1
|
Catacuzzeno L, Conti F, Franciolini F. Fifty years of gating currents and channel gating. J Gen Physiol 2023; 155:e202313380. [PMID: 37410612 PMCID: PMC10324510 DOI: 10.1085/jgp.202313380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
We celebrate this year the 50th anniversary of the first electrophysiological recordings of the gating currents from voltage-dependent ion channels done in 1973. This retrospective tries to illustrate the context knowledge on channel gating and the impact gating-current recording had then, and how it continued to clarify concepts, elaborate new ideas, and steer the scientific debate in these 50 years. The notion of gating particles and gating currents was first put forward by Hodgkin and Huxley in 1952 as a necessary assumption for interpreting the voltage dependence of the Na and K conductances of the action potential. 20 years later, gating currents were actually recorded, and over the following decades have represented the most direct means of tracing the movement of the gating charges and gaining insights into the mechanisms of channel gating. Most work in the early years was focused on the gating currents from the Na and K channels as found in the squid giant axon. With channel cloning and expression on heterologous systems, other channels as well as voltage-dependent enzymes were investigated. Other approaches were also introduced (cysteine mutagenesis and labeling, site-directed fluorometry, cryo-EM crystallography, and molecular dynamics [MD] modeling) to provide an integrated and coherent view of voltage-dependent gating in biological macromolecules. The layout of this retrospective reflects the past 50 years of investigations on gating currents, first addressing studies done on Na and K channels and then on other voltage-gated channels and non-channel structures. The review closes with a brief overview of how the gating-charge/voltage-sensor movements are translated into pore opening and the pathologies associated with mutations targeting the structures involved with the gating currents.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Franco Conti
- Department of Physics, University of Genova, Genova, Italy
| | - Fabio Franciolini
- Department of Chemistry Biology and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
2
|
Guidelli R. A historical biophysical dogma vs. an understanding of the structure and function of voltage-gated tetrameric ion channels. A review. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184046. [PMID: 36096197 DOI: 10.1016/j.bbamem.2022.184046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The outstanding work of several eminent biophysicists has allowed the functional features of voltage-gated tetrameric ion channels to be disclosed using ingenious and sophisticated electrophysiological techniques. However, the kinetics and mechanism underlying these functions have been heavily conditioned by an arbitrary interpretation of the groundbreaking results obtained by Hodgkin and Huxley (HH) in their investigation of sodium and potassium currents using the voltage clamp technique. Thus, the heavy parametrization of their results was considered to indicate that any proposed sequence of closed states terminates with a single open state. This 'dogma' of HH parametrization has influenced the formulation of countless mechanistic models, mainly stochastic, requiring a high number of free parameters and of often unspecified conformational states. This note aims to point out the advantages of a deterministic kinetic model that simulates the main features of tetrameric ion channels using only two free parameters by assuming their stepwise opening accompanied by a progressively increasing cation flow. This model exploits the electrostatic attractive interactions stemming from the charge distribution shared by all tetrameric ion channels, providing a close connection between their structure and function. Quite significantly, a stepwise opening of all ligand-gated tetrameric ion channels, such as glutamate receptors (GluRs), with concomitant ion flow, is nowadays generally accepted, not having been influenced by this dogma. This provides a unified picture of both voltage-gated and ligand-gated tetrameric ion channels.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
3
|
Catacuzzeno L, Franciolini F. The 70-year search for the voltage sensing mechanism of ion channels. J Physiol 2022; 600:3227-3247. [PMID: 35665931 PMCID: PMC9545881 DOI: 10.1113/jp282780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 01/10/2023] Open
Abstract
This retrospective on the voltage‐sensing mechanisms and gating models of ion channels begins in 1952 with the charged gating particles postulated by Hodgkin and Huxley, viewed as charges moving across the membrane and controlling its permeability to Na+ and K+ ions. Hodgkin and Huxley postulated that their movement should generate small and fast capacitive currents, which were recorded 20 years later as gating currents. In the early 1980s, several voltage‐dependent channels were cloned and found to share a common architecture: four homologous domains or subunits, each displaying six transmembrane α‐helical segments, with the fourth segment (S4) displaying four to seven positive charges invariably separated by two non‐charged residues. This immediately suggested that this segment was serving as the voltage sensor of the channel (the molecular counterpart of the charged gating particle postulated by Hodgkin and Huxley) and led to the development of the sliding helix model. Twenty years later, the X‐ray crystallographic structures of many voltage‐dependent channels allowed investigation of their gating by molecular dynamics. Further understanding of how channels gate will benefit greatly from the acquisition of high‐resolution structures of each of their relevant functional or structural states. This will allow the application of molecular dynamics and other approaches. It will also be key to investigate the energetics of channel gating, permitting an understanding of the physical and molecular determinants of gating. The use of multiscale hierarchical approaches might finally prove to be a rewarding strategy to overcome the limits of the various single approaches to the study of channel gating.
![]()
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| |
Collapse
|
4
|
Gain of function due to increased opening probability by two KCNQ5 pore variants causing developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2022; 119:e2116887119. [PMID: 35377796 PMCID: PMC9169635 DOI: 10.1073/pnas.2116887119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Variants in genes encoding neuronally expressed potassium channel subunits are frequent causes of developmental and epileptic encephalopathies (DEEs). Characterization of their functional consequences is critical to confirm diagnosis, assess prognosis, and implement personalized treatments. In the present work, we describe two patients carrying variants in KCNQ5, a gene very recently and rarely found involved in DEEs, and reveal that they both cause remarkable gain-of-function consequences on channel activity. A PIP2-independent increase in open probability, without effects on membrane abundance or single-channel conductance, was responsible for the observed mutation-induced functional changes, thus revealing a pathomolecular disease mechanism for DEEs. Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.
Collapse
|
5
|
Han S, Peng S, Vance J, Tran K, Do N, Bui N, Gui Z, Wang S. Structural dynamics determine voltage and pH gating in human voltage-gated proton channel. eLife 2022; 11:73093. [PMID: 35244539 PMCID: PMC8926398 DOI: 10.7554/elife.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
Voltage-gated proton (Hv) channels are standalone voltage sensors without separate ion conductive pores. They are gated by both voltage and transmembrane proton gradient (i.e., ∆pH), serving as acid extruders in most cells. Like the canonical voltage sensors, Hv channels are a bundle of four helices (named S1 –S4), with the S4 segment carrying three positively charged Arg residues. Extensive structural and electrophysiological studies on voltage-gated ion channels, in general, agree on an outwards movement of the S4 segment upon activating voltage, but the real-time conformational transitions are still unattainable. With purified human voltage-gated proton (hHv1) channels reconstituted in liposomes, we have examined its conformational dynamics, including the S4 segment at different voltage and pHs using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide the first glimpse of real-time conformational trajectories of the hHv1 voltage sensor and show that both voltage and pH gradient shift the conformational dynamics of the S4 segment to control channel gating. Our results indicate that the S4 segment transits among three major conformational states and only the transitions between the inward and outward conformations are highly dependent on voltage and pH. Altogether, we propose a kinetic model that explains the mechanisms underlying voltage and pH gating in Hv channels, which may also serve as a general framework for understanding the voltage sensing and gating in other voltage-gated ion channels.
Collapse
Affiliation(s)
- Shuo Han
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Sophia Peng
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Joshua Vance
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Kimberly Tran
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Nhu Do
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Nauy Bui
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Zhenhua Gui
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| | - Shizhen Wang
- Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
| |
Collapse
|
6
|
Hirazawa K, Tateyama M, Kubo Y, Shimomura T. Phosphoinositide regulates dynamic movement of the S4 voltage sensor in the second repeat in two-pore channel 3. J Biol Chem 2021; 297:101425. [PMID: 34800436 PMCID: PMC8665364 DOI: 10.1016/j.jbc.2021.101425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
The two-pore channels (TPCs) are voltage-gated cation channels consisting of single polypeptides with two repeats of a canonical 6-transmembrane unit. TPCs are known to be regulated by various physiological signals such as membrane voltage and phosphoinositide (PI). The fourth helix in the second repeat (second S4) plays a major role in detecting membrane voltage, whereas the first repeat contains a PI binding site. Therefore, each of these stimuli is detected by a unique repeat to regulate the gating of the TPC central pore. How these various stimuli regulate the dynamic structural rearrangement of the TPC molecule remain unknown. Here, we found that PI binding to the first repeat in TPC3 regulates the movement of the distally located second S4 helix, showing that the PI-binding signal is not confined to the pore gate but also transmitted to the voltage sensor. Using voltage clamp fluorometry, measurement of gating charges, and Cys-accessibility analysis, we observed that PI binding significantly potentiates the voltage dependence of the movement of the second S4 helix. Notably, voltage clamp fluorometry analysis revealed that the voltage-dependent movement of the second S4 helix occurred in two phases, of which the second phase corresponds to the transfer of the gating charges. This movement was observed in the voltage range where gate-opening occurs and was potentiated by PI. In conclusion, this regulation of the second S4 helix by PI indicates a tight inter-repeat coupling within TPC3, a feature which might be conserved among TPC family members to integrate various physiological signals.
Collapse
Affiliation(s)
- Kiichi Hirazawa
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Michihiro Tateyama
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan
| | - Takushi Shimomura
- Division of Biophysics and Neurobiology, National Institute for Physiological Sciences, Okazaki, Japan; Department of Physiological Sciences, The Graduate University for Advanced Studies, Hayama, Japan.
| |
Collapse
|
7
|
Catacuzzeno L, Franciolini F, Bezanilla F, Eisenberg RS. Gating current noise produced by Brownian models of a voltage sensor. Biophys J 2021; 120:3983-4001. [PMID: 34411574 DOI: 10.1016/j.bpj.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/07/2021] [Accepted: 08/11/2021] [Indexed: 11/19/2022] Open
Abstract
The activation of voltage-dependent ion channels is associated with the movement of gating charges, which give rise to gating currents. Although gating currents from a single channel are too small to be detected, analysis of the fluctuations of macroscopic gating currents from a population of channels allows a good guess of their magnitude. The analysis of experimental gating current fluctuations, when interpreted in terms of a rate model of channel activation and assuming sufficiently high bandwidth, is in accordance with the presence of a main step along the activation pathway carrying a charge of 2.3-2.4 e0. To give a physical interpretation to these results and to relate them to the known atomic structure of the voltage sensor domain, we used a Brownian model of voltage-dependent gating based on atomic detail structure, that follows the laws of electrodynamics. The model predicts gating currents and gating current fluctuations essentially similar to those experimentally observed. The detailed study of the model output, also performed by making several simplifications aimed at understanding the basic dependencies of the gating current fluctuations, suggests that in real channels the voltage sensor moves along a sequence of intermediate states separated by relatively low (<5 kT) energy barriers. As a consequence, crossings of successive gating charges through the gating pore become very frequent, and the corresponding current shots are often seen to overlap because of the relatively high filtering. Notably, this limited bandwidth effect is at the origin of the relatively high single-step charge experimentally detected.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Sciences, Chicago, Illinois
| | - Robert S Eisenberg
- Department of Physiology and Biophysics, Rush University, Chicago, Illinois; Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
8
|
Eisenberg RS. Maxwell Equations without a Polarization Field, Using a Paradigm from Biophysics. ENTROPY (BASEL, SWITZERLAND) 2021; 23:172. [PMID: 33573137 PMCID: PMC7912333 DOI: 10.3390/e23020172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 01/17/2023]
Abstract
When forces are applied to matter, the distribution of mass changes. Similarly, when an electric field is applied to matter with charge, the distribution of charge changes. The change in the distribution of charge (when a local electric field is applied) might in general be called the induced charge. When the change in charge is simply related to the applied local electric field, the polarization field P is widely used to describe the induced charge. This approach does not allow electrical measurements (in themselves) to determine the structure of the polarization fields. Many polarization fields will produce the same electrical forces because only the divergence of polarization enters Maxwell's first equation, relating charge and electric forces and field. The curl of any function can be added to a polarization field P without changing the electric field at all. The divergence of the curl is always zero. Additional information is needed to specify the curl and thus the structure of the P field. When the structure of charge changes substantially with the local electric field, the induced charge is a nonlinear and time dependent function of the field and P is not a useful framework to describe either the electrical or structural basis-induced charge. In the nonlinear, time dependent case, models must describe the charge distribution and how it varies as the field changes. One class of models has been used widely in biophysics to describe field dependent charge, i.e., the phenomenon of nonlinear time dependent induced charge, called 'gating current' in the biophysical literature. The operational definition of gating current has worked well in biophysics for fifty years, where it has been found to makes neurons respond sensitively to voltage. Theoretical estimates of polarization computed with this definition fit experimental data. I propose that the operational definition of gating current be used to define voltage and time dependent induced charge, although other definitions may be needed as well, for example if the induced charge is fundamentally current dependent. Gating currents involve substantial changes in structure and so need to be computed from a combination of electrodynamics and mechanics because everything charged interacts with everything charged as well as most things mechanical. It may be useful to separate the classical polarization field as a component of the total induced charge, as it is in biophysics. When nothing is known about polarization, it is necessary to use an approximate representation of polarization with a dielectric constant that is a single real positive number. This approximation allows important results in some cases, e.g., design of integrated circuits in silicon semiconductors, but can be seriously misleading in other cases, e.g., ionic solutions.
Collapse
Affiliation(s)
- Robert S. Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA; ; Tel.: +1-708-932-2597
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
9
|
Guidelli R. The common features of tetrameric ion channels and the role of electrostatic interactions. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
10
|
Guidelli R, Becucci L. Deterministic model of Ca v3.1 Ca 2+ channel and a proposed sequence of its conformations. Bioelectrochemistry 2020; 136:107618. [PMID: 32795940 DOI: 10.1016/j.bioelechem.2020.107618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
A family of current-time curves of T-type Cav3.1 Ca2+ channels available in the literature is simulated by a kinetic model differing from that used for the interpretation of all salient features of Na+ and Shaker K+ channels by the insertion of a multiplying factor expressing the difference between the working potential ϕ and the reversal potential ϕr. This deterministic model is also used to simulate experimental curves taken from the literature for steady-state 'fast inactivation' and for a gradual passage from fast to 'slow inactivation'. A depolarizing pulse induces fast or slow inactivation depending on whether it lasts 100-500 ms or about 1 min, and is believed to cause a collapse of the central pore near the selectivity filter (SF). A number of features of fast and slow inactivation of Cav3.1 Ca2+ channels are qualitatively interpreted on the basis of a sequence of conformational states. Briefly, the conformation responsible for 'fast inactivation' is assumed to have the activation gate open and the inactivation gate (i.e., the SF) inactive. Immediately after a depolarizing pulse, this conformation is inactive and requires a sufficiently long rest time at a far negative holding potential to recover from inactivation. 'Slow inactivation' is ascribed to a different conformation with the activation gate closed and the SF inactive.
Collapse
Affiliation(s)
- Rolando Guidelli
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy.
| | - Lucia Becucci
- Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
11
|
Taylor KC, Kang PW, Hou P, Yang ND, Kuenze G, Smith JA, Shi J, Huang H, White KM, Peng D, George AL, Meiler J, McFeeters RL, Cui J, Sanders CR. Structure and physiological function of the human KCNQ1 channel voltage sensor intermediate state. eLife 2020; 9:e53901. [PMID: 32096762 PMCID: PMC7069725 DOI: 10.7554/elife.53901] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated ion channels feature voltage sensor domains (VSDs) that exist in three distinct conformations during activation: resting, intermediate, and activated. Experimental determination of the structure of a potassium channel VSD in the intermediate state has previously proven elusive. Here, we report and validate the experimental three-dimensional structure of the human KCNQ1 voltage-gated potassium channel VSD in the intermediate state. We also used mutagenesis and electrophysiology in Xenopus laevisoocytes to functionally map the determinants of S4 helix motion during voltage-dependent transition from the intermediate to the activated state. Finally, the physiological relevance of the intermediate state KCNQ1 conductance is demonstrated using voltage-clamp fluorometry. This work illuminates the structure of the VSD intermediate state and demonstrates that intermediate state conductivity contributes to the unusual versatility of KCNQ1, which can function either as the slow delayed rectifier current (IKs) of the cardiac action potential or as a constitutively active epithelial leak current.
Collapse
Affiliation(s)
- Keenan C Taylor
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Po Wei Kang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Panpan Hou
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Nien-Du Yang
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
| | - Jarrod A Smith
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Jingyi Shi
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Hui Huang
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
| | - Kelli McFarland White
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Dungeng Peng
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Departments of Chemistry and Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Department of Bioinformatics, Vanderbilt University Medical CenterNashvilleUnited States
| | - Robert L McFeeters
- Department of Chemistry, University of Alabama in HuntsvilleHuntsvilleUnited States
| | - Jianmin Cui
- Department of Biomedical Engineering, Center for the Investigation of Membrane Excitability Disorders, and Cardiac Bioelectricity, and Arrhythmia Center, Washington University in St. LouisSt. LouisUnited States
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt UniversityNashvilleUnited States
- Center for Structural Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|
12
|
Abstract
A complete characterization of temperature -and voltage-activated TRP channel gating requires a precise determination of the absolute probability of opening in a wide range of voltages, temperatures, and agonist concentrations. We have achieved this in the case of the TRPM8 channel expressed in Xenopus laevis oocytes. Measurements covered an extensive range of probabilities and unprecedented applied voltages up to 500 mV. In this chapter, we describe animal care protocols of patch-clamp pipette preparation, temperature control methods, and analysis of ionic currents to obtain reliable absolute open channel probabilities.
Collapse
|
13
|
Catacuzzeno L, Sforna L, Franciolini F. Voltage-dependent gating in K channels: experimental results and quantitative models. Pflugers Arch 2019; 472:27-47. [PMID: 31863286 DOI: 10.1007/s00424-019-02336-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022]
Abstract
Voltage-dependent K channels open and close in response to voltage changes across the cell membrane. This voltage dependence was postulated to depend on the presence of charged particles moving through the membrane in response to voltage changes. Recording of gating currents originating from the movement of these particles fully confirmed this hypothesis, and gave substantial experimental clues useful for the detailed understanding of the process. In the absence of structural information, the voltage-dependent gating was initially investigated using discrete Markov models, an approach only capable of providing a kinetic and thermodynamic comprehension of the process. The elucidation of the crystal structure of the first voltage-dependent channel brought in a dramatic change of pace in the understanding of channel gating, and in modeling the underlying processes. It was now possible to construct quantitative models using molecular dynamics, where all the interactions of each individual atom with the surroundings were taken into account, and its motion predicted by Newton's laws. Unfortunately, this modeling is computationally very demanding, and in spite of the advances in simulation procedures and computer technology, it is still limited in its predictive ability. To overcome these limitations, several groups have developed more macroscopic voltage gating models. Their approaches understandably require a number of approximations, which must however be physically well justified. One of these models, based on the description of the voltage sensor as a Brownian particle, that we have recently developed, is able to simultaneously describe the behavior of a single voltage sensor and to predict the macroscopic gating current originating from a population of sensors. The basics of this model are here described, and a typical application using the Kv1.2/2.1 chimera channel structure is also presented.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy.
| |
Collapse
|
14
|
Catacuzzeno L, Franciolini F. Simulation of Gating Currents of the Shaker K Channel Using a Brownian Model of the Voltage Sensor. Biophys J 2019; 117:2005-2019. [PMID: 31653450 DOI: 10.1016/j.bpj.2019.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/07/2019] [Accepted: 09/27/2019] [Indexed: 01/18/2023] Open
Abstract
The physical mechanism underlying the voltage-dependent gating of K channels is usually addressed theoretically using molecular dynamics simulations. However, besides being computationally very expensive, this approach is presently unable to fully predict the behavior of fundamental variables of channel gating such as the macroscopic gating current, and hence, it is presently unable to validate the model. To fill this gap, here we propose a voltage-gating model that treats the S4 segment as a Brownian particle moving through a gating channel pore and adjacent internal and external vestibules. In our model, charges on the S4 segment are screened by charged residues localized on neighboring segments of the channel protein and by ions present in the vestibules, whose dynamics are assessed using a flux conservation equation. The electrostatic voltage spatial profile is consistently assessed by applying the Poisson equation to all the charges present in the system. The treatment of the S4 segment as a Brownian particle allows description of the dynamics of a single S4 segment using the Langevin stochastic differential equation or the behavior of a population of S4 segments-useful for assessing the macroscopic gating current-using the Fokker-Planck equation. The proposed model confirms the gating charge transfer hypothesis with the movement of the S4 segment among five different stable positions where the gating charges interact in succession with the negatively charged residues on the channel protein. This behavior produces macroscopic gating currents quite similar to those experimentally found.
Collapse
Affiliation(s)
- Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy.
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
15
|
Hou P, Shi J, White KM, Gao Y, Cui J. ML277 specifically enhances the fully activated open state of KCNQ1 by modulating VSD-pore coupling. eLife 2019; 8:e48576. [PMID: 31329101 PMCID: PMC6684268 DOI: 10.7554/elife.48576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Upon membrane depolarization, the KCNQ1 potassium channel opens at the intermediate (IO) and activated (AO) states of the stepwise voltage-sensing domain (VSD) activation. In the heart, KCNQ1 associates with KCNE1 subunits to form IKs channels that regulate heart rhythm. KCNE1 suppresses the IO state so that the IKs channel opens only to the AO state. Here, we tested modulations of human KCNQ1 channels by an activator ML277 in Xenopus oocytes. It exclusively changes the pore opening properties of the AO state without altering the IO state, but does not affect VSD activation. These observations support a distinctive mechanism responsible for the VSD-pore coupling at the AO state that is sensitive to ML277 modulation. ML277 provides insights and a tool to investigate the gating mechanism of KCNQ1 channels, and our study reveals a new strategy for treating long QT syndrome by specifically enhancing the AO state of native IKs currents.
Collapse
Affiliation(s)
- Panpan Hou
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Jingyi Shi
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | - Kelli McFarland White
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| | | | - Jianmin Cui
- Department of Biomedical EngineeringWashington UniversitySt. LouisUnited States
- Center for the Investigation of Membrane Excitability DisordersWashington UniversitySt. LouisUnited States
- Cardiac Bioelectricity and Arrhythmia CenterWashington UniversitySt. LouisUnited States
| |
Collapse
|
16
|
Horng TL, Eisenberg RS, Liu C, Bezanilla F. Continuum Gating Current Models Computed with Consistent Interactions. Biophys J 2018; 116:270-282. [PMID: 30612713 PMCID: PMC6350011 DOI: 10.1016/j.bpj.2018.11.3140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 01/01/2023] Open
Abstract
The action potential of nerve and muscle is produced by voltage-sensitive channels that include a specialized device to sense voltage. The voltage sensor depends on the movement of charges in the changing electric field as suggested by Hodgkin and Huxley. Gating currents of the voltage sensor are now known to depend on the movements of positively charged arginines through the hydrophobic plug of a voltage sensor domain. Transient movements of these permanently charged arginines, caused by the change of transmembrane potential V, further drag the S4 segment and induce opening/closing of the ion conduction pore by moving the S4-S5 linker. This moving permanent charge induces capacitive current flow everywhere. Everything interacts with everything else in the voltage sensor and protein, and so it must also happen in its mathematical model. A Poisson-Nernst-Planck (PNP)-steric model of arginines and a mechanical model for the S4 segment are combined using energy variational methods in which all densities and movements of charge satisfy conservation laws, which are expressed as partial differential equations in space and time. The model computes gating current flowing in the baths produced by arginines moving in the voltage sensor. The model also captures the capacitive pile up of ions in the vestibules that link the bulk solution to the hydrophobic plug. Our model reproduces the signature properties of gating current: 1) equality of ON and OFF charge Q in integrals of gating current, 2) saturating voltage dependence in the Q(charge)-voltage curve, and 3) many (but not all) details of the shape of gating current as a function of voltage. Our results agree qualitatively with experiments and can be improved by adding more details of the structure and its correlated movements. The proposed continuum model is a promising tool to explore the dynamics and mechanism of the voltage sensor.
Collapse
Affiliation(s)
- Tzyy-Leng Horng
- Department of Applied Mathematics, Feng Chia University, Taichung, Taiwan
| | - Robert S Eisenberg
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois; Department of Physiology and Biophysics, Rush University, Chicago, Illinois
| | - Chun Liu
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois; Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
17
|
Abstract
A voltage change across a membrane protein moves charges or dipoles producing a gating current that is an electrical expression of a conformational change. Many membrane proteins sense the voltage across the membrane where they are inserted, and their function is affected by voltage changes. The voltage sensor consists of charges or dipoles that move in response to changes in the electric field, and their movement produces an electric current that has been called gating current. In the case of voltage-gated ion channels, the kinetic and steady-state properties of the gating charges provide information of conformational changes between closed states that are not visible when observing ionic currents only. In this Journal of General Physiology Milestone, the basic principles of voltage sensing and gating currents are presented, followed by a historical description of the recording of gating currents. The results of gating current recordings are then discussed in the context of structural changes in voltage-dependent membrane proteins and how these studies have provided new insights on gating mechanisms.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
| |
Collapse
|
18
|
Bellono NW, Leitch DB, Julius D. Molecular tuning of electroreception in sharks and skates. Nature 2018; 558:122-126. [PMID: 29849147 PMCID: PMC6101975 DOI: 10.1038/s41586-018-0160-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/04/2018] [Indexed: 12/25/2022]
Abstract
Ancient cartilaginous vertebrates, such as sharks, skates, and rays, possess specialized electrosensory organs that detect weak electric fields and relay this information to the central nervous system1–4. Sharks exploit this sensory modality for predation, whereas skates may also use it to detect signals from conspecifics5. Here we analyze shark and skate electrosensory cells to ask if discrete physiological properties could contribute to behaviorally-relevant sensory tuning. We show that sharks and skates use a similar low threshold voltage-gated calcium channel to initiate cellular activity but employ distinct potassium channels to modulate this activity. Electrosensory cells from sharks express specially adapted voltage-gated potassium channels that support large, repetitive membrane voltage spikes capable of driving near-maximal vesicular release from elaborate ribbon synapses. In contrast, skates use a calcium-activated potassium channel to produce small, tunable membrane voltage oscillations that elicit stimulus-dependent vesicular release. We propose that these sensory adaptations support amplified indiscriminate signal detection in sharks versus selective frequency detection in skates, potentially reflecting the electroreceptive requirements of these elasmobranch species. Our findings demonstrate how sensory systems adapt to suit an animal’s lifestyle or environmental niche through discrete molecular and biophysical modifications.
Collapse
Affiliation(s)
- Nicholas W Bellono
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA. .,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.
| | - Duncan B Leitch
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
19
|
Carvalho-de-Souza JL, Bezanilla F. Nonsensing residues in S3-S4 linker's C terminus affect the voltage sensor set point in K + channels. J Gen Physiol 2018; 150:307-321. [PMID: 29321262 PMCID: PMC5806678 DOI: 10.1085/jgp.201711882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/14/2017] [Indexed: 11/30/2022] Open
Abstract
Voltage-dependent gating in ion channels is achieved by the movement of voltage-sensing arginine residues across an electric field. Carvalho-de-Souza and Bezanilla reveal that the size and hydrophobicity of two non–voltage-sensing residues (L358 and L361) affect voltage dependence in Shaker K+ channels. Voltage sensitivity in ion channels is a function of highly conserved arginine residues in their voltage-sensing domains (VSDs), but this conservation does not explain the diversity in voltage dependence among different K+ channels. Here we study the non–voltage-sensing residues 353 to 361 in Shaker K+ channels and find that residues 358 and 361 strongly modulate the voltage dependence of the channel. We mutate these two residues into all possible remaining amino acids (AAs) and obtain Q-V and G-V curves. We introduced the nonconducting W434F mutation to record sensing currents in all mutants except L361R, which requires K+ depletion because it is affected by W434F. By fitting Q-Vs with a sequential three-state model for two voltage dependence–related parameters (V0, the voltage-dependent transition from the resting to intermediate state and V1, from the latter to the active state) and G-Vs with a two-state model for the voltage dependence of the pore domain parameter (V1/2), Spearman’s coefficients denoting variable relationships with hydrophobicity, available area, length, width, and volume of the AAs in 358 and 361 positions could be calculated. We find that mutations in residue 358 shift Q-Vs and G-Vs along the voltage axis by affecting V0, V1, and V1/2 according to the hydrophobicity of the AA. Mutations in residue 361 also shift both curves, but V0 is affected by the hydrophobicity of the AA in position 361, whereas V1 and V1/2 are affected by size-related AA indices. Small-to-tiny AAs have opposite effects on V1 and V1/2 in position 358 compared with 361. We hypothesize possible coordination points in the protein that residues 358 and 361 would temporarily and differently interact with in an intermediate state of VSD activation. Our data contribute to the accumulating knowledge of voltage-dependent ion channel activation by adding functional information about the effects of so-called non–voltage-sensing residues on VSD dynamics.
Collapse
Affiliation(s)
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL .,Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL
| |
Collapse
|
20
|
Peyser A, Gillespie D, Roth R, Nonner W. Domain and interdomain energetics underlying gating in Shaker-type Kv channels. Biophys J 2015; 107:1841-1852. [PMID: 25418165 DOI: 10.1016/j.bpj.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 11/26/2022] Open
Abstract
To understand gating events with a time-base many orders-of-magnitude slower than that of atomic motion in voltage-gated ion channels such as the Shaker-type KV channels, a multiscale physical model is constructed from the experimentally well-characterized voltage-sensor (VS) domains coupled to a hydrophobic gate. The four VS domains are described by a continuum electrostatic model under voltage-clamp conditions, the control of ion flow by the gate domain is described by a vapor-lock mechanism, and the simple coupling principle is informed by known experimental results and trial-and-error. The configurational energy computed for each element is used to produce a total Hamiltonian that is a function of applied voltage, VS positions, and gate radius. We compute statistical-mechanical expectation values of macroscopic laboratory observables. This approach stands in contrast with molecular-dynamic models which are challenged by increasing scale, and kinetic models which assume a probability distribution rather than derive it from the underlying physics. This generic model predicts well the Shaker charge/voltage and conductance/voltage relations; the tight constraints underlying these results allow us to quantitatively assess the underlying physical mechanisms. The total electrical work picked up by the VS domains is an order-of-magnitude larger than the work required to actuate the gate itself, suggesting an energetic basis for the evolutionary flexibility of the voltage-gating mechanism. The cooperative slide-and-interlock behavior of the VS domains described by the VS-gate coupling relation leads to the experimentally observed bistable gating. This engineering approach should prove useful in the investigation of various elements underlying gating characteristics and degraded behavior due to mutation.
Collapse
Affiliation(s)
- Alexander Peyser
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida; Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany; Simulation Lab Neuroscience -- Bernstein Facility Simulation and Database Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany.
| | - Dirk Gillespie
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | - Roland Roth
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Wolfgang Nonner
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
21
|
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions. J Membr Biol 2015; 248:419-30. [PMID: 25972106 DOI: 10.1007/s00232-015-9805-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
Voltage-sensing domains (VSDs) are integral membrane protein units that sense changes in membrane electric potential, and through the resulting conformational changes, regulate a specific function. VSDs confer voltage-sensitivity to a large superfamily of membrane proteins that includes voltage-gated Na[Formula: see text], K[Formula: see text], Ca[Formula: see text] ,and H[Formula: see text] selective channels, hyperpolarization-activated cyclic nucleotide-gated channels, and voltage-sensing phosphatases. VSDs consist of four transmembrane segments (termed S1 through S4). Their most salient structural feature is the highly conserved positions for charged residues in their sequences. S4 exhibits at least three conserved triplet repeats composed of one basic residue (mostly arginine) followed by two hydrophobic residues. These S4 basic side chains participate in a state-dependent internal salt-bridge network with at least four acidic residues in S1-S3. The signature of voltage-dependent activation in electrophysiology experiments is a transient current (termed gating or sensing current) upon a change in applied membrane potential as the basic side chains in S4 move across the membrane electric field. Thus, the unique structural features of the VSD architecture allow for competing requirements: maintaining a series of stable transmembrane conformations, while allowing charge motion, as briefly reviewed here.
Collapse
|
22
|
Abstract
K-selective voltage-gated channels (Kv) are multi-conformation bilayer-embedded proteins whose mechanosensitive (MS) Popen(V) implies that at least one conformational transition requires the restructuring of the channel-bilayer interface. Unlike Morris and colleagues, who attributed MS-Kv responses to a cooperative V-dependent closed-closed expansion↔compaction transition near the open state, Mackinnon and colleagues invoke expansion during a V-independent closed↔open transition. With increasing membrane tension, they suggest, the closed↔open equilibrium constant, L, can increase >100-fold, thereby taking steady-state Popen from 0→1; "exquisite sensitivity to small…mechanical perturbations", they state, makes a Kv "as much a mechanosensitive…as…a voltage-dependent channel". Devised to explain successive gK(V) curves in excised patches where tension spontaneously increased until lysis, their L-based model falters in part because of an overlooked IK feature; with recovery from slow inactivation factored in, their g(V) datasets are fully explained by the earlier model (a MS V-dependent closed-closed transition, invariant L≥4). An L-based MS-Kv predicts neither known Kv time courses nor the distinctive MS responses of Kv-ILT. It predicts Kv densities (hence gating charge per V-sensor) several-fold different from established values. If opening depended on elevated tension (L-based model), standard gK(V) operation would be compromised by animal cells' membrane flaccidity. A MS V-dependent transition is, by contrast, unproblematic on all counts. Since these issues bear directly on recent findings that mechanically-modulated Kv channels subtly tune pain-related excitability in peripheral mechanoreceptor neurons we undertook excitability modeling (evoked action potentials). Kvs with MS V-dependent closed-closed transitions produce nuanced mechanically-modulated excitability whereas an L-based MS-Kv yields extreme, possibly excessive (physiologically-speaking) inhibition.
Collapse
|
23
|
Abstract
Voltage sensor domains (VSDs) are membrane-bound protein modules that confer voltage sensitivity to membrane proteins. VSDs sense changes in the transmembrane voltage and convert the electrical signal into a conformational change called activation. Activation involves a reorganization of the membrane protein charges that is detected experimentally as transient currents. These so-called gating currents have been investigated extensively within the theoretical framework of so-called discrete-state Markov models (DMMs), whereby activation is conceptualized as a series of transitions across a discrete set of states. Historically, the interpretation of DMM transition rates in terms of transition state theory has been instrumental in shaping our view of the activation process, whose free-energy profile is currently envisioned as composed of a few local minima separated by steep barriers. Here we use atomistic level modeling and well-tempered metadynamics to calculate the configurational free energy along a single transition from first principles. We show that this transition is intrinsically multidimensional and described by a rough free-energy landscape. Remarkably, a coarse-grained description of the system, based on the use of the gating charge as reaction coordinate, reveals a smooth profile with a single barrier, consistent with phenomenological models. Our results bridge the gap between microscopic and macroscopic descriptions of activation dynamics and show that choosing the gating charge as reaction coordinate masks the topological complexity of the network of microstates participating in the transition. Importantly, full characterization of the latter is a prerequisite to rationalize modulation of this process by lipids, toxins, drugs, and genetic mutations.
Collapse
|
24
|
Functional heterogeneity of the four voltage sensors of a human L-type calcium channel. Proc Natl Acad Sci U S A 2014; 111:18381-6. [PMID: 25489110 DOI: 10.1073/pnas.1411127112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Excitation-evoked Ca(2+) influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca(2+) entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I-IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening.
Collapse
|
25
|
Raddatz N, Castillo JP, Gonzalez C, Alvarez O, Latorre R. Temperature and voltage coupling to channel opening in transient receptor potential melastatin 8 (TRPM8). J Biol Chem 2014; 289:35438-54. [PMID: 25352597 DOI: 10.1074/jbc.m114.612713] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca(2+)-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol(-1). The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening.
Collapse
Affiliation(s)
- Natalia Raddatz
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Juan P Castillo
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Carlos Gonzalez
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| | - Osvaldo Alvarez
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and the Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Ramon Latorre
- From the Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2366103 and
| |
Collapse
|
26
|
Abstract
Ion channels are membrane-bound enzymes whose catalytic sites are ion-conducting pores that open and close (gate) in response to specific environmental stimuli. Ion channels are important contributors to cell signaling and homeostasis. Our current understanding of gating is the product of 60 plus years of voltage-clamp recording augmented by intervention in the form of environmental, chemical, and mutational perturbations. The need for good phenomenological models of gating has evolved in parallel with the sophistication of experimental technique. The goal of modeling is to develop realistic schemes that not only describe data, but also accurately reflect mechanisms of action. This review covers three areas that have contributed to the understanding of ion channels: traditional Eyring kinetic theory, molecular dynamics analysis, and statistical thermodynamics. Although the primary emphasis is on voltage-dependent channels, the methods discussed here are easily generalized to other stimuli and could be applied to any ion channel and indeed any macromolecule.
Collapse
|
27
|
Villalba-Galea CA. Voltage-Controlled Enzymes: The New JanusBifrons. Front Pharmacol 2012; 3:161. [PMID: 22993507 PMCID: PMC3440755 DOI: 10.3389/fphar.2012.00161] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 08/19/2012] [Indexed: 12/25/2022] Open
Abstract
The Ciona intestinalis voltage-sensitive phosphatase, Ci-VSP, was the first Voltage-controlled Enzyme (VEnz) proven to be under direct command of the membrane potential. The discovery of Ci-VSP conjugated voltage sensitivity and enzymatic activity in a single protein. These two facets of Ci-VSP activity have provided a unique model for studying how membrane potential is sensed by proteins and a novel mechanism for control of enzymatic activity. These facets make Ci-VSP a fascinating and versatile enzyme. Ci-VSP has a voltage sensing domain (VSD) that resembles those found in voltage-gated channels (VGC). The VSD resides in the N-terminus and is formed by four putative transmembrane segments. The fourth segment contains charged residues which are likely involved in voltage sensing. Ci-VSP produces sensing currents in response to changes in potential, within a defined range of voltages. Sensing currents are analogous to “gating” currents in VGC. As known, these latter proteins contain four VSDs which are entangled in a complex interaction with the pore domain – the effector domain in VGC. This complexity makes studying the basis of voltage sensing in VGC a difficult enterprise. In contrast, Ci-VSP is thought to be monomeric and its catalytic domain – the VSP’s effector domain – can be cleaved off without disrupting the basic electrical functioning of the VSD. For these reasons, VSPs are considered a great model for studying the activity of a VSD in isolation. Finally, VSPs are also phosphoinositide phosphatases. Phosphoinositides are signaling lipids found in eukaryotes and are involved in many processes, including modulation of VGC activity and regulation of cell proliferation. Understanding VSPs as enzymes has been the center of attention in recent years and several reviews has been dedicated to this area. Thus, this review will be focused instead on the other face of this true JanusBifrons and recapitulate what is known about VSPs as electrically active proteins.
Collapse
Affiliation(s)
- Carlos A Villalba-Galea
- Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine Richmond, VA, USA
| |
Collapse
|
28
|
Microscopic origin of gating current fluctuations in a potassium channel voltage sensor. Biophys J 2012; 102:L44-6. [PMID: 22713585 DOI: 10.1016/j.bpj.2012.04.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022] Open
Abstract
Voltage-dependent ion channels open and close in response to changes in membrane electrical potential due to the motion of their voltage-sensing domains (VSDs). VSD charge displacements within the membrane electric field are observed in electrophysiology experiments as gating currents preceding ionic conduction. The elementary charge motions that give rise to the gating current cannot be observed directly, but appear as discrete current pulses that generate fluctuations in gating current measurements. Here we report direct observation of gating-charge displacements in an atomistic molecular dynamics simulation of the isolated VSD from the KvAP channel in a hydrated lipid bilayer on the timescale (10-μs) expected for elementary gating charge transitions. The results reveal that gating-charge displacements are associated with the water-catalyzed rearrangement of salt bridges between the S4 arginines and a set of conserved acidic side chains on the S1-S3 transmembrane segments in the hydrated interior of the VSD.
Collapse
|
29
|
Clarke OB, Gulbis JM. Oligomerization at the membrane: potassium channel structure and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 747:122-36. [PMID: 22949115 DOI: 10.1007/978-1-4614-3229-6_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell membranes present a naturally impervious barrier to aqueous solutes, such that the physiochemical environment on either side of the lipid bilayer can substantially differ. Integral membrane proteins are embedded in this heterogeneous lipid environment, wherein the juxtaposition of apolar and polar molecular surfaces defines factors such as transverse orientation, the surface area available for oligomerisation and the symmetry of resultant assemblies. This chapter focuses on potassium channels -representative molecular pores that play a critical role in electrical signalling by enabling selective transport of K(+) ions across cell membranes. Oligomerization is central to K(+) channel action; individual subunits are nonfunctional and conduction, selectivity and gating involve manipulation of the common subunit interface of the tetramer. Regulation of channel activity can be viewed from the perspective that the pore of K(+) channels has coopted other proteins, utilizing a process of hetero-oligomerisation to absorb new functions that both enable the pore to respond to extrinsic signals and provide an electrical signature.
Collapse
Affiliation(s)
- Oliver B Clarke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | | |
Collapse
|
30
|
Börjesson SI, Elinder F. An electrostatic potassium channel opener targeting the final voltage sensor transition. ACTA ACUST UNITED AC 2011; 137:563-77. [PMID: 21624947 PMCID: PMC3105513 DOI: 10.1085/jgp.201110599] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Free polyunsaturated fatty acids (PUFAs) modulate the voltage dependence of voltage-gated ion channels. As an important consequence thereof, PUFAs can suppress epileptic seizures and cardiac arrhythmia. However, molecular details for the interaction between PUFA and ion channels are not well understood. In this study, we have localized the site of action for PUFAs on the voltage-gated Shaker K channel by introducing positive charges on the channel surface, which potentiated the PUFA effect. Furthermore, we found that PUFA mainly affects the final voltage sensor movement, which is closely linked to channel opening, and that specific charges at the extracellular end of the voltage sensor are critical for the PUFA effect. Because different voltage-gated K channels have different charge profiles, this implies channel-specific PUFA effects. The identified site and the pharmacological mechanism will potentially be very useful in future drug design of small-molecule compounds specifically targeting neuronal and cardiac excitability.
Collapse
Affiliation(s)
- Sara I Börjesson
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Sweden
| | | |
Collapse
|
31
|
Control of a final gating charge transition by a hydrophobic residue in the S2 segment of a K+ channel voltage sensor. Proc Natl Acad Sci U S A 2011; 108:6444-9. [PMID: 21464282 DOI: 10.1073/pnas.1103397108] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is now well established that the voltage-sensor domains present in voltage-gated ion channels and some phosphatases operate by transferring several charged residues (gating charges), mainly arginines located in the S4 segment, across the electric field. The conserved phenylalanine F(290) located in the S2 segment of the Shaker K channel is an aromatic residue thought to interact with all the four gating arginines carried by the S4 segment and control their transfer [Tao X, et al. (2010) Science 328:67-73]. In this paper we study the possible interaction of the gating charges with this residue by directly detecting their movement with gating current measurements in 12 F(290) mutants. Most mutations do not significantly alter the first approximately 80-90% of the gating charge transfer nor the kinetics of the gating currents during activation. The effects of the F(290) mutants are (i) the modification of a final activation transition accounting for approximately 10-20% of the total charge, similar to the effect of the ILT mutant [Ledwell JL, et al. (1999) J Gen Physiol 113:389-414] and (ii) the modification of the kinetics of the gating charge movement during deactivation. These effects are well correlated with the hydrophobicity of the substituted residue, showing that a hydrophobic residue at position 290 controls the energy barrier of the final gating transition. Our results suggest that F(290) controls the transfer of R(371), the fourth gating charge, during gating while not affecting the movement of the other three gating arginines.
Collapse
|
32
|
Dharia S, Rabbitt RD. Monitoring voltage-dependent charge displacement of Shaker B-IR K+ ion channels using radio frequency interrogation. PLoS One 2011; 6:e17363. [PMID: 21387000 PMCID: PMC3046147 DOI: 10.1371/journal.pone.0017363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/01/2011] [Indexed: 11/18/2022] Open
Abstract
Here we introduce a new technique that probes voltage-dependent charge displacements of excitable membrane-bound proteins using extracellularly applied radio frequency (RF, 500 kHz) electric fields. Xenopus oocytes were used as a model cell for these experiments, and were injected with cRNA encoding Shaker B-IR (ShB-IR) K(+) ion channels to express large densities of this protein in the oocyte membranes. Two-electrode voltage clamp (TEVC) was applied to command whole-cell membrane potential and to measure channel-dependent membrane currents. Simultaneously, RF electric fields were applied to perturb the membrane potential about the TEVC level and to measure voltage-dependent RF displacement currents. ShB-IR expressing oocytes showed significantly larger changes in RF displacement currents upon membrane depolarization than control oocytes. Voltage-dependent changes in RF displacement currents further increased in ShB-IR expressing oocytes after ∼120 µM Cu(2+) addition to the external bath. Cu(2+) is known to bind to the ShB-IR ion channel and inhibit Shaker K(+) conductance, indicating that changes in the RF displacement current reported here were associated with RF vibration of the Cu(2+)-linked mobile domain of the ShB-IR protein. Results demonstrate the use of extracellular RF electrodes to interrogate voltage-dependent movement of charged mobile protein domains--capabilities that might enable detection of small changes in charge distribution associated with integral membrane protein conformation and/or drug-protein interactions.
Collapse
Affiliation(s)
- Sameera Dharia
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States of America.
| | | |
Collapse
|
33
|
Abstract
In this perspective I tell the story (albeit a clearly abridged version) of how our knowledge of ion conduction through ion channels has evolved from a purely electrical concept to a structural dynamics view of ions interacting with a membrane protein. Our progress in this field has shown steady growth over the years but has also been interspersed with sudden jumps of discovery. These leaps have normally been associated with the introduction of a new technical advance or the development of a new biological preparation; therefore, it is quite certain that we have not seen them all.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
34
|
Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 2008; 52:149-74. [PMID: 18989792 DOI: 10.1007/s12013-008-9032-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 01/12/2023]
Abstract
Voltage-gated ion channels are crucial for both neuronal and cardiac excitability. Decades of research have begun to unravel the intriguing machinery behind voltage sensitivity. Although the details regarding the arrangement and movement in the voltage-sensor domain are still debated, consensus is slowly emerging. There are three competing conceptual models: the helical-screw, the transporter, and the paddle model. In this review we explore the structure of the activated voltage-sensor domain based on the recent X-ray structure of a chimera between Kv1.2 and Kv2.1. We also present a model for the closed state. From this we conclude that upon depolarization the voltage sensor S4 moves approximately 13 A outwards and rotates approximately 180 degrees, thus consistent with the helical-screw model. S4 also moves relative to S3b which is not consistent with the paddle model. One interesting feature of the voltage sensor is that it partially faces the lipid bilayer and therefore can interact both with the membrane itself and with physiological and pharmacological molecules reaching the channel from the membrane. This type of channel modulation is discussed together with other mechanisms for how voltage-sensitivity is modified. Small effects on voltage-sensitivity can have profound effects on excitability. Therefore, medical drugs designed to alter the voltage dependence offer an interesting way to regulate excitability.
Collapse
|
35
|
Molecular dynamics simulation of Kv channel voltage sensor helix in a lipid membrane with applied electric field. Biophys J 2008; 95:1729-44. [PMID: 18487312 DOI: 10.1529/biophysj.108.130658] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this article, we present the results of the molecular dynamics simulations of amphiphilic helix peptides of 13 amino-acid residues, placed at the lipid-water interface of dipalmitoylphosphatidylcholine bilayers. The peptides are identical with, or are derivatives of, the N-terminal segment of the S4 helix of voltage-dependent K channel KvAP, containing four voltage-sensing arginine residues (R1-R4). Upon changing the direction of the externally applied electric field, the tilt angle of the wild-type peptide changes relative to the lipid-water interface, with the N-terminus heading up with an outward electric field. These movements were not observed using an octane membrane in place of the dipalmitoylphosphatidylcholine membrane, and were markedly suppressed by 1), substituting Phe located one residue before the first arginine (R1) with a hydrophilic residue (Ser, Thr); or 2), changing the periodicity rule of Rs from at-every-third to at-every-fourth position; or 3), replacing R1 with a lysine residue (K). These and other findings suggest that the voltage-dependent movement requires deep positioning of Rs when the resting (inward) electric field is present. Later, we performed simulations of the voltage sensor domain (S1-S4) of Kv1.2 channel. In simulations with a strong electric field (0.1 V/nm or above) and positional restraints on the S1 and S2 helices, S4 movement was observed consisting of displacement along the S4 helix axis and a screwlike axial rotation. Gating-charge-carrying Rs were observed to make serial interactions with E183 in S1 and E226 in S2, in the outer water crevice. A 30-ns-backward simulation started from the open-state model gave rise to a structure similar to the recent resting-state model, with S4 moving vertically approximately 6.7 A. The energy landscape around the movement of S4 appears very ragged due to salt bridges formed between gating-charge-carrying residues and negatively charged residues of S1, S2, and S3 helices. Overall, features of S3 and S4 movements are consistent with the recent helical-screw model. Both forward and backward simulations show the presence of at least two stable intermediate structures in which R2 and R3 form salt bridges with E183 or E226, respectively. These structures are the candidates for the states postulated in previous gating kinetic models, such as the Zagotta-Hoshi-Aldrich model, to account for more than one transition step per subunit for activation.
Collapse
|
36
|
Abstract
The ionic gradients across cell membranes generate a transmembrane voltage that regulates the function of numerous membrane proteins such as ion channels, transporters, pumps and enzymes. The mechanisms by which proteins sense voltage is diverse: ion channels have a conserved, positively charged transmembrane region that moves in response to changes in membrane potential, some G-protein coupled receptors possess a specific voltage-sensing motif and some membrane pumps and transporters use the ions that they transport across membranes to sense membrane voltage. Characterizing the general features of voltage sensors might lead to the discovery of further membrane proteins that are voltage regulated.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA.
| |
Collapse
|
37
|
Hill AP, Sunde M, Campbell TJ, Vandenberg JI. Mechanism of block of the hERG K+ channel by the scorpion toxin CnErg1. Biophys J 2007; 92:3915-29. [PMID: 17369411 PMCID: PMC1868980 DOI: 10.1529/biophysj.106.101956] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scorpion toxin CnErg1 binds to human ether-a-go-go related gene (hERG) K(+) channels with a 1:1 stoichiometry and high affinity. However, in contrast to other scorpion toxin-ion channel interactions, the inhibition of macroscopic hERG currents by high concentrations of CnErg1 is incomplete. In this study, we have probed the molecular basis for this incomplete inhibition. High concentrations of CnErg1 had only modest effects on hERG gating that could not account for the incomplete block. Furthermore, the residual current in the presence of 1 microM CnErg1 had normal single channel conductance. Analysis of the kinetics of CnErg1 interaction with hERG indicated that CnErg1 binding is not diffusion-limited. A bimolecular binding scheme that incorporates an initial encounter complex and permits normal ion conduction was able to completely reproduce both the kinetics and steady-state level of CnErg1-hERG binding. This scheme provides a simple kinetic explanation for incomplete block; that is, relatively fast backward compared to forward rate constants for the interconversion of the toxin-channel encounter complex and the blocked toxin-channel complex. We have also examined the temperature-dependence of CnErg1 binding to hERG. The dissociation constant, K(d), for CnErg1 increases from 7.3 nM at 22 degrees C to 64 nM at 37 degrees C (i.e., the affinity decreases as temperature increases) and the proportion of binding events that lead to channel blockade decreases from 70% to 40% over the same temperature range. These temperature-dependent effects on CnErg1 binding correlate with a temperature-dependent decrease in the stability of the putative CnErg1 binding site, the amphipathic alpha-helix in the outer pore domain of hERG, assayed using circular dichroism spectropolarimetry. Collectively, our data provides a plausible kinetic explanation for incomplete blockade of hERG by CnErg1 that is consistent with the proposed highly dynamic conformation of the outer pore domain of hERG.
Collapse
Affiliation(s)
- Adam P Hill
- Mark Cowley Lidwill Research Program in Electrophysiology and Biophysics, Victor Chang Cardiac Research Institute, New South Wales, Australia
| | | | | | | |
Collapse
|
38
|
Abstract
Voltage-dependent ion channels are membrane proteins that conduct ions at high rates regulated by the voltage across the membrane. They play a fundamental role in the generation and propagation of the nerve impulse and in cell homeostasis. The voltage sensor is a region of the protein bearing charged amino acids that relocate upon changes in the membrane electric field. The movement of the sensor initiates a conformational change in the gate of the conducting pathway thus controlling the flow of ions. Major advances in molecular biology, spectroscopy, and structural techniques are delineating the main features and possible structural changes that account for the function of voltage-dependent channels.
Collapse
Affiliation(s)
- Francisco Bezanilla
- Department of Physiology, D. Geffen School of Medicine and the Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Bezanilla F, Perozo E. The voltage sensor and the gate in ion channels. ADVANCES IN PROTEIN CHEMISTRY 2003; 63:211-41. [PMID: 12629972 DOI: 10.1016/s0065-3233(03)63009-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francisco Bezanilla
- Department of Physiology, Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
40
|
Sigg D, Bezanilla F. A physical model of potassium channel activation: from energy landscape to gating kinetics. Biophys J 2003; 84:3703-16. [PMID: 12770877 PMCID: PMC1302953 DOI: 10.1016/s0006-3495(03)75099-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have developed a method for rapidly computing gating currents from a multiparticle ion channel model. Our approach is appropriate for energy landscapes that can be characterized by a network of well-defined activation pathways with barriers. To illustrate, we represented the gating apparatus of a channel subunit by an interacting pair of charged gating particles. Each particle underwent spatial diffusion along a bistable potential of mean force, with electrostatic forces coupling the two trajectories. After a step in membrane potential, relaxation of the smaller barrier charge led to a time-dependent reduction in the activation barrier of the principal gate charge. The resulting gating current exhibited a rising phase similar to that measured in voltage-dependent ion channels. Reduction of the two-dimensional diffusion landscape to a circular Markov model with four states accurately preserved the time course of gating currents on the slow timescale. A composite system containing four subunits leading to a concerted opening transition was used to fit a series of gating currents from the Shaker potassium channel. We end with a critique of the model with regard to current views on potassium channel structure.
Collapse
Affiliation(s)
- Daniel Sigg
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | | |
Collapse
|
41
|
Alvarez O, Gonzalez C, Latorre R. Counting channels: a tutorial guide on ion channel fluctuation analysis. ADVANCES IN PHYSIOLOGY EDUCATION 2002; 26:327-341. [PMID: 12444005 DOI: 10.1152/advan.00006.2002] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Ion channels open and close in a stochastic fashion, following the laws of probability. However, distinct from tossing a coin or a die, the probability of finding the channel closed or open is not a fixed number but can be modified (i.e., we can cheat) by some external stimulus, such as the voltage. Single-channel records can be obtained using the appropriate electrophysiological technique (e.g., patch clamp), and from these records the open probability and the channel conductance can be calculated. Gathering these parameters from a membrane containing many channels is not straightforward, as the macroscopic current I = iNP(o), where i is the single-channel current, N the number of channels, and P(o) the probability of finding the channel open, cannot be split into its individual components. In this tutorial, using the probabilistic nature of ion channels, we discuss in detail how i, N, and P(o max) (the maximum open probability) can be obtained using fluctuation (nonstationary noise) analysis (Sigworth FJ. G Gen Physiol 307: 97-129, 1980). We also analyze the sources of possible artifacts in the determination of i and N, such as channel rundown, inadequate filtering, and limited resolution of digital data acquisition by use of a simulation computer program (available at www.cecs.cl).
Collapse
|
42
|
Gonzalez C, Rosenman E, Bezanilla F, Alvarez O, Latorre R. Periodic perturbations in Shaker K+ channel gating kinetics by deletions in the S3-S4 linker. Proc Natl Acad Sci U S A 2001; 98:9617-23. [PMID: 11493701 PMCID: PMC55501 DOI: 10.1073/pnas.171306298] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2001] [Indexed: 11/18/2022] Open
Abstract
Upon depolarization positive charges contained in the transmembrane segment S4 of voltage-dependent channels are displaced from the cytoplasmic to the external milieu. This charge movement leads to channel opening. In Shaker K+ channels four positively charged arginines in the S4 domain are transferred from the internal to the external side of the channel during activation. The distance traveled by the S4 segment during activation is unknown, but large movements should be constrained by the S3-S4 linker. Constructing deletion mutants, we show that the activation time constant and the midpoint of the voltage activation curve of the Shaker K+ channel macroscopic currents becomes a periodic function of the S3-S4 linker length for linkers shorter than 7 aa residues. The periodicity is that typical of alpha-helices. Moreover, a linker containing only 3 aa is enough to recover the wild-type phenotype. The deletion method revealed the importance of the S3-S4 linker in determining the channel gating kinetics and indicated that the alpha-helical nature of S4 extends toward its N terminus. These results support the notion that a small displacement of the S4 segment suffices to displace the four gating charges involved in channel opening.
Collapse
Affiliation(s)
- C Gonzalez
- Centro de Estudios Cientificos, Valdivia, Chile
| | | | | | | | | |
Collapse
|
43
|
Li J, Correa AM. Single-channel basis for conductance increase induced by isoflurane in Shaker H4 IR K(+) channels. Am J Physiol Cell Physiol 2001; 280:C1130-9. [PMID: 11287326 DOI: 10.1152/ajpcell.2001.280.5.c1130] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Volatile anesthetics modulate the function of various K(+) channels. We previously reported that isoflurane induces an increase in macroscopic currents and a slowing down of current deactivation of Shaker H4 IR K(+) channels. To understand the single-channel basis of these effects, we performed nonstationary noise analysis of macroscopic currents and analysis of single channels in patches from Xenopus oocytes expressing Shaker H4 IR. Isoflurane (1.2% and 2.5%) induced concentration-dependent, partially reversible increases in macroscopic currents and in the time course of tail currents. Noise analysis of currents (70 mV) revealed an increase in unitary current (approximately 17%) and maximum open probability (approximately 20%). Single-channel conductance was larger (approximately 20%), and opening events were more stable, in isoflurane. Tail-current slow time constants increased by 41% and 136% in 1.2% and 2.5% isoflurane, respectively. Our results show that, in a manner consistent with stabilization of the open state, isoflurane increased the macroscopic conductance of Shaker H4 IR K(+) channels by increasing the single-channel conductance and the open probability.
Collapse
Affiliation(s)
- J Li
- Department of Anesthesiology, School of Medicine, University of California, Los Angeles, California 90095-7115, USA
| | | |
Collapse
|
44
|
Olcese R, Sigg D, Latorre R, Bezanilla F, Stefani E. A conducting state with properties of a slow inactivated state in a shaker K(+) channel mutant. J Gen Physiol 2001; 117:149-63. [PMID: 11158167 PMCID: PMC2217242 DOI: 10.1085/jgp.117.2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Shaker K(+) channel, the amino terminus deletion Delta6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Delta6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about -30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to -90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive.
Collapse
Affiliation(s)
- Riccardo Olcese
- Department of Anesthesiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Daniel Sigg
- Department of Physiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Ramon Latorre
- Centro de Estudios Científicos, Valdivia, Chile
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Francisco Bezanilla
- Department of Anesthesiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Department of Physiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Department of Brain Research Institute, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Enrico Stefani
- Department of Anesthesiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Department of Physiology, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
- Department of Brain Research Institute, School of Medicine, University of California Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
45
|
Silverman WR, Tang CY, Mock AF, Huh KB, Papazian DM. Mg(2+) modulates voltage-dependent activation in ether-à-go-go potassium channels by binding between transmembrane segments S2 and S3. J Gen Physiol 2000; 116:663-78. [PMID: 11055995 PMCID: PMC2229486 DOI: 10.1085/jgp.116.5.663] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Extracellular Mg(2+) directly modulates voltage-dependent activation in ether-à-go-go (eag) potassium channels, slowing the kinetics of ionic and gating currents (Tang, C.-Y., F. Bezanilla, and D.M. Papazian. 2000. J. Gen. Physiol. 115:319-337). To exert its effect, Mg(2+) presumably binds to a site in or near the eag voltage sensor. We have tested the hypothesis that acidic residues unique to eag family members, located in transmembrane segments S2 and S3, contribute to the Mg(2+)-binding site. Two eag-specific acidic residues and three acidic residues found in the S2 and S3 segments of all voltage-dependent K(+) channels were individually mutated in Drosophila eag, mutant channels were expressed in Xenopus oocytes, and the effect of Mg(2+) on ionic current kinetics was measured using a two electrode voltage clamp. Neutralization of eag-specific residues D278 in S2 and D327 in S3 eliminated Mg(2+)-sensitivity and mimicked the slowing of activation kinetics caused by Mg(2+) binding to the wild-type channel. These results suggest that Mg(2+) modulates activation kinetics in wild-type eag by screening the negatively charged side chains of D278 and D327. Therefore, these residues are likely to coordinate the bound ion. In contrast, neutralization of the widely conserved residues D284 in S2 and D319 in S3 preserved the fast kinetics seen in wild-type eag in the absence of Mg(2+), indicating that D284 and D319 do not mediate the slowing of activation caused by Mg(2+) binding. Mutations at D284 affected the eag gating pathway, shifting the voltage dependence of Mg(2+)-sensitive, rate limiting transitions in the hyperpolarized direction. Another widely conserved residue, D274 in S2, is not required for Mg(2+) sensitivity but is in the vicinity of the binding site. We conclude that Mg(2+) binds in a water-filled pocket between S2 and S3 and thereby modulates voltage-dependent gating. The identification of this site constrains the packing of transmembrane segments in the voltage sensor of K(+) channels, and suggests a molecular mechanism by which extracellular cations modulate eag activation kinetics.
Collapse
Affiliation(s)
- William R. Silverman
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Chih-Yung Tang
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Allan F. Mock
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Kyung-Bong Huh
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| | - Diane M. Papazian
- Department of Physiology and Molecular Biology Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90095-1751
| |
Collapse
|
46
|
Abstract
In voltage-dependent Na, K, or Ca channels, the probability of opening is modified by the membrane potential. This is achieved through a voltage sensor that detects the voltage and transfers its energy to the pore to control its gate. We present here the theoretical basis of the energy coupling between the electric field and the voltage, which allows the interpretation of the gating charge that moves in one channel. Movement of the gating charge constitutes the gating current. The properties are described, along with macroscopic data and gating current noise analysis, in relation to the operation of the voltage sensor and the opening of the channel. Structural details of the voltage sensor operation were resolved initially by locating the residues that make up the voltage sensor using mutagenesis experiments and determining the number of charges per channel. The changes in conformation are then analyzed based on the differential exposure of cysteine or histidine-substituted residues. Site-directed fluorescence labeling is then analyzed as another powerful indicator of conformational changes that allows time and voltage correlation of local changes seen by the fluorophores with the global change seen by the electrophysiology of gating currents and ionic currents. Finally, we describe the novel results on lanthanide-based resonance energy transfer that show small distance changes between residues in the channel molecule. All of the electrophysiological and the structural information are finally summarized in a physical model of a voltage-dependent channel in which a change in membrane potential causes rotation of the S4 segment that changes the exposure of the basic residues from an internally connected aqueous crevice at hyperpolarized potentials to an externally connected aqueous crevice at depolarized potentials.
Collapse
Affiliation(s)
- F Bezanilla
- Departments of Physiology and Anesthesiology, University of California at Los Angeles, School of Medicine, Los Angeles, California 90095, USA.
| |
Collapse
|
47
|
Mannuzzu LM, Isacoff EY. Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence. J Gen Physiol 2000; 115:257-68. [PMID: 10694254 PMCID: PMC2217208 DOI: 10.1085/jgp.115.3.257] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated potassium channels are composed of four subunits. Voltage-dependent activation of these channels consists of a depolarization-triggered series of charge-carrying steps that occur in each subunit. These major charge-carrying steps are followed by cooperative step(s) that lead to channel opening. Unlike the late cooperative steps, the major charge-carrying steps have been proposed to occur independently in each of the channel subunits. In this paper, we examine this further. We showed earlier that the two major charge-carrying steps are associated with two sequential outward transmembrane movements of the charged S4 segment. We now use voltage clamp fluorometry to monitor these S4 movements in individual subunits of heterotetrameric channels. In this way, we estimate the influence of one subunit's S4 movement on another's when the energetics of their transmembrane movements differ. Our results show that the first S4 movement occurs independently in each subunit, while the second occurs cooperatively. At least part of the cooperativity appears to be intrinsic to the second S4 charge-carrying rearrangement. Such cooperativity in gating of voltage-dependent channels has great physiological relevance since it can affect both action potential threshold and rate of propagation.
Collapse
Affiliation(s)
- Lidia M. Mannuzzu
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| | - Ehud Y. Isacoff
- From the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200
| |
Collapse
|
48
|
Tiwari-Woodruff SK, Lin MCA, Schulteis CT, Papazian DM. Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol 2000; 115:123-38. [PMID: 10653892 PMCID: PMC2217201 DOI: 10.1085/jgp.115.2.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Using a strategy related to intragenic suppression, we previously obtained evidence for structural interactions in the voltage sensor of Shaker K(+) channels between residues E283 in S2 and R368 and R371 in S4 (Tiwari-Woodruff, S.K., C.T. Schulteis, A.F. Mock, and D. M. Papazian. 1997. Biophys. J. 72:1489-1500). Because R368 and R371 are involved in the conformational changes that accompany voltage-dependent activation, we tested the hypothesis that these S4 residues interact with E283 in S2 in a subset of the conformational states that make up the activation pathway in Shaker channels. First, the location of residue 283 at hyperpolarized and depolarized potentials was inferred by substituting a cysteine at that position and determining its reactivity with hydrophilic, sulfhydryl-specific probes. The results indicate that position 283 reacts with extracellularly applied sulfhydryl reagents with similar rates at both hyperpolarized and depolarized potentials. We conclude that E283 is located near the extracellular surface of the protein in both resting and activated conformations. Second, we studied the functional phenotypes of double charge reversal mutations between positions 283 and 368 and between 283 and 371 to gain insight into the conformations in which these positions approach each other most closely. We found that combining charge reversal mutations at positions 283 and 371 stabilized an activated conformation of the channel, and dramatically slowed transitions into and out of this state. In contrast, charge reversal mutations at positions 283 and 368 stabilized a closed conformation, which by virtue of the inferred position of 368 corresponds to a partially activated (intermediate) closed conformation. From these results, we propose a preliminary model for the rearrangement of structural interactions of the voltage sensor during activation of Shaker K(+) channels.
Collapse
Affiliation(s)
- Seema K. Tiwari-Woodruff
- From the Department of Physiology and Molecular Biology Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1751
| | - Meng-chin A. Lin
- From the Department of Physiology and Molecular Biology Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1751
| | - Christine T. Schulteis
- From the Department of Physiology and Molecular Biology Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1751
| | - Diane M. Papazian
- From the Department of Physiology and Molecular Biology Institute, University of California, Los Angeles, School of Medicine, Los Angeles, California 90095-1751
| |
Collapse
|
49
|
Kanevsky M, Aldrich RW. Determinants of voltage-dependent gating and open-state stability in the S5 segment of Shaker potassium channels. J Gen Physiol 1999; 114:215-42. [PMID: 10435999 PMCID: PMC2230647 DOI: 10.1085/jgp.114.2.215] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The best-known Shaker allele of Drosophila with a novel gating phenotype, Sh(5), differs from the wild-type potassium channel by a point mutation in the fifth membrane-spanning segment (S5) (Gautam, M., and M.A. Tanouye. 1990. Neuron. 5:67-73; Lichtinghagen, R., M. Stocker, R. Wittka, G. Boheim, W. Stühmer, A. Ferrus, and O. Pongs. 1990. EMBO [Eur. Mol. Biol. Organ.] J. 9:4399-4407) and causes a decrease in the apparent voltage dependence of opening. A kinetic study of Sh(5) revealed that changes in the deactivation rate could account for the altered gating behavior (Zagotta, W.N., and R.W. Aldrich. 1990. J. Neurosci. 10:1799-1810), but the presence of intact fast inactivation precluded observation of the closing kinetics and steady state activation. We studied the Sh(5) mutation (F401I) in ShB channels in which fast N-type inactivation was removed, directly confirming this conclusion. Replacement of other phenylalanines in S5 did not result in substantial alterations in voltage-dependent gating. At position 401, valine and alanine substitutions, like F401I, produce currents with decreased apparent voltage dependence of the open probability and of the deactivation rates, as well as accelerated kinetics of opening and closing. A leucine residue is the exception among aliphatic mutants, with the F401L channels having a steep voltage dependence of opening and slow closing kinetics. The analysis of sigmoidal delay in channel opening, and of gating current kinetics, indicates that wild-type and F401L mutant channels possess a form of cooperativity in the gating mechanism that the F401A channels lack. The wild-type and F401L channels' entering the open state gives rise to slow decay of the OFF gating current. In F401A, rapid gating charge return persists after channels open, confirming that this mutation disrupts stabilization of the open state. We present a kinetic model that can account for these properties by postulating that the four subunits independently undergo two sequential voltage-sensitive transitions each, followed by a final concerted opening step. These channels differ primarily in the final concerted transition, which is biased in favor of the open state in F401L and the wild type, and in the opposite direction in F401A. These results are consistent with an activation scheme whereby bulky aromatic or aliphatic side chains at position 401 in S5 cooperatively stabilize the open state, possibly by interacting with residues in other helices.
Collapse
Affiliation(s)
- Max Kanevsky
- From the Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| | - Richard W. Aldrich
- From the Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
50
|
Abstract
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.
Collapse
Affiliation(s)
- R D Keynes
- Physiological Laboratory, University of Cambridge, UK.
| | | |
Collapse
|