP was detected in the inoculated leaves in 5 of 18 tested plants and in the first upper systemic leaf of one of the 5 plants ten days after inoculation. However, no GFP could be detected in all the plants one month after inoculation. Recombination between the CMV vector and the CP transgene was proved by retro-transcriptional polymerase chain reaction (RT-PCR) and verified by DNA sequencing. Our results argue against the feasibility of the CMV-based replacement vector trans-complemented by the CP transgene, and at the same time, enlighten ways to improve the CMV-based expression vector and the biosafety of CMV CP-mediated virus resistant transgenic plants.
Collapse
Affiliation(s)
- W Lei
- Laboratory of Plant Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, 100080, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Shi BJ, Symons RH, Palukaitis P. The cucumovirus 2b gene drives selection of inter-viral recombinants affecting the crossover site, the acceptor RNA and the rate of selection. Nucleic Acids Res 2007; 36:1057-71. [PMID: 18086712 PMCID: PMC2275080 DOI: 10.1093/nar/gkm1036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RNA–RNA recombination is an important pathway in virus evolution and has been described for many viruses. However, the factors driving recombination or promoting the selection of recombinants are still unclear. Here, we show that the small movement protein (2b) was able to promote selection of RNA 1/2–RNA 3 recombinants within a chimeric virus having RNAs 1 and 2 from cucumber mosaic virus, and RNA 3 from the related tomato aspermy virus, along with heterologous 2b genes. The source of the 2b also determined the selection of the acceptor RNA and the crossover site, as well as affecting the rate of selection of the recombinant RNAs. The nature of the RNA 3 also influenced the selection of the recombinant RNAs. A 163-nt tandem repeat in RNA 3 significantly affected the rate of selection of the recombinant RNA, while a single nucleotide within the repeat affected the crossover site. The recombination occurred in a non-random manner, involved no intermediates and probably was generated via a copy-choice mechanism during (+) strand RNA synthesis.
Collapse
Affiliation(s)
- Bu-Jun Shi
- Australian Centre for Plant Functional Genomics, University of Adelaide, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA 5064, Australia.
| | | | | |
Collapse
|
20
|
Jaag HM, Stork J, Nagy PD. Host transcription factor Rpb11p affects tombusvirus replication and recombination via regulating the accumulation of viral replication proteins. Virology 2007; 368:388-404. [PMID: 17689583 DOI: 10.1016/j.virol.2007.07.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 06/07/2007] [Accepted: 07/02/2007] [Indexed: 10/23/2022]
Abstract
Previous genome-wide screens identified over 100 host genes whose deletion/down-regulation affected tombusvirus replication and 32 host genes that affected tombusvirus RNA recombination in yeast, a model host for replication of Tomato bushy stunt virus (TBSV). Down-regulation of several of the identified host genes affected the accumulation levels of p33 and p92(pol) replication proteins, raising the possibility that these host factors could be involved in the regulation of the amount of viral replication proteins and, thus, they are indirectly involved in TBSV replication and recombination. To test this model, we developed a tightly regulated expression system for recombinant p33 and p92(pol) replication proteins in yeast. We demonstrate that high accumulation level of p33 facilitated efficient viral RNA replication, while the effect of p33 level on RNA recombination was less pronounced. On the other hand, high level of p92(pol) accumulation promoted TBSV RNA recombination more efficiently than RNA replication. As predicted, Rpb11p, which is part of the polII complex, affected the accumulation levels of p33 and p92(pol) as well as altered RNA replication and recombination. An in vitro assay with the tombusvirus replicase further supported that Rpb11p affects TBSV replication and recombination only indirectly, via regulating p33 and p92(pol) levels. In contrast, the mechanism by which Rpt4p endopeptidase/ATPase and Mps1p threonine/tyrosine kinase affect TBSV recombination is different from that proposed for Rpb11p. We propose a model that the concentration (molecular crowding) of replication proteins within the viral replicase is a factor affecting viral replication and recombination.
Collapse
Affiliation(s)
- Hannah M Jaag
- Department of Plant Pathology, University of Kentucky, Plant Science Building, Lexington, KY 40546, USA
| | | | | |
Collapse
|
21
|
INOSE TOMOKO, MURATA KOUSAKU. Enhanced accumulation of toxic compound in yeast cells having high glycolytic activity: a case study on the safety of genetically engineered yeast. Int J Food Sci Technol 2007. [DOI: 10.1111/j.1365-2621.1995.tb01365.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Dietrich C, Miller J, McKenzie G, Palkovics L, Balázs E, Palukaitis P, Maiss E. No recombination detected in artificial potyvirus mixed infections and between potyvirus derived transgenes and heterologous challenging potyviruses. ENVIRONMENTAL BIOSAFETY RESEARCH 2007; 6:207-18. [PMID: 18001687 DOI: 10.1051/ebr:2007042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Risk-assessment studies of virus-resistant transgenic plants (VRTPs) focussing on recombination of a plant virus with a transgenic sequence of a different virus should include a comparison of recombination frequencies between viruses in double-infected non-transgenic plants with those observed in singly infected transgenic plants to estimate recombination incidence in VRTPs. In this study, the occurrence of recombination events was investigated in non-transgenic plants double-infected with two different potyviruses, as well as in potyviral genomes in singly infected transgenic plants expressing potyvirus sequences. Different potyviruses, namely Potato virus A (PVA), Tobacco vein mottling virus (TVMV), two strains of Potato virus Y (PVY-O, PVY-H) and two strains of Plum pox virus (PPV-NAT, PPV-SK68), were used in three combinations for double infection of a common host. Furthermore, transgenic plants expressing either potyviral coat protein (CP), helicase (CI) or polymerase (NIb) coding sequences (PPV-NAT-CP, PVY-CI, PVY-NIb) were singly-infected with a heterologous potyvirus, which was not targeted by the respective transgenic resistance. To identify recombinant potyviral sequences, a sensitive RT-PCR was developed to detect up to one recombinant molecule out of 10(6) parental molecules. In 304 mixed infected non-transgenic plants, 92 mixed and 164 single infected transgenic plants screened for recombinant sequences no recombinant potyviral sequence was found. These results indicate that recombination events between different potyviruses in mixed infections and between a potyvirus infecting a potyvirus-resistant transgenic plant are likely to be very infrequent.
Collapse
Affiliation(s)
- Christof Dietrich
- German Collection of Microorganisms and Cell Cultures, Plant Virus Division, Inhoffenstrasse 7b, 38124 Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Capote N, Pérez-Panadés J, Monzó C, Carbonell E, Urbaneja A, Scorza R, Ravelonandro M, Cambra M. Assessment of the diversity and dynamics of Plum pox virus and aphid populations in transgenic European plums under Mediterranean conditions. Transgenic Res 2007; 17:367-77. [PMID: 17605085 DOI: 10.1007/s11248-007-9112-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 06/01/2007] [Indexed: 11/30/2022]
Abstract
The molecular variability of Plum pox virus (PPV) populations was compared in transgenic European plums (Prunus domestica L.) carrying the coat protein (CP) gene of PPV and non-transgenic plums in an experimental orchard in Valencia, Spain. A major objective of this study was to detect recombination between PPV CP transgene transcripts and infecting PPV RNA. Additionally, we assessed the number and species of PPV aphid vectors that visited transgenic and non-transgenic plum trees. Test trees consisted of five different P. domestica transgenic lines, i.e. the PPV-resistant C5 'HoneySweet' line and the PPV-susceptible C4, C6, PT6 and PT23 lines, and non-transgenic P. domestica and P. salicina Lind trees. No significant difference in the genetic diversity of PPV populations infecting transgenic and conventional plums was detected, in particular no recombinant between transgene transcripts and incoming viral RNA was found at detectable levels. Also, no significant difference was detected in aphid populations, including viruliferous individuals, that visited transgenic and conventional plums. Our data indicate that PPV-CP transgenic European plums exposed to natural PPV infection over an 8 year period caused limited, if any, risk beyond the cultivation of conventional plums under Mediterranean conditions in terms of the emergence of recombinant PPV and diversity of PPV and aphid populations.
Collapse
Affiliation(s)
- Nieves Capote
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 5, 46113 Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Maori E, Tanne E, Sela I. Reciprocal sequence exchange between non-retro viruses and hosts leading to the appearance of new host phenotypes. Virology 2007; 362:342-9. [PMID: 17275871 DOI: 10.1016/j.virol.2006.11.038] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/15/2006] [Accepted: 11/22/2006] [Indexed: 11/23/2022]
Abstract
Divergence among individuals of the same species may be linked to positional retrotransposition into different loci in different individuals. Here we add to recent reports indicating that individual variance occurs due to the integration of non-retroviral (potyviral) RNAs into the host genome via RNA recombination followed by retrotransposition. We report that in bees (Apis mellifera), approximately 30% of all tested populations carry a segment of a dicistrovirus in their genome and have thus become virus-resistant. Reciprocally, segments of host sequences have been found within defective-interfering-like sequences of a dicistrovirus. Similarly, host sequences were found fused to potyviral sequences, previously described integrated into their host genome. A potential, continuous RNA exchange leading to divergence is discussed.
Collapse
Affiliation(s)
- Eyal Maori
- Virus Laboratory, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot 76100, Israel.
| | | | | |
Collapse
|
25
|
Chung BN, Canto T, Palukaitis P. Stability of recombinant plant viruses containing genes of unrelated plant viruses. J Gen Virol 2007; 88:1347-1355. [PMID: 17374781 DOI: 10.1099/vir.0.82477-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stability of hybrid plant viruses that might arise by recombination in transgenic plants was examined using hybrid viruses derived from the viral expression vectors potato virus X (PVX) and tobacco rattle virus (TRV). The potato virus Y (PVY) NIb and HCPro open reading frames (ORFs) were introduced into PVX to generate PVX-NIb and PVX-HCPro, while the PVY NIb ORF was introduced into a vector derived from TRV RNA2 to generate TRV-NIb. All three viruses were unstable and most of the progeny viruses had lost the inserted sequences between 2 and 4 weeks post-inoculation. There was some variation in the rate of loss of part or all of the inserted sequence and the number of plants containing the deleted viruses, depending on the sequence, the host (Nicotiana tabacum vs Nicotiana benthamiana) or the vector, although none of these factors was associated consistently with the preferential loss of the inserted sequences. PVX-NIb was unable to accumulate in NIb-transgenic tobacco resistant to infection by PVY and also showed loss of the NIb insert from PVX-NIb in some NIb-transgenic tobacco plants susceptible to infection by PVY. These data indicate that such hybrid viruses, formed in resistant transgenic plants from a transgene and an unrelated virus, would be at a selective disadvantage, first by being targeted by the resistance mechanism and second by not being competitive with the parental virus.
Collapse
Affiliation(s)
- Bong-Nam Chung
- National Horticultural Research Institute, Rural Development Administration, 475 Imok-Dong, Suwon 440-310, Korea
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Tomas Canto
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
26
|
Fuchs M, Gonsalves D. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:173-202. [PMID: 17408355 DOI: 10.1146/annurev.phyto.45.062806.094434] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Potential safety issues have been raised with the development and release of virus-resistant transgenic plants. This review focuses on safety assessment with a special emphasis on crops that have been commercialized or extensively tested in the field such as squash, papaya, plum, grape, and sugar beet. We discuss topics commonly perceived to be of concern to the environment and to human health--heteroencapsidation, recombination, synergism, gene flow, impact on nontarget organisms, and food safety in terms of allergenicity. The wealth of field observations and experimental data is critically evaluated to draw inferences on the most relevant issues. We also express inside views on the safety and benefits of virus-resistant transgenic plants, and recommend realistic risk assessment approaches to assist their timely deregulation and release.
Collapse
Affiliation(s)
- Marc Fuchs
- Department of Plant Pathology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | | |
Collapse
|
27
|
Moury B, Desbiez C, Jacquemond M, Lecoq H. Genetic diversity of plant virus populations: towards hypothesis testing in molecular epidemiology. Adv Virus Res 2006; 67:49-87. [PMID: 17027677 DOI: 10.1016/s0065-3527(06)67002-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Moury
- INRA Avignon, Station de Pathologie Végétale, Domaine St Maurice BP94 84143 Montfavet cedex, France
| | | | | | | |
Collapse
|
28
|
Deng M, Schneider WL, Allison RF. Synthesis of minus-strand copies of a viral transgene during viral infections of transgenic plants. Virus Res 2006; 122:171-4. [PMID: 16965831 DOI: 10.1016/j.virusres.2006.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/26/2006] [Accepted: 05/31/2006] [Indexed: 10/24/2022]
Abstract
Viral transgenes designed to provide resistance to specific plant viruses frequently consist of the coat protein gene and a contiguous 3' untranslated region (3'UTR) of viral origin. In many RNA viruses the viral 3'UTR establishes a recognition and initiation site for viral RNA replication. Thus the transgenic transcript may contain a functional virus replication site. Experiments were designed to determine if a challenging virus would recognize this replication site on a nuclear derived transcript and synthesize the complementary RNA. These data demonstrate that upon infection by a virus that recognizes the viral replication site, a full-length complement of the transgenic transcript is produced. In these experiments the replication complex of Brome Mosaic bromovirus recognized the transgenic transcript derived from a Cowpea Chlorotic Mottle bromovirus transgene. The resulting RNA may contribute to RNA recombination events.
Collapse
Affiliation(s)
- Min Deng
- Department of Plant Biology and Department of Plant Pathology, Plant Biology Building, Michigan State University, East Lansing, MI 48824-1312, USA.
| | | | | |
Collapse
|
29
|
Chare ER, Holmes EC. A phylogenetic survey of recombination frequency in plant RNA viruses. Arch Virol 2005; 151:933-46. [PMID: 16292597 DOI: 10.1007/s00705-005-0675-x] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 10/04/2005] [Indexed: 11/27/2022]
Abstract
The severe economic consequences of emerging plant viruses highlights the importance of studies of plant virus evolution. One question of particular relevance is the extent to which the genomes of plant viruses are shaped by recombination. To this end we conducted a phylogenetic survey of recombination frequency in a wide range of positive-sense RNA plant viruses, utilizing 975 capsid gene sequences and 157 complete genome sequences. In total, 12 of the 36 RNA virus species analyzed showed evidence for recombination, comprising 17% of the capsid gene sequence alignments and 44% of the genome sequence alignments. Given the conservative nature of our analysis, we propose that recombination is a relatively common process in some plant RNA viruses, most notably the potyviruses.
Collapse
Affiliation(s)
- E R Chare
- Department of Zoology, University of Oxford, Oxford, UK
| | | |
Collapse
|
30
|
Asano M, Satoh R, Mochizuki A, Tsuda S, Yamanaka T, Nishiguchi M, Hirai K, Meshi T, Naito S, Ishikawa M. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes. FEBS Lett 2005; 579:4479-84. [PMID: 16081069 DOI: 10.1016/j.febslet.2005.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/05/2005] [Accepted: 07/14/2005] [Indexed: 11/23/2022]
Abstract
Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.
Collapse
Affiliation(s)
- Momoko Asano
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alejska M, Figlerowicz M, Malinowska N, Urbanowicz A, Figlerowicz M. A universal BMV-based RNA recombination system--how to search for general rules in RNA recombination. Nucleic Acids Res 2005; 33:e105. [PMID: 16002784 PMCID: PMC1174899 DOI: 10.1093/nar/gni106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At present, there is no doubt that RNA recombination is one of the major factors responsible for the generation of new RNA viruses and retroviruses. Numerous experimental systems have been created to investigate this complex phenomenon. Consequently, specific RNA structural motifs mediating recombination have been identified in several viruses. Unfortunately, up till now a unified model of genetic RNA recombination has not been formulated, mainly due to difficulties with the direct comparison of data obtained for different RNA-based viruses. To solve this problem, we have attempted to construct a universal system in which the recombination activity of various RNA sequences could be tested. To this end, we have used brome mosaic virus, a model (+)RNA virus of plants, for which the structural requirements of RNA recombination are well defined. The effectiveness of the new homomolecular system has been proven in an experiment involving two RNA sequences derived from the hepatitis C virus genome. In addition, comparison of the data obtained with the homomolecular system with those generated earlier using the heteromolecular one has provided new evidence that the mechanisms of homologous and non-homologous recombination are different and depend on the virus' mode of replication.
Collapse
Affiliation(s)
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, University of Medical SciencesSzpitalna 27/33, 60-572 Poznań, Poland
| | | | | | - Marek Figlerowicz
- To whom correspondence should be addressed. Tel: +48 61 8528503; Fax: +48 61 8520532;
| |
Collapse
|
32
|
Vigne E, Komar V, Fuchs M. Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fanleaf virus. Transgenic Res 2005; 13:165-79. [PMID: 15198204 DOI: 10.1023/b:trag.0000026075.79097.c9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major environmental safety issues over transgenic crops containing virus-derived genes relates to the outcome of recombination events between viral transgene transcripts and RNAs from indigenous virus populations. We addressed this issue by assessing the emergence of viable Grapevine fanleaf virus (GFLV) recombinants in transgenic grapevines expressing the GFLV coat protein (CP) gene. Test plants consisted of nontransgenic scions grafted onto transgenic and nontransgenic rootstocks that were exposed over 3 years to nematode-mediated GFLV infection in two distinct vineyard sites. The CP gene of challenging GFLV isolates was amplified from scions by IC-RT-PCR, and characterized by RFLP and nucleotide sequencing using strain F13 as reference since it provided the CP transgene. Analysis of EcoRI and StyI RFLP banding patterns from 347 challenging GFLV isolates and sequence data from 85 variants revealed no characteristics similar to strain F13 and no difference in the molecular variability among isolates from 190 transgenic and 157 nontransgenic plants, or from plants within (253 individuals) or outside (94 individuals) of the two sites. Interestingly, five GFLV recombinants were identified in three nontransgenic plants located outside of the two field settings. This survey indicates that transgenic grapevines did not assist the emergence of viable GFLV recombinants to detectable levels nor did they affect the molecular diversity of indigenous GFLV populations during the trial period. This is the first report on safety assessment of recombination with a transgenic crop expressing a CP gene under field conditions of heavy disease pressure but low, if any, selection pressure against recombinant viruses.
Collapse
Affiliation(s)
- Emmanuelle Vigne
- Laboratoire de Virologie, Institut National de la Recherche Agronomique, Unité Mixte de Recherche Vigne et Vins d'Alsace, 28 rue de Herrlisheim, 68021 Colmar, France
| | | | | |
Collapse
|
33
|
Manske U, Schiemann J. Development and assessment of a potato virus X-based expression system with improved biosafety. ENVIRONMENTAL BIOSAFETY RESEARCH 2005; 4:45-57. [PMID: 16209135 DOI: 10.1051/ebr:2005011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Over the last decade, plant virus-based vectors have been developed and successfully exploited for high-yield production of heterologous proteins in plants. However, widespread application of recombinant viruses raises concerns about possible risks to the environment. One of the primary safety issues that must be considered is the uncontrolled spread of the genetically engineered virus from experimental plants to susceptible weeds or crops. Using a movement-deficient Potato virus X (PVX)-based transient gene expression vector which harbors the beta-glucuronidase (gus) gene, we established a plant viral expression system that provides containment of the recombinant virus and allows for safe and efficient protein production. By deletion of the viral 25k movement protein gene, systemic spread of the modified virus in non-transgenic Nicotiana benthamiana plants was successfully inhibited. In transgenic N. benthamiana plants expressing the 25K viral movement protein, this deficiency was complemented, thus resulting in systemic infection with the movement-deficient virus. While no differences in virus spread and accumulation were observed compared to infection caused by wild-type PVX in non-transgenic plants, the movement protein transgenic plants exhibited none of the normal symptoms of viral infection. Several biosafety aspects were investigated including the potential for recombination between the defective virus and the movement protein transgene, as well as complementation effects in non-transgenic plants doubly infected with the defective and the wild-type virus. Furthermore, the applicability of the safety system for the production of heterologous proteins was evaluated with gus as a model gene. With respect to the stability of the gus insert and the expression level of the GUS protein, there were no differences between the novel system developed and the conventional PVX-based expression system.
Collapse
Affiliation(s)
- Ulrike Manske
- Federal Biological Research Center for Agriculture and Forestry, Institute for Plant Virology, Microbiology and Biosafety, Messeweg 11-12, D-38104 Braunschweig, Germany
| | | |
Collapse
|
34
|
Wierzchoslawski R, Dzianott A, Bujarski J. Dissecting the requirement for subgenomic promoter sequences by RNA recombination of brome mosaic virus in vivo: evidence for functional separation of transcription and recombination. J Virol 2004; 78:8552-64. [PMID: 15280464 PMCID: PMC479100 DOI: 10.1128/jvi.78.16.8552-8564.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previously, we and others mapped an increased homologous recombination activity within the subgenomic promoter (sgp) region in brome mosaic virus (BMV) RNA3. In order to correlate sgp-mediated recombination and transcription, in the present work we used BMV RNA3 constructs that carried altered sgp repeats. We observed that the removal or extension of the poly(U) tract reduced or increased recombination, respectively. Deletion of the sgp core hairpin or its replacement by a different stem-loop structure inhibited recombination activity. Nucleotide substitutions at the +1 or +2 transcription initiation position reduced recombination. The sgp core alone supported only basal recombination activity. The sites of crossovers mapped to the poly(U) region and to the core hairpin. The observed effects on recombination did not parallel those observed for transcription. To explain how both activities operate within the sgp sequence, we propose a dual mechanism whereby recombination is primed at the poly(U) tract by the predetached nascent plus strand, whereas transcription is initiated de novo at the sgp core.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, Montgomery Hall, De Kalb, IL 60115, USA
| | | | | |
Collapse
|
35
|
Figlerowicz M, Alejska M, Kurzyńska‐Kokorniak A, Figlerowicz M. Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections. Med Res Rev 2003; 23:488-518. [PMID: 12710021 PMCID: PMC7168509 DOI: 10.1002/med.10045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite extraordinary progress that has recently been made in biomedical sciences, viral infectious diseases still remain one of the most serious world health problems. Among the different types of viruses, those using RNA as their genetic material (RNA viruses and retroviruses) are especially dangerous. At present there is no medicine allowing an effective treatment of RNA-based virus infections. Many RNA viruses and retroviruses need only a few weeks to escape immune response or to produce drug-resistant mutants. This seems to be the obvious consequence of the unusual genetic variability of RNA-based viruses. An individual virus does not form a homogenous population but rather a set of similar but not identical variants. In consequence, RNA-based viruses can easily adapt to environmental changes, also those resulting from immune system response or therapy. The modifications identified within viral genes can be divided into two groups: point mutations and complex genome rearrangements. The former arises mainly during error-prone replication, whereas RNA recombination and generic reassortment are responsible for the latter. This article shortly describes major strategies used to control virus infections. Then, it presents the various mechanisms generating the genetic diversity of RNA-based viruses, which are most probably the main cause of clinical problems.
Collapse
Affiliation(s)
| | - Magdalena Alejska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Anna Kurzyńska‐Kokorniak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| |
Collapse
|
36
|
Wierzchoslawski R, Dzianott A, Kunimalayan S, Bujarski JJ. A transcriptionally active subgenomic promoter supports homologous crossovers in a plus-strand RNA virus. J Virol 2003; 77:6769-76. [PMID: 12767997 PMCID: PMC156210 DOI: 10.1128/jvi.77.12.6769-6776.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic RNA recombination plays an important role in viral evolution, but its molecular mechanism is not well understood. In this work we describe homologous RNA recombination activity that is supported by a subgenomic promoter (sgp) region in the RNA3 segment of brome mosaic bromovirus (BMV), a tripartite plus-strand RNA virus. The crossover frequencies were determined by coinoculations with pairs of BMV RNA3 variants that carried a duplicated sgp region flanked by marker restriction sites. A region composed of the sgp core, a poly(A) tract, and an upstream enhancer supported homologous exchanges in 25% of the analyzed RNA3 progeny. However, mutations in the sgp core stopped both the transcription of the sgp RNA and homologous recombination. These data provide evidence for an association of RNA recombination with transcription.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, De Kalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
37
|
Abstract
To obtain virus-resistant host plants, a range of operational strategies can be followed nowadays. While for decades plant breeders have been able to introduce natural resistance genes in susceptible genotypes without knowing precisely what these resistance traits were, currently a growing number of (mostly) dominant resistance genes have been cloned and analyzed. This has led not only to a better understanding of the plant's natural defence systems, but also opened the way to use these genes beyond species borders. Besides using natural resistance traits, also several novel, "engineered" forms of virus resistance have been developed over the past 15 years. The first successes were obtained embarking from the principle of pathogen-derived resistance (PDR) by transforming host plants with viral genes or sequences with the purpose to block a specific step during virus multiplication in the plant. As an unforeseen spin-off of these investments, the phenomenon of post-translational gene silencing (PTGS) was discovered, which to date is by far the most successful way to engineer resistance. It is generally believed that PTGS reflects a natural defence system of the plant, and part of the hypothesized components required for PTGS have been identified. As counteracting strategy, and confirming PTGS to be a natural phenomenon, a considerable number of viruses have acquired gene functions by which they can suppress PTGS. In addition to PDR and PTGS, further strategies for engineered virus resistance have been explored, including the use of pokeweed antiviral protein (PAP), 2',5'-oligoadenylate synthetase and "plantibodies". This paper will give a brief overview of the major strategies that have become operational during the past 10 years.
Collapse
Affiliation(s)
- Rob Goldbach
- Laboratory of Virology, Wageningen University, Binnenhaven 11, PD-6709 Wageningen, The Netherlands.
| | | | | |
Collapse
|
38
|
Nodari RO, Guerra MP. Plantas transgênicas e seus produtos: impactos, riscos e segurança alimentar (Biossegurança de plantas transgênicas). REV NUTR 2003. [DOI: 10.1590/s1415-52732003000100011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Este trabalho aborda tópicos relacionados com plantas transgênicas, também chamadas de Organismos Geneticamente Modificados, alimentos derivados delas e segurança alimentar. As biotecnologias modernas são ferramentas de grande potencial de reprogramação dos seres vivos. Contudo, o maior problema na análise de risco destes organismos gerados pela biotecnologia é que seus efeitos não podem ser previstos em sua totalidade. Os riscos à saúde humana incluem aqueles inesperados, alergias, toxicidade e intolerância. No ambiente, as conseqüências são a transferência lateral de genes, a poluição genética e os efeitos prejudiciais a organismos não-alvo. O princípio da equivalência substancial, até agora utilizado, deveria ser abandonado em favor de um cientificamente embasado. Com a aprovação em janeiro de 2002 do Protocolo Internacional de Biossegurança, o princípio da precaução foi estabelecido como básico e a rotulagem tornou-se obrigatória. A percepção pública obriga empresas e cientistas a um maior uso da ciência na análise de risco antes do consumo destes alimentos.
Collapse
|
39
|
Lin HX, Rubio L, Smythe A, Jiminez M, Falk BW. Genetic diversity and biological variation among California isolates of Cucumber mosaic virus. J Gen Virol 2003; 84:249-258. [PMID: 12533721 DOI: 10.1099/vir.0.18673-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity and biological variation were compared for California isolates of Cucumber mosaic virus (CMV). These fell into five pathotypes based on their reactions on three cucurbits including a susceptible squash, a melon with conventional resistance and a commercial CMV-resistant transgenic squash. Thirty-three isolates infected and caused symptoms on CMV-resistant transgenic squash. Forty-two isolates infected the CMV-resistant melon, but only 25 isolates infected both. Single-strand conformation polymorphism (SSCP) analysis was used to differentiate 81 California isolates into 14 groups, and the coat protein (CP) genes of 27 isolates with distinct and indistinguishable SSCP patterns were sequenced. Fourteen isolates corresponding to the different SSCP patterns were also used for phylogenetic analysis. Seventy-nine isolates belonged to CMV subgroup IA, but two belonged to CMV subgroup IB. This is the first report of subgroup IB isolates in the Americas. All CMV isolates had a nucleotide identity greater than or equal to 93.24 %. There was no correlation between CP gene variation and geographical origin, collection year, original host plant, or between the degree of CP amino acid sequence identity and the capacity to overcome transgenic and/or conventional resistance. SSCP and sequence analyses were used to compare 33 CMV isolates on CMV-resistant transgenic squash and susceptible pumpkin plants. One isolate showed sequence differences between these two hosts, but this was not due to recombination or selection pressure of transgenic resistance. CMV isolates capable of infecting cucurbits with conventional and transgenic CMV resistance were present in California, even before CMV transgenic material was available.
Collapse
Affiliation(s)
- Han-Xin Lin
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Luis Rubio
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Ashleigh Smythe
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Manuel Jiminez
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bryce W Falk
- Department of Plant Pathology, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
40
|
Abstract
Virus-resistant transgenic plants (VRTPs) hold the promise of enormous benefit for agriculture. However, over the past ten years, questions concerning the potential ecological impact of VRTPs have been raised. In some cases, detailed study of the mode of action of the resistance gene has made it possible to eliminate the source of potential risk, notably the possible effects of heterologous encapsidation on the transmission of viruses by their vectors. In other cases, the means of eliminating likely sources of risk have not yet been developed. When such residual risk still exists, the potential risks associated with the VRTP must be compared with those associated with nontransgenic plants so that risk assessment can fully play its role as part of an overall analysis of the advantages and disadvantages of practicable solutions to the problem solved by the VRTP.
Collapse
Affiliation(s)
- Mark Tepfer
- Laboratoire de Biologie Cellulaire, INRA-Versailles, F-78026 Versailles cedex, France.
| |
Collapse
|
41
|
Abstract
Plant diseases are a major threat to the world food supply, as up to 15% of production is lost to pathogens. In the past, disease control and the generation of resistant plant lines protected against viral, bacterial or fungal pathogens, was achieved using conventional breeding based on crossings, mutant screenings and backcrossing. Many approaches in this field have failed or the resistance obtained has been rapidly broken by the pathogens. Recent advances in molecular biotechnology have made it possible to obtain and to modify genes that are useful for generating disease resistant crops. Several strategies, including expression of pathogen-derived sequences or anti-pathogenic agents, have been developed to engineer improved pathogen resistance in transgenic plants. Antibody-based resistance is a novel strategy for generating transgenic plants resistant to pathogens. Decades ago it was shown that polyclonal and monoclonal antibodies can neutralize viruses, bacteria and selected fungi. This approach has been improved recently by the development of recombinant antibodies (rAbs). Crop resistance can be engineered by the expression of pathogen-specific antibodies, antibody fragments or antibody fusion proteins. The advantages of this approach are that rAbs can be engineered against almost any target molecule, and it has been demonstrated that expression of functional pathogen-specific rAbs in plants confers effective pathogen protection. The efficacy of antibody-based resistance was first shown for plant viruses and its application to other plant pathogens is becoming more established. However, successful use of antibodies to generate plant pathogen resistance relies on appropriate target selection, careful antibody design, efficient antibody expression, stability and targeting to appropriate cellular compartments.
Collapse
Affiliation(s)
- S Schillberg
- FraunhoferAbteilung für Molekulare Biotechnologie, IUCT, Grafschaft, Schmallenberg, Germany.
| | | | | | | |
Collapse
|
42
|
García-Arenal F, Fraile A, Malpica JM. Variability and genetic structure of plant virus populations. ANNUAL REVIEW OF PHYTOPATHOLOGY 2001; 39:157-86. [PMID: 11701863 DOI: 10.1146/annurev.phyto.39.1.157] [Citation(s) in RCA: 374] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Populations of plant viruses, like all other living beings, are genetically heterogeneous, a property long recognized in plant virology. Only recently have the processes resulting in genetic variation and diversity in virus populations and genetic structure been analyzed quantitatively. The subject of this review is the analysis of genetic variation, its quantification in plant virus populations, and what factors and processes determine the genetic structure of these populations and its temporal change. The high potential for genetic variation in plant viruses, through either mutation or genetic exchange by recombination or reassortment of genomic segments, need not necessarily result in high diversity of virus populations. Selection by factors such as the interaction of the virus with host plants and vectors and random genetic drift may in fact reduce genetic diversity in populations. There is evidence that negative selection results in virus-encoded proteins being not more variable than those of their hosts and vectors. Evidence suggests that small population diversity, and genetic stability, is the rule. Populations of plant viruses often consist of a few genetic variants and many infrequent variants. Their distribution may provide evidence of a population that is undifferentiated, differentiated by factors such as location, host plant, or time, or that fluctuates randomly in composition, depending on the virus.
Collapse
Affiliation(s)
- F García-Arenal
- Departamento de Biotecnología, E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.
| | | | | |
Collapse
|
43
|
Abstract
Discussions of the environmental risks and benefits of adopting genetically engineered organisms are highly polarized between pro- and anti-biotechnology groups, but the current state of our knowledge is frequently overlooked in this debate. A review of existing scientific literature reveals that key experiments on both the environmental risks and benefits are lacking. The complexity of ecological systems presents considerable challenges for experiments to assess the risks and benefits and inevitable uncertainties of genetically engineered plants. Collectively, existing studies emphasize that these can vary spatially, temporally, and according to the trait and cultivar modified.
Collapse
Affiliation(s)
- L L Wolfenbarger
- AAAS Environmental Fellow, U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, 1200 Pennsylvania Avenue, NW (8601D), Washington, DC 20460, USA.
| | | |
Collapse
|
44
|
Varrelmann M, Palkovics L, Maiss E. Transgenic or plant expression vector-mediated recombination of Plum Pox Virus. J Virol 2000; 74:7462-9. [PMID: 10906199 PMCID: PMC112266 DOI: 10.1128/jvi.74.16.7462-7469.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1999] [Accepted: 05/26/2000] [Indexed: 11/20/2022] Open
Abstract
Different mutants of an infectious full-length clone (p35PPV-NAT) of Plum pox virus (PPV) were constructed: three mutants with mutations of the assembly motifs RQ and DF in the coat protein gene (CP) and two CP chimeras with exchanges in the CP core region of Zucchini yellow mosaic virus and Potato virus Y. The assembly mutants were restricted to single infected cells, whereas the PPV chimeras were able to produce systemic infections in Nicotiana benthamiana plants. After passages in different transgenic N. benthamiana plants expressing the PPV CP gene with a complete (plant line 4.30.45.) or partially deleted 3'-nontranslated region (3'-NTR) (plant line 17.27. 4.), characterization of the viral progeny of all mutants revealed restoration of wild-type virus by recombination with the transgenic CP RNA only in the presence of the complete 3'-NTR (4.30.45.). Reconstitution of wild-type virus was also observed following cobombardment of different assembly-defective p35PPV-NAT together with a movement-defective plant expression vector of Potato virus X expressing the intact PPV-NAT CP gene transiently in nontransgenic N. benthamiana plants. Finally, a chimeric recombinant virus was detected after cobombardment of defective p35PPV-NAT with a plant expression vector-derived CP gene from the sour cherry isolate of PPV (PPV-SoC). This chimeric virus has been established by a double recombination event between the CP-defective PPV mutant and the intact PPV-SoC CP gene. These results demonstrate that viral sequences can be tested for recombination events without the necessity for producing transgenic plants.
Collapse
Affiliation(s)
- M Varrelmann
- Institute of Plant Diseases and Plant Protection, University of Hannover, 30419 Hanover, Germany
| | | | | |
Collapse
|
45
|
Nodari RO, Guerra MP. [Implications of transgenics for environmental and agricultural sustainability]. HISTORIA, CIENCIAS, SAUDE--MANGUINHOS 2000; 7:481-91. [PMID: 16680899 DOI: 10.1590/s0104-59702000000300016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The potential risks of GMOs, their impact on human and animal health, and on the environment, as well as their socioeconomic effects, have generated a worldwide discussion which is far from drawing to a close for lack of sufficient information. Part of this information supports risk-hypotheses previously put forward. Thus the presence of transgenic plant genes in other plants and in other organisms has been confirmed in several occasions. Therefore, gene dissemination to plants of the same species as well as to widely different species is already regarded as an actual risk. The principle of substantial equivalence has opened the way for the liberation of transgenic plants for commercial crops, despite short-term tests, which are quantitatively and qualitatively insufficient to certify that the foods deriving from those plants are healthy and safe. Thus, the adoption of the so-called precautionary principle (PP) has turned out to be the most adequate safety measure to date, or else until scientific data should be able to demonstrate the actual impact of transgenic plants on human and animal health, and on the environment.
Collapse
Affiliation(s)
- R O Nodari
- Departamento de Fitotecnia, Universidade Federal de Santa Catarina, Florianópolis, Brasil
| | | |
Collapse
|
46
|
Teycheney PY, Aaziz R, Dinant S, Salánki K, Tourneur C, Balázs E, Jacquemond M, Tepfer M. Synthesis of (-)-strand RNA from the 3' untranslated region of plant viral genomes expressed in transgenic plants upon infection with related viruses. J Gen Virol 2000; 81:1121-6. [PMID: 10725441 DOI: 10.1099/0022-1317-81-4-1121] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When expressed in transgenic tobacco plants, transgene mRNA that includes the 3' untranslated region (3' UTR) of Lettuce mosaic virus served as template for synthesis of complementary (-)-strand RNA following an infection by Tobacco etch virus, Tobacco vein mottle virus or Pepper mottle virus, but not when infected with Cucumber mosaic virus. Deletion of the 3' UTR from the transgene abolished the synthesis of (-)-strand transcripts. Similar results were obtained in transgenic tobacco plants expressing mRNA that includes the RNA3 3' UTR of Cucumber mosaic virus when infected with Tomato aspermy virus. These results show that the viral RNA-dependent RNA polymerase of several potyviruses and Tomato aspermy virus have the ability to recognize heterologous 3' UTRs when included in transgene mRNAs, and to use them as transcription promoters.
Collapse
Affiliation(s)
- P Y Teycheney
- INRA, Laboratoire de biologie cellulaire, F-78026 Versailles cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Varrelmann M, Maiss E. Mutations in the coat protein gene of plum pox virus suppress particle assembly, heterologous encapsidation and complementation in transgenic plants of Nicotiana benthamiana. J Gen Virol 2000; 81:567-76. [PMID: 10675394 DOI: 10.1099/0022-1317-81-3-567] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two different motifs in the coat protein (CP) of Plum pox virus (PPV) (R(3015)Q(3016), D(3059)) were mutated by replacing the respective amino acids with others possessing different chemical properties. The mutated CP genes were introduced into an infectious full-length clone of PPV (p35PPV-NAT) to investigate their influence on systemic infection of transgenic wild-type PPV CP-expressing and non-transgenic plants of Nicotiana benthamiana. All mutants failed to establish systemic infections in non-transgenic N. benthamiana plants, but were complemented by intact CP in transgenic plants. Moreover, the CP-RQ-D mutant (carrying mutations in both the RQ and D motifs) was introduced into p35PPV-NAT engineered to express beta-glucuronidase (GUS) for direct observation of systemic movement and particle assembly in N. benthamiana leaves. GUS-staining revealed that the CP mutant (RQ-D) was restricted to initially infected cells without forming virions. Systemic movement and particle assembly were restored in CP-transgenic N. benthamiana plants. Finally, transgenic N. benthamiana plants were generated that expressed each of the three mutated CP genes. Homozygous T(2) lines were selected and tested for resistance to PPV. Immunogold labelling and electron microscopy revealed that heterologous encapsidation with challenging Chilli veinal mottle virus and Potato virus Y was suppressed in these lines. In addition, assembly mutants did not complement CP-defective p35PPV-NAT. The possible use of modified viral CP genes for the production of virus-resistant transgenic plants, thereby reducing the putative risks of heterologous encapsidation and complementation, is discussed.
Collapse
Affiliation(s)
- M Varrelmann
- Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | |
Collapse
|
48
|
Affiliation(s)
- M Bendahmane
- Department of Cell Biology, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
49
|
Christopher ME, Good AG. Evolution of a functionally related lactate dehydrogenase and pyruvate decarboxylase pseudogene complex in maize. Genome 1999. [DOI: 10.1139/g99-094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A large proportion of the maize genome is repetitive DNA (60-80%) with retrotransposons contributing significantly to the repetitive DNA component. The majority of retrotransposon DNA is located in intergenic regions and is organized in a nested fashion. Analysis of an 8.2-kb segment of maize genomic DNA demonstrated the presence of three retrotransposons of different reiteration classes in addition to lactate dehydrogenase and pyruvate decarboxylase pseudogenes. Both of the pseudogenes were located within a defective retrotransposon element (LP-like element) which possessed identical long terminal repeats (LTRs) with inverted repeats at each end, a primer binding site, a polypurine tract, and generated a 5-bp target site duplication. A model describing the events leading to the formation of the LP-like element is proposed.Key words: lactate dehydrogenase, LP-like element, pseudogene, pyruvate decarboxylase, retrotransposon.
Collapse
|
50
|
Hammond J, Lecoq H, Raccah B. Epidemiological risks from mixed virus infections and transgenic plants expressing viral genes. Adv Virus Res 1999; 54:189-314. [PMID: 10547677 DOI: 10.1016/s0065-3527(08)60368-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- J Hammond
- USDA-ARS, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, Maryland 20705, USA
| | | | | |
Collapse
|