1
|
Huang M, Zhang W, Dong J, Hu Z, Tan X, Li H, Sun K, Zhao A, Huang T. Genome-Wide Association Studies of Body Weight and Average Daily Gain in Chinese Dongliao Black Pigs. Int J Mol Sci 2025; 26:3453. [PMID: 40244387 PMCID: PMC11989284 DOI: 10.3390/ijms26073453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/24/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025] Open
Abstract
In the domain of swine production, body weight (BW) and average daily gain (ADG) are recognized as the primary performance indicators. Nevertheless, the genetic architecture of ADG and BW in Dongliao black (DLB) pigs remains to be fully elucidated. In this study, we performed a genome-wide association analysis of BW, ADG, and body mass index (BMI) in 358 DLB pigs of different days of age. The genome-wide association study (GWAS) showed the following: (1) The most significant single nucleotide polymorphism (SNP) detected for BW was on Sus scrofa chromosome (SSC) 11:100,808 (p-value = 1.16 × 10-6) that was also the most significant SNP for ADG. (2) The most significant SNP associated with BMI was SSC17:51,463,521 (p-value = 5.16 × 10-8). (3) SNPs SSC10:6,523,844 and SSC17:23,852,682 were identified in both BW and ADG. A meta-analysis was conducted on BW at different days and demonstrated SSC5:39,028,335 (p-value = 8.37 × 10-6) which was not identified in the results of each single trait. The regions of two SNPs (SSC11:100,808, SSC4:10,703,277) exhibited considerable influence on both BW and ADG and the related regions were selected for linkage disequilibrium (LD) analyses that exhibited a notable linkage. In addition, several genes were identified that are associated with obesity and play roles in lipid metabolism, including MACROD2, PHLPP2, CYP2E1, and STT3B.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ayong Zhao
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (M.H.); (W.Z.); (J.D.); (Z.H.); (X.T.); (H.L.); (K.S.)
| | - Tao Huang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (M.H.); (W.Z.); (J.D.); (Z.H.); (X.T.); (H.L.); (K.S.)
| |
Collapse
|
2
|
Sa P, Gòdia M, Lewis N, Lian Y, Clop A. Genomic, transcriptomic and epigenomic analysis towards the understanding of porcine semen quality traits. Past, current and future trends. Anim Reprod Sci 2024; 269:107543. [PMID: 38981797 DOI: 10.1016/j.anireprosci.2024.107543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
The importance of boar reproductive traits, including semen quality, in the sustainability of pig production system is increasingly being acknowledged by academic and industrial sectors. Research is needed to understand the biology and genetic components underlying these traits so that they can be incorporated into selection schemes and managerial decisions. This article reviews our current understanding of genome biology and technologies for genome, transcriptome and epigenome analysis which now facilitate the identification of causal variants affecting phenotypes more than ever before. Genetic and transcriptomic analysis of candidate genes, Genome-Wide Association Studies, expression microarrays, RNA-Seq of coding and noncoding genes and epigenomic evaluations have been conducted to profile the molecular makeups of pig sperm. These studies have provided insightful information for a several semen-related parameters. Nonetheless, this research is still incipient. The spermatozoon harbors a reduced transcriptome and highly modified epigenome, and it is assumed to be transcriptionally silent for nuclear gene expression. For this reason, the extent to which the sperm's RNA and epigenome recapitulate sperm biology and function is unclear. Hence, we anticipate that single-cell level analyses of the testicle and other male reproductive organs, which can reveal active transcription and epigenomic profiles in cells influencing sperm quality, will gain popularity and markedly advance our understanding of sperm-related traits. Future research will delve deeper into sperm fertility, boar resilience to environmental changes or harsh conditions, especially in the context of global warming, and also in transgenerational inheritance and how the environment influences the sperm transcriptome and epigenome.
Collapse
Affiliation(s)
- Pedro Sa
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Marta Gòdia
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, the Netherlands
| | - Nicole Lewis
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yu Lian
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain
| | - Alex Clop
- Centre for Research in Agricultural Genomics CRAG (CSIC-IRTA-UAB-UB), Cerdanyola del Vallés, Catalonia, Spain; Consejo Superior de Investigaciones Científicas, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Tenke J, Vida O, Nagy I, Tossenberger J. Classifying Genetic Lines in Pork Production by Ileal Crude Protein and Amino Acid Digestibility in Growing Pigs. Animals (Basel) 2023; 13:1898. [PMID: 37370409 DOI: 10.3390/ani13121898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The first aim of the study was to evaluate the effect of different dietary lysine (LYS) to energy (DE) ratios on the apparent ileal digestibility (AID) of crude protein (CP) and selected amino acids (AA) in growing pigs (40-60 kg) of different genotypes. The second aim was to classify genotypes into groups based on the AID of CP and AAs. The trials were conducted on a total of 90 cross-bred barrows (30 animals/genotype) in two replicates. Before the trial series, the experimental animals (average initial body weight (BW) = 40.9 ± 8.5 kg) were surgically fitted with post valve T-cannula (PVTC). The diets were formulated with six different total LYS/DE ratios. Titanium dioxide (TiO2) was added to the diets (5 g/kg) as an indigestible marker. Based on our results, it can be concluded that the LYS/DE ratio of the diets affected the AID of the CP and AA in different ways by each genotype (p < 0.05). It can also be concluded that pigs of different genetic potential can be classified with a high accuracy (91.7%) in respect of their CP and AA digestive capacity. Our results indicate the development of genetic-profile-based swine nutrition technologies as a future direction.
Collapse
Affiliation(s)
- János Tenke
- Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Lucsony Str. 2, H-9200 Mosonmagyaróvár, Hungary
- Bonafarm Agriculture-Swine Department, Ady Endre Str. 21, H-7754 Bóly, Hungary
| | - Orsolya Vida
- DSM Nutritional Products Hungary Ltd., Japán Fasor 4, H-2367 Újhartyán, Hungary
| | - István Nagy
- Institute of Animal Science, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Str. 40, H-7400 Kaposvár, Hungary
| | - János Tossenberger
- Albert Kázmér Faculty of Mosonmagyaróvár, Széchenyi István University, Lucsony Str. 2, H-9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
4
|
Qiao R, Zhang M, Zhang B, Li X, Han X, Wang K, Li X, Yang F, Hu P. Population genetic structure analysis and identification of backfat thickness loci of Chinese synthetic Yunan pigs. Front Genet 2022; 13:1039838. [PMID: 36437945 PMCID: PMC9681789 DOI: 10.3389/fgene.2022.1039838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022] Open
Abstract
Yunan is a crossed lean meat pig breed in China. Backfat thickness is the gold standard for carcass quality grading. However, over 14 years after breed registration, the backfat of Yunan thickened and the consistency of backfat thickness decreased. Meanwhile, no genetic study has been ever performed on Yunan population. So, in this study we collected all the 120 nucleus individuals of Yunan and recorded six backfat traits of them, carried out population genetic structure analysis, selection signals analysis and genome-wide association study of Yunan pigs with the help of their founder population Duroc and Chinese native Huainan pigs, to determine the genomic loci on backfat of Yunan. Genetic diversity indexes suggested Yunan pigs had no inbreeding risk while population genetic structure showed they had few molecular pedigrees and were stratified. A total of 71 common selection signals affecting growth and fat deposition were detected by FST and XP-CLR methods. 34 significant loci associated with six backfat traits were detected, among which a 1.40 Mb region on SSC4 (20.03–21.43 Mb) were outstanding as the strong region underlying backfat. This region was common with the results of selection signature analysis, former reported QTLs for backfat and was common for different kinds of backfat traits at different development stage. ENPP2, EXT1 and SLC30A8 genes around were fat deposition related genes and were of Huainan pig’s origin, among which Type 2 diabetes related gene SLC30A8 was the most reasonable for being in a 193.21 Kb haplotype block of the 1.40 Mb region. Our results had application value for conservation, mating and breeding improvement of backfat thickness of Yunan pigs and provided evidence for a human function gene might be reproduced in pigs.
Collapse
Affiliation(s)
- Ruimin Qiao
- *Correspondence: Ruimin Qiao, ; Panyang Hu, hpy9809.@163.com
| | | | | | | | | | | | | | | | - Panyang Hu
- *Correspondence: Ruimin Qiao, ; Panyang Hu, hpy9809.@163.com
| |
Collapse
|
5
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
6
|
Davoudi P, Do DN, Colombo SM, Rathgeber B, Miar Y. Application of Genetic, Genomic and Biological Pathways in Improvement of Swine Feed Efficiency. Front Genet 2022; 13:903733. [PMID: 35754793 PMCID: PMC9220306 DOI: 10.3389/fgene.2022.903733] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the significant improvement of feed efficiency (FE) in pigs over the past decades, feed costs remain a major challenge for producers profitability. Improving FE is a top priority for the global swine industry. A deeper understanding of the biology underlying FE is crucial for making progress in genetic improvement of FE traits. This review comprehensively discusses the topics related to the FE in pigs including: measurements, genetics, genomics, biological pathways and the advanced technologies and methods involved in FE improvement. We first provide an update of heritability for different FE indicators and then characterize the correlations of FE traits with other economically important traits. Moreover, we present the quantitative trait loci (QTL) and possible candidate genes associated with FE in pigs and outline the most important biological pathways related to the FE traits in pigs. Finally, we present possible ways to improve FE in swine including the implementation of genomic selection, new technologies for measuring the FE traits, and the potential use of genome editing and omics technologies.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
7
|
Shi B, Shi X, Zuo Z, Zhao S, Zhao Z, Wang J, Zhou H, Luo Y, Hu J, Hickford JGH. Identification of differentially expressed genes at different post-natal development stages of longissimus dorsi muscle in Tianzhu white yak. Gene X 2022; 823:146356. [PMID: 35227854 DOI: 10.1016/j.gene.2022.146356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
The regulatory mechanisms controlling post-natal muscle development in the yak (Bos grunniens) are still largely unknown, yet the growth and development of muscle is a complex process that plays a crucial role in determining the yield and quality of an animal's meat. In this study, we performed a transcriptome analysis based on the RNA sequencing (RNA-Seq) of yak longissimus dorsi muscle tissue obtained from calves (6 months of age; 6 M), young adults (30 months of age; 30 M) and adult (54 months of age; 54 M) to identify which genes are differentially expressed and to investigate their temporal expression profiles. In total, 1788 differentially expressed genes (DEGs) (|log2FC| ≥ 1, P-adjusted < 0.05) were detected by pairwise comparisons between the different age groups. The expression levels of 10 of the DEGs were confirmed using reverse transcription-quantitative PCR (RT-qPCR), and the results were consistent with the transcriptome profile. A time-series expression profile analysis clustered the DEGs into four groups that could be divided into two classes (P < 0.05): class 1 profiles, which had up-regulated patterns of gene expression and class 2 profiles, which featured down-regulated patterns. Based on that cluster analysis, GO enrichment analysis revealed 1073, 127, and 184 terms as significantly enriched in biological process (BP), cellular component (CC), and molecular function (MF) categories in the class 1 profiles, while 714, 66, and 206 terms were significantly enriched in BP, CC, and MF in the class 2 profiles. A KEGG pathway analysis revealed that DEGs from the class 1 profiles were enriched in 62 pathways, with the most enriched being the phosphoinositide 3-kinase (PI3K) - protein kinase B (Akt)-signaling pathway. The DEGs from the class 2 profiles were enriched in 16 pathways, of which forkhead box protein O (FoxO) - signaling was the most enriched. Taken together, these results provide insight into the mechanisms of skeletal muscle development, as well suggesting some potential genes of importance for yak meat production.
Collapse
Affiliation(s)
- Bingang Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuehong Shi
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhi Zuo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shijie Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhidong Zhao
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huitong Zhou
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Yuzhu Luo
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- Faculty of Animal Science and Technology & Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jon G H Hickford
- Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
8
|
Vaz J, McElligott AG, Narayan E. Linking the roles of personality and stress physiology for managing the welfare of captive big cats. Anim Welf 2022. [DOI: 10.7120/09627286.31.1.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Animal welfare is important for the humane treatment of animals under our care. Zoos and rescue centres manage various charismatic animals, such as big cats, with limited resources. It is therefore essential for caretakers to understand the needs of an individual big cat to ensure its
welfare. However, these needs may differ due to a big cat's personality, which may be identified by its coping style in a stressful situation. In addition, stress is one of the major factors affecting animal welfare. There is limited evidence showing strong associations between personality
and stress physiology in big cats. This review focuses on the integration of personality and stress physiology of captive big cats, to highlight possible improvements in their husbandry. Our review identifies key factors that may influence big cat responses to stressors. These influencing
factors include: i) social interactions; ii) environment; iii) life history and evolutionary traits; iv) genetics; and v) health. The first two factors are relatively well covered in the literature; however, the final three are potentially very promising avenues for future research to better
understand how we can improve big cat welfare.
Collapse
Affiliation(s)
- J Vaz
- School of Science, Western Sydney University, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - AG McElligott
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - E Narayan
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Huang G, Cao J, Chen C, Wang M, Liu Z, Gao F, Yi M, Chen G, Lu M. Genome survey of Misgurnus anguillicaudatus to identify genomic information, simple sequence repeat (SSR) markers, and mitochondrial genome. Mol Biol Rep 2022; 49:2185-2196. [PMID: 35064399 DOI: 10.1007/s11033-021-07037-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The dojo loach Misgurnus anguillicaudatus is an important economic species in Asia because of its nutritional value and broad environmental adaptability. Despite its economic importance, genomic data for M. anguillicaudatus is currently unavailable. METHODS AND RESULTS In the present study, we conducted a genome survey of M. anguillicaudatus using next-generation sequencing technology. Its genome size was estimated to be 1105.97 Mb by using K-mer analysis, and its heterozygosity ratio, repeat sequence content, GC content were 1.45%, 58.98%, and 38.03%, respectively. A total of 376,357 microsatellite motifs were identified, and mononucleotides, with a frequency of 42.57%, were the most frequently repeated motifs, followed by 40.83% dinucleotide, 7.49% trinucleotide, 8.09% tetranucleotide, and 0.91% pentanucleotide motifs. The AC/GT, AAT/ATT, and ACAG/CTGT repeats were the most abundant motifs among dinucleotide, trinucleotide, and tetranucleotide motifs, respectively. Besides, the complete mitochondrial genome was sequenced. Based on the Maximum Likelihood and Bayesian inference analyses, M. anguillicaudatus yingde in this study was the "introgressed" mitochondrial type. Seventy microsatellite loci were randomly selected from detected SSR loci to test polymorphic, of which, 20 microsatellite loci were assessed in 30 individuals from a wild population. The number of alleles (Na), observed heterozygosity (Ho), and expected heterozygosity (He) per locus ranged from 7 to 19, 0.400 to 0.933, and 0.752 to 0.938, respectively. All 20 loci were highly informative (PIC > 0.700). Eight loci deviated from Hardy-Weinberg equilibrium after Bonferroni correction (P < 0.05). CONCLUSIONS This is the first report of genome survey sequencing in M. anguillicaudatus, genome information, mitochondrial genome, and microsatellite markers will be valuable for further studies on population genetic analysis, natural resource conservation, and molecular marker-assisted selective breeding.
Collapse
Affiliation(s)
- Guiyun Huang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Jianmeng Cao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Aquatic Germplasm Resources and Genetic Breeding Library, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Miao Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Fengying Gao
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Mengmeng Yi
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China
| | - Gang Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of CAFS, Xingyu Road No. 1, Guangzhou, 510380, China.
| |
Collapse
|
10
|
Malgwi IH, Halas V, Grünvald P, Schiavon S, Jócsák I. Genes Related to Fat Metabolism in Pigs and Intramuscular Fat Content of Pork: A Focus on Nutrigenetics and Nutrigenomics. Animals (Basel) 2022; 12:ani12020150. [PMID: 35049772 PMCID: PMC8772548 DOI: 10.3390/ani12020150] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The intramuscular fat (IMF) or marbling is an essential pork sensory quality that influences the preference of the consumers and premiums for pork. IMF is the streak of visible fat intermixed with the lean within a muscle fibre and determines sensorial qualities of pork such as flavour, tenderness and juiciness. Fat metabolism and IMF development are controlled by dietary nutrients, genes, and their metabolic pathways in the pig. Nutrigenetics explains how the genetic make-up of an individual pig influences the pig’s response to dietary nutrient intake. Differently, nutrigenomics is the analysis of how the entire genome of an individual pig is affected by dietary nutrient intake. The knowledge of nutrigenetics and nutrigenomics, when harmonized, is a powerful tool in estimating nutrient requirements for swine and programming dietary nutrient supply according to an individual pig’s genetic make-up. The current paper aimed to highlight the roles of nutrigenetics and nutrigenomics in elucidating the underlying mechanisms of fat metabolism and IMF deposition in pigs. This knowledge is essential in redefining nutritional intervention for swine production and the improvement of some economically important traits such as growth performance, backfat thickness, IMF accretion, disease resistance etc., in animals. Abstract Fat metabolism and intramuscular fat (IMF) are qualitative traits in pigs whose development are influenced by several genes and metabolic pathways. Nutrigenetics and nutrigenomics offer prospects in estimating nutrients required by a pig. Application of these emerging fields in nutritional science provides an opportunity for matching nutrients based on the genetic make-up of the pig for trait improvements. Today, integration of high throughput “omics” technologies into nutritional genomic research has revealed many quantitative trait loci (QTLs) and single nucleotide polymorphisms (SNPs) for the mutation(s) of key genes directly or indirectly involved in fat metabolism and IMF deposition in pigs. Nutrient–gene interaction and the underlying molecular mechanisms involved in fatty acid synthesis and marbling in pigs is difficult to unravel. While existing knowledge on QTLs and SNPs of genes related to fat metabolism and IMF development is yet to be harmonized, the scientific explanations behind the nature of the existing correlation between the nutrients, the genes and the environment remain unclear, being inconclusive or lacking precision. This paper aimed to: (1) discuss nutrigenetics, nutrigenomics and epigenetic mechanisms controlling fat metabolism and IMF accretion in pigs; (2) highlight the potentials of these concepts in pig nutritional programming and research.
Collapse
Affiliation(s)
- Isaac Hyeladi Malgwi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
- Correspondence: ; Tel.: +39-33-17566768
| | - Veronika Halas
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Petra Grünvald
- Department of Farm Animal Nutrition, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary; (V.H.); (P.G.)
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Viale dell’ Università 16, 35020 Padova, Italy;
| | - Ildikó Jócsák
- Institute of Agronomy, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, Guba Sándor Utca 40, 7400 Kaposvár, Hungary;
| |
Collapse
|
11
|
Reproductive fluids, added to the culture media, contribute to minimizing phenotypical differences between in vitro-derived and artificial insemination-derived piglets. J Dev Orig Health Dis 2022; 13:593-605. [PMID: 34986913 DOI: 10.1017/s2040174421000702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The addition of reproductive fluids (RF) to the culture media has shown benefits in different embryonic traits but its long-term effects on the offspring phenotype are still unknown. We aimed to describe such effects in pigs. Blood samples and growth parameters were collected from piglets derived from in vitro-produced embryos (IVP) with or without RF added in the culture media versus those artificially inseminated (AI), from day 0 to month 6 of life. An oral glucose tolerance test was performed on day 45 of life. We show here the first comparative data of the growth of animals produced through different assisted reproductive techniques, demonstrating differences between groups. Overall, there was a tendency to have a larger size at birth and faster growth in animals derived from in vitro fertilization and embryo culture versus AI, although this trend was diminished by the addition of RFs to the culture media. Similarly, small differences in hematological indices and glucose tolerance between animals derived from AI and those derived from IVP, with a sex-dependent effect, tended to fade in the presence of RF. The addition of RF to the culture media could contribute to minimizing the phenotypical differences between the in vitro-derived and AI offspring, particularly in males.
Collapse
|
12
|
Deng Z, Huang T, Yan G, Yang B, Zhang Z, Xiao S, Ai H, Huang L. A further look at quantitative trait loci for growth and fatness traits in a White Duroc × Erhualian F 3 intercross population. Anim Biotechnol 2021; 33:1205-1216. [PMID: 34010090 DOI: 10.1080/10495398.2021.1884087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Genetic analysis of porcine growth and fatness traits is beneficial to the swine industry and provides a reference to understand human obesity. Here, we obtained 29 growth and fatness traits for 473 individuals from a White Duroc × Erhualian F3 intercross population. Basic statistical analyses showed that: (1) Positive correlations between different-stage body weights were detected, the shorter the time interval the stronger the correlation. (2) Strong correlations existed in the paired fatness traits. (3) With the growth of age, the correlation between fatness and body weight was increasing. All pigs were genotyped by Illumina 50 K SNP chips and their whole-genome genotypes were imputed referred to 109 re-sequencing data. We performed common and imputation-based GWASs for these traits. Two genome-wide significant loci on swine chromosome (SSC) 4 and 7 were repeatedly detected. The strongest association (P = 3.24 × 10-19) was detected at 31.96 Mb on SSC7 for leaf fat weight. On this locus, seven major haplotypes were identified, of which two were novel and had an increasing-fatness effect. In the imputation-based GWAS, three new loci were identified. Our findings provide further insights into and enhance our understanding of genetic mechanism of porcine growth and fat deposition.
Collapse
Affiliation(s)
- Zheng Deng
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guorong Yan
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huashui Ai
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
Solé E, Ros-Freixedes R, Tor M, Reixach J, Pena RN, Estany J. Antagonistic maternal and direct effects of the leptin receptor gene on body weight in pigs. PLoS One 2021; 16:e0246198. [PMID: 33508034 PMCID: PMC7842917 DOI: 10.1371/journal.pone.0246198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/15/2021] [Indexed: 12/30/2022] Open
Abstract
Maternal effects on offspring growth can impact survival and evolution of natural and domesticated populations. Genetic correlation estimates often support a negative relationship between direct and maternal effects. However, the genetic underpinnings whereby this antagonism operates are unclear. In pigs, sow feeding status and body composition condition piglet development and growth. We hypothesized that variants in genes impacting these traits may be causative of maternal influences that could be antagonistic to the direct effects for piglet growth. A recessive missense mutation (C>T) in the porcine leptin receptor (LEPR) gene (rs709596309) has been identified as the possible causal polymorphism for increased feed intake and fatness. Using data from a Duroc line, we show that the TT sows exerted a negative impact on the body weight of their offspring at the end of the growing period of similar extent to the positive direct effect of the TT genotype over each individual. Thus, TT pigs from TT dams were about as heavy as CC and CT (C–) pigs from C–dams, but TT pigs from C–dams were around 5% heavier than C–pigs from TT dams. In contrast, body composition was only influenced by LEPR direct effects. This antagonism is due to a higher propensity of TT pigs for self-maintenance rather than for offspring investment. We show that TT pigs consumed more feed, favored fatty acid uptake over release, and produced lighter piglets at weaning than their C–counterparts. We conclude that LEPR underlies a transgenerational mechanism for energy distribution that allocates resources to the sow or the offspring according to whether selective pressure is exerted before or after weaning.
Collapse
Affiliation(s)
- Emma Solé
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Marc Tor
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Josep Reixach
- Selección Batallé S.A., Riudarenes, Catalonia, Spain
| | - Ramona N Pena
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio Center, Lleida, Catalonia, Spain
| |
Collapse
|
14
|
Zumbo A, Sutera AM, Tardiolo G, D’Alessandro E. Sicilian Black Pig: An Overview. Animals (Basel) 2020; 10:ani10122326. [PMID: 33297476 PMCID: PMC7762396 DOI: 10.3390/ani10122326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 12/02/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary The conservation of the genetic variability of animals used for food production and non-food raw materials and services is a problem of primary importance at a global level. In recent years, conservation of biodiversity in livestock species has been favoring the need to preserve genetic variability of the autochthonous breeds, exploiting them in the context of production systems. In this context, a precious genetic reserve is represented by autochthonous breeds used for the production of typical products used in Italian gastronomic traditions, of which some organoleptic properties of their meats that could disappear due to severe selection programs are being recovered. Currently, the survival of autochthonous breeds is linked to various reasons such as their rusticity, i.e., the adaptability to difficult environmental conditions, and to the higher market value of their productions obtained according to traditional methods compared to the industrial production types. As information on autochthonous Italian pigs is limited, further research aims at making better use of these breeds and at increasing the knowledge of their genetic variability. Abstract The Sicilian black pig (SB) (Nero Siciliano), also known as the Nero dei Nebrodi, Nero delle Madonie, or Nero dell’Etna pig ecotype, is an autochthonous Italian breed. The origins of this breed date back to Greek and Carthaginian dominations. In ancient times, its breeding was fairly common throughout Sicily, registering only a temporary reduction during the Arab domination. This breed is known primarily for its distinctive black coat, although some individuals display wattles and a partially or wholly white face. The SB pig has a birth rate with an average per sow of 7.6 piglets, each of 1.4 kg live body weight, showing an average daily gain (ADG) of 346 g/day during the fattening period. Slaughter generally takes place at an average age of 390 days, with an average live weight of 95 kg. This breed also appears to withstand adverse climatic conditions and resist disease. The purpose of this manuscript is to offer a general overview regarding the Sicilian Black pig and to consider the recent findings related to genome investigation. The recent application of Next Generation Sequencing (NGS) technologies in the study of the genome of autochthonous breeds showed that polymorphisms of some candidate genes for production performance and phenotypic traits represent important information for selection processes. The protection of autochthonous breeds, intended as sources of genomic diversity for the further improvements of pigs for commercial use, constitutes a valuable opportunity to create new sustainable pig chains.
Collapse
|
15
|
Leung K, Ras E, Ferguson KB, Ariëns S, Babendreier D, Bijma P, Bourtzis K, Brodeur J, Bruins MA, Centurión A, Chattington SR, Chinchilla‐Ramírez M, Dicke M, Fatouros NE, González‐Cabrera J, Groot TVM, Haye T, Knapp M, Koskinioti P, Le Hesran S, Lyrakis M, Paspati A, Pérez‐Hedo M, Plouvier WN, Schlötterer C, Stahl JM, Thiel A, Urbaneja A, van de Zande L, Verhulst EC, Vet LEM, Visser S, Werren JH, Xia S, Zwaan BJ, Magalhães S, Beukeboom LW, Pannebakker BA. Next-generation biological control: the need for integrating genetics and genomics. Biol Rev Camb Philos Soc 2020; 95:1838-1854. [PMID: 32794644 PMCID: PMC7689903 DOI: 10.1111/brv.12641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
Biological control is widely successful at controlling pests, but effective biocontrol agents are now more difficult to import from countries of origin due to more restrictive international trade laws (the Nagoya Protocol). Coupled with increasing demand, the efficacy of existing and new biocontrol agents needs to be improved with genetic and genomic approaches. Although they have been underutilised in the past, application of genetic and genomic techniques is becoming more feasible from both technological and economic perspectives. We review current methods and provide a framework for using them. First, it is necessary to identify which biocontrol trait to select and in what direction. Next, the genes or markers linked to these traits need be determined, including how to implement this information into a selective breeding program. Choosing a trait can be assisted by modelling to account for the proper agro-ecological context, and by knowing which traits have sufficiently high heritability values. We provide guidelines for designing genomic strategies in biocontrol programs, which depend on the organism, budget, and desired objective. Genomic approaches start with genome sequencing and assembly. We provide a guide for deciding the most successful sequencing strategy for biocontrol agents. Gene discovery involves quantitative trait loci analyses, transcriptomic and proteomic studies, and gene editing. Improving biocontrol practices includes marker-assisted selection, genomic selection and microbiome manipulation of biocontrol agents, and monitoring for genetic variation during rearing and post-release. We conclude by identifying the most promising applications of genetic and genomic methods to improve biological control efficacy.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Erica Ras
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Kim B. Ferguson
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Simone Ariëns
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | | | - Piter Bijma
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
| | - Jacques Brodeur
- Institut de Recherche en Biologie VégétaleUniversité de Montréal4101 Sherbrooke EstMontréalQuebecCanadaH1X 2B2
| | - Margreet A. Bruins
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Alejandra Centurión
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Sophie R. Chattington
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Milena Chinchilla‐Ramírez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Marcel Dicke
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Nina E. Fatouros
- Biosystematics GroupWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Joel González‐Cabrera
- Department of Genetics, Estructura de Recerca Interdisciplinar en Biotecnología i Biomedicina (ERI‐BIOTECMED)Unidad Mixta Gestión Biotecnológica de Plagas UV‐IVIA, Universitat de ValènciaDr Moliner 5046100BurjassotValenciaSpain
| | - Thomas V. M. Groot
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Tim Haye
- CABIRue des Grillons 12800DelémontSwitzerland
| | - Markus Knapp
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Panagiota Koskinioti
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and AgricultureVienna International CentreP.O. Box 1001400ViennaAustria
- Department of Biochemistry and BiotechnologyUniversity of ThessalyBiopolis41500LarissaGreece
| | - Sophie Le Hesran
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Koppert Biological SystemsVeilingweg 142651 BEBerkel en RodenrijsThe Netherlands
| | - Manolis Lyrakis
- Institut für PopulationsgenetikVetmeduni ViennaVeterinärplatz 11210ViennaAustria
- Vienna Graduate School of Population GeneticsVetmeduni ViennaVeterinärplatz 11210ViennaAustria
| | - Angeliki Paspati
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Meritxell Pérez‐Hedo
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Wouter N. Plouvier
- INRA, CNRS, UMR 1355‐7254400 Route des ChappesBP 167 06903Sophia Antipolis CedexFrance
| | | | - Judith M. Stahl
- CABIRue des Grillons 12800DelémontSwitzerland
- Kearney Agricultural Research and Extension CenterUniversity of California Berkeley9240 South Riverbend AvenueParlierCA93648USA
| | - Andra Thiel
- Group for Population and Evolutionary Ecology, FB 02, Institute of EcologyUniversity of BremenLeobener Str. 528359BremenGermany
| | - Alberto Urbaneja
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Centro de Protección Vegetal y BiotecnologíaUnidad Mixta Gestión Biotecnológica de Plagas UV‐IVIACarretera CV‐315, Km 10'746113MoncadaValenciaSpain
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Eveline C. Verhulst
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Louise E. M. Vet
- Laboratory of EntomologyWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
- Netherlands Institute of Ecology (NIOO‐KNAW)Droevendaalsesteeg 106708 PBWageningenThe Netherlands
| | - Sander Visser
- Institute of EntomologyBiology Centre CASBranišovská 31370 05České BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaBranišovská 1760370 05České BudějoviceCzech Republic
| | - John H. Werren
- Department of BiologyUniversity of RochesterRochesterNY14627USA
| | - Shuwen Xia
- Animal Breeding and GenomicsWageningen University & ResearchPO Box 3386700 AHWageningenThe Netherlands
| | - Bas J. Zwaan
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution, and Environmental ChangesFaculdade de Ciências da Universidade de LisboaEdifício C2, Campo Grande1749‐016LisbonPortugal
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenPO Box 111039700 CCGroningenThe Netherlands
| | - Bart A. Pannebakker
- Laboratory of GeneticsWageningen University & ResearchDroevendaalsesteeg 16708 PBWageningenThe Netherlands
| |
Collapse
|
16
|
Perry WB, Solberg MF, Brodie C, Medina AC, Pillay KG, Egerton A, Harvey A, Creer S, Llewellyn M, Taylor M, Carvalho G, Glover KA. Disentangling the effects of sex, life history and genetic background in Atlantic salmon: growth, heart and liver under common garden conditions. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200811. [PMID: 33204455 PMCID: PMC7657880 DOI: 10.1098/rsos.200811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Livestock domestication has long been a part of agriculture, estimated to have first occurred approximately 10 000 years ago. Despite the plethora of traits studied, there is little understanding of the possible impacts domestication has had on internal organs, which are key determinants of survival. Moreover, the genetic basis of observed associated changes in artificial environments is still puzzling. Here we examine impacts of captivity on two organs in Atlantic salmon (Salar salar) that have been domesticated for approximately 50 years: heart and liver, in addition to growth. We studied multiple families of wild, domesticated, F1 and F2 hybrid, and backcrossed strains of S. salar in replicated common garden tanks during the freshwater and marine stages of development. Heart and liver weight were investigated, along with heart morphology metrics examined in just the wild, domesticated and F1 hybrid strains (heart height and width). Growth was positively linked with the proportion of the domesticated strain, and recombination in F2 hybrids (and the potential disruption of co-adapted gene complexes) did not influence growth. Despite the influence of domestication on growth, we found no evidence for domestication-driven divergence in heart or liver morphology. However, sexual dimorphism was detected in heart morphology, and after controlling for body size, females exhibited significantly larger heart weight and heart width when compared with males. Wild females also had an increased heart height when compared with wild males, and this was not observed in any other strain. Females sampled in saltwater showed significantly larger heart height with rounder hearts, than saltwater males. Collectively, these results demonstrate an additive basis of growth and, despite a strong influence of domestication on growth, no clear evidence of changes in heart or liver morphology associated with domestication was identified.
Collapse
Affiliation(s)
- William Bernard Perry
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Monica F. Solberg
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Christopher Brodie
- Mariani Molecular Ecology Laboratory, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 5UX, UK
| | - Angela C. Medina
- School of Microbiology, Food Science and Technology Building University College Cork, Cork T12 TP07, Ireland
| | - Kirthana G. Pillay
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Anna Egerton
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Alison Harvey
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Martin Llewellyn
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Martin Taylor
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Kevin A. Glover
- Population Genetics Research Group, Institute of Marine Research, PO Box 1870, Nordnes 5817, Bergen, Norway
- Institute of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
17
|
Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel) 2020; 10:E1717. [PMID: 32971980 PMCID: PMC7552752 DOI: 10.3390/ani10091717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare.
Collapse
Affiliation(s)
| | | | | | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (G.H.); (D.N.D.); (J.G.)
| |
Collapse
|
18
|
Wang Y, Bu L, Cao X, Qu H, Zhang C, Ren J, Huang Z, Zhao Y, Luo C, Hu X, Shu D, Li N. Genetic Dissection of Growth Traits in a Unique Chicken Advanced Intercross Line. Front Genet 2020; 11:894. [PMID: 33033489 PMCID: PMC7509424 DOI: 10.3389/fgene.2020.00894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
The advanced intercross line (AIL) that is created by successive generations of pseudo-random mating after the F2 generation is a valuable resource, especially in agricultural livestock and poultry species, because it improves the precision of quantitative trait loci (QTL) mapping compared with traditional association populations by introducing more recombination events. The growth traits of broilers have significant economic value in the chicken industry, and many QTLs affecting growth traits have been identified, especially on chromosomes 1, 4, and 27, albeit with large confidence intervals that potentially contain dozens of genes. To promote a better understanding of the underlying genetic architecture of growth trait differences, specifically body weight and bone development, in this study, we report a nine-generation AIL derived from two divergent outbred lines: High Quality chicken Line A (HQLA) and Huiyang Bearded (HB) chicken. We evaluate the genetic architecture of the F0, F2, F8, and F9 generations of AIL and demonstrate that the population of the F9 generation sufficiently randomized the founder genomes and has the characteristics of rapid linkage disequilibrium decay, limited allele frequency decline, and abundant nucleotide diversity. This AIL yielded a much narrower QTL than the F2 generations, especially the QTL on chromosome 27, which was reduced to 120 Kb. An ancestral haplotype association analysis showed that most of the dominant haplotypes are inherited from HQLA but with fluctuation of the effects between them. We highlight the important role of four candidate genes (PHOSPHO1, IGF2BP1, ZNF652, and GIP) in bone growth. We also retrieved a missing QTL from AIL on chromosome 4 by identifying the founder selection signatures, which are explained by the loss of association power that results from rare alleles. Our study provides a reasonable resource for detecting quantitative trait genes and tracking ancestor history and will facilitate our understanding of the genetic mechanisms underlying chicken bone growth.
Collapse
Affiliation(s)
- Yuzhe Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuemin Cao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunyuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Fu Y, Wang L, Tang Z, Yin D, Xu J, Fan Y, Li X, Zhao S, Liu X. An integration analysis based on genomic, transcriptomic and QTX information reveals credible candidate genes for fat-related traits in pigs. Anim Genet 2020; 51:683-693. [PMID: 32557818 DOI: 10.1111/age.12971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 12/27/2022]
Abstract
Meat quality improvement is of great interest to researchers in pig breeding and many researchers have identified abundant associated quantitative trait loci, genes and polymorphisms (QTXs) for fat-related traits. However, it is challenging to determine credible candidate genes from a mass of associations. The efficiency of identification of credible candidate genes in these QTXs is restricted by limited integration analyses of data from multiple omics. In this study, we constructed a 'candidate gene map' of fat-related traits in pigs based on published literature and the latest genome. In total, 6,861 QTXs, which covered 9,323 genes on the pig genome, were used. Combining the QTX hotspots and pathway analysis, we identified 180 candidate genes that may regulate the fat-related traits, and choose PNPLA2, PPARG, SREBF1, ACACA, PPARD and PPARA as credible candidate genes. In addition, we discussed the importance of incorporating transcriptome data and genomic data in causal gene identification, and the multi-omics information can effectively improve the credibility of identified candidate genes.
Collapse
Affiliation(s)
- Y Fu
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan, Hubei, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - L Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Z Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - D Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - J Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Y Fan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - S Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - X Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
20
|
An B, Xu L, Xia J, Wang X, Miao J, Chang T, Song M, Ni J, Xu L, Zhang L, Li J, Gao H. Multiple association analysis of loci and candidate genes that regulate body size at three growth stages in Simmental beef cattle. BMC Genet 2020; 21:32. [PMID: 32171250 PMCID: PMC7071762 DOI: 10.1186/s12863-020-0837-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/04/2020] [Indexed: 01/08/2023] Open
Abstract
Background Body size traits as one of the main breeding selection criteria was widely used to monitor cattle growth and to evaluate the selection response. In this study, body size was defined as body height (BH), body length (BL), hip height (HH), heart size (HS), abdominal size (AS), and cannon bone size (CS). We performed genome-wide association studies (GWAS) of these traits over the course of three growth stages (6, 12 and 18 months after birth) using three statistical models, single-trait GWAS, multi-trait GWAS and LONG-GWAS. The Illumina Bovine HD 770 K BeadChip was used to identify genomic single nucleotide polymorphisms (SNPs) in 1217 individuals. Results In total, 19, 29, and 10 significant SNPs were identified by the three models, respectively. Among these, 21 genes were promising candidate genes, including SOX2, SNRPD1, RASGEF1B, EFNA5, PTBP1, SNX9, SV2C, PKDCC, SYNDIG1, AKR1E2, and PRIM2 identified by single-trait analysis; SLC37A1, LAP3, PCDH7, MANEA, and LHCGR identified by multi-trait analysis; and P2RY1, MPZL1, LINGO2, CMIP, and WSCD1 identified by LONG-GWAS. Conclusions Multiple association analysis was performed for six growth traits at each growth stage. These findings offer valuable insights for the further investigation of potential genetic mechanism of growth traits in Simmental beef cattle.
Collapse
Affiliation(s)
| | | | - Jiangwei Xia
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, 310000, China
| | - Xiaoqiao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Jian Miao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Tianpeng Chang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Meihua Song
- Zhuang Yuan Veterinary Station of Qixia city, Yantai, 265300, China
| | - Junqing Ni
- Heibei Livestock Breeding Workstation, Shijiazhuang, 050061, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, China.
| |
Collapse
|
21
|
Dobek A, Gornowicz E, Moliński IA, Grajewski B, Lisowski M, Szwaczkowski T. Interactions Between Non-Allelic Loci and Their Effects on Categorized Meat Performance Traits in Ducks. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2020. [DOI: 10.1590/1806-9061-2018-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- A Dobek
- Poznan University of Life Sciences, Poland
| | - E Gornowicz
- National Institute of Animal Production Koluda Wielka, Poland
| | | | - B Grajewski
- National Institute of Animal Production Koluda Wielka, Poland
| | - M Lisowski
- National Institute of Animal Production Koluda Wielka, Poland
| | | |
Collapse
|
22
|
The growth performance, intestinal digestive and absorptive capabilities in piglets with different lengths of small intestines. Animal 2019; 14:1196-1203. [PMID: 31829913 DOI: 10.1017/s175173111900288x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The small intestine is an important digestive organ and plays a vital role in the life of a pig. We tested the hypothesis that the length of the small intestine is related to growth performance and intestinal functions of piglets. A total of 60 piglets (Duroc × Landrace × Yorkshire), weaned at day 21, were fed an identical diet during a 28-day trial. At the end of the study, all piglets were sacrificed, dissected and grouped according to small intestine lengths (SILs), either short small intestine (SSI), middle small intestine (MSI) or long small intestine (LSI), respectively. Positive relationships between SIL and BW, average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratios (G : F) were observed. Final BW, ADG, ADFI and G : F significantly increased (P < 0.05) in MSI and LSI piglets compared with SSI piglets. Short small intestine and MSI had greater jejunal mucosa sucrase and alkaline phosphatase activities (P < 0.05) than LSI piglets. The mRNA level of solute carrier family 2 member 2 (Slc2a2) in the jejunal mucosa of SSI piglets was the greatest. The MSI piglets had a greater (P < 0.05) ileal villus height than other piglets and greater (P < 0.05) villus height-to-crypt depth ratios than LSI piglets. However, the LSI piglets had a greater (P < 0.05) ileal crypt depth than SSI piglets. No significant differences in duodenal, jejunal, caecal and colonic morphologies were detected among the groups. Moreover, luminal acetate, propionate, butyrate and total short-chain fatty acid contents were greater (P < 0.05) in SSI and MSI piglets than those in LSI piglets. In addition, there was greater serum glucose concentration in MSI piglets than other piglets. Serum albumin concentration in SSI piglets was the lowest. In conclusion, these results indicate that SIL was significantly positively associated with growth performance, and in terms of intestinal morphology and mucosal digestive enzyme activity, the piglets with a medium length of small intestine have better digestion and absorption properties.
Collapse
|
23
|
Yang Q, Wu P, Wang K, Chen D, Zhou J, Ma J, Li M, Xiao W, Jiang A, Jiang Y, Bai L, Zhu L, Li X, Tang G. SNPs associated with body weight and backfat thickness in two pig breeds identified by a genome-wide association study. Genomics 2019; 111:1583-1589. [DOI: 10.1016/j.ygeno.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/23/2018] [Accepted: 11/05/2018] [Indexed: 12/30/2022]
|
24
|
Ma X, Jia C, Chu M, Fu D, Lei Q, Ding X, Wu X, Guo X, Pei J, Bao P, Yan P, Liang C. Transcriptome and DNA Methylation Analyses of the Molecular Mechanisms Underlying with Longissimus dorsi Muscles at Different Stages of Development in the Polled Yak. Genes (Basel) 2019; 10:genes10120970. [PMID: 31779203 PMCID: PMC6947547 DOI: 10.3390/genes10120970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 02/04/2023] Open
Abstract
DNA methylation modifications are implicated in many biological processes. As the most common epigenetic mechanism DNA methylation also affects muscle growth and development. The majority of previous studies have focused on different varieties of yak, but little is known about the epigenetic regulation mechanisms in different age groups of animals. The development of muscles in the different stages of yak growth remains unclear. In this study, we selected the longissimus dorsi muscle tissue at three different growth stages of the yak, namely, 90-day-old fetuses (group E), six months old (group M), and three years old (group A). Using RNA-Seq transcriptome sequencing and methyl-RAD whole-genome methylation sequencing technology, changes in gene expression levels and DNA methylation status throughout the genome were investigated during the stages of yak development. Each group was represented by three biological replicates. The intersections of expression patterns of 7694 differentially expressed genes (DEGs) were identified (padj < 0.01, |log2FC| > 1.2) at each of the three developmental periods. Time-series expression profile clustering analysis indicated that the DEGs were significantly arranged into eight clusters which could be divided into two classes (padj < 0.05), class I profiles that were downregulated and class II profiles that were upregulated. Based on this cluster analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs from class I profiles were significantly (padj < 0.05) enriched in 21 pathways, the most enriched pathway being the Axon guidance signaling pathway. DEGs from the class II profile were significantly enriched in 58 pathways, the pathway most strongly enriched being Metabolic pathway. After establishing the methylation profiles of the whole genomes, and using two groups of comparisons, the three combinations of groups (M-vs.-E, M-vs.-A, A-vs.-E) were found to have 1344, 822, and 420 genes, respectively, that were differentially methylated at CCGG sites and 2282, 3056, and 537 genes, respectively, at CCWGG sites. The two sets of data were integrated and the negative correlations between DEGs and differentially methylated promoters (DMPs) analyzed, which confirmed that TMEM8C, IGF2, CACNA1S and MUSTN1 were methylated in the promoter region and that expression of the modified genes was negatively correlated. Interestingly, these four genes, from what was mentioned above, perform vital roles in yak muscle growth and represent a reference for future genomic and epigenomic studies in muscle development, in addition to enabling marker-assisted selection of growth traits.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Qinhui Lei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.M.); (C.J.); (M.C.); (D.F.); (Q.L.); (X.D.); (X.W.); (X.G.); (J.P.); (P.B.)
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| | - Chunnian Liang
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (P.Y.); (C.L.); Tel.: +86-0931-2115288 (P.Y.); +86-0931-2115271 (C.L.)
| |
Collapse
|
25
|
Muñoz M, Bozzi R, García-Casco J, Núñez Y, Ribani A, Franci O, García F, Škrlep M, Schiavo G, Bovo S, Utzeri VJ, Charneca R, Martins JM, Quintanilla R, Tibau J, Margeta V, Djurkin-Kušec I, Mercat MJ, Riquet J, Estellé J, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Gallo M, Čandek-Potokar M, Fernández AI, Fontanesi L, Óvilo C. Genomic diversity, linkage disequilibrium and selection signatures in European local pig breeds assessed with a high density SNP chip. Sci Rep 2019; 9:13546. [PMID: 31537860 PMCID: PMC6753209 DOI: 10.1038/s41598-019-49830-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/30/2019] [Indexed: 11/27/2022] Open
Abstract
Genetic characterization of local breeds is essential to preserve their genomic variability, to advance conservation policies and to contribute to their promotion and sustainability. Genomic diversity of twenty European local pig breeds and a small sample of Spanish wild pigs was assessed using high density SNP chips. A total of 992 DNA samples were analyzed with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine genotyping chip. Genotype data was employed to compute genetic diversity, population differentiation and structure, genetic distances, linkage disequilibrium and effective population size. Our results point out several breeds, such as Turopolje, Apulo Calabrese, Casertana, Mora Romagnola and Lithuanian indigenous wattle, having the lowest genetic diversity, supported by low heterozygosity and very small effective population size, demonstrating the need of enhanced conservation strategies. Principal components analysis showed the clustering of the individuals of the same breed, with few breeds being clearly isolated from the rest. Several breeds were partially overlapped, suggesting genetic closeness, which was particularly marked in the case of Iberian and Alentejana breeds. Spanish wild boar was also narrowly related to other western populations, in agreement with recurrent admixture between wild and domestic animals. We also searched across the genome for loci under diversifying selection based on FST outlier tests. Candidate genes that may underlie differences in adaptation to specific environments and productive systems and phenotypic traits were detected in potentially selected genomic regions.
Collapse
Affiliation(s)
- M Muñoz
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - R Bozzi
- DAGRI, Animal Science Section, Università degli Studi di Firenze, Firenze, Italy
| | - J García-Casco
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - Y Núñez
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - A Ribani
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - O Franci
- DAGRI, Animal Science Section, Università degli Studi di Firenze, Firenze, Italy
| | - F García
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - M Škrlep
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - G Schiavo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - V J Utzeri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - R Charneca
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - J M Martins
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - R Quintanilla
- IRTA, Programa de Genética y Mejora Animal, Barcelona, Spain
| | - J Tibau
- IRTA, Programa de Genética y Mejora Animal, Barcelona, Spain
| | - V Margeta
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Osijek, Croatia
| | - I Djurkin-Kušec
- Faculty of Agrobiotechnical Sciences Osijek, University of Osijek, Osijek, Croatia
| | - M J Mercat
- IFIP - Institut du Porc, Le Rheu, France
| | - J Riquet
- INRA, Génétique Physiologie et Système d'Elevage, Castanet-Tolosan, France
| | - J Estellé
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - C Zimmer
- Bäuerliche Erzeugergemeinschaft Schwäbisch Hall, Wolpertshausen, Germany
| | - V Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, Baisogala, Lithuania
| | - J P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Ponte de Lima, Portugal
| | - Č Radović
- Institute for Animal Husbandry-Pig Research Department, Autoput for Zagreb 16, 11080, Belgrade-Zemun, Serbia
| | - R Savić
- University of Belgrade, Faculty of agriculture, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - D Karolyi
- Department of Animal Science, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia
| | - M Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Roma, Italy
| | - M Čandek-Potokar
- Kmetijski inštitut Slovenije, Hacquetova ulica 17, SI-1000, Ljubljana, Slovenia
| | - A I Fernández
- Departamento Mejora Genética Animal, INIA, Madrid, Spain
| | - L Fontanesi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - C Óvilo
- Departamento Mejora Genética Animal, INIA, Madrid, Spain.
| |
Collapse
|
26
|
Chen D, Wu P, Yang Q, Wang K, Zhou J, Yang X, Jiang A, Shen L, Xiao W, Jiang Y, Zhu L, Li X, Tang G. Genome-wide association study for backfat thickness at 100 kg and loin muscle thickness in domestic pigs based on genotyping by sequencing. Physiol Genomics 2019; 51:261-266. [PMID: 31100035 DOI: 10.1152/physiolgenomics.00008.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Both backfat thickness at 100 kg (B100) and loin muscle thickness (LMT) are economically important traits in pigs. In this study, a total of 1,200 pigs (600 Landrace and 600 Yorkshire pigs) were examined with genotyping by sequencing. A total of 345,570 single nucleotide polymorphisms (SNPs) were obtained from 1,200 pigs. Then, a single marker regression test was used to conduct a genome-wide association study for B100 and LMT. A total of 8 and 90 significant SNPs were detected for LMT and B100, respectively. Interestingly, two shared significant loci [located at Sus scrofa chromosome (SSC) 6: 149876694 and SSC12: 46226580] were detected in two breeds for B100. Furthermore, three potential candidate genes were found for LMT and B100. The positional candidate gene FAM3C (SSC18: 25573656, P = 2.48 × 10-9), which controls the survival, growth, and differentiation of tissues and cells, was found for LMT in Landrace pigs. At SSC9: 6.78-6.82 Mb in Landrace pigs, the positional candidate gene, INPPL1, which has a negative regulatory effect on diet-induced obesity and is involved in the regulation of insulin function, was found for B100. The candidate gene, RAB35, which regulates the adipocyte glucose transporter SLC2A4/GLUT4, was identified at approximately SSC14: 40.09-40.13 Mb in Yorkshire pigs. The results of this GWAS will greatly advance our understanding of the genetic architecture of the LMT and B100 traits. However, these identified loci and genes need to be further verified in more pig populations, and their functions also need to be validated by more biological experiments in pigs.
Collapse
Affiliation(s)
- Dejuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Pingxian Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Qiang Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Kai Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Jie Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Xidi Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Anan Jiang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Weihang Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Yanzhi Jiang
- College of Life Science, Sichuan Agricultural University, Yaan, Sichuan , China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Xuewei Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| | - Guoqing Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University , Chengdu, Sichuan , China
| |
Collapse
|
27
|
Wu G, Bazer FW. Application of new biotechnologies for improvements in swine nutrition and pork production. J Anim Sci Biotechnol 2019; 10:28. [PMID: 31019685 PMCID: PMC6474057 DOI: 10.1186/s40104-019-0337-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/17/2019] [Indexed: 12/18/2022] Open
Abstract
Meeting the increasing demands for high-quality pork protein requires not only improved diets but also biotechnology-based breeding to generate swine with desired production traits. Biotechnology can be classified as the cloning of animals with identical genetic composition or genetic engineering (via recombinant DNA technology and gene editing) to produce genetically modified animals or microorganisms. Cloning helps to conserve species and breeds, particularly those with excellent biological and economical traits. Recombinant DNA technology combines genetic materials from multiple sources into single cells to generate proteins. Gene (genome) editing involves the deletion, insertion or silencing of genes to produce: (a) genetically modified pigs with important production traits; or (b) microorganisms without an ability to resist antimicrobial substances. Current gene-editing tools include the use of zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN), or clustered regularly interspaced short palindromic repeats-associated nuclease-9 (CRISPR/Cas9) as editors. ZFN, TALEN, or CRISPR/Cas9 components are delivered into target cells through transfection (lipid-based agents, electroporation, nucleofection, or microinjection) or bacteriophages, depending on cell type and plasmid. Compared to the ZFN and TALEN, CRISPR/Cas9 offers greater ease of design and greater flexibility in genetic engineering, but has a higher frequency of off-target effects. To date, genetically modified pigs have been generated to express bovine growth hormone, bacterial phytase, fungal carbohydrases, plant and C. elagan fatty acid desaturases, and uncoupling protein-1; and to lack myostatin, α-1,3-galactosyltransferase, or CD163 (a cellular receptor for the "blue ear disease" virus). Biotechnology holds promise in improving the efficiency of swine production and developing alternatives to antibiotics in the future.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471 USA
| | - Fuller W Bazer
- Department of Animal Science and Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471 USA
| |
Collapse
|
28
|
Palomar G, Vasemägi A, Ahmad F, Nicieza AG, Cano JM. Mapping of quantitative trait loci for life history traits segregating within common frog populations. Heredity (Edinb) 2019; 122:800-808. [PMID: 30631147 DOI: 10.1038/s41437-018-0175-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 02/01/2023] Open
Abstract
The evolution of complex traits is often shaped by adaptive divergence. However, very little is known about the number, effect size, and location of the genomic regions influencing the variation of these traits in natural populations. Based on a dense linkage map of the common frog, Rana temporaria, we have localized, for the first time in amphibians, three significant and nine suggestive quantitative trait loci (QTLs) for metabolic rate, growth rate, development time, and weight at metamorphosis, explaining 5.6-18.9% of the overall phenotypic variation in each trait. We also found a potential pleiotropic QTL between development time and size at metamorphosis that, if confirmed, might underlie the previously reported genetic correlation between these traits. Furthermore, we demonstrate that the genetic variation linked to fitness-related larval traits segregates within Rana temporaria populations. This study provides the first insight into the genomic regions that affect larval life history traits in anurans, providing a valuable resource to delve further into the genomic basis of evolutionary change in amphibians.
Collapse
Affiliation(s)
- Gemma Palomar
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain. .,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain. .,Molecular and Behavioral Ecology Group, Institute of Environmental Sciences, Jagiellonian University, 30-387, Krakow, Poland.
| | - Anti Vasemägi
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquaculture, Institute of Veterinary Medicine and Animal Science, Estonian University of Life Sciences, 51006, Tartu, Estonia.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Alfredo G Nicieza
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| | - José Manuel Cano
- Research Unit of Biodiversity (UO-CSIC-PA), 33600, Mieres, Asturias, Spain.,Department of Biology of Organisms and Systems, University of Oviedo, 33006, Oviedo, Asturias, Spain
| |
Collapse
|
29
|
Genome-wide association studies and meta-analysis uncovers new candidate genes for growth and carcass traits in pigs. PLoS One 2018; 13:e0205576. [PMID: 30308042 PMCID: PMC6181390 DOI: 10.1371/journal.pone.0205576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022] Open
Abstract
Genome-wide association studies (GWAS) have been widely used in the genetic dissection of complex traits. As more genomic data is being generated within different commercial or resource pig populations, the challenge which arises is how to collectively investigate the data with the purpose to increase sample size and implicitly the statistical power. This study performs an individual population GWAS, a joint population GWAS and a meta-analysis in three pig F2 populations. D1 is derived from European type breeds (Piétrain, Large White and Landrace), D2 is obtained from an Asian breed (Meishan) and Piétrain, and D3 stems from a European Wild Boar and Piétrain, which is the common founder breed. The traits investigated are average daily gain, backfat thickness, meat to fat ratio and carcass length. The joint and the meta-analysis did not identify additional genomic clusters besides the ones discovered via the individual population GWAS. However, the benefit was an increased mapping resolution which pinpointed to narrower clusters harboring causative variants. The joint analysis identified a higher number of clusters as compared to the meta-analysis; nevertheless, the significance levels and the number of significant variants in the meta-analysis were generally higher. Both types of analysis had similar outputs suggesting that the two strategies can complement each other and that the meta-analysis approach can be a valuable tool whenever access to raw datasets is limited. Overall, a total of 20 genomic clusters that predominantly overlapped at various extents, were identified on chromosomes 2, 7 and 17, many confirming previously identified quantitative trait loci. Several new candidate genes are being proposed and, among them, a strong candidate gene to be taken into account for subsequent analysis is BMP2 (bone morphogenetic protein 2).
Collapse
|
30
|
Single nucleotide polymorphisms within rabbits ( Oryctolagus cuniculus ) fatty acids binding protein 4 ( FABP4 ) are associated with meat quality traits. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
31
|
Parins-Fukuchi C. Use of Continuous Traits Can Improve Morphological Phylogenetics. Syst Biol 2018; 67:328-339. [PMID: 28945906 DOI: 10.1093/sysbio/syx072] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
The recent surge in enthusiasm for simultaneously inferring relationships from extinct and extant species has reinvigorated interest in statistical approaches for modeling morphological evolution. Current statistical methods use the Mk model to describe substitutions between discrete character states. Although representing a significant step forward, the Mk model presents challenges in biological interpretation, and its adequacy in modeling morphological evolution has not been well explored. Another major hurdle in morphological phylogenetics concerns the process of character coding of discrete characters. The often subjective nature of discrete character coding can generate discordant results that are rooted in individual researchers' subjective interpretations. Employing continuous measurements to infer phylogenies may alleviate some of these issues. Although not widely used in the inference of topology, models describing the evolution of continuous characters have been well examined, and their statistical behavior is well understood. Also, continuous measurements avoid the substantial ambiguity often associated with the assignment of discrete characters to states. I present a set of simulations to determine whether use of continuous characters is a feasible alternative or supplement to discrete characters for inferring phylogeny. I compare relative reconstruction accuracy by inferring phylogenies from simulated continuous and discrete characters. These tests demonstrate significant promise for continuous traits by demonstrating their higher overall accuracy as compared to reconstruction from discrete characters under Mk when simulated under unbounded Brownian motion, and equal performance when simulated under an Ornstein-Uhlenbeck model. Continuous characters also perform reasonably well in the presence of covariance between sites. I argue that inferring phylogenies directly from continuous traits may be benefit efforts to maximize phylogenetic information in morphological data sets by preserving larger variation in state space compared to many discretization schemes. I also suggest that the use of continuous trait models in phylogenetic reconstruction may alleviate potential concerns of discrete character model adequacy, while identifying areas that require further study in this area. This study provides an initial controlled demonstration of the efficacy of continuous characters in phylogenetic inference.
Collapse
Affiliation(s)
- Caroline Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Martínez-Montes ÁM, Fernández A, Muñoz M, Noguera JL, Folch JM, Fernández AI. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed. PLoS One 2018. [PMID: 29522525 PMCID: PMC5844516 DOI: 10.1371/journal.pone.0190184] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the major limitation for the application of QTL results in pig breeding and QTN identification has been the limited number of QTL effects validated in different animal material. The aim of the current work was to validate QTL regions through joint and specific genome wide association and haplotype analyses for growth, fatness and premier cut weights in three different genetic backgrounds, backcrosses based on Iberian pigs, which has a major role in the analysis due to its high productive relevance. The results revealed nine common QTL regions, three segregating in all three backcrosses on SSC1, 0–3 Mb, for body weight, on SSC2, 3–9 Mb, for loin bone-in weight, and on SSC7, 3 Mb, for shoulder weight, and six segregating in two of the three backcrosses, on SSC2, SSC4, SSC6 and SSC10 for backfat thickness, shoulder and ham weights. Besides, 18 QTL regions were specifically identified in one of the three backcrosses, five identified only in BC_LD, seven in BC_DU and six in BC_PI. Beyond identifying and validating QTL, candidate genes and gene variants within the most interesting regions have been explored using functional annotation, gene expression data and SNP identification from RNA-Seq data. The results allowed us to propose a promising list of candidate mutations, those identified in PDE10A, DHCR7, MFN2 and CCNY genes located within the common QTL regions and those identified near ssc-mir-103-1 considered PANK3 regulators to be further analysed.
Collapse
Affiliation(s)
- Ángel M. Martínez-Montes
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Almudena Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - María Muñoz
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- Centro de I+D en Cerdo Ibérico, Zafra, Badajoz, Spain
| | - Jose Luis Noguera
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Lleida, Spain
| | - Josep M. Folch
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, Spain
| | - Ana I. Fernández
- Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
- * E-mail:
| |
Collapse
|
33
|
Pedersen S, Liu L, Glebe B, Leadbeater S, Lien S, Boulding EG. Mapping of quantitative trait loci associated with size, shape, and parr mark traits using first- and second-generation backcrosses between European and North American Atlantic salmon (Salmo salar). Genome 2018; 61:33-42. [DOI: 10.1139/gen-2017-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Little is known about the genetic architecture of traits important for salmonid restoration ecology. We mapped quantitative trait loci (QTL) using single nucleotide polymorphisms (SNPs) for juvenile body length, weight, shape, and vertical skin pigmentation patterns (parr marks) within three hybrid backcross families between European and North American subspecies of Atlantic salmon. Amounts of variation in skin colour and pattern quantified in the two second-generation transAtlantic families exceeded the ranges seen in purebred populations. GridQTL analyses using low-density female-specific linkage maps detected QTL showing experiment-wide significance on Ssa02, Ssa03, Ssa09, Ssa11, Ssa19, and Ssa26/28 for both length and weight; on Ssa04 and Ssa23 for parr mark number; on Ssa09 and Ssa13 for parr mark contrast; and on Ssa05, Ssa07, Ssa10, Ssa11, Ssa18, Ssa23, and Ssa26/28 for geometric morphometric shape coordinates. Pleiotrophic QTL on Ssa11 affected length, weight, and shape. No QTL was found that explained more than 10% of the phenotypic variance in pigmentation or shape traits. Each QTL was approximately positioned on the physical map of the Atlantic salmon genome. Some QTL locations confirmed previous studies but many were new. Studies like ours may increase the success of salmon restoration projects by enabling better phenotypic and genetic matching between introduced and extirpated strains.
Collapse
Affiliation(s)
- Stephanie Pedersen
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lei Liu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Brian Glebe
- Department of Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB E5B 2L9, Canada
| | - Steven Leadbeater
- Department of Fisheries and Oceans Canada, St. Andrews Biological Station, St. Andrews, NB E5B 2L9, Canada
| | - Sigbjørn Lien
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | | |
Collapse
|
34
|
Chen H, Huang T, Zhang Z, Yang B, Jiang C, Wu J, Zhou Z, Zheng H, Xin W, Huang M, Zhang M, Chen C, Ren J, Ai H, Huang L. Genome-wide association studies and meta-analysis reveal novel quantitative trait loci and pleiotropic loci for swine head-related traits1,2. J Anim Sci 2017; 95:2354-2366. [DOI: 10.2527/jas.2016.1137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- H. Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - T. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Z. Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - B. Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - C. Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - J. Wu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Z. Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - H. Zheng
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - W. Xin
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - M. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - M. Zhang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - C. Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - J. Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - H. Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - L. Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
35
|
Guo Y, Huang Y, Hou L, Ma J, Chen C, Ai H, Huang L, Ren J. Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet Sel Evol 2017; 49:21. [PMID: 28196480 PMCID: PMC5307927 DOI: 10.1186/s12711-017-0295-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian F2 intercross population and Chinese Sutai, Laiwu and Erhualian populations. RESULTS We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the F2 and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the F2 and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. CONCLUSIONS We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the F2, Erhualian and Sutai populations.
Collapse
Affiliation(s)
- Yuanmei Guo
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yixuan Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lijuan Hou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Junwu Ma
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huashui Ai
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jun Ren
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
36
|
Ji J, Zhou L, Guo Y, Huang L, Ma J. Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F 2 intercross population. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2017; 30:1066-1073. [PMID: 28111436 PMCID: PMC5494478 DOI: 10.5713/ajas.16.0679] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/09/2016] [Accepted: 01/08/2017] [Indexed: 02/08/2023]
Abstract
Objective Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White Duroc×Erhualian F2 intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level (5×10−4), three QTLs exceeded the genome-wide significance threshold (1.15×10−6). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes’ role and further identifying causative variants underlying these loci.
Collapse
Affiliation(s)
- Jiuxiu Ji
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lisheng Zhou
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yuanmei Guo
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lusheng Huang
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Junwu Ma
- National Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
37
|
He LC, Li PH, Ma X, Sui SP, Gao S, Kim SW, Gu YQ, Huang Y, Ding NS, Huang RH. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs. Anim Genet 2016; 48:48-54. [PMID: 27615062 DOI: 10.1111/age.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 01/08/2023]
Abstract
The Chinese Erhualian pig has the highest record for litter size in the world. However, the genetic mechanism of its high prolificacy remains poorly understood. In our study, large phenotypic variations in litter size were found among Erhualian sows. Significant differences in total number born (TNB) and corpora lutea numbers were observed between sows with high and low estimated breeding values (EBVs) for TNB. To identify single nucleotide polymorphisms (SNPs) associated with TNB, a selective genomic scan was conducted on 18 sows representing the top 10% and 18 sows representing the bottom 10% of EBVs of 177 sows using Illumina Porcine SNP60 genotype data. Genome-wide fixation coefficient (FST ) values were calculated for each SNP between the high- and low-EBV groups. A total of 154 SNPs were significantly differentiated loci between the two groups. Of the top 10 highest FST SNPs, rs81399474, rs81400131 and rs81405013 on SSC8 and rs81434499 and rs81434489 on SSC 12 corresponded to previously reported QTL for litter size. The other five SNPs, rs81367039 on SSC2, rs80891106 on SSC7, rs81477883 on SSC12 and rs80938898 and rs80971725 on SSC14, appeared to be novel QTL for TNB. Significant associations between rs81399474 on SSC8 and TNB were confirmed in 313 Erhualian sows. Forty genes were identified around the top 10 highest FST SNPs, of which UCHL1, adjacent to rs81399474, and RPS6KB1 and CLTC, adjacent to rs81434499, have been reported to affect the ovulation rate in pig. The findings can advance understanding of the genetic variations in litter size of pigs.
Collapse
Affiliation(s)
- L C He
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - P H Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Ma
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S P Sui
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - S W Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Y Q Gu
- Changzhou Jiaoxi Cooperatives of Erhualian pigs, Changzhou, 213116, China
| | - Y Huang
- Changzhou Jiaoxi Cooperatives of Erhualian pigs, Changzhou, 213116, China
| | - N S Ding
- College of Animal Science and Veterinary Medicine, Jiangxi Agricultural University, Nanchang, 330045, China
| | - R H Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
38
|
Detection of quantitative trait loci for locomotion and osteochondrosis-related traits in Large White ✕ Meishan pigs. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800053418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractData from the F2 generation of a Large White (LW) ✕ Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for leg and gait scores, osteochondrosis and physis scores. Legs, feet and gait score were assessed in 308 F2 animals at 85 ( + 5) kg and osteochondrosis and physis scores were recorded for the right foreleg after slaughter. A genome scan was performed using 111 genetic markers chosen to span the genome that were genotyped on the F2 animals and their F1 parents and purebred grandparents. A QTL on chromosome 1 affecting gait score was significant at the genome-wide significance level. Additional QTL significant at the chromosome-wide 5% threshold level (approx. equivalent to the genome-wide suggestive level) were detected on chromosome 1 for front feet and back legs scores, on chromosome 13 for front legs and front feet scores, on chromosome 14 for front legs, front feet and back legs scores and on chromosome 15 for back feet score. None of the QTL for osteochondrosis score exceeded the chromosome-wide suggestive level, but one chromosome-wide QTL for physis score was found on chromosome 7. On chromosome 1, gait and front feet scores mapped to the middle of the chromosome and showed additive effects in favour of the LW alleles and no dominance effects. The QTL for back legs score mapped to the distal end of the chromosome and showed a dominant effect and no additive effect. On chromosomes 14 and 15, the LW allele was again superior to the MS allele. On chromosome 13, there were both additive and dominance effects in favour of the MS allele. The MS alleles on chromosome 13 may have potential for introgression into a commercial LW population. The other putative QTLs identified may have value in marker-assisted selection in LW or MS-synthetic populations.
Collapse
|
39
|
A GWA study reveals genetic loci for body conformation traits in Chinese Laiwu pigs and its implications for human BMI. Mamm Genome 2016; 27:610-621. [PMID: 27473603 DOI: 10.1007/s00335-016-9657-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/06/2016] [Indexed: 12/20/2022]
Abstract
Pigs share numerous physiological and phenotypic similarities with human and thus have been considered as a good model in nonrodent mammals for the study of genetic basis of human obesity. Researches on candidate genes for obesity traits have successfully identified some common genes between humans and pigs. However, few studies have assessed how many similarities exist between the genetic architecture of obesity in pigs and humans by large-scale comparative genomics. Here, we performed a genome-wide association study (GWAS) using the porcine 60 K SNP Beadchip for BMI and other four conformation traits at three different ages in a Chinese Laiwu pig population, which shows a large variability in fat deposition. In total, 35 SNPs were found to be significant at Bonferroni-corrected 5 % chromosome-wise level (P = 2.13 × 10-5) and 88 SNPs had suggestive (P < 10-4) association with the conformation traits. Some SNPs showed age-dependent association. Intriguingly, out of 32 regions associated with BMI in pigs, 18 were homologous with the loci for BMI in humans. Furthermore, five closest genes to GWAS peaks including HIF1AN, SMYD3, COX10, SLMAP, and GBE1 have been already associated with BMI in humans, which makes them very promising candidates for these QTLs. The result of GO analysis provided strong support to the fact that mitochondria and synapse play important roles in obesity susceptibility, which is consistent with previous findings on human obesity, and it also implicated new gene sets related to chromatin modification and Ig-like C2-type 5 domain. Therefore, these results not only provide new insights into the genetic architecture of BMI in pigs but also highlight that humans and pigs share the significant overlap of obesity-related genes.
Collapse
|
40
|
Lim KS, Lee KT, Lee SW, Chai HH, Jang G, Hong KC, Kim TH. Genomic structure, expression and association study of the porcine FSD2. Mol Biol Rep 2016; 43:1011-8. [PMID: 27350214 DOI: 10.1007/s11033-016-4029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
Abstract
The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P < 0.020) and moisture percentage (MP, P < 0.002). Moreover, haplotype 2 was associated with meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea.,College of Life Science and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea
| | - Si-Woo Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea
| | - Gulwon Jang
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea
| | - Ki-Chang Hong
- College of Life Science and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Tae-Hun Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, 1500 Kongjwipatjwi, Iseo, Wanju, 565-851, Korea.
| |
Collapse
|
41
|
Stachowiak M, Szczerbal I, Switonski M. Genetics of Adiposity in Large Animal Models for Human Obesity-Studies on Pigs and Dogs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 140:233-70. [PMID: 27288831 DOI: 10.1016/bs.pmbts.2016.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of domestic mammals in the development of human biomedical sciences has been widely documented. Among these model species the pig and dog are of special importance. Both are useful for studies on the etiology of human obesity. Genome sequences of both species are known and advanced genetic tools [eg, microarray SNP for genome wide association studies (GWAS), next generation sequencing (NGS), etc.] are commonly used in such studies. In the domestic pig the accumulation of adipose tissue is an important trait, which influences meat quality and fattening efficiency. Numerous quantitative trait loci (QTLs) for pig fatness traits were identified, while gene polymorphisms associated with these traits were also described. The situation is different in dog population. Generally, excessive accumulation of adipose tissue is considered, similar to humans, as a complex disease. However, research on the genetic background of canine obesity is still in its infancy. Between-breed differences in terms of adipose tissue accumulation are well known in both animal species. In this review we show recent advances of studies on adipose tissue accumulation in pigs and dogs, and their potential importance for studies on human obesity.
Collapse
Affiliation(s)
- M Stachowiak
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - I Szczerbal
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - M Switonski
- Department of Genetics, Animal Breeding, Poznań University of Life Sciences, Poznań, Poland.
| |
Collapse
|
42
|
Davoli R, Fontanesi L, Braglia S, Nisi I, Scotti E, Buttazzoni L, Russo V. Investigation of SNPs in theATP1A2, CA3andDECR1genes mapped to porcine chromosome 4: analysis in groups of pigs divergent for meat production and quality traits. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2006.249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Russo V, Fontanesi L, Davoli R, Chiofalo L, Liotta L, Zumbo A. Analysis of single nucleotide polymorphisms in major and candidate genes for production traits in Nero Siciliano pig breed. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2004.19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
Stefanon B, Floris R, Braglia S, Davoli R, Fontanesi L, Dall’Olio S, Graziosi G, Susmel P, Russo V. A new approach in association study of single nucleotide polymorphism of genes for carcass and meat quality traits in commercial pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2004.177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Oh JD, Kim ES, Lee HK, Song KD. Effect of a c-MYC Gene Polymorphism (g.3350G>C) on Meat Quality Traits in Berkshire. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1545-50. [PMID: 26580277 PMCID: PMC4647093 DOI: 10.5713/ajas.15.0425] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 05/17/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023]
Abstract
c-MYC (v-myelocytomatosis viral oncogene homologue) is a transcription factor that plays important role in many biological process including cell growth and differentiation, such as myogenesis and adipogenesis. In this study, we aimed to detect MYC gene polymorphisms, their genotype frequencies and to determine associations between these polymorphisms and meat quality traits in Berkshire pigs. We identified a single nucleotide polymorphism (SNP) in intron 2 of MYC gene by Sanger sequencing, i.e., g.3350G>C (rs321898326), that is only found in Berkshire pigs, but not in other breeds including Duroc, Landrace, and Yorkshire pigs that were used in this study. Genotypes of total 378 Berkshire pigs (138 sows and 240 boars) were determined using Hha I restriction enzyme digestion after polymerase chain reaction. Observed allele frequencies of GG, GC, and CC genotypes were 0.399, 0.508, and 0.093 respectively. Statistical analysis indicated that the g.3350G>C polymorphism was significantly associated with pH45min and cooking loss (p<0.05), suggesting that g.3350G>C SNP can be used for pre-selection of pH45min and cooking loss traits in Berkshire pigs.
Collapse
Affiliation(s)
| | - E. S. Kim
- Department of Animal Science, Iowa State University, Ames, IA 50011,
USA
| | | | - K. D. Song
- Department of Animal Science, Iowa State University, Ames, IA 50011,
USA
| |
Collapse
|
46
|
Abstract
Domestic animals are unique models for biomedical research due to their long history (thousands of years) of strong phenotypic selection. This process has enriched for novel mutations that have contributed to phenotype evolution in domestic animals. The characterization of such mutations provides insights in gene function and biological mechanisms. This review summarizes genetic dissection of about 50 genetic variants affecting pigmentation, behaviour, metabolic regulation, and the pattern of locomotion. The variants are controlled by mutations in about 30 different genes, and for 10 of these our group was the first to report an association between the gene and a phenotype. Almost half of the reported mutations occur in non-coding sequences, suggesting that this is the most common type of polymorphism underlying phenotypic variation since this is a biased list where the proportion of coding mutations are inflated as they are easier to find. The review documents that structural changes (duplications, deletions, and inversions) have contributed significantly to the evolution of phenotypic diversity in domestic animals. Finally, we describe five examples of evolution of alleles, which means that alleles have evolved by the accumulation of several consecutive mutations affecting the function of the same gene.
Collapse
Affiliation(s)
- Leif Andersson
- Correspondence: Professor Leif Andersson, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
47
|
Wang K, Liu D, Hernandez-Sanchez J, Chen J, Liu C, Wu Z, Fang M, Li N. Genome Wide Association Analysis Reveals New Production Trait Genes in a Male Duroc Population. PLoS One 2015; 10:e0139207. [PMID: 26418247 PMCID: PMC4587933 DOI: 10.1371/journal.pone.0139207] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/10/2015] [Indexed: 01/07/2023] Open
Abstract
In this study, 796 male Duroc pigs were used to identify genomic regions controlling growth traits. Three production traits were studied: food conversion ratio, days to 100 KG, and average daily gain, using a panel of 39,436 single nucleotide polymorphisms. In total, we detected 11 genome-wide and 162 chromosome-wide single nucleotide polymorphism trait associations. The Gene ontology analysis identified 14 candidate genes close to significant single nucleotide polymorphisms, with growth-related functions: six for days to 100 KG (WT1, FBXO3, DOCK7, PPP3CA, AGPAT9, and NKX6-1), seven for food conversion ratio (MAP2, TBX15, IVL, ARL15, CPS1, VWC2L, and VAV3), and one for average daily gain (COL27A1). Gene ontology analysis indicated that most of the candidate genes are involved in muscle, fat, bone or nervous system development, nutrient absorption, and metabolism, which are all either directly or indirectly related to growth traits in pigs. Additionally, we found four haplotype blocks composed of suggestive single nucleotide polymorphisms located in the growth trait-related quantitative trait loci and further narrowed down the ranges, the largest of which decreased by ~60 Mb. Hence, our results could be used to improve pig production traits by increasing the frequency of favorable alleles via artificial selection.
Collapse
Affiliation(s)
- Kejun Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Dewu Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People’s Republic of China
| | - Jules Hernandez-Sanchez
- Research Methods Group| Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), 60 Musk Ave/cnr. Blamey St, Kelvin Grove, QLD 4059, Australia
| | - Jie Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Chengkun Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Zhenfang Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, People’s Republic of China
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People’s Republic of China
- * E-mail:
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing, 100094, People’s Republic of China
| |
Collapse
|
48
|
Xiong X, Yang H, Yang B, Chen C, Huang L. Identification of quantitative trait transcripts for growth traits in the large scales of liver and muscle samples. Physiol Genomics 2015; 47:274-80. [PMID: 25901067 DOI: 10.1152/physiolgenomics.00005.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/19/2023] Open
Abstract
Growth-related traits are economically important traits to the pig industry. Identification of causative gene and mutation responsible for growth-related QTL will facilitate the improvement of pig growth through marker-assisted selection. In this study, we applied whole genome gene expression and quantitative trait transcript (QTT) analyses in 497 liver and 586 longissimus dorsi muscle samples to identify candidate genes and dissect the genetic basis of pig growth in a white Duroc × Erhualian F2 resource population. A total of 20,108 transcripts in liver and 23,728 transcripts in muscle with expression values were used for association analysis between gene expression level and phenotypic value. At the significance threshold of P < 0.0005, we identified a total of 169 and 168 QTTs for nine growth-related traits in liver and muscle, respectively. We also found that some QTTs were correlated to more than one trait. The QTTs identified here showed high tissue specificity. We did not identify any QTTs that were associated with one trait in both liver and muscle. Through an integrative genomic approach, we identified SDR16C5 as the important candidate gene in pig growth trait. These findings contribute to further identification of the causative genes for porcine growth traits and facilitate improvement of pig breeding.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Hui Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Bin Yang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
49
|
A genome-wide association study in large white and landrace pig populations for number piglets born alive. PLoS One 2015; 10:e0117468. [PMID: 25781935 PMCID: PMC4363374 DOI: 10.1371/journal.pone.0117468] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/25/2014] [Indexed: 11/22/2022] Open
Abstract
The number of piglets born alive (NBA) per litter is one of the most important traits in pig breeding due to its influence on production efficiency. It is difficult to improve NBA because the heritability of the trait is low and it is governed by a high number of loci with low to moderate effects. To clarify the biological and genetic background of NBA, genome-wide association studies (GWAS) were performed using 4,012 Large White and Landrace pigs from herdbook and commercial breeding companies in Germany (3), Austria (1) and Switzerland (1). The animals were genotyped with the Illumina PorcineSNP60 BeadChip. Because of population stratifications within and between breeds, clusters were formed using the genetic distances between the populations. Five clusters for each breed were formed and analysed by GWAS approaches. In total, 17 different significant markers affecting NBA were found in regions with known effects on female reproduction. No overlapping significant chromosome areas or QTL between Large White and Landrace breed were detected.
Collapse
|
50
|
Qiao R, Gao J, Zhang Z, Li L, Xie X, Fan Y, Cui L, Ma J, Ai H, Ren J, Huang L. Genome-wide association analyses reveal significant loci and strong candidate genes for growth and fatness traits in two pig populations. Genet Sel Evol 2015; 47:17. [PMID: 25885760 PMCID: PMC4358731 DOI: 10.1186/s12711-015-0089-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Recently, genome-wide association studies (GWAS) have been reported on various pig traits. We performed a GWAS to analyze 22 traits related to growth and fatness on two pig populations: a White Duroc × Erhualian F2 intercross population and a Chinese Sutai half-sib population. RESULTS We identified 14 and 39 loci that displayed significant associations with growth and fatness traits at the genome-wide level and chromosome-wide level, respectively. The strongest association was between a 750 kb region on SSC7 (SSC for Sus scrofa) and backfat thickness at the first rib. This region had pleiotropic effects on both fatness and growth traits in F2 animals and contained a promising candidate gene HMGA1 (high mobility group AT-hook 1). Unexpectedly, population genetic analysis revealed that the allele at this locus that reduces fatness and increases growth is derived from Chinese indigenous pigs and segregates in multiple Chinese breeds. The second strongest association was between the region around 82.85 Mb on SSC4 and average backfat thickness. PLAG1 (pleiomorphic adenoma gene 1), a gene under strong selection in European domestic pigs, is proximal to the top SNP and stands out as a strong candidate gene. On SSC2, a locus that significantly affects fatness traits mapped to the region around the IGF2 (insulin-like growth factor 2) gene but its non-imprinting inheritance excluded IGF2 as a candidate gene. A significant locus was also detected within a recombination cold spot that spans more than 30 Mb on SSCX, which hampered the identification of plausible candidate genes. Notably, no genome-wide significant locus was shared by the two experimental populations; different loci were observed that had both constant and time-specific effects on growth traits at different stages, which illustrates the complex genetic architecture of these traits. CONCLUSIONS We confirm several previously reported QTL and provide a list of novel loci for porcine growth and fatness traits in two experimental populations with Chinese Taihu and Western pigs as common founders. We showed that distinct loci exist for these traits in the two populations and identified HMGA1 and PLAG1 as strong candidate genes on SSC7 and SSC4, respectively.
Collapse
Affiliation(s)
- Ruimin Qiao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Jun Gao
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Lin Li
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Xianhua Xie
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Yin Fan
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Leilei Cui
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Junwu Ma
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Huashui Ai
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Jun Ren
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| | - Lusheng Huang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China.
| |
Collapse
|