1
|
Adolph MB, Ara A, Chelico L. APOBEC3 Host Restriction Factors of HIV-1 Can Change the Template Switching Frequency of Reverse Transcriptase. J Mol Biol 2019; 431:1339-1352. [PMID: 30797859 DOI: 10.1016/j.jmb.2019.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
The APOBEC3 family of deoxycytidine deaminases has the ability to restrict HIV-1 through deamination-dependent and deamination-independent mechanisms. Although the generation of mutations through deamination of cytosine to uracil in single-stranded HIV-1 (-) DNA is the dominant mechanism of restriction, the deaminase-independent mechanism additionally contributes. Previous observations indicate that APOBEC3 enzymes competitively bind the RNA template or reverse transcriptase (RT) and act as a roadblock to DNA polymerization. Here we studied how the deamination-independent inhibition of HIV-1 RT by APOBEC3C S188I, APOBEC3F, APOBEC3G, and APOBEC3H affected RT template switching. We found that APOBEC3F could promote template switching of RT, and this was dependent on the high affinity with which it bound nucleic acids, suggesting than an APOBEC3 "road-block" can force template switching. Our data demonstrate that the deamination-independent functions of APOBEC3 enzymes extend beyond only disrupting RT DNA polymerization. Since alterations to the RT template switching frequency can result in insertions or deletions, our data support a model in which APOBEC3 enzymes use multiple mechanisms to increase the probability of generating a mutated and nonfunctional virus in addition to cytosine deamination.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Anjuman Ara
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada; Saskatchewan Cancer Agency and Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Linda Chelico
- Department of Biochemistry, Microbiology, and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| |
Collapse
|
2
|
Nikolaidis M, Mimouli K, Kyriakopoulou Z, Tsimpidis M, Tsakogiannis D, Markoulatos P, Amoutzias GD. Large-scale genomic analysis reveals recurrent patterns of intertypic recombination in human enteroviruses. Virology 2019; 526:72-80. [DOI: 10.1016/j.virol.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/21/2022]
|
3
|
Rawson JMO, Nikolaitchik OA, Keele BF, Pathak VK, Hu WS. Recombination is required for efficient HIV-1 replication and the maintenance of viral genome integrity. Nucleic Acids Res 2018; 46:10535-10545. [PMID: 30307534 PMCID: PMC6237782 DOI: 10.1093/nar/gky910] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/20/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023] Open
Abstract
Retroviruses package two complete RNA genomes into a viral particle but generate only one provirus after each infection. This pseudodiploid replication strategy facilitates frequent recombination, which occurs during DNA synthesis when reverse transcriptase switches templates between two copackaged RNA genomes, generating chimeric DNA. Recombination has played an important role in shaping the current HIV-1 pandemic; however, whether recombination is required for HIV-1 replication is currently unknown. In this report, we examined viral replication when recombination was blocked in defined regions of the HIV-1 genome. We found that blocking recombination reduced viral titers. Furthermore, a significant proportion of the resulting proviruses contained large deletions. Analyses of the deletion junctions indicated that these deletions were the direct consequence of blocking recombination. Thus, our findings illustrate that recombination is a major mechanism to maintain HIV-1 genome integrity. Our study also shows that both obligatory and nonobligatory crossovers occur during reverse transcription, thereby supporting both the forced and dynamic copy-choice models of retroviral recombination. Taken together, our results demonstrate that, in most viruses, both packaged RNA genomes contribute to the genetic information in the DNA form. Furthermore, recombination allows generation of the intact HIV-1 DNA genome and is required for efficient viral replication.
Collapse
Affiliation(s)
- Jonathan M O Rawson
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Olga A Nikolaitchik
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Vinay K Pathak
- Viral Mutation Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, MD 21702, U.S.A
| |
Collapse
|
4
|
Telesnitsky A, Wolin SL. The Host RNAs in Retroviral Particles. Viruses 2016; 8:v8080235. [PMID: 27548206 PMCID: PMC4997597 DOI: 10.3390/v8080235] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/15/2022] Open
Abstract
As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA) are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA), some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs' packaging determinants differ from the viral genome's, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA) species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1) reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs-if any-have remained elusive.
Collapse
Affiliation(s)
- Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
5
|
Retrospective on the all-in-one retroviral nucleocapsid protein. Virus Res 2014; 193:2-15. [PMID: 24907482 PMCID: PMC7114435 DOI: 10.1016/j.virusres.2014.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 05/11/2014] [Accepted: 05/11/2014] [Indexed: 01/08/2023]
Abstract
This retrospective reviews 30 years of research on the retroviral nucleocapsid protein (NC) focusing on HIV-1 NC. Originally considered as a non-specific nucleic-acid binding protein, NC has seminal functions in virus replication. Indeed NC turns out to be a all-in-one viral protein that chaperones viral DNA synthesis and integration, and virus formation. As a chaperone NC provides assistance to genetic recombination thus allowing the virus to escape the immune response and antiretroviral therapies against HIV-1.
This review aims at briefly presenting a retrospect on the retroviral nucleocapsid protein (NC), from an unspecific nucleic acid binding protein (NABP) to an all-in-one viral protein with multiple key functions in the early and late phases of the retrovirus replication cycle, notably reverse transcription of the genomic RNA and viral DNA integration into the host genome, and selection of the genomic RNA together with the initial steps of virus morphogenesis. In this context we will discuss the notion that NC protein has a flexible conformation and is thus a member of the growing family of intrinsically disordered proteins (IDPs) where disorder may account, at least in part, for its function as a nucleic acid (NA) chaperone and possibly as a protein chaperone vis-à-vis the viral DNA polymerase during reverse transcription. Lastly, we will briefly review the development of new anti-retroviral/AIDS compounds targeting HIV-1 NC because it represents an ideal target due to its multiple roles in the early and late phases of virus replication and its high degree of conservation.
Collapse
|
6
|
Galli A, Bukh J. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus. Trends Microbiol 2014; 22:354-64. [DOI: 10.1016/j.tim.2014.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
|
7
|
Homogenous HIV-1 subtype B quasispecies in Brazilian men and women recently infected via heterosexual transmission. Virus Genes 2014; 48:421-8. [PMID: 24526349 DOI: 10.1007/s11262-014-1048-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/31/2014] [Indexed: 01/10/2023]
Abstract
HIV has extraordinary genetic mutability, both among individuals and at the population level. However, studies of primary HIV-1 infection and serum-converters indicate that the viral population is homogeneous at the sequence level, which suggests clonal HIV transmission. It remains unclear whether this feature applies to the female population. Ten single genome amplification sequences were generated from ten individuals (five females) with recent heterosexually acquired HIV infection as determined by the serologic testing algorithm for recent HIV seroconversion. Intra-individual genetic diversity was equally low in both genders (<2 %), with mean and median variations of 0.8 and 0 %, respectively. All of the subjects were infected with clade B. Three subjects (two females) appeared to be infected by two related viral populations, and four subjects harbored non-R5 strains. Our results support the hypothesis of clonal selection for sexual transmission of HIV-1 in both genders. Future studies that generate a larger number of clones, preferably by next generation deep sequencing, are needed to confirm these results.
Collapse
|
8
|
Smyth RP, Davenport MP, Mak J. The origin of genetic diversity in HIV-1. Virus Res 2012; 169:415-29. [PMID: 22728444 DOI: 10.1016/j.virusres.2012.06.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
One of the hallmarks of HIV infection is the rapid development of a genetically complex population (quasispecies) from an initially limited number of infectious particles. Genetic diversity remains one of the major obstacles to eradication of HIV. The viral quasispecies can respond rapidly to selective pressures, such as that imposed by the immune system and antiretroviral therapy, and frustrates vaccine design efforts. Two unique features of retroviral replication are responsible for the unprecedented variation generated during infection. First, mutations are frequently introduced into the viral genome by the error prone viral reverse transcriptase and through the actions of host cellular factors, such as the APOBEC family of nucleic acid editing enzymes. Second, the HIV reverse transcriptase can utilize both copies of the co-packaged viral genome in a process termed retroviral recombination. When the co-packaged viral genomes are genetically different, retroviral recombination can lead to the shuffling of mutations between viral genomes in the quasispecies. This review outlines the stages of the retroviral life cycle where genetic variation is introduced, focusing on the principal mechanisms of mutation and recombination. Understanding the mechanistic origin of genetic diversity is essential to combating HIV.
Collapse
Affiliation(s)
- Redmond P Smyth
- Centre for Virology, Burnet Institute, 85 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | |
Collapse
|
9
|
Monajemi M, Woodworth CF, Benkaroun J, Grant M, Larijani M. Emerging complexities of APOBEC3G action on immunity and viral fitness during HIV infection and treatment. Retrovirology 2012; 9:35. [PMID: 22546055 PMCID: PMC3416701 DOI: 10.1186/1742-4690-9-35] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/30/2012] [Indexed: 12/31/2022] Open
Abstract
The enzyme APOBEC3G (A3G) mutates the human immunodeficiency virus (HIV) genome by converting deoxycytidine (dC) to deoxyuridine (dU) on minus strand viral DNA during reverse transcription. A3G restricts viral propagation by degrading or incapacitating the coding ability of the HIV genome. Thus, this enzyme has been perceived as an innate immune barrier to viral replication whilst adaptive immunity responses escalate to effective levels. The discovery of A3G less than a decade ago led to the promise of new anti-viral therapies based on manipulation of its cellular expression and/or activity. The rationale for therapeutic approaches has been solidified by demonstration of the effectiveness of A3G in diminishing viral replication in cell culture systems of HIV infection, reports of its mutational footprint in virions from patients, and recognition of its unusually robust enzymatic potential in biochemical studies in vitro. Despite its effectiveness in various experimental systems, numerous recent studies have shown that the ability of A3G to combat HIV in the physiological setting is severely limited. In fact, it has become apparent that its mutational activity may actually enhance viral fitness by accelerating HIV evolution towards the evasion of both anti-viral drugs and the immune system. This body of work suggests that the role of A3G in HIV infection is more complex than heretofore appreciated and supports the hypothesis that HIV has evolved to exploit the action of this host factor. Here we present an overview of recent data that bring to light historical overestimation of A3G's standing as a strictly anti-viral agent. We discuss the limitations of experimental systems used to assess its activities as well as caveats in data interpretation.
Collapse
Affiliation(s)
- Mahdis Monajemi
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland, Canada
| | - Claire F Woodworth
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Jessica Benkaroun
- Mani Larijani, Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Michael Grant
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Health Sciences Center, MUN, 300 Prince Phillip Dr., St. John’s, NL, A1B 3V6, Canada
| |
Collapse
|
10
|
Delviks-Frankenberry K, Galli A, Nikolaitchik O, Mens H, Pathak VK, Hu WS. Mechanisms and factors that influence high frequency retroviral recombination. Viruses 2011; 3:1650-1680. [PMID: 21994801 PMCID: PMC3187697 DOI: 10.3390/v3091650] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/18/2011] [Accepted: 08/25/2011] [Indexed: 01/25/2023] Open
Abstract
With constantly changing environmental selection pressures, retroviruses rely upon recombination to reassort polymorphisms in their genomes and increase genetic diversity, which improves the chances for the survival of their population. Recombination occurs during DNA synthesis, whereby reverse transcriptase undergoes template switching events between the two copackaged RNAs, resulting in a viral recombinant with portions of the genetic information from each parental RNA. This review summarizes our current understanding of the factors and mechanisms influencing retroviral recombination, fidelity of the recombination process, and evaluates the subsequent viral diversity and fitness of the progeny recombinant. Specifically, the high mutation rates and high recombination frequencies of HIV-1 will be analyzed for their roles in influencing HIV-1 global diversity, as well as HIV-1 diagnosis, drug treatment, and vaccine development.
Collapse
Affiliation(s)
- Krista Delviks-Frankenberry
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Andrea Galli
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre 2650, Denmark
| | - Olga Nikolaitchik
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
| | - Helene Mens
- Department of Epidemic Diseases, Rigshospitalet, København 2100, Denmark; E-Mail:
| | - Vinay K. Pathak
- Viral Mutation Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (K.D.-F.); (V.K.P.)
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA; E-Mails: (A.G.); (O.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-1250; Fax: +1-301-846-6013
| |
Collapse
|
11
|
The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol Mol Biol Rev 2009; 73:451-80, Table of Contents. [PMID: 19721086 DOI: 10.1128/mmbr.00012-09] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The genetic diversity of human immunodeficiency virus type 1 (HIV-1) results from a combination of point mutations and genetic recombination, and rates of both processes are unusually high. This review focuses on the mechanisms and outcomes of HIV-1 genetic recombination and on the parameters that make recombination so remarkably frequent. Experimental work has demonstrated that the process that leads to recombination--a copy choice mechanism involving the migration of reverse transcriptase between viral RNA templates--occurs several times on average during every round of HIV-1 DNA synthesis. Key biological factors that lead to high recombination rates for all retroviruses are the recombination-prone nature of their reverse transcription machinery and their pseudodiploid RNA genomes. However, HIV-1 genes recombine even more frequently than do those of many other retroviruses. This reflects the way in which HIV-1 selects genomic RNAs for coencapsidation as well as cell-to-cell transmission properties that lead to unusually frequent associations between distinct viral genotypes. HIV-1 faces strong and changeable selective conditions during replication within patients. The mode of HIV-1 persistence as integrated proviruses and strong selection for defective proviruses in vivo provide conditions for archiving alleles, which can be resuscitated years after initial provirus establishment. Recombination can facilitate drug resistance and may allow superinfecting HIV-1 strains to evade preexisting immune responses, thus adding to challenges in vaccine development. These properties converge to provide HIV-1 with the means, motive, and opportunity to recombine its genetic material at an unprecedented high rate and to allow genetic recombination to serve as one of the highest barriers to HIV-1 eradication.
Collapse
|
12
|
A polymerase-site-jumping model for strand transfer during DNA synthesis by reverse transcriptase. Virus Res 2009; 144:65-73. [PMID: 19427048 DOI: 10.1016/j.virusres.2009.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/27/2009] [Accepted: 03/28/2009] [Indexed: 11/23/2022]
Abstract
During reverse transcription, besides the obligatory strand transfers associated with replication at the ends of the viral genome, multiple strand transfers often occur associated with replication within internal regions. Here, based on previous structural and biochemical studies, a model is proposed for processive DNA synthesis along a single template mediated by reverse transcriptase and, based on this model, the mechanism of inter- or intramolecular strand transfers during minus DNA synthesis is presented. A strand-transfer event involves two steps, with the first one being the annealing of the nascent DNA with acceptor RNA at the upstream position of the reverse transcriptase while the second one being the jumping of the polymerase active site to the acceptor. Using the model, the promotion of strand transfer by pausing and high frequent deletions induced by strand transfers can be well explained. We present analytical studies of the efficiency of single strand-transfer event and of the efficiency of multiple-strand-transfer events, with which the high negative interference can be well explained. The dependence of strand-transfer efficiency on the ratio between polymerase and RNase H rates, the role of the polymerase-dependent and polymerase-independent cleavages in strand transfers and the efficiency of nonhomologous strand transfer are analytically studied. The theoretical results are in agreement with the available experimental data. Moreover, some predicted results of the dependence of negative interference on the ratio of polymerase over RNase H rates are presented.
Collapse
|
13
|
Curlin ME, Iyer S, Mittler JE. Optimal timing and duration of induction therapy for HIV-1 infection. PLoS Comput Biol 2008; 3:e133. [PMID: 17630827 PMCID: PMC1914372 DOI: 10.1371/journal.pcbi.0030133] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Accepted: 05/29/2007] [Indexed: 01/28/2023] Open
Abstract
The tradeoff between the need to suppress drug-resistant viruses and the problem of treatment toxicity has led to the development of various drug-sparing HIV-1 treatment strategies. Here we use a stochastic simulation model for viral dynamics to investigate how the timing and duration of the induction phase of induction–maintenance therapies might be optimized. Our model suggests that under a variety of biologically plausible conditions, 6–10 mo of induction therapy are needed to achieve durable suppression and maximize the probability of eradicating viruses resistant to the maintenance regimen. For induction regimens of more limited duration, a delayed-induction or -intensification period initiated sometime after the start of maintenance therapy appears to be optimal. The optimal delay length depends on the fitness of resistant viruses and the rate at which target-cell populations recover after therapy is initiated. These observations have implications for both the timing and the kinds of drugs selected for induction–maintenance and therapy-intensification strategies. Clinicians treating HIV infection must balance the need to suppress viral replication against the harmful side effects and significant cost of antiretroviral therapy. Inadequate therapy often results in the emergence of resistant viruses and treatment failure. These difficulties are especially acute in resource-poor settings, where antiretroviral agents are limited. This has prompted an interest in induction–maintenance (IM) treatment strategies, in which brief intensive therapy is used to reduce host viral levels. Induction is followed by a simplified and more easily tolerated maintenance regimen. IM approaches remain an unproven concept in HIV therapy. We have developed a mathematical model to simulate clinical responses to antiretroviral drug therapy. We account for latent infection, partial drug efficacy, cross-resistance, viral recombination, and other factors. This model accurately reflects expected outcomes under single, double, and standard three-drug antiretroviral therapy. When applied to IM therapy, we find that (1) IM is expected to be successful beyond 3 y under a variety of conditions; (2) short-term induction therapy is optimally started several days to weeks after the start of maintenance; and (3) IM therapy may eradicate some preexisting drug-resistant viral strains from the host. Our simulations may help develop new treatment strategies and optimize future clinical trials.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Shyamala Iyer
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - John E Mittler
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
14
|
Young J, Tang Z, Yu Q, Yu D, Wu Y. Selective killing of HIV-1-positive macrophages and T cells by the Rev-dependent lentivirus carrying anthrolysin O from Bacillus anthracis. Retrovirology 2008; 5:36. [PMID: 18439272 PMCID: PMC2391154 DOI: 10.1186/1742-4690-5-36] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/25/2008] [Indexed: 11/17/2022] Open
Abstract
Background The ability of Human Immunodeficiency Virus (HIV) to persist in the body has proven to be a long-standing challenge to virus eradication. Current antiretroviral therapy cannot selectively destroy infected cells; it only halts active viral replication. With therapeutic cessation or interruption, viral rebound occurs, and invariably, viral loads return to pre-treatment levels. The natural reservoirs harboring replication-competent HIV-1 include CD4 T cells and macrophages. In particular, cells from the macrophage lineage resist HIV-1-mediated killing and support sustained viral production. To develop a complementary strategy to target persistently infected cells, this proof-of-concept study explores an HIV-1 Rev-dependent lentiviral vector carrying a bacterial hemolysin, anthrolysin O (anlO) from Bacillus anthracis, to achieve selective killing of HIV-1- infected cells. Results We demonstrate that in the Rev-dependent lentiviral vector, anlO expression is exclusively dependent on Rev, a unique HIV-1 protein present only in infected cells. Intracellular expression and oligomerization of AnlO result in membrane pore formation and cytolysis. We have further overcome a technical hurdle in producing a Revdependent AnlO lentivirus, through the use of β-cyclodextrin derivatives to inhibit direct killing of producer cells by AnlO. Using HIV-1-infected macrophages and T cells as a model, we demonstrate that this Rev-dependent AnlO lentivirus diminishes HIV-1- positive cells. Conclusion The Rev-dependent lentiviral vector has demonstrated its specificity in targeting persistently infected cells. The choice of anlO as the first suicidal gene tested in this vector is based on its cytolytic activity in macrophages and T cells. We conclude that Rev-regulated expression of suicidal genes in HIV-1-positive cells is possible, although future in vivo delivery of this system needs to address numerous safety issues.
Collapse
Affiliation(s)
- Jessica Young
- Department of Molecular and Microbiology, George Mason University, Manassas, VA 20110, USA.
| | | | | | | | | |
Collapse
|
15
|
Strand transfer events during HIV-1 reverse transcription. Virus Res 2008; 134:19-38. [PMID: 18279992 DOI: 10.1016/j.virusres.2007.12.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/19/2007] [Accepted: 12/20/2007] [Indexed: 11/20/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) and other retroviruses replicate through reverse transcription, a process in which the single stranded RNA of the viral genome is converted to a double stranded DNA. The virally encoded reverse transcriptase (RT) mediates reverse transcription through DNA polymerase and RNase H activities. Conversion of the plus strand RNA to plus/minus strand RNA/DNA hybrid involves a transfer of the growing DNA strand from one site on the genomic RNA to another. This is called minus strong-stop DNA transfer. Later synthesis of the second or plus DNA strand involves a second strand transfer, involving a similar mechanism as the minus strand transfer. A basic feature of the strand transfer mechanism is the use of the RT RNase H to remove segments of the RNA template strand from the growing DNA strand, freeing a single stranded region to anneal to the second site. Viral nucleocapsid protein (NC) functions to promote transfer by facilitating this strand exchange process. Two copies of the RNA genomes, sometimes non-identical, are co-packaged in the genomes of retroviruses. The properties of the reverse transcriptase allow a transfer of the growing DNA strand between these genomes to occur occasionally at any point during reverse transcription, producing recombinant viral progeny. Recombination promotes structural diversity of the virus that helps it to survive host immunity and drug therapy. Recombination strand transfer can be forced by a break in the template, or can occur at sites where folding structure of the template pauses the RT, allowing a concentration of RNase H cleavages that promote transfers. Transfer can be a simple one-step process, or can proceed by a complex multi-step invasion mechanism. In this latter process, the second RNA template interacts with the growing DNA strand well behind the DNA 3'-terminus. The newly formed RNA-DNA hybrid expands by branch migration and eventually catches the elongating DNA primer 3'-terminus to complete the transfer. Transfers are also promoted by interactions between the two RNA templates, which accelerate transfer by a proximity effect. Other details of the role of strand transfers in reverse transcription and the biochemical features of the transfer reaction are discussed.
Collapse
|
16
|
Pseudodiploid genome organization AIDS full-length human immunodeficiency virus type 1 DNA synthesis. J Virol 2007; 82:2376-84. [PMID: 18094172 DOI: 10.1128/jvi.02100-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Template switching between copackaged human immunodeficiency virus type 1 (HIV-1) genomic RNAs is genetically silent when identical RNAs are copackaged but yields recombinants when virions contain two distinct RNAs. Sequencing has revealed that errors at retroviral recombination junctions are infrequent, suggesting that template switching is not intrinsically mutagenic. Here, we tested the hypothesis that template switching may instead contribute to replication fidelity. This hypothesis predicts that reverse transcription of a single-copy gene will be more error prone than replication in the presence of a second copy. To test this, HIV-1-based vectors containing both lacZ and the puromycin resistance marker were expressed either alone or with an excess of an "empty" vector lacking lacZ and puro. This resulted in virions with either RNA homodimers or haploid genomes with only a single lacZ-puro RNA. In untreated cells, lacZ inactivation rates suggested that haploid vector reverse transcription was slightly more error prone than that of homodimerized pseudodiploid vectors. Haploid reverse transcription was at least threefold more error prone than pseudodiploid-templated synthesis when slowed by hydroxyurea treatment or stopped prematurely with zidovudine. Individual products of one- and two-copy genes revealed both nucleotide substitutions and deletions, with deletions more frequent than point mutations among haploid genome products. Similar spectra of defective products were observed at early reverse transcription time points and among products of haploid virions. These results indicate that faithful, full-length reverse transcription products were underrepresented in the absence of a reserve of genetic information and suggest that template switching contributes to HIV-1 genomic integrity.
Collapse
|
17
|
Duggal NK, Goo L, King SR, Telesnitsky A. Effects of identity minimization on Moloney murine leukemia virus template recognition and frequent tertiary template-directed insertions during nonhomologous recombination. J Virol 2007; 81:12156-68. [PMID: 17804514 PMCID: PMC2168973 DOI: 10.1128/jvi.01591-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homology requirements for Moloney murine leukemia virus recombination were addressed in this study by monitoring titer defects observed when acceptor/donor template identity lengths were systematically reduced. Recombination acceptors with at least 16 contiguous bases of donor template identity were recognized as efficiently as longer acceptors. In contrast, a sharp 1-log titer drop was observed for an acceptor of only 15 bases long, with an additional 1-log titer decline for an 8-base acceptor and further decreases for shorter acceptors. Eighty-three independent nonhomologous recombination products were sequenced to examine recombination template selection in the absence of significant sequence identity. These replication products contained a total of 152 nonhomologous crossover junctions. Forced copy choice models predict that forced nonhomologous recombination should result in DNA synthesis to the donor template's 5' end, followed by microidentity-guided acceptor template selection. However, only a single product displayed this structure. The majority of examined nonhomologous recombination products contained junction-associated sequence insertions. Most insertions resulted from the use of one or more tertiary templates, recognizable as discontiguous portions of viral or host RNA or minus-strand DNA. The donor/acceptor template microidentity evident at most crossovers reconfirmed the remarkable capability of the reverse transcription machinery to recognize short regions of sequence identity. These results demonstrate that recruitment of discontiguous host or viral sequences is a common way for retroviruses to resolve nonhomologous recombination junctions and provide experimental support for the role of splinting templates in the generation of retroviral insertions.
Collapse
Affiliation(s)
- Nisha K Duggal
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0620, USA
| | | | | | | |
Collapse
|
18
|
Bru T, Galetto R, Piver E, Collin C, Negroni M, Pagès JC. Using RT-prone recombination to promote re-building of complete retroviral vectors from two defective precursors: low efficiency and sequence specificities. J Virol Methods 2007; 142:118-26. [PMID: 17336399 DOI: 10.1016/j.jviromet.2007.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 11/23/2022]
Abstract
Retroviral recombination has been suggested as a useful way to modify retroviral vectors. The possibility to combine two multiply deleted retroviral vectors into a novel vector was evaluated. To investigate this possibility we have constructed two defective vectors containing a shared internal ribosome entry site (IRES). The IRES was selected for its complex secondary structure, a feature described to favour retroviral recombination. The IRES was expected to promote a recombination event leading to the formation of a unique, functional retroviral vector. By supporting expression of two transgenes from a single promoter, this sequence was also expected to allow straightforward detection of the recombination event. The present data confirms the achievement of recombination-dependent rescue, albeit at low efficiency. Unexpectedly, a preferential use of the packaging signal (Psi) for recombination was observed, as compared to the IRES. Together these observations mitigate the idea of using this technique for the design of retroviral vectors.
Collapse
Affiliation(s)
- Thierry Bru
- Université François Rabelais Tours, INSERM ERI 19, IFR 136, Faculté de Médecine, 10 Bd Tonnellé, France
| | | | | | | | | | | |
Collapse
|
19
|
Darlix JL, Garrido JL, Morellet N, Mély Y, de Rocquigny H. Properties, functions, and drug targeting of the multifunctional nucleocapsid protein of the human immunodeficiency virus. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:299-346. [PMID: 17586319 DOI: 10.1016/s1054-3589(07)55009-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jean-Luc Darlix
- LaboRetro, Unité INSERM de Virologie Humaine, IFR128, ENS Sciences de Lyon 46 allée d'Italie, Lyon, France
| | | | | | | | | |
Collapse
|
20
|
Bulliard Y, Wiznerowicz M, Barde I, Trono D. KRAB Can Repress Lentivirus Proviral Transcription Independently of Integration Site. J Biol Chem 2006; 281:35742-6. [PMID: 16997916 DOI: 10.1074/jbc.m602843200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The KRAB transcriptional repressor domain, commonly found in zinc finger proteins, acts by inducing the formation of heterochromatin. We previously exploited this property to achieve drug-regulated transgenesis and knock down by combining doxycycline-controllable KRAB-containing fusion proteins and lentiviral vectors. Here, we asked whether KRAB-induced repression is widespread or limited to specific regions of the genome. For this, we transduced cells with a lentiviral vector expressing a target reporter and a KRAB-containing transcriptional repressor from a bicistronic mRNA. We found that approximately 1.4% of the resulting proviruses escaped repression. However, this phenotype could be reverted by expressing the KRAB-containing protein in trans. Accordingly, the irrepressible proviruses all contained, in the DNA sequence encoding the KRAB-containing effector or its upstream internal ribosomal entry site, mutations or deletions likely resulting from errors or recombination during reverse transcription. These results indicate that KRAB-induced transcriptional repression is robust and active over a variety of genomic contexts that include at least the wide range of sites targeted by lentiviral integration.
Collapse
Affiliation(s)
- Yannick Bulliard
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
21
|
Konstantinova P, de Haan P, Das AT, Berkhout B. Hairpin-induced tRNA-mediated (HITME) recombination in HIV-1. Nucleic Acids Res 2006; 34:2206-18. [PMID: 16670429 PMCID: PMC1456326 DOI: 10.1093/nar/gkl226] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombination due to template switching during reverse transcription is a major source of genetic variability in retroviruses. In the present study we forced a recombination event in human immunodeficiency virus type 1 (HIV-1) by electroporation of T cells with DNA from a molecular HIV-1 clone that has a 300 bp long hairpin structure in the Nef gene (HIV-lhNef). HIV-lhNef does not replicate, but replication-competent escape variants emerged in four independent cultures. The major part of the hairpin was deleted in all escape viruses. In three cases, the hairpin deletion was linked to patch insertion of tRNAasp, tRNAglu or tRNAtrp sequences. The tRNAs were inserted in the viral genome in the antisense orientation, indicating that tRNA-mediated recombination occurred during minus-strand DNA synthesis. We here propose a mechanistic model for this hairpin-induced tRNA-mediated (HITME) recombination. The transient role of the cellular tRNA molecule as enhancer of retroviral recombination is illustrated by the eventual removal of inserted tRNA sequences by a subsequent recombination/deletion event.
Collapse
Affiliation(s)
| | - Peter de Haan
- Viruvation B. V. Wassenaarseweg 722333 AL Leiden, The Netherlands
| | | | - Ben Berkhout
- To whom correspondence should be addressed. Tel: +31 20 566 4822; Fax: +31 20 691 6531;
| |
Collapse
|
22
|
Lanciault C, Champoux JJ. Pausing during reverse transcription increases the rate of retroviral recombination. J Virol 2006; 80:2483-94. [PMID: 16474155 PMCID: PMC1369041 DOI: 10.1128/jvi.80.5.2483-2494.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviruses package two copies of genomic RNA into viral particles. During the minus-sense DNA synthesis step of reverse transcription, the nascent DNA can transfer multiple times between the two copies of the genome, resulting in recombination. The mechanism for this process is similar to the process of obligate strand transfers mediated by the repeat and primer binding site sequences. The location at which the DNA 3' terminus completely transfers to the second RNA strand defines the point of crossover. Previous work in vitro demonstrated that reverse transcriptase pausing has a significant impact on the location of the crossover, with a proportion of complete transfer events occurring very close to pause sites. The role of pausing in vivo, however, is not clearly understood. By employing a murine leukemia virus-based single-cycle infection assay, strong pausing was shown to increase the probability of recombination, as reflected in the reconstitution of green fluorescent protein expression. The infection assay results were directly correlated with the presence of strong pause sites in reverse transcriptase primer extension assays in vitro. Conversely, when pausing was diminished in vitro, without changing the sequence of the RNA template involved in recombination, there was a significant reduction in recombination in vivo. Together, these data demonstrate that reverse transcriptase pausing, as observed in vitro, directly correlates with recombination during minus-sense DNA synthesis in vivo.
Collapse
Affiliation(s)
- Christian Lanciault
- Department of Microbiology, University of Washington, Seattle, 98195-7242, USA
| | | |
Collapse
|
23
|
De Sá Filho DJ, Sucupira MCA, Caseiro MM, Casiero MM, Sabino EC, Diaz RS, Janini LM. Identification of two HIV type 1 circulating recombinant forms in Brazil. AIDS Res Hum Retroviruses 2006; 22:1-13. [PMID: 16438639 DOI: 10.1089/aid.2006.22.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombination is an important way to generate genetic diversity. Accumulation of HIV-1 full-length genomes in databases demonstrated that recombination is pervasive in viral strains collected globally. Recombinant forms achieving epidemiological relevance are termed circulating recombinant forms (CRFs). CRF12_BF was up to now the only CRF described in South America. The objective was to identify the first CRF in Brazil conducting full genome analysis of samples sharing the same partial genome recombinant structure. Ten samples obtained from individuals residing in Santos, Brazil, sharing the same recombination pattern based on partial genome sequence data, were selected from a larger group to undergo full length genome analysis. Near full length genomes were assembled from overlapping fragments. Mosaic genomes were evaluated by Bootscan, alignment inspection, and phylogenetic analysis using neighbor joining and maximum likelihood. Full genomes were also analyzed by split decomposition. We were able to identify five mosaic genomes. Two of these structures were represented by at least three samples derived from epidemiologically unlinked individuals. These structures were named CRF28_BF and CRF29_BF and are the second and third CRFs composed exclusively by subtypes B and F as well as the second and third CRFs encountered in South America. Other recombinant forms studied here resembled CRF28_BF and CRF29_BF. Our results suggest that a diverse population of related recombinants, including CRFs may play an important part in the Brazilian and South American epidemic.
Collapse
|
24
|
Alejska M, Figlerowicz M, Malinowska N, Urbanowicz A, Figlerowicz M. A universal BMV-based RNA recombination system--how to search for general rules in RNA recombination. Nucleic Acids Res 2005; 33:e105. [PMID: 16002784 PMCID: PMC1174899 DOI: 10.1093/nar/gni106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
At present, there is no doubt that RNA recombination is one of the major factors responsible for the generation of new RNA viruses and retroviruses. Numerous experimental systems have been created to investigate this complex phenomenon. Consequently, specific RNA structural motifs mediating recombination have been identified in several viruses. Unfortunately, up till now a unified model of genetic RNA recombination has not been formulated, mainly due to difficulties with the direct comparison of data obtained for different RNA-based viruses. To solve this problem, we have attempted to construct a universal system in which the recombination activity of various RNA sequences could be tested. To this end, we have used brome mosaic virus, a model (+)RNA virus of plants, for which the structural requirements of RNA recombination are well defined. The effectiveness of the new homomolecular system has been proven in an experiment involving two RNA sequences derived from the hepatitis C virus genome. In addition, comparison of the data obtained with the homomolecular system with those generated earlier using the heteromolecular one has provided new evidence that the mechanisms of homologous and non-homologous recombination are different and depend on the virus' mode of replication.
Collapse
Affiliation(s)
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, University of Medical SciencesSzpitalna 27/33, 60-572 Poznań, Poland
| | | | | | - Marek Figlerowicz
- To whom correspondence should be addressed. Tel: +48 61 8528503; Fax: +48 61 8520532;
| |
Collapse
|
25
|
Abstract
HIV-1 and other retroviruses exhibit mutation rates that are 1,000,000-fold greater than their host organisms. Error-prone viral replication may place retroviruses and other RNA viruses near the threshold of "error catastrophe" or extinction due to an intolerable load of deleterious mutations. Strategies designed to drive viruses to error catastrophe have been applied to HIV-1 and a number of RNA viruses. Here, we review the concept of extinguishing HIV infection by "lethal mutagenesis" and consider the utility of this new approach in combination with conventional antiretroviral strategies.
Collapse
Affiliation(s)
- Robert A Smith
- Department of Pathology, University of Washington, Seattle, WA 18195, USA.
| | | | | |
Collapse
|
26
|
Kanevsky I, Chaminade F, Ficheux D, Moumen A, Gorelick R, Negroni M, Darlix JL, Fossé P. Specific Interactions Between HIV-1 Nucleocapsid Protein and the TAR Element. J Mol Biol 2005; 348:1059-77. [PMID: 15854644 DOI: 10.1016/j.jmb.2005.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 03/16/2005] [Indexed: 11/24/2022]
Abstract
During retroviral reverse transcription, the minus-strand strong-stop DNA (ss-cDNA) is transferred to the 3' end of the genomic RNA and this requires the repeat (R) sequences present at both ends of the genome. In vitro, the human immunodeficiency virus type 1 (HIV-1) R sequence can promote DNA strand transfer when present in ectopic internal positions. Using HIV-1 model systems, the R sequences and nucleocapsid protein (NC) were found to be key determinants of ss-cDNA transfer. To gain insights into specific interactions between HIV-1 NC and RNA and the influence of NC on R folding, we investigated the secondary structures of R in two natural contexts, namely at the 5' or 3' end of RNAs representing the terminal regions of the genome, and in two ectopic internal positions that also support efficient minus-strand transfer. To investigate the roles of NC zinc fingers and flanking basic domains in the NC/RNA interactions, we used NC mutants. Analyses of the viral RNA/NC complexes by chemical and enzymatic probings, and gel retardation assays were performed under conditions allowing ss-cDNA transfer by reverse transcriptase. We report that NC binds the TAR apical loop specifically in the four genetic contexts without changing the folding of the TAR hairpin and R region significantly, and this requires the NC zinc fingers. In addition, we show that efficient annealing of cTAR DNA to the 3' R relies on sequence complementarities between TAR and cTAR terminal loops. These findings suggest that the TAR apical loop in the acceptor RNA is the initiation site for the annealing reaction that is chaperoned by NC during the minus-strand transfer.
Collapse
Affiliation(s)
- Igor Kanevsky
- CNRS UMR8113, LBPA-Alembert, Ecole Normale Supérieure de Cachan, 94235 Cachan cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lanciault C, Champoux JJ. Effects of unpaired nucleotides within HIV-1 genomic secondary structures on pausing and strand transfer. J Biol Chem 2004; 280:2413-23. [PMID: 15542863 DOI: 10.1074/jbc.m410718200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcriptase-mediated RNA displacement synthesis is required for DNA polymerization through the base-paired stem portions of secondary structures present in retroviral genomes. These regions of RNA duplex often possess single unpaired nucleotides, or "bulges," that disrupt contiguous base pairing. By using well defined secondary structures from the human immunodeficiency virus, type 1 (HIV-1), genome, we demonstrate that removal of these bulges either by deletion or by introducing a complementary base on the opposing strand results in increased pausing at specific positions within the RNA duplex. We also show that the HIV-1 nucleocapsid protein can increase synthesis through the pause sites but not as efficiently as when a bulge residue is present. Finally, we demonstrate that removing a bulge increases the proportion of strand transfer events to an acceptor template that occur prior to complete replication of a donor template secondary structure. Together our data suggest a role for bulge nucleotides in enhancing synthesis through stable secondary structures and reducing strand transfer.
Collapse
Affiliation(s)
- Christian Lanciault
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | | |
Collapse
|
28
|
Curlin ME, Gottlieb GS, Hawes SE, Sow PS, Ndoye I, Critchlow CW, Kiviat NB, Mullins JI. No evidence for recombination between HIV type 1 and HIV type 2 within the envelope region in dually seropositive individuals from Senegal. AIDS Res Hum Retroviruses 2004; 20:958-63. [PMID: 15585083 DOI: 10.1089/aid.2004.20.958] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To investigate the frequency of recombination between HIV-1 and HIV-2 in vivo during dual infection, we performed a retrospective analysis of blood samples from 46 dual HIV-1/HIV-2-seropositive adults for evidence of recombination. HIV viral DNA from peripheral blood mononuclear cells (PBMC) was subjected to two separate nested polymerase chain reaction (PCR) assays using opposing HIV-1 and HIV-2 primer pairs selected to flank a approximately 650-base pair region including the V3 loop of the envelope gene. In the first assay, primers were chosen to amplify recombinants with HIV-1 on the 5' end and HIV-2 on the 3' end, and in the second assay, primers were chosen to amplify recombinants with the opposite orientation. All PCR experiments were run in parallel with positive controls consisting of partial-length env fragments bearing a single central HIV-1/2 recombination site, and appropriate primer-binding sites on each end. The limit of detection for both assays was <10 copies of recombinant product per 150,000 cell equivalents of input PBMC DNA. In all 46 dually seropositive patients in this study, PCR screening of PBMC failed to detect evidence of HIV-1/HIV-2 recombinants in the C2-V5 env region. Although genetic recombination between HIV-1 and HIV-2 may occur, we conclude that any such events within env are exceedingly rare, and do not result in the outgrowth of recombinant strains.
Collapse
Affiliation(s)
- Marcel E Curlin
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Reggeti F, Bienzle D. Feline immunodeficiency virus subtypes A, B and C and intersubtype recombinants in Ontario, Canada. J Gen Virol 2004; 85:1843-1852. [PMID: 15218168 DOI: 10.1099/vir.0.19743-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the geographical distribution of feline immunodeficiency virus (FIV) subtypes is important for understanding different disease courses and for vaccine design. Intersubtype recombination may develop in areas where more than one subtype is prevalent and has the potential to create new transmittable variants with novel pathogenic properties. In this study, 40 FIV-positive DNA samples were classified by sequence analysis of the LTR-gag region. Phylogenetic analysis indicated that 32 Canadian FIV isolates clustered with previously identified subtypes A, B and C and that subtype A was most frequent in Ontario. Four strains with inconsistent clade assignment were further analysed by sequencing of the env-LTR regions. Comparisons of phylogenetic trees constructed from the two different regions of the genome and analysis of similarities to reference sequences yielded classification of three samples as A/B and one as A/C intersubtype recombinants. Although the A/B recombinant samples were obtained from unrelated cats in geographically disparate regions, a common breakpoint was consistently identified within gag. In addition, there was no evidence of co-infection with parental strains of subtypes A and B as indicated by PCR-based limiting dilution assays, although these assays allowed for the identification of two different recombinant viruses co-existing in one sample. Both sequences contained the same breakpoint. These findings suggested that a new circulating recombinant FIV may be enzootic in Ontario.
Collapse
Affiliation(s)
- F Reggeti
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - D Bienzle
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
30
|
Carrasco ML, Duch M, Pedersen FS. Strand transfer to the 5' part of a tRNA as a mechanism for retrovirus patch-repair recombination in vivo. J Gen Virol 2004; 85:1965-1969. [PMID: 15218181 DOI: 10.1099/vir.0.79816-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
By screening for marker-cassette deletion mutants of a murine leukaemia virus-based replication-competent vector, two occurrences of tRNA sequence patch insertions were identified. In one of the cases, 28 nucleotides from the 5' end of tRNA(Lys4) were inserted in the plus-strand orientation, which points to a novel strand-transfer mechanism to tRNAs during reverse transcriptase-mediated retroviral recombination.
Collapse
Affiliation(s)
- María L Carrasco
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Mogens Duch
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Finn Skou Pedersen
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus C, Denmark
- Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| |
Collapse
|
31
|
Zhang J. Host RNA polymerase II makes minimal contributions to retroviral frame-shift mutations. J Gen Virol 2004; 85:2389-2395. [PMID: 15269381 DOI: 10.1099/vir.0.80081-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rate of mutation during retrovirus replication is high. Mutations can occur during transcription of the viral genomic RNA from the integrated provirus or during reverse transcription from viral RNA to form viral DNA or during replication of the proviral DNA as the host cell is dividing. Therefore, three polymerases may all contribute to retroviral evolution: host RNA polymerase II, viral reverse transcriptases and host DNA polymerases, respectively. Since the rate of mutation for host DNA polymerase is very low, mutations are more likely to be caused by the host RNA polymerase II and/or the viral reverse transcriptase. A system was established to detect the frequency of frame-shift mutations caused by cellular RNA polymerase II, as well as the rate of retroviral mutation during a single cycle of replication in vivo. In this study, it was determined that RNA polymerase II contributes less than 3 % to frame-shift mutations that occur during retrovirus replication. Therefore, the majority of frame-shift mutations detected within the viral genome are the result of errors during reverse transcription.
Collapse
Affiliation(s)
- Jiayou Zhang
- Department of Microbiology, Immunology and Molecular Genetics and Markey Cancer Center, University of Kentucky, 206 Combs Research Bldg, 800 Rose Street, Lexington, KY 40536-0096, USA
| |
Collapse
|
32
|
Steidl S, Schüle S, Mühlebach MD, Stitz J, Boller K, Cichutek K, Schweizer M. Genetic engineering of onco/lentivirus hybrids results in formation of infectious but not of replication-competent viruses. J Gen Virol 2004; 85:665-678. [PMID: 14993652 DOI: 10.1099/vir.0.19479-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To achieve specific gene transfer into human CD4(+) cells, murine leukaemia virus (MLV)-based pseudotype vector particles were generated employing Env variants derived from human or simian immunodeficiency virus (HIV-1 or SIVagm). Here, we describe the generation of full-length onco/lentivirus hybrid genomes comprising components of MLV and HIV-1 or SIVagm, respectively, to assess the possibility of replication-competent hybrid virus formation. The env reading frame of an infectious molecular clone of MLV was replaced with the analogous coding regions of HIV-1 or SIVagm encompassing the env gene and accessory genes. Resulting MLV/HIV-1 or MLV/SIVagm hybrid genomes were transfected into 293T cells. Expression of viral proteins and budding of retroviral particles was shown by specific immunostaining and electron microscopy. The viral particles mediated CD4- and co-receptor-specific infection of human cells as demonstrated by PCR and immunostaining in the respective target cells. However, no productive infection resulting in the generation of infectious virus was detected in these cells. Thus, these onco/lentivirus hybrids, although able to initiate single-round infection, were not replication competent. Thus, MLV-based pseudotype vectors carrying Env variants of HIV-1 or SIVagm are not prone to form replication-competent retroviruses, suggesting a favourable safety profile for MLV-based CD4-specific pseudotype vectors.
Collapse
Affiliation(s)
- Stefanie Steidl
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Silke Schüle
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Michael D Mühlebach
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Jörn Stitz
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Klaus Boller
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Klaus Cichutek
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| | - Matthias Schweizer
- Department of Medical Biotechnology, Paul-Ehrlich-Institut, Paul-Ehrlich-Strasse 51-59, 63225 Langen, Germany
| |
Collapse
|
33
|
An W, Telesnitsky A. Human immunodeficiency virus type 1 transductive recombination can occur frequently and in proportion to polyadenylation signal readthrough. J Virol 2004; 78:3419-28. [PMID: 15016864 PMCID: PMC371070 DOI: 10.1128/jvi.78.7.3419-3428.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One model for retroviral transduction suggests that template switching between viral RNAs and polyadenylation readthrough sequences is responsible for the generation of acute transforming retroviruses. For this study, we examined reverse transcription products of human immunodeficiency virus (HIV)-based vectors designed to mimic postulated transduction intermediates. For maximization of the discontinuous mode of DNA synthesis proposed to generate transductants, sequences located between the vectors' two long terminal repeats (vector "body" sequences) and polyadenylation readthrough "tail" sequences were made highly homologous. Ten genetic markers were introduced to indicate which products had acquired tail sequences by a process we term transductive recombination. Marker segregation patterns for over 100 individual products were determined, and they revealed that more than half of the progeny proviruses were transductive recombinants. Although most crossovers occurred in regions of homology, about 5% were nonhomologous and some included insertions. Ratios of encapsidated readthrough and polyadenylated transcripts for vectors with wild-type and inactivated polyadenylation signals were compared, and transductive recombination frequencies were found to correlate with the readthrough transcript prevalence. In assays in which either vector body or tail could serve as a recombination donor, recombination between tail and body sequences was at least as frequent as body-body exchange. We propose that transductive recombination may contribute to natural HIV variation by providing a mechanism for the acquisition of nongenomic sequences.
Collapse
Affiliation(s)
- Wenfeng An
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
34
|
Li T, Zhang J. Stable expression of three genes from a tricistronic retroviral vector containing a picornavirus and 9-nt cellular internal ribosome entry site elements. J Virol Methods 2004; 115:137-44. [PMID: 14667529 DOI: 10.1016/j.jviromet.2003.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retroviral vectors are used widely to deliver heterologous genes into cells. In order to express three genes from a single RNA molecule, a retroviral vector that contains two divergent internal ribosome entry site (IRES) sequences has been constructed successfully. To eliminate the high frequency of recombination within a mulicistronic retrovirus vector, a 9-nt segment of a cellular mRNA IRES and a picornaviral IRES were used, since these two IRES sequences have minimal sequence homology. After a single round of replication, most cells infected with this vector stably expressed the three genes while approximately 40% of cells infected with another tricistronic retroviral vector that contains two copies of an identical IRES sequence lost expression of the gene located between these two sequences.
Collapse
Affiliation(s)
- Ting Li
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, 206 Combs Research Building, 800 Rose Street, Lexington, KY 40536-0096, USA
| | | |
Collapse
|
35
|
Magiorkinis G, Paraskevis D, Vandamme AM, Magiorkinis E, Sypsa V, Hatzakis A. In vivo characteristics of human immunodeficiency virus type 1 intersubtype recombination: determination of hot spots and correlation with sequence similarity. J Gen Virol 2003; 84:2715-2722. [PMID: 13679605 DOI: 10.1099/vir.0.19180-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recombination plays a pivotal role in the evolutionary process of many different virus species, including retroviruses. Analysis of all human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants revealed that they are more complex than described initially. Recombination frequency is higher within certain genomic regions, such as partial reverse transcriptase (RT), vif/vpr, the first exons of tat/rev, vpu and gp41. A direct correlation was observed between recombination frequency and sequence similarity across the HIV-1 genome, indicating that sufficient sequence similarity is required upstream of the recombination breakpoint. This finding suggests that recombination in vivo may occur preferentially during reverse transcription through the strand displacement-assimilation model rather than the copy-choice model.
Collapse
Affiliation(s)
- Gkikas Magiorkinis
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Mikras Asias 75, 11527 Athens, Greece
| | - Dimitrios Paraskevis
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Mikras Asias 75, 11527 Athens, Greece
| | - Anne-Mieke Vandamme
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emmanouil Magiorkinis
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Mikras Asias 75, 11527 Athens, Greece
| | - Vana Sypsa
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Mikras Asias 75, 11527 Athens, Greece
| | - Angelos Hatzakis
- National Retrovirus Reference Center, Department of Hygiene and Epidemiology, Athens University Medical School, Mikras Asias 75, 11527 Athens, Greece
| |
Collapse
|
36
|
Roda RH, Balakrishnan M, Hanson MN, Wohrl BM, Le Grice SFJ, Roques BP, Gorelick RJ, Bambara RA. Role of the Reverse Transcriptase, Nucleocapsid Protein, and Template Structure in the Two-step Transfer Mechanism in Retroviral Recombination. J Biol Chem 2003; 278:31536-46. [PMID: 12801926 DOI: 10.1074/jbc.m304608200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Template switching during reverse transcription promotes recombination in retroviruses. Efficient switches have been measured in vitro on hairpin-containing RNA templates by a two-step mechanism. Pausing of the reverse transcriptase (RT) at the hairpin base allowed enhanced cleavage of the initial donor RNA template, exposing regions of the cDNA and allowing the acceptor to base pair with the cDNA. This defines the first or docking step. The primer continued synthesis on the donor, transferring or locking in a second step. Here we determine the enzyme-dependent factors that influence template switching by comparing the RTs from human immunodeficiency virus, type 1 (HIV-1), and equine infectious anemia virus (EIAV). HIV-1 RT promoted transfers with higher efficiency than EIAV RT. We found that both RTs paused strongly at the base of the hairpin. While stalled, HIV-1 RT made closely spaced cuts, whereas EIAV RT made only a single cut. Docking occurred efficiently at the multiply cut but not at the singly cut site. HIV-1 nucleocapsid (NC) protein stimulated strand transfers. It improved RNase H activity of both RTs. It allowed the EIAV RT to make a distribution of cuts, greatly stimulating docking at the base of the hairpin. Most likely, it also promoted strand exchange, allowing transfers to be initiated from sites throughout the hairpin. Minor pause sites beyond the base of the hairpin correlated with the locking sites. The strand exchange properties of NC likely promote this step. We present a model that explains the roles of RNase H specificity, template structure, and properties of NC in the two-step transfer reaction.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Figlerowicz M, Alejska M, Kurzyńska‐Kokorniak A, Figlerowicz M. Genetic variability: the key problem in the prevention and therapy of RNA-based virus infections. Med Res Rev 2003; 23:488-518. [PMID: 12710021 PMCID: PMC7168509 DOI: 10.1002/med.10045] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite extraordinary progress that has recently been made in biomedical sciences, viral infectious diseases still remain one of the most serious world health problems. Among the different types of viruses, those using RNA as their genetic material (RNA viruses and retroviruses) are especially dangerous. At present there is no medicine allowing an effective treatment of RNA-based virus infections. Many RNA viruses and retroviruses need only a few weeks to escape immune response or to produce drug-resistant mutants. This seems to be the obvious consequence of the unusual genetic variability of RNA-based viruses. An individual virus does not form a homogenous population but rather a set of similar but not identical variants. In consequence, RNA-based viruses can easily adapt to environmental changes, also those resulting from immune system response or therapy. The modifications identified within viral genes can be divided into two groups: point mutations and complex genome rearrangements. The former arises mainly during error-prone replication, whereas RNA recombination and generic reassortment are responsible for the latter. This article shortly describes major strategies used to control virus infections. Then, it presents the various mechanisms generating the genetic diversity of RNA-based viruses, which are most probably the main cause of clinical problems.
Collapse
Affiliation(s)
| | - Magdalena Alejska
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Anna Kurzyńska‐Kokorniak
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| | - Marek Figlerowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego 12/14, 61‐704 Poznań, Poland
| |
Collapse
|
38
|
Onafuwa A, An W, Robson ND, Telesnitsky A. Human immunodeficiency virus type 1 genetic recombination is more frequent than that of Moloney murine leukemia virus despite similar template switching rates. J Virol 2003; 77:4577-87. [PMID: 12663764 PMCID: PMC152108 DOI: 10.1128/jvi.77.8.4577-4587.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral recombinants result from template switching between copackaged viral genomes. Here, marker reassortment between coexpressed vectors was measured during single replication cycles, and human immunodeficiency virus type 1 (HIV-1) recombination was observed six- to sevenfold more frequently than murine leukemia virus (MLV) recombination. Template switching was also assayed by using transduction-type vectors in which donor and acceptor template regions were joined covalently. In this situation, where RNA copackaging could not vary, MLV and HIV-1 template switching rates were indistinguishable. These findings argue that MLV's lower intermolecular recombination frequency does not reflect enzymological differences. Instead, these data suggest that recombination rates differ because coexpressed MLV RNAs are less accessible to the recombination machinery than are coexpressed HIV RNAs. This hypothesis provides a plausible explanation for why most gammaretrovirus recombinants, although relatively rare, display evidence of multiple nonselected crossovers. By implying that recombinogenic template switching occurs roughly four times on average during the synthesis of every MLV or HIV-1 DNA, these results suggest that virtually all products of retroviral replication are biochemical recombinants.
Collapse
Affiliation(s)
- Adewunmi Onafuwa
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | | | | | |
Collapse
|
39
|
Wain-Hobson S, Renoux-Elbé C, Vartanian JP, Meyerhans A. Network analysis of human and simian immunodeficiency virus sequence sets reveals massive recombination resulting in shorter pathways. J Gen Virol 2003; 84:885-895. [PMID: 12655089 DOI: 10.1099/vir.0.18894-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The intrinsic recombination rate of human immunodeficiency virus (HIV) exceeds the point mutation rate by a factor of 10. As the majority of infected cells in vivo harbour multiple proviruses, the stage is set for rampant recombination. Therefore, it may be presumed that phylogenic relationships and mutation frequencies will probably be affected by recombination. However, the proportion of homoplasies arising from recombination and mutation is not known. By studying the evolution of the hypervariable regions of the simian immunodeficiency virus envelope gene among four macaques, it is shown that homoplasies arise more from recombination than from point mutation. When recombination is accounted for, the minimum number of substitutions in a sequence set may be reduced by as much as 45 %. In fact, the true number of point mutations in a set of HIV sequences tends to the number of discrete substitutions. Hence, lineages are younger than anticipated previously, although not in proportion to the ratio of the intrinsic recombination/point mutation rate. Recombination also inflates codon polymorphisms.
Collapse
Affiliation(s)
- Simon Wain-Hobson
- Unité de Rétrovirologie Moléculaire, Institut Pasteur, F-75724 Paris cedex 15, France
| | - Céline Renoux-Elbé
- Unité de Rétrovirologie Moléculaire, Institut Pasteur, F-75724 Paris cedex 15, France
| | - Jean-Pierre Vartanian
- Unité de Rétrovirologie Moléculaire, Institut Pasteur, F-75724 Paris cedex 15, France
| | - Andreas Meyerhans
- Department of Virology, University of the Saarland, D-66421 Homburg, Germany
| |
Collapse
|
40
|
Roda RH, Balakrishnan M, Kim JK, Roques BP, Fay PJ, Bambara RA. Strand transfer occurs in retroviruses by a pause-initiated two-step mechanism. J Biol Chem 2002; 277:46900-11. [PMID: 12370183 DOI: 10.1074/jbc.m208638200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recombination promotes retrovirus evolution. It involves transferring a growing DNA primer from one genomic RNA template in the virus to the other. Strand transfer results in vitro suggested that pausing of the reverse transcriptase during synthesis allows enhanced RNase H cleavage of the initial, or donor, RNA template that facilitates primer interaction with the acceptor template. Hairpins are common structures in retrovirus RNAs that induce pausing. Analyzing primer transfers in hairpins by base substitution markers showed transfer sites well beyond the site of pausing. We developed methods to distinguish the initial site of primer-acceptor template interaction from the site of primer terminus transfer. The strand transfer mechanism was confirmed to involve two steps. In the first, the acceptor template invades the primer-donor complex. However, the primer terminus continues elongation on the donor RNA. The interacting primer and acceptor strands then propagate by branch migration to catch the advancing primer terminus. Some distance downstream of the invasion site the primer terminus transfers, marking the genetic shift from donor to acceptor. Nucleocapsid protein (NC) is known to influence primer elongation and strand exchange. The presence of NC increased the efficiency of transfers but did not appear to alter the fundamental transfer mechanism.
Collapse
Affiliation(s)
- Ricardo H Roda
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Encapsidation of retroviral RNA involves specific interactions between viral proteins and cis-acting genomic RNA sequences. Human immunodeficiency virus type 1 (HIV-1) RNA encapsidation determinants appear to be more complex and dispersed than those of murine retroviruses. Feline lentiviral (feline immunodeficiency virus [FIV]) encapsidation has not been studied. To gain comparative insight into lentiviral encapsidation and to optimize FIV-based vectors, we used RNase protection assays of cellular and virion RNAs to determine packaging efficiencies of FIV deletion mutants, and we studied replicative phenotypes of mutant viruses. Unlike the case for other mammalian retroviruses, the sequences between the major splice donor (MSD) and the start codon of gag contribute negligibly to FIV encapsidation. Moreover, molecular clones having deletions in this region were replication competent. In contrast, sequences upstream of the MSD were important for encapsidation, and deletion of the U5 element markedly reduced genomic RNA packaging. The contribution of gag sequences to packaging was systematically investigated with subgenomic FIV vectors containing variable portions of the gag open reading frame, with all virion proteins supplied in trans. When no gag sequence was present, packaging was abolished and marker gene transduction was absent. Inclusion of the first 144 nucleotides (nt) of gag increased vector encapsidation to detectable levels, while inclusion of the first 311 nt increased it to nearly wild-type levels and resulted in high-titer FIV vectors. However, the identified proximal gag sequence is necessary but not sufficient, since viral mRNAs that contain all coding regions, with or without as much as 119 nt of adjacent upstream 5' leader, were excluded from encapsidation. The results identify a mechanism whereby FIV can encapsidate its genomic mRNA in preference to subgenomic mRNAs.
Collapse
Affiliation(s)
- Iris Kemler
- Molecular Medicine Program, Departments of Immunology and Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
42
|
Li T, Zhang J. Intramolecular recombinations of Moloney murine leukemia virus occur during minus-strand DNA synthesis. J Virol 2002; 76:9614-23. [PMID: 12208940 PMCID: PMC136483 DOI: 10.1128/jvi.76.19.9614-9623.2002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Retroviral recombination can occur between two viral RNA molecules (intermolecular) or between two sequences within the same RNA molecule (intramolecular). The rate of retroviral intramolecular recombination is high. Previous studies showed that, after a single round of replication, 50 to 60% of retroviral recombinations occur between two identical sequences within a Moloney murine leukemia virus-based vector. Recombination can occur at any polymerization step within the retroviral replication cycle. Although reverse transcriptase is assumed to contribute to the template switches, previous studies could not distinguish between changes introduced by host RNA polymerase II (Pol II) or by reverse transcriptase. A cell culture system has been established to detect the individual contribution of host RNA Pol II, host DNA polymerase or viral reverse transcriptase, as well as the recombination events taking place during minus-strand DNA synthesis and plus-strand DNA synthesis in a single round of viral intramolecular replication. Studies in this report demonstrate that intramolecular recombination between two identical sequences during transcription by host RNA Pol II is minimal and that most recombinations occur during minus-strand DNA synthesis catalyzed by viral reverse transcriptase.
Collapse
Affiliation(s)
- Ting Li
- Department of Microbiology and Immunology and Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0096, USA
| | | |
Collapse
|
43
|
Quiñones-Mateu ME, Gao Y, Ball SC, Marozsan AJ, Abraha A, Arts EJ. In vitro intersubtype recombinants of human immunodeficiency virus type 1: comparison to recent and circulating in vivo recombinant forms. J Virol 2002; 76:9600-13. [PMID: 12208939 PMCID: PMC136488 DOI: 10.1128/jvi.76.19.9600-9613.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The increased prevalence of human immunodeficiency virus type 1 (HIV-1) intersubtype recombinants (ISRs) is shaping HIV-1 evolution throughout the world and will have an impact on both therapeutic and vaccine strategies. This study was designed to generate and compare in vitro ISRs to those isolated from HIV-infected individuals throughout the world. Human peripheral blood mononuclear cells were dually infected with seven pairs of HIV-1 isolates from different subtypes (i.e., A to F). Recombinant crossover sites were mapped to specific regions in the envelope (env) gene by using a cloning-hybridization technique and subtype-specific probes. In vitro intersubtype recombination was at least twofold more frequent in the V1-to-V3 region than in any other env fragment, i.e., C1 to V1, V3 to V5, or V5 to gp41. Sequence and recombination site analyses suggested the C2 env domain as a "hot region" for recombination and selection of replication-competent ISRs during the 15-day incubation. In addition to these regional preferences for env recombination, homopolymeric nucleotide tracts, i.e., sequences known to pause reverse transcriptase and promote template switching, were found in most in vitro crossover sites. ISRs, originating from recent dual infections and limited transmission events, partly retained this in vitro regional or sequence preference for recombination sites. However, a shift to crossover sites flanking the gp120-coding sequence was evident in the stable circulating recombinant forms of HIV-1. Based on these findings, HIV-1 recombinants generated from these dual infections may be used as a model for in vivo intersubtype recombination and for the design of various diagnostic assays and vaccine constructs.
Collapse
Affiliation(s)
- Miguel E Quiñones-Mateu
- Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
44
|
An W, Telesnitsky A. Effects of varying sequence similarity on the frequency of repeat deletion during reverse transcription of a human immunodeficiency virus type 1 vector. J Virol 2002; 76:7897-902. [PMID: 12097604 PMCID: PMC136404 DOI: 10.1128/jvi.76.15.7897-7902.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic recombination contributes to human immunodeficiency virus type 1 (HIV-1) diversity, with homologous recombination being more frequent than nonhomologous recombination. In this study, HIV-1-based vectors were used to assay the effects of various extents of sequence divergence on the frequency of the recombination-related property of repeat deletion. Sequence variation, similar in degree to that which differentiates natural HIV-1 isolates, was introduced by synonymous substitutions into a gene segment. Repeated copies of this segment were then introduced into assay vectors. With the use of a phenotypic screen, the deletion frequency of identical repeats was compared to the frequencies of repeats that differed in sequence by various extents. During HIV-1 reverse transcription, the deletion frequency observed with repeats that differed by 5% was 65% of that observed with identical repeats. The deletion frequency decreased to 26% for repeats that differed by 9%, and when repeats differed by 18%, the deletion frequency was about 5% of the identical repeat value. Deletion frequencies fell to less than 0.3% of identical repeat values when genetic distances of 27% or more were examined. These data argue that genetic variation is not as inhibitory to HIV-1 repeat deletion as it is to the corresponding cellular process and suggest that, for sequences that differ by about 25% or more, HIV-1 recombination directed by sequence homology may be no more frequent than that which is homology independent.
Collapse
Affiliation(s)
- Wenfeng An
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
45
|
Golinelli MP, Hughes SH. Nontemplated base addition by HIV-1 RT can induce nonspecific strand transfer in vitro. Virology 2002; 294:122-34. [PMID: 11886271 DOI: 10.1006/viro.2001.1322] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After minus-strand strong-stop DNA (-sssDNA) synthesis, the RNA template is degraded by the RNase H activity of reverse transcriptase (RT), generating a single-stranded DNA. The genomes of some retroviruses contain sequences that could lead to self-priming of their minus signsssDNA. Self-priming was prevented by annealing a DNA oligonucleotide to the 3' end of model DNAs that corresponded to the 3' ends of the -sssDNAs (-R ssDNA) from human immunodeficiency virus type 1 (HIV-1), type 2 (HIV-2), and human T-cell leukemia virus type 1 (HTLV-1) but nonspecific strand transfer to ssDNA molecules in solution was induced in vitro (Golinelli and Hughes, 2001). This nonspecific strand transfer involved the addition of a nontemplated base to the 3' end of -R ssDNAs that was part of a blunt-ended duplex. In the case of HIV-2 -R ssDNA, A and C were added more efficiently than G and T. Strand transfer to ssDNA in solution occurred only if the nontemplated base could form a basepair with the last base at the 3' end of the ssDNA. If there was a mismatch, strand transfer did not occur. There was no detectable strand transfer to internal sites in the target ssDNA except to the second position from the 3' end of the DNA acceptor when the sequences at the 3' ends of the two DNAs allowed the formation of two basepairs. The nontemplated base addition and the one-basepair strand transfer were both affected by the salt concentration in the reaction, the nature of the reverse transcriptase (HIV-1 versus Moloney murine leukemia virus), and the sequence at the 3' end of -R ssDNA. NC reduced the efficiency of nonspecific strand transfer in vitro, suggesting that NC may have a role in reducing nonspecific strand transfer in vivo.
Collapse
Affiliation(s)
- Marie-Pierre Golinelli
- HIV Drug Resistance Program, National Cancer Institute, NCI-Frederick, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
46
|
Abstract
Recombination is a major source of genetic variability in retroviruses. Each viral particle contains two single-stranded genomic RNAs. Recombination mostly results from a switch in template between these two RNAs during reverse transcription. Here we emphasize the main mechanisms underlying recombination that are emerging from recent advances in biochemical and cell culture techniques. Increasing evidence supporting the involvement of RNA secondary structures now complements the predominant role classically attributed to enzyme pausing during reverse transcription. Finally, the implications of recombination on the dynamics of emergence of genomic aberrations in retroviruses are discussed.
Collapse
Affiliation(s)
- M Negroni
- Unité de Regulation Enzymatique des Activités Cellulaires, FRE 2364-CNRS, Paris, France.
| | | |
Collapse
|
47
|
Pfeiffer JK, Telesnitsky A. Effects of limiting homology at the site of intermolecular recombinogenic template switching during Moloney murine leukemia virus replication. J Virol 2001; 75:11263-74. [PMID: 11689606 PMCID: PMC114711 DOI: 10.1128/jvi.75.23.11263-11274.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A Moloney murine leukemia virus-based single-replication-cycle assay was developed to study the effects of limiting the extent of template and primer strand complementarity on recombinogenic template switching. This system mimicked forced copy choice recombination in which nascent DNA transfers from the end of a donor template to an acceptor position on the other copackaged RNA. When acceptor target regions with different extents of complementarity to the transferring DNA were tested, efficient recombination occurred with as few as 14 complementary nucleotides. The frequencies of correct targeting, transfer-associated errors, mismatch extension, and transfer before reaching the end of the donor template were determined. All four molecular events occurred, with their proportions varying depending on the nature of acceptor/transferring DNA complementarity. When complementarity was severely limited, recombination was inefficient and most products resulted from aberrant second-strand transfer rather than from forced template switching between RNAs. Other classes of reverse transcription products, including some that resulted from template switching between virus and host sequences, were also observed when homology between the acceptor and donor was limited.
Collapse
Affiliation(s)
- J K Pfeiffer
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0620, USA
| | | |
Collapse
|
48
|
Li Y, Carpenter S. Cis-acting sequences may contribute to size variation in the surface glycoprotein of bovine immunodeficiency virus. J Gen Virol 2001; 82:2989-2998. [PMID: 11714975 DOI: 10.1099/0022-1317-82-12-2989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic recombination is an important mechanism of retrovirus variation and diversity. Size variation in the surface (SU) glycoprotein, characterized by duplication and insertion, has been observed during in vivo infection with several lentiviruses, including bovine immunodeficiency virus (BIV), equine infectious anaemia virus (EIAV) and human immunodeficiency virus type 1. These duplication/insertion events are thought to occur through a mechanism of template switching/strand transfer during reverse transcription. Studies of RNA recombination in a number of virus systems indicate that cis-acting sequences can modulate the frequency of template switching/strand transfer. The size variable region of EIAV and BIV SU glycoproteins was examined and an AU-rich region and regions of nucleotide sequence identity that may facilitate template switching/strand transfer were identified. An in vitro strand transfer assay using donor and acceptor templates derived from the size variable region in BIV env detected both precise and imprecise strand transfer products, in addition to full-length products. Sequence analysis of clones obtained from imprecise strand transfer products showed that 87.5% had crossover sites within 10 nt of the crossover site observed in vivo. Mutations in the donor template which altered either the AU-rich region or nucleotide sequence identity dramatically decreased the frequency of imprecise strand transfer. Together, these results suggest that cis-acting elements can modulate non-homologous recombination events during reverse transcription and may contribute to the genetic and biological diversity of lentiviruses in vivo.
Collapse
Affiliation(s)
- Yuxing Li
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011-1250, USA1
| | - Susan Carpenter
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011-1250, USA1
| |
Collapse
|
49
|
Bénit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol 2001; 75:11709-19. [PMID: 11689652 PMCID: PMC114757 DOI: 10.1128/jvi.75.23.11709-11719.2001] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic analyses of retroviral elements, including endogenous retroviruses, have relied essentially on the retroviral pol gene expressing the highly conserved reverse transcriptase. This enzyme is essential for the life cycle of all retroid elements, but other genes are also endowed with conserved essential functions. Among them, the transmembrane (TM) subunit of the envelope gene is involved in virus entry through membrane fusion. It has also been reported to contain a domain, named the immunosuppressive domain, that has immunosuppressive properties most probably essential for virus spread within the host. This domain is conserved among a large series of retroviral elements, and we have therefore attempted to generate phylogenetic links between retroviral elements identified from databases following tentative alignments of the immunosuppressive domain and adjacent sequences. This allowed us to unravel a conserved organization among TM domains, also found in the Ebola and Marburg filoviruses, and to identify a large number of human endogenous retroviruses (HERVs) from sequence databases. The latter elements are part of previously identified families of HERVs, and some of them define new families. A general phylogenetic analysis based on the TM proteins of retroelements, and including those with no clearly identified immunosuppressive domain, could then be derived and compared with pol-based phylogenetic trees, providing a comprehensive survey of retroelements and definitive evidence for recombination events in the generation of both the endogenous and the present-day infectious retroviruses.
Collapse
Affiliation(s)
- L Bénit
- Unité des Rétrovirus Endogènes et Eléments Rétroïdes des Eucaryotes Supérieurs, CNRS UMR 1573, Institut Gustave Roussy, 94805 Villejuif Cedex, France
| | | | | |
Collapse
|
50
|
Elrouby N, Bureau TE. A novel hybrid open reading frame formed by multiple cellular gene transductions by a plant long terminal repeat retroelement. J Biol Chem 2001; 276:41963-8. [PMID: 11553621 DOI: 10.1074/jbc.m105850200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery that vertebrate retroviruses could transduce cellular sequences was central to cancer etiology and research. Although not well documented, transduction of cellular sequences by retroelements has been suggested to modify cellular functions. The maize Bs1 transposon was the first non-vertebrate retroelement reported to have transduced a portion of a cellular gene (c-pma). We show that Bs1 has, in addition, transduced portions of at least two more maize cellular genes, namely for 1,3-beta-glucanase (c-bg) and 1,4-beta-xylan endohydrolase (c-xe). We also show that Bs1 has maintained a truncated gag domain with similarity to the magellan gypsy-like long terminal repeat retrotransposon and a region that may correspond to an env-like domain. Our findings suggest that, like oncogenic retroviruses, the three transduced gene fragments and the Bs1 gag domain encode a fusion protein that has the potential to be expressed. We suggest that transduction by retroelements may facilitate the formation of novel hybrid genes in plants.
Collapse
Affiliation(s)
- N Elrouby
- Department of Biology, McGill University, Montreal, Quebec H3A 1B1, Canada
| | | |
Collapse
|