1
|
Elhanafy E, Akbari Ahangar A, Roth R, Gamal El-Din TM, Bankston JR, Li J. The differential impacts of equivalent gating-charge mutations in voltage-gated sodium channels. J Gen Physiol 2025; 157:e202413669. [PMID: 39820972 PMCID: PMC11740781 DOI: 10.1085/jgp.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/27/2024] [Accepted: 12/25/2024] [Indexed: 01/19/2025] Open
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating property impacts in electrophysiology measurements. We conducted molecular dynamics (MD) simulations on wild-type channels and six mutants to elucidate the structural basis of their differential impacts. Our 120-µs MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis revealed how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study advances our understanding of structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, USA
| |
Collapse
|
2
|
Sun S, Chowdhury S, Hemeon I, Hasan A, Wilson MS, Bergeron P, Jia Q, Zenova AY, Grimwood ME, Gong W, Decker SM, Bichler P, Andrez JC, Focken T, Ngyuen T, Zhu J, White AD, Bankar G, Howard S, Chang E, Khakh K, Lin S, Dean R, Johnson JP, Chang JH, Hackos DH, McKerrall SJ, Sellers B, Ortwine DF, Cohen CJ, Safina BS, Sutherlin DP, Dehnhardt CM. Discovery of novel cyclopentane carboxylic acids as potent and selective inhibitors of Na V1.7. Bioorg Med Chem Lett 2025; 116:130033. [PMID: 39580005 DOI: 10.1016/j.bmcl.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Discovery efforts leading to the identification of cyclopentane carboxylic acid 31, a potent inhibitor of NaV1.7 that showed high selectivity over NaV1.5 and exhibited robust analgesic effects in an inherited erythromelalgia (IEM) transgenic mouse assay, are described herein. Key design elements that culminated in the discovery of 31 include exploration of proline substituents, replacement of the proline warhead with cyclopentane carboxylic acid, that led to significantly boosted NaV1.7 potency, and replacement of the metabolically labile adamantane motif with the 2,6-dichlorobenzyl substituted piperidine system, that addressed metabolic instability and led to a significant improvement in PK.
Collapse
Affiliation(s)
- Shaoyi Sun
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada.
| | - Sultan Chowdhury
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Ivan Hemeon
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Abid Hasan
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Michael S Wilson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Qi Jia
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Alla Y Zenova
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Mike E Grimwood
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Wei Gong
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Shannon M Decker
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Paul Bichler
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | | | - Thilo Focken
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Theresa Ngyuen
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Jiuxiang Zhu
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Andrew D White
- Chempartner, Building No. 5, 998 Halei Rd., Zhangjiang Hi-Tech Park, Pudong New Area, Shanghai, PR China
| | - Girish Bankar
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sarah Howard
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Elaine Chang
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Kuldip Khakh
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Sophia Lin
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - J P Johnson
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Jae H Chang
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - David H Hackos
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | - Ben Sellers
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Dan F Ortwine
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | - Charles J Cohen
- Xenon Pharmaceuticals Inc., 3650 Gilmore Way, Burnaby, BC V5G 4W8, Canada
| | - Brian S Safina
- Genentech Inc., 1 DNA Way, South San Francisco, CA 94080-4990, USA
| | | | | |
Collapse
|
3
|
Lopez-Mateos D, Harris BJ, Hernández-González A, Narang K, Yarov-Yarovoy V. Harnessing Deep Learning Methods for Voltage-Gated Ion Channel Drug Discovery. Physiology (Bethesda) 2025; 40:0. [PMID: 39189871 DOI: 10.1152/physiol.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Voltage-gated ion channels (VGICs) are pivotal in regulating electrical activity in excitable cells and are critical pharmaceutical targets for treating many diseases including cardiac arrhythmia and neuropathic pain. Despite their significance, challenges such as achieving target selectivity persist in VGIC drug development. Recent progress in deep learning, particularly diffusion models, has enabled the computational design of protein binders for any clinically relevant protein based solely on its structure. These developments coincide with a surge in experimental structural data for VGICs, providing a rich foundation for computational design efforts. This review explores the recent advancements in computational protein design using deep learning and diffusion methods, focusing on their application in designing protein binders to modulate VGIC activity. We discuss the potential use of these methods to computationally design protein binders targeting different regions of VGICs, including the pore domain, voltage-sensing domains, and interface with auxiliary subunits. We provide a comprehensive overview of the different design scenarios, discuss key structural considerations, and address the practical challenges in developing VGIC-targeting protein binders. By exploring these innovative computational methods, we aim to provide a framework for developing novel strategies that could significantly advance VGIC pharmacology and lead to the discovery of effective and safe therapeutics.
Collapse
Affiliation(s)
- Diego Lopez-Mateos
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Brandon John Harris
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Adriana Hernández-González
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
| | - Kush Narang
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, United States
- Biophysics Graduate Group, University of California School of Medicine, Davis, California, United States
- Department of Anesthesiology and Pain Medicine, University of California School of Medicine, Davis, California, United States
| |
Collapse
|
4
|
Li Z, Wu Q, Yan N. A structural atlas of druggable sites on Na v channels. Channels (Austin) 2024; 18:2287832. [PMID: 38033122 PMCID: PMC10732651 DOI: 10.1080/19336950.2023.2287832] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
Voltage-gated sodium (Nav) channels govern membrane excitability by initiating and propagating action potentials. Consistent with their physiological significance, dysfunction, or mutations in these channels are associated with various channelopathies. Nav channels are thereby major targets for various clinical and investigational drugs. In addition, a large number of natural toxins, both small molecules and peptides, can bind to Nav channels and modulate their functions. Technological breakthrough in cryo-electron microscopy (cryo-EM) has enabled the determination of high-resolution structures of eukaryotic and eventually human Nav channels, alone or in complex with auxiliary subunits, toxins, and drugs. These studies have not only advanced our comprehension of channel architecture and working mechanisms but also afforded unprecedented clarity to the molecular basis for the binding and mechanism of action (MOA) of prototypical drugs and toxins. In this review, we will provide an overview of the recent advances in structural pharmacology of Nav channels, encompassing the structural map for ligand binding on Nav channels. These findings have established a vital groundwork for future drug development.
Collapse
Affiliation(s)
- Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong Province, China
| |
Collapse
|
5
|
Ghovanloo MR, Tyagi S, Zhao P, Effraim PR, Dib-Hajj SD, Waxman SG. Sodium currents in naïve mouse dorsal root ganglion neurons: No major differences between sexes. Channels (Austin) 2024; 18:2289256. [PMID: 38055732 PMCID: PMC10761158 DOI: 10.1080/19336950.2023.2289256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
Sexual dimorphism has been reported in multiple pre-clinical and clinical studies on pain. Previous investigations have suggested that in at least some states, rodent dorsal root ganglion (DRG) neurons display differential sex-dependent regulation and expression patterns of various proteins involved in the pain pathway. Our goal in this study was to determine whether sexual dimorphism in the biophysical properties of voltage-gated sodium (Nav) currents contributes to these observations in rodents. We recently developed a novel method that enables high-throughput, unbiased, and automated functional analysis of native rodent sensory neurons from naïve WT mice profiled simultaneously under uniform experimental conditions. In our previous study, we performed all experiments in neurons that were obtained from mixed populations of adult males or females, which were combined into single (combined male/female) data sets. Here, we have re-analyzed the same previously published data and segregated the cells based on sex. Although the number of cells in our previously published data sets were uneven for some comparisons, our results do not show sex-dependent differences in the biophysical properties of Nav currents in these native DRG neurons.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Philip R. Effraim
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
6
|
Zhang Y, Ding Y, Zeng Z, Zhu R, Zheng P, Fan S, Cao Q, Chen H, Ren W, Wu M, Wang L, Du J. Intra-channel bi-epitopic crosslinking unleashes ultrapotent antibodies targeting Na V1.7 for pain alleviation. Cell Rep Med 2024; 5:101800. [PMID: 39461335 PMCID: PMC11604545 DOI: 10.1016/j.xcrm.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/01/2024] [Accepted: 09/30/2024] [Indexed: 10/29/2024]
Abstract
Crucial for cell activities, ion channels are key drug discovery targets. Although small-molecule and peptide modulators dominate ion channel drug discovery, antibodies are emerging as an alternative modality. However, challenges persist in generating potent antibodies, especially for channels with limited extracellular epitopes. We herein present a bi-epitopic crosslinking strategy to overcome these challenges, focusing on NaV1.7, a potential analgesic target. Aiming to crosslink two non-overlapping epitopes on voltage-sensing domains II and IV, we construct bispecific antibodies and ligand-antibody conjugates. Enhanced affinity and potency are observed in comparison to the monospecific controls. Among them, a ligand-antibody conjugate (1080-PEG7-ACDTB) displays a two-orders-of-magnitude improvement in potency (IC50 of 0.06 ± 0.01 nM) and over 1,000-fold selectivity for NaV1.7. Additionally, this conjugate demonstrates robust analgesic effects in mouse pain models. Our study introduces an approach to developing effective antibodies against NaV1.7, thereby initiating a promising direction for the advancement of pain therapeutics.
Collapse
Affiliation(s)
- Yaning Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; Peking University-Tsinghua University-National Institute Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchao Ding
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ziyan Zeng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Rui Zhu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Peiyuan Zheng
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Shilong Fan
- The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Qingjuan Cao
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Hang Chen
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Weishuai Ren
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Mengling Wu
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Luyao Wang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Juanjuan Du
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Huang J, Pan X, Yan N. Structural biology and molecular pharmacology of voltage-gated ion channels. Nat Rev Mol Cell Biol 2024; 25:904-925. [PMID: 39103479 DOI: 10.1038/s41580-024-00763-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 08/07/2024]
Abstract
Voltage-gated ion channels (VGICs), including those for Na+, Ca2+ and K+, selectively permeate ions across the cell membrane in response to changes in membrane potential, thus participating in physiological processes involving electrical signalling, such as neurotransmission, muscle contraction and hormone secretion. Aberrant function or dysregulation of VGICs is associated with a diversity of neurological, psychiatric, cardiovascular and muscular disorders, and approximately 10% of FDA-approved drugs directly target VGICs. Understanding the structure-function relationship of VGICs is crucial for our comprehension of their working mechanisms and role in diseases. In this Review, we discuss how advances in single-particle cryo-electron microscopy have afforded unprecedented structural insights into VGICs, especially on their interactions with clinical and investigational drugs. We present a comprehensive overview of the recent advances in the structural biology of VGICs, with a focus on how prototypical drugs and toxins modulate VGIC activities. We explore how these structures elucidate the molecular basis for drug actions, reveal novel pharmacological sites, and provide critical clues to future drug discovery.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiaojing Pan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| | - Nieng Yan
- Institute of Bio-Architecture and Bio-Interactions (IBABI), Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
8
|
Li M, Jin Y, Wu J, Zhao M, Yu K, Yu H. Arbidol, an antiviral drug, identified as a sodium channel blocker with anticonvulsant activity. Br J Pharmacol 2024; 181:4311-4327. [PMID: 38982721 DOI: 10.1111/bph.16496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yuchen Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Miao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kexin Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
9
|
Wang SC, Zhou X, Li YX, Zhang CY, Zhang ZY, Xiong YS, Lu G, Dong J, Weng J. Enabling Modular Click Chemistry Library through Sequential Ligations of Carboxylic Acids and Amines. Angew Chem Int Ed Engl 2024; 63:e202410699. [PMID: 38943043 DOI: 10.1002/anie.202410699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
High-throughput synthesis and screening of chemical libraries play pivotal roles in drug discovery. Click chemistry has emerged as a powerful strategy for constructing highly modular chemical libraries. However, the development of new click reactions and unlocking new clickable building blocks remain exceedingly challenging. Herein, we describe a double-click strategy that enables the sequential ligations of widely available carboxylic acids and amines with fluorosulfuryl isocyanate (FSO2NCO) via a modular amidation/SuFEx (sulfur-fluoride exchange) process. This method provides facile access to chemical libraries of N-fluorosulfonyl amides (RCONHSO2F) and N-acylsulfamides (RCONHSO2NR'R'') in near-quantitative yields under simple and practical conditions. The robustness and efficiency of this double click strategy is showcased by the facile construction of chemical libraries in 96-well microtiter plates from a large number of carboxylic acids and amines. Preliminary biological activity screening reveals that some compounds exhibit high antimicrobial activities against Gram-positive bacterium S. aureus and drug-resistant MRSA (MIC up to 6.25 μg ⋅ mL-1). These results provide compelling evidence for the potential application of modular click chemistry library as an enabling technology in high-throughput medicinal chemistry.
Collapse
Affiliation(s)
- Sheng-Cai Wang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Xiang Zhou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Ying-Xian Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Chun-Yan Zhang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Zi-Yan Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Yan-Shi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Gui Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiajia Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiang Weng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| |
Collapse
|
10
|
Johnson JP, Focken T, Karimi Tari P, Dube C, Goodchild SJ, Andrez JC, Bankar G, Burford K, Chang E, Chowdhury S, Christabel J, Dean R, de Boer G, Dehnhardt C, Gong W, Grimwood M, Hussainkhel A, Jia Q, Khakh K, Lee S, Li J, Lin S, Lindgren A, Lofstrand V, Mezeyova J, Nelkenbrecher K, Shuart NG, Sojo L, Sun S, Waldbrook M, Wesolowski S, Wilson M, Xie Z, Zenova A, Zhang W, Scott FL, Cutts AJ, Sherrington RP, Winquist R, Cohen CJ, Empfield JR. The contribution of Na V1.6 to the efficacy of voltage-gated sodium channel inhibitors in wild type and Na V1.6 gain-of-function (GOF) mouse seizure control. Br J Pharmacol 2024; 181:3993-4011. [PMID: 38922847 DOI: 10.1111/bph.16481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Inhibitors of voltage-gated sodium channels (NaVs) are important anti-epileptic drugs, but the contribution of specific channel isoforms is unknown since available inhibitors are non-selective. We aimed to create novel, isoform selective inhibitors of Nav channels as a means of informing the development of improved antiseizure drugs. EXPERIMENTAL APPROACH We created a series of compounds with diverse selectivity profiles enabling block of NaV1.6 alone or together with NaV1.2. These novel NaV inhibitors were evaluated for their ability to inhibit electrically evoked seizures in mice with a heterozygous gain-of-function mutation (N1768D/+) in Scn8a (encoding NaV1.6) and in wild-type mice. KEY RESULTS Pharmacologic inhibition of NaV1.6 in Scn8aN1768D/+ mice prevented seizures evoked by a 6-Hz shock. Inhibitors were also effective in a direct current maximal electroshock seizure assay in wild-type mice. NaV1.6 inhibition correlated with efficacy in both models, even without inhibition of other CNS NaV isoforms. CONCLUSIONS AND IMPLICATIONS Our data suggest NaV1.6 inhibition is a driver of efficacy for NaV inhibitor anti-seizure medicines. Sparing the NaV1.1 channels of inhibitory interneurons did not compromise efficacy. Selective NaV1.6 inhibitors may provide targeted therapies for human Scn8a developmental and epileptic encephalopathies and improved treatments for idiopathic epilepsies.
Collapse
Affiliation(s)
- James P Johnson
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Thilo Focken
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Parisa Karimi Tari
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Celine Dube
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Samuel J Goodchild
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Girish Bankar
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kristen Burford
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Elaine Chang
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sultan Chowdhury
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jessica Christabel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Richard Dean
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Gina de Boer
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Christoph Dehnhardt
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Gong
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Grimwood
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Angela Hussainkhel
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Qi Jia
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Kuldip Khakh
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Stephanie Lee
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Jenny Li
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Sophia Lin
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Andrea Lindgren
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Verner Lofstrand
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Janette Mezeyova
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Karen Nelkenbrecher
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Noah Gregory Shuart
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Luis Sojo
- Department of Compound Properties, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Shaoyi Sun
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Matthew Waldbrook
- Department of In Vivo Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Steven Wesolowski
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Michael Wilson
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Zhiwei Xie
- Department of In Vitro Biology, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Alla Zenova
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Wei Zhang
- Department of Chemistry, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | | | - Alison J Cutts
- Scientific Affairs, Xenon Pharmaceuticals, Inc, Burnaby, British Columbia, Canada
| | - Robin P Sherrington
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Raymond Winquist
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - Charles J Cohen
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| | - James R Empfield
- Executive Team, Xenon Pharmaceuticals Inc, Burnaby, British Columbia, Canada
| |
Collapse
|
11
|
Elhanafy E, Ahangar AA, Roth R, Gamal El-Din TM, Bankston JR, Li J. ELUCIDATING THE DIFFERENTIAL IMPACTS OF EQUIVALENT GATING-CHARGE MUTATIONS IN VOLTAGE-GATED SODIUM CHANNELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612021. [PMID: 39314455 PMCID: PMC11419121 DOI: 10.1101/2024.09.09.612021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Voltage-gated sodium (Nav) channels are pivotal for cellular signaling and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function (GoF), loss-of-function (LoF) effects, or both. However, the mechanism behind this functional divergence of mutations at equivalent positions remains elusive. Through hotspot analysis, we identified three gating charges (R1, R2, and R3) as major mutational hotspots in VSDs. The same amino-acid substitutions at equivalent gating-charge positions in VSDI and VSDII of the cardiac sodium channel Nav1.5 show differential gating-property impacts in electrophysiology measurements. We conducted 120 μs molecular dynamics (MD) simulations on wild-type and six mutants to elucidate the structural basis of their differential impacts. Our μs-scale MD simulations with applied external electric fields captured VSD state transitions and revealed the differential structural dynamics between equivalent R-to-Q mutants. Notably, we observed transient leaky conformations in some mutants during structural transitions, offering a detailed structural explanation for gating-pore currents. Our salt-bridge network analysis uncovered VSD-specific and state-dependent interactions among gating charges, countercharges, and lipids. This detailed analysis elucidated how mutations disrupt critical electrostatic interactions, thereby altering VSD permeability and modulating gating properties. By demonstrating the crucial importance of considering the specific structural context of each mutation, our study represents a significant leap forward in understanding structure-function relationships in Nav channels. Our work establishes a robust framework for future investigations into the molecular basis of ion channel-related disorders.
Collapse
Affiliation(s)
- Eslam Elhanafy
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Amin Akbari Ahangar
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| | - Rebecca Roth
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | | - John R Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jing Li
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, Oxford, MS
| |
Collapse
|
12
|
Zhou G, Rusnac DV, Park H, Canzani D, Nguyen HM, Stewart L, Bush MF, Nguyen PT, Wulff H, Yarov-Yarovoy V, Zheng N, DiMaio F. An artificial intelligence accelerated virtual screening platform for drug discovery. Nat Commun 2024; 15:7761. [PMID: 39237523 PMCID: PMC11377542 DOI: 10.1038/s41467-024-52061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024] Open
Abstract
Structure-based virtual screening is a key tool in early drug discovery, with growing interest in the screening of multi-billion chemical compound libraries. However, the success of virtual screening crucially depends on the accuracy of the binding pose and binding affinity predicted by computational docking. Here we develop a highly accurate structure-based virtual screen method, RosettaVS, for predicting docking poses and binding affinities. Our approach outperforms other state-of-the-art methods on a wide range of benchmarks, partially due to our ability to model receptor flexibility. We incorporate this into a new open-source artificial intelligence accelerated virtual screening platform for drug discovery. Using this platform, we screen multi-billion compound libraries against two unrelated targets, a ubiquitin ligase target KLHDC2 and the human voltage-gated sodium channel NaV1.7. For both targets, we discover hit compounds, including seven hits (14% hit rate) to KLHDC2 and four hits (44% hit rate) to NaV1.7, all with single digit micromolar binding affinities. Screening in both cases is completed in less than seven days. Finally, a high resolution X-ray crystallographic structure validates the predicted docking pose for the KLHDC2 ligand complex, demonstrating the effectiveness of our method in lead discovery.
Collapse
Affiliation(s)
- Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Domnita-Valeria Rusnac
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Hahnbeom Park
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
- KIST-SKKU Brain Research Center, SKKU Institute for Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Daniele Canzani
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Hai Minh Nguyen
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Phuong Tran Nguyen
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California Davis, Sacramento, CA, USA
| | - Ning Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA, USA.
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Zhou R, Fu W, Vasylyev D, Waxman SG, Liu CJ. Ion channels in osteoarthritis: emerging roles and potential targets. Nat Rev Rheumatol 2024; 20:545-564. [PMID: 39122910 DOI: 10.1038/s41584-024-01146-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/12/2024]
Abstract
Osteoarthritis (OA) is a highly prevalent joint disease that causes substantial disability, yet effective approaches to disease prevention or to the delay of OA progression are lacking. Emerging evidence has pinpointed ion channels as pivotal mediators in OA pathogenesis and as promising targets for disease-modifying treatments. Preclinical studies have assessed the potential of a variety of ion channel modulators to modify disease pathways involved in cartilage degeneration, synovial inflammation, bone hyperplasia and pain, and to provide symptomatic relief in models of OA. Some of these modulators are currently being evaluated in clinical trials. This review explores the structures and functions of ion channels, including transient receptor potential channels, Piezo channels, voltage-gated sodium channels, voltage-dependent calcium channels, potassium channels, acid-sensing ion channels, chloride channels and the ATP-dependent P2XR channels in the osteoarthritic joint. The discussion spans channel-targeting drug discovery and potential clinical applications, emphasizing opportunities for further research, and underscoring the growing clinical impact of ion channel biology in OA.
Collapse
Affiliation(s)
- Renpeng Zhou
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Wenyu Fu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA
| | - Dmytro Vasylyev
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
14
|
Su M, Ou-Yang XS, Zhou P, Dong LY, Shao LM, Wang KW, Liu YN. Inhibition of TTX-S Na + currents by a novel blocker QLS-278 for antinociception. J Pharmacol Exp Ther 2024; 392:JPET-AR-2024-002273. [PMID: 39168650 DOI: 10.1124/jpet.124.002273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/15/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Genetic loss-of-function mutations of Nav1.7 channel, abundantly expressed in peripheral nociceptive neurons, cause congenital insensitivity to pain (CIP) in humans, indicating that selective inhibition of the channel may lead to potential therapy of pain disorders. In this study, we investigated a novel compound, 5-chloro-N-(cyclopropylsulfonyl)-2-fluoro-4-(2-(8-(furan-2-ylmethyl)-8-azaspiro [4.5] decan-2-yl) ethoxy) benzamide (QLS-278) that inhibits Nav1.7 channel and exhibits anti-nociceptive activity. Compound QLS-278 exhibits inactivation- and concentration-dependent inhibition of macroscopic currents of Nav1.7 channels stably expressed in HEK293 cells with an IC50 of 1.2 {plus minus} 0.2 μM. QLS-278 causes a hyperpolarization shift of the channel inactivation and delays recovery from inactivation, without an obvious effect on voltage-dependent activation. In mouse DRG neurons, QLS-278 suppresses native TTX-sensitive Nav currents and also reduces neuronal firing. Moreover, QLS-278 dose-dependently relieves neuropathic pain induced by spared nerve injury and inflammatory pain induced by formalin without significant alteration of spontaneous locomotor activity in mice. Altogether, our identification of the novel compound QLS-278 may hold developmental potential for the treatment of chronic pain. Significance Statement QLS-278, a novel voltage-gated sodium Nav1.7 channel blocker, inhibits native TTX-S Na+ current and reduces action potential firings in DRG sensory neurons. QLS-278 also exhibits antinociceptive activity in mouse models of pain, thus demonstrating potential for the development of a treatment for chronic pain.
Collapse
Affiliation(s)
- Min Su
- Qingdao University Medical College, China
| | | | - Ping Zhou
- Qingdao University Medical College, China
| | | | | | - Ke-Wei Wang
- Pharmacology, Qingdao University Medical College, China
| | - Ya-Ni Liu
- Pharmacology, Qingdao University Medical College, China
| |
Collapse
|
15
|
Chi G, Jaślan D, Kudrina V, Böck J, Li H, Pike ACW, Rautenberg S, Krogsaeter E, Bohstedt T, Wang D, McKinley G, Fernandez-Cid A, Mukhopadhyay SMM, Burgess-Brown NA, Keller M, Bracher F, Grimm C, Dürr KL. Structural basis for inhibition of the lysosomal two-pore channel TPC2 by a small molecule antagonist. Structure 2024; 32:1137-1149.e4. [PMID: 38815576 PMCID: PMC11511679 DOI: 10.1016/j.str.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/22/2023] [Accepted: 05/03/2024] [Indexed: 06/01/2024]
Abstract
Two pore channels are lysosomal cation channels with crucial roles in tumor angiogenesis and viral release from endosomes. Inhibition of the two-pore channel 2 (TPC2) has emerged as potential therapeutic strategy for the treatment of cancers and viral infections, including Ebola and COVID-19. Here, we demonstrate that antagonist SG-094, a synthetic analog of the Chinese alkaloid medicine tetrandrine with increased potency and reduced toxicity, induces asymmetrical structural changes leading to a single binding pocket at only one intersubunit interface within the asymmetrical dimer. Supported by functional characterization of mutants by Ca2+ imaging and patch clamp experiments, we identify key residues in S1 and S4 involved in compound binding to the voltage sensing domain II. SG-094 arrests IIS4 in a downward shifted state which prevents pore opening via the IIS4/S5 linker, hence resembling gating modifiers of canonical VGICs. These findings may guide the rational development of new therapeutics antagonizing TPC2 activity.
Collapse
Affiliation(s)
- Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK.
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ludwig-Maximilians-Universität, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Veronika Kudrina
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ludwig-Maximilians-Universität, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ludwig-Maximilians-Universität, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Huanyu Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Ashley C W Pike
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Susanne Rautenberg
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Butenandtstrasse 7, 81377 Munich, Germany
| | - Einar Krogsaeter
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ludwig-Maximilians-Universität, Nussbaumstrasse 26, 80336 Munich, Germany
| | - Tina Bohstedt
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Dong Wang
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Gavin McKinley
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Alejandra Fernandez-Cid
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Shubhashish M M Mukhopadhyay
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Nicola A Burgess-Brown
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| | - Marco Keller
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Butenandtstrasse 7, 81377 Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität, Butenandtstrasse 7, 81377 Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Ludwig-Maximilians-Universität, Nussbaumstrasse 26, 80336 Munich, Germany; Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Munich/Frankfurt, Germany
| | - Katharina L Dürr
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK; Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Nuffield Department of Medicine Research Building, Oxford OX3 7FZ, UK
| |
Collapse
|
16
|
Pukkanasut P, Jaskula-Sztul R, Gomora JC, Velu SE. Therapeutic targeting of voltage-gated sodium channel Na V1.7 for cancer metastasis. Front Pharmacol 2024; 15:1416705. [PMID: 39045054 PMCID: PMC11263763 DOI: 10.3389/fphar.2024.1416705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
This review focuses on the expression and function of voltage-gated sodium channel subtype NaV1.7 in various cancers and explores its impact on the metastasis driving cell functions such as proliferation, migration, and invasiveness. An overview of its structural characteristics, drug binding sites, inhibitors and their likely mechanisms of action are presented. Despite the lack of clarity on the precise mechanism by which NaV1.7 contributes to cancer progression and metastasis; many studies have suggested a connection between NaV1.7 and proteins involved in multiple signaling pathways such as PKA and EGF/EGFR-ERK1/2. Moreover, the functional activity of NaV1.7 appears to elevate the expression levels of MACC1 and NHE-1, which are controlled by p38 MAPK activity, HGF/c-MET signaling and c-Jun activity. This cascade potentially enhances the secretion of extracellular matrix proteases, such as MMPs which play critical roles in cell migration and invasion activities. Furthermore, the NaV1.7 activity may indirectly upregulate Rho GTPases Rac activity, which is critical for cytoskeleton reorganization, cell adhesion, and actin polymerization. The relationship between NaV1.7 and cancer progression has prompted researchers to investigate the therapeutic potential of targeting NaV1.7 using inhibitors. The positive outcome of such studies resulted in the discovery of several inhibitors with the ability to reduce cancer cell migration, invasion, and tumor growth underscoring the significance of NaV1.7 as a promising pharmacological target for attenuating cancer cell proliferation and metastasis. The research findings summarized in this review suggest that the regulation of NaV1.7 expression and function by small molecules and/or by genetic engineering is a viable approach to discover novel therapeutics for the prevention and treatment of metastasis of cancers with elevated NaV1.7 expression.
Collapse
Affiliation(s)
- Piyasuda Pukkanasut
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Renata Jaskula-Sztul
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sadanandan E. Velu
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
17
|
Rönnelid O, Elinder F. Carboxyl-group compounds activate voltage-gated potassium channels via a distinct mechanism. J Gen Physiol 2024; 156:e202313516. [PMID: 38832889 PMCID: PMC11148469 DOI: 10.1085/jgp.202313516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
Voltage-gated ion channels are responsible for the electrical excitability of neurons and cardiomyocytes. Thus, they are obvious targets for pharmaceuticals aimed to modulate excitability. Compounds activating voltage-gated potassium (KV) channels are expected to reduce excitability. To search for new KV-channel activators, we performed a high-throughput screen of 10,000 compounds on a specially designed Shaker KV channel. Here, we report on a large family of channel-activating compounds with a carboxyl (COOH) group as the common motif. The most potent COOH activators are lipophilic (4 < LogP <7) and are suggested to bind at the interface between the lipid bilayer and the channel's positively charged voltage sensor. The negatively charged form of the COOH-group compounds is suggested to open the channel by electrostatically pulling the voltage sensor to an activated state. Several of the COOH-group compounds also activate the therapeutically important KV7.2/7.3 channel and can thus potentially be developed into antiseizure drugs. The COOH-group compounds identified in this study are suggested to act via the same site and mechanism of action as previously studied COOH-group compounds, such as polyunsaturated fatty acids and resin acids, but distinct from sites for several other types of potassium channel-activating compounds.
Collapse
Affiliation(s)
- Olle Rönnelid
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Elinder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Science for Life Laboratory, Linköping University, Linköping, Sweden
| |
Collapse
|
18
|
Shu J, Wang Y, Guo W, Liu T, Cai S, Shi T, Hu W. Carbenoid-involved reactions integrated with scaffold-based screening generates a Nav1.7 inhibitor. Commun Chem 2024; 7:135. [PMID: 38866907 PMCID: PMC11169417 DOI: 10.1038/s42004-024-01213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The discovery of selective Nav1.7 inhibitors is a promising approach for developing anti-nociceptive drugs. In this study, we present a novel oxindole-based readily accessible library (OREAL), which is characterized by readily accessibility, unique chemical space, ideal drug-like properties, and structural diversity. We used a scaffold-based approach to screen the OREAL and discovered compound C4 as a potent Nav1.7 inhibitor. The bioactivity characterization of C4 reveals that it is a selective Nav1.7 inhibitor and effectively reverses Paclitaxel-induced neuropathic pain (PINP) in rodent models. Preliminary toxicology study shows C4 is negative to hERG. The consistent results of molecular docking and molecular simulations further support the reasonability of the in-silico screening and show the insight of the binding mode of C4. Our discovery of C4 paves the way for pushing the Nav1.7-based anti-nociceptive drugs forward to the clinic.
Collapse
Affiliation(s)
- Jirong Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuwei Wang
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Weijie Guo
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Tao Liu
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Song Cai
- Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Taoda Shi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Wenhao Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
19
|
Harris BJ, Nguyen PT, Zhou G, Wulff H, DiMaio F, Yarov-Yarovoy V. Toward high-resolution modeling of small molecule-ion channel interactions. Front Pharmacol 2024; 15:1411428. [PMID: 38919257 PMCID: PMC11196768 DOI: 10.3389/fphar.2024.1411428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Ion channels are critical drug targets for a range of pathologies, such as epilepsy, pain, itch, autoimmunity, and cardiac arrhythmias. To develop effective and safe therapeutics, it is necessary to design small molecules with high potency and selectivity for specific ion channel subtypes. There has been increasing implementation of structure-guided drug design for the development of small molecules targeting ion channels. We evaluated the performance of two RosettaLigand docking methods, RosettaLigand and GALigandDock, on the structures of known ligand-cation channel complexes. Ligands were docked to voltage-gated sodium (NaV), voltage-gated calcium (CaV), and transient receptor potential vanilloid (TRPV) channel families. For each test case, RosettaLigand and GALigandDock methods frequently sampled a ligand-binding pose within a root mean square deviation (RMSD) of 1-2 Å relative to the experimental ligand coordinates. However, RosettaLigand and GALigandDock scoring functions cannot consistently identify experimental ligand coordinates as top-scoring models. Our study reveals that the proper scoring criteria for RosettaLigand and GALigandDock modeling of ligand-ion channel complexes should be assessed on a case-by-case basis using sufficient ligand and receptor interface sampling, knowledge about state-specific interactions of the ion channel, and inherent receptor site flexibility that could influence ligand binding.
Collapse
Affiliation(s)
- Brandon J. Harris
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
| | - Phuong T. Nguyen
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Guangfeng Zhou
- Department of Biochemistry, University of Washington, Seattle, WA, United States
- Institute for Protein Design, University of Washington, Seattle, WA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
20
|
Liang Q, Chi G, Cirqueira L, Zhi L, Marasco A, Pilati N, Gunthorpe MJ, Alvaro G, Large CH, Sauer DB, Treptow W, Covarrubias M. The binding and mechanism of a positive allosteric modulator of Kv3 channels. Nat Commun 2024; 15:2533. [PMID: 38514618 PMCID: PMC10957983 DOI: 10.1038/s41467-024-46813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Small-molecule modulators of diverse voltage-gated K+ (Kv) channels may help treat a wide range of neurological disorders. However, developing effective modulators requires understanding of their mechanism of action. We apply an orthogonal approach to elucidate the mechanism of action of an imidazolidinedione derivative (AUT5), a highly selective positive allosteric modulator of Kv3.1 and Kv3.2 channels. AUT5 modulation involves positive cooperativity and preferential stabilization of the open state. The cryo-EM structure of the Kv3.1/AUT5 complex at a resolution of 2.5 Å reveals four equivalent AUT5 binding sites at the extracellular inter-subunit interface between the voltage-sensing and pore domains of the channel's tetrameric assembly. Furthermore, we show that the unique extracellular turret regions of Kv3.1 and Kv3.2 essentially govern the selective positive modulation by AUT5. High-resolution apo and bound structures of Kv3.1 demonstrate how AUT5 binding promotes turret rearrangements and interactions with the voltage-sensing domain to favor the open conformation.
Collapse
Affiliation(s)
- Qiansheng Liang
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gamma Chi
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Leonardo Cirqueira
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Lianteng Zhi
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Agostino Marasco
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Nadia Pilati
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Martin J Gunthorpe
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - Giuseppe Alvaro
- Autifony Srl, Istituto di Ricerca Pediatrica Citta' della Speranza, Via Corso Stati Uniti, 4f, 35127, Padua, Italy
| | - Charles H Large
- Autifony Therapeutics, Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, SG1 2FX, UK
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Werner Treptow
- Laboratorio de Biologia Teorica e Computacional, University of Brasilia, Brasilia, Brazil
| | - Manuel Covarrubias
- Department of Neuroscience,, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Jack and Vicki Farber Institute for Neuroscience and the Jefferson Synaptic Biology Center, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
21
|
Goodchild SJ, Shuart NG, Williams AD, Ye W, Parrish RR, Soriano M, Thouta S, Mezeyova J, Waldbrook M, Dean R, Focken T, Ghovanloo MR, Ruben PC, Scott F, Cohen CJ, Empfield J, Johnson JP. Molecular Pharmacology of Selective Na V1.6 and Dual Na V1.6/Na V1.2 Channel Inhibitors that Suppress Excitatory Neuronal Activity Ex Vivo. ACS Chem Neurosci 2024; 15:1169-1184. [PMID: 38359277 PMCID: PMC10958515 DOI: 10.1021/acschemneuro.3c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Voltage-gated sodium channel (NaV) inhibitors are used to treat neurological disorders of hyperexcitability such as epilepsy. These drugs act by attenuating neuronal action potential firing to reduce excitability in the brain. However, all currently available NaV-targeting antiseizure medications nonselectively inhibit the brain channels NaV1.1, NaV1.2, and NaV1.6, which potentially limits the efficacy and therapeutic safety margins of these drugs. Here, we report on XPC-7724 and XPC-5462, which represent a new class of small molecule NaV-targeting compounds. These compounds specifically target inhibition of the NaV1.6 and NaV1.2 channels, which are abundantly expressed in excitatory pyramidal neurons. They have a > 100-fold molecular selectivity against NaV1.1 channels, which are predominantly expressed in inhibitory neurons. Sparing NaV1.1 preserves the inhibitory activity in the brain. These compounds bind to and stabilize the inactivated state of the channels thereby reducing the activity of excitatory neurons. They have higher potency, with longer residency times and slower off-rates, than the clinically used antiseizure medications carbamazepine and phenytoin. The neuronal selectivity of these compounds is demonstrated in brain slices by inhibition of firing in cortical excitatory pyramidal neurons, without impacting fast spiking inhibitory interneurons. XPC-5462 also suppresses epileptiform activity in an ex vivo brain slice seizure model, whereas XPC-7224 does not, suggesting a possible requirement of Nav1.2 inhibition in 0-Mg2+- or 4-AP-induced brain slice seizure models. The profiles of these compounds will facilitate pharmacological dissection of the physiological roles of NaV1.2 and NaV1.6 in neurons and help define the role of specific channels in disease states. This unique selectivity profile provides a new approach to potentially treat disorders of neuronal hyperexcitability by selectively downregulating excitatory circuits.
Collapse
Affiliation(s)
- Samuel J. Goodchild
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Noah Gregory Shuart
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Aaron D. Williams
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Wenlei Ye
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - R. Ryley Parrish
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Maegan Soriano
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Samrat Thouta
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Janette Mezeyova
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Matthew Waldbrook
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Richard Dean
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Thilo Focken
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - Mohammad-Reza Ghovanloo
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department
of Neurology, Yale University, New Haven, Connecticut 06519, United States
| | - Peter C. Ruben
- Department
of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Fiona Scott
- Neurocrine
Biosciences, San Diego, California 92130, United States
| | - Charles J. Cohen
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - James Empfield
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| | - JP Johnson
- Department
of Cellular and Molecular Biology, Xenon
Pharmaceuticals, Burnaby, BC V5G 4W8, Canada
| |
Collapse
|
22
|
Yang C, Li Q, Hu F, Liu Y, Wang K. Inhibition of Cardiac Kv4.3/KChIP2 Channels by Sulfonylurea Drug Gliquidone. Mol Pharmacol 2024; 105:224-232. [PMID: 38164605 DOI: 10.1124/molpharm.123.000787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The Kv4.3 channel features fast N-type inactivation and also undergoes a slow C-type inactivation. The gain-of-function mutations of Kv4.3 channels cause an inherited disease called Brugada syndrome (BrS), characterized by a shortened duration of cardiac action potential repolarization and ventricular arrhythmia. The sulfonylurea drug gliquidone, an ATP-dependent K+ channel antagonist, is widely used for the treatment of type 2 diabetes. Here, we report a novel role of gliquidone in inhibiting Kv4.3 and Kv4.3/KChIP2 channels that encode the cardiac transient outward K+ currents responsible for the initial phase of action potential repolarization. Gliquidone results in concentration-dependent inhibition of both Kv4.3 and Kv4.3/KChIP2 fast or steady-state inactivation currents with an IC50 of approximately 8 μM. Gliquidone also accelerates Kv4.3 channel inactivation and shifts the steady-state activation to a more depolarizing direction. Site-directed mutagenesis and molecular docking reveal that the residues S301 in the S4 and Y312A and L321A in the S4-S5 linker are critical for gliquidone-mediated inhibition of Kv4.3 currents, as mutating those residues to alanine significantly reduces the potency for gliquidone-mediated inhibition. Furthermore, gliquidone also inhibits a gain-of-function Kv4.3 V392I mutant identified in BrS patients in voltage- and concentration-dependent manner. Taken together, our findings demonstrate that gliquidone inhibits Kv4.3 channels by acting on the residues in the S4 and the S4-S5 linker. Therefore, gliquidone may hold repurposing potential for the therapy of Brugada syndrome. SIGNIFICANCE STATEMENT: We describe a novel role of gliquidone in inhibiting cardiac Kv4.3 currents and the channel gain-of-function mutation identified from patients with Brugada syndrome, suggesting its repurposing potential for therapy for the heart disease.
Collapse
Affiliation(s)
- Chenxia Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Qinqin Li
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Fang Hu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao, China (C.Y., Q.L., F.H., Y.L., K.W.) and Institute of Innovative Drugs, Qingdao University, Qingdao, China (Y.L., K.W.)
| |
Collapse
|
23
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
24
|
Ngo K, Lopez Mateos D, Han Y, Rouen KC, Ahn SH, Wulff H, Clancy CE, Yarov-Yarovoy V, Vorobyov I. Elucidating molecular mechanisms of protoxin-II state-specific binding to the human NaV1.7 channel. J Gen Physiol 2024; 156:e202313368. [PMID: 38127314 PMCID: PMC10737443 DOI: 10.1085/jgp.202313368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/08/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Human voltage-gated sodium (hNaV) channels are responsible for initiating and propagating action potentials in excitable cells, and mutations have been associated with numerous cardiac and neurological disorders. hNaV1.7 channels are expressed in peripheral neurons and are promising targets for pain therapy. The tarantula venom peptide protoxin-II (PTx2) has high selectivity for hNaV1.7 and is a valuable scaffold for designing novel therapeutics to treat pain. Here, we used computational modeling to study the molecular mechanisms of the state-dependent binding of PTx2 to hNaV1.7 voltage-sensing domains (VSDs). Using Rosetta structural modeling methods, we constructed atomistic models of the hNaV1.7 VSD II and IV in the activated and deactivated states with docked PTx2. We then performed microsecond-long all-atom molecular dynamics (MD) simulations of the systems in hydrated lipid bilayers. Our simulations revealed that PTx2 binds most favorably to the deactivated VSD II and activated VSD IV. These state-specific interactions are mediated primarily by PTx2's residues R22, K26, K27, K28, and W30 with VSD and the surrounding membrane lipids. Our work revealed important protein-protein and protein-lipid contacts that contribute to high-affinity state-dependent toxin interaction with the channel. The workflow presented will prove useful for designing novel peptides with improved selectivity and potency for more effective and safe treatment of pain.
Collapse
Affiliation(s)
- Khoa Ngo
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Diego Lopez Mateos
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Yanxiao Han
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Kyle C. Rouen
- Biophysics Graduate Group, University of California, Davis, Davis, CA, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California, Davis, Davis, CA, USA
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- Center for Precision Medicine and Data Science, University of California, Davis, Davis, CA, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, USA
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, USA
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
25
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Wright K, Jiang H, Xia W, Murphy MB, Boronina TN, Nwafor JN, Kim H, Iheanacho AM, Azurmendi PA, Cole RN, Cole PA, Gabelli SB. The C-Terminal of Na V1.7 Is Ubiquitinated by NEDD4L. ACS BIO & MED CHEM AU 2023; 3:516-527. [PMID: 38144259 PMCID: PMC10739247 DOI: 10.1021/acsbiomedchemau.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/10/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
NaV1.7, the neuronal voltage-gated sodium channel isoform, plays an important role in the human body's ability to feel pain. Mutations within NaV1.7 have been linked to pain-related syndromes, such as insensitivity to pain. To date, the regulation and internalization mechanisms of the NaV1.7 channel are not well known at a biochemical level. In this study, we perform biochemical and biophysical analyses that establish that the HECT-type E3 ligase, NEDD4L, ubiquitinates the cytoplasmic C-terminal (CT) region of NaV1.7. Through in vitro ubiquitination and mass spectrometry experiments, we identify, for the first time, the lysine residues of NaV1.7 within the CT region that get ubiquitinated. Furthermore, binding studies with an NEDD4L E3 ligase modulator (ubiquitin variant) highlight the dynamic partnership between NEDD4L and NaV1.7. These investigations provide a framework for understanding how NEDD4L-dependent regulation of the channel can influence the NaV1.7 function.
Collapse
Affiliation(s)
- Katharine
M. Wright
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Hanjie Jiang
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Wendy Xia
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | | | - Tatiana N. Boronina
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Justin N. Nwafor
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - HyoJeon Kim
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Akunna M. Iheanacho
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Physiology, The Johns Hopkins School
of Medicine, Baltimore, Maryland 21205, United States
| | - P. Aitana Azurmendi
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Robert N. Cole
- Mass
Spectrometry
and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Philip A. Cole
- Division
of Genetics, Department of Medicine, Brigham
and Women’s Hospital, Boston, Massachusetts 02115, United States
- Department
of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sandra B. Gabelli
- Department
of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Medicine, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21205, United States
- Department
of Oncology, The Johns Hopkins University
School of Medicine, Baltimore, Maryland 21287, United States
| |
Collapse
|
27
|
Wisedchaisri G, Gamal El-Din TM, Powell NM, Zheng N, Catterall WA. Structural basis for severe pain caused by mutations in the voltage sensors of sodium channel NaV1.7. J Gen Physiol 2023; 155:e202313450. [PMID: 37903281 PMCID: PMC10616507 DOI: 10.1085/jgp.202313450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023] Open
Abstract
Voltage-gated sodium channels in peripheral nerves conduct nociceptive signals from nerve endings to the spinal cord. Mutations in voltage-gated sodium channel NaV1.7 are responsible for a number of severe inherited pain syndromes, including inherited erythromelalgia (IEM). Here, we describe the negative shifts in the voltage dependence of activation in the bacterial sodium channel NaVAb as a result of the incorporation of four different IEM mutations in the voltage sensor, which recapitulate the gain-of-function effects observed with these mutations in human NaV1.7. Crystal structures of NaVAb with these IEM mutations revealed that a mutation in the S1 segment of the voltage sensor facilitated the outward movement of S4 gating charges by widening the pathway for gating charge translocation. In contrast, mutations in the S4 segments modified hydrophobic interactions with surrounding amino acid side chains or membrane phospholipids that would enhance the outward movement of the gating charges. These results provide key structural insights into the mechanisms by which these IEM mutations in the voltage sensors can facilitate outward movements of the gating charges in the S4 segment and cause hyperexcitability and severe pain in IEM. Our work gives new insights into IEM pathogenesis at the near-atomic level and provides a molecular model for mutation-specific therapy of this debilitating disease.
Collapse
Affiliation(s)
| | | | - Natasha M. Powell
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
28
|
Docken SS, Clancy CE, Lewis TJ. Rate-dependent effects of state-specific sodium channel blockers in cardiac tissue: Insights from idealized models. J Theor Biol 2023; 573:111595. [PMID: 37562674 DOI: 10.1016/j.jtbi.2023.111595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/08/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
A common side effect of pharmaceutical drugs is an increased propensity for cardiac arrhythmias. Many drugs bind to cardiac ion-channels in a state-specific manner, which alters the ionic conductances in complicated ways, making it difficult to identify the mechanisms underlying pro-arrhythmic drug effects. To better understand the fundamental mechanisms underlying the diverse effects of state-dependent sodium (Na+) channel blockers on cellular excitability, we consider two canonical motifs of drug-ion-channel interactions and compare the effects of Na+ channel blockers on the rate-dependence of peak upstroke velocity, conduction velocity, and vulnerable window size. In the literature, both motifs are referred to as "guarded receptor," but here we distinguish between state-specific binding that does not alter channel gating (referred to here as "guarded receptor") and state-specific binding that blocks certain gating transitions ("gate immobilization"). For each drug binding motif, we consider drugs that bind to the inactivated state and drugs that bind to the non-inactivated state of the Na+ channel. Exploiting the idealized nature of the canonical binding motifs, we identify the fundamental mechanisms underlying the effects on excitability of the various binding interactions. Specifically, we derive the voltage-dependence of the drug binding time constants and the equilibrium fractions of channels bound to drug, and we then derive a formula that incorporates these time constants and equilibrium fractions to elucidate the fundamental mechanisms. In the case of charged drug, we find that drugs that bind to inactivated channels exhibit greater rate-dependence than drugs that bind to non-inactivated channels. For neutral drugs, the effects of guarded receptor interactions are rate-independent, and we describe a novel mechanism for reverse rate-dependence resulting from neutral drug binding to non-inactivated channels via the gate immobilization motif.
Collapse
Affiliation(s)
- Steffen S Docken
- Department of Mathematics, University of California Davis, Davis, CA, USA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Timothy J Lewis
- Department of Mathematics, University of California Davis, Davis, CA, USA
| |
Collapse
|
29
|
Deng L, Dourado M, Reese RM, Huang K, Shields SD, Stark KL, Maksymetz J, Lin H, Kaminker JS, Jung M, Foreman O, Tao J, Ngu H, Joseph V, Roose-Girma M, Tam L, Lardell S, Orrhult LS, Karila P, Allard J, Hackos DH. Nav1.7 is essential for nociceptor action potentials in the mouse in a manner independent of endogenous opioids. Neuron 2023; 111:2642-2659.e13. [PMID: 37352856 DOI: 10.1016/j.neuron.2023.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/07/2023] [Accepted: 05/26/2023] [Indexed: 06/25/2023]
Abstract
Loss-of-function mutations in Nav1.7, a voltage-gated sodium channel, cause congenital insensitivity to pain (CIP) in humans, demonstrating that Nav1.7 is essential for the perception of pain. However, the mechanism by which loss of Nav1.7 results in insensitivity to pain is not entirely clear. It has been suggested that loss of Nav1.7 induces overexpression of enkephalin, an endogenous opioid receptor agonist, leading to opioid-dependent analgesia. Using behavioral pharmacology and single-cell RNA-seq analysis, we find that overexpression of enkephalin occurs only in cLTMR neurons, a subclass of sensory neurons involved in low-threshold touch detection, and that this overexpression does not play a role in the analgesia observed following genetic removal of Nav1.7. Furthermore, we demonstrate using laser speckle contrast imaging (LSCI) and in vivo electrophysiology that Nav1.7 function is required for the initiation of C-fiber action potentials (APs), which explains the observed insensitivity to pain following genetic removal or inhibition of Nav1.7.
Collapse
Affiliation(s)
- Lunbin Deng
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Michelle Dourado
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Rebecca M Reese
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kevin Huang
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Shannon D Shields
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Kimberly L Stark
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - James Maksymetz
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Han Lin
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Joshua S Kaminker
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Min Jung
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Oded Foreman
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Janet Tao
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Victory Joseph
- Department of Biomedical Imaging, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA
| | - Meron Roose-Girma
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | | | | | - Paul Karila
- Cellectricon AB, Neongatan 4B, 431 53 Mölndal, Sweden
| | - Julien Allard
- E-Phys, CRBC, 28 place Henri Dunant, 63000 Clermont-Ferrand, France.
| | - David H Hackos
- Department of Neuroscience, Genentech, Inc., 1 DNA Way, South San Francisco, CA, USA.
| |
Collapse
|
30
|
Paruch K, Kaproń B, Łuszczki JJ, Paneth A, Plech T. Effect of Linker Elongation on the VGSC Affinity and Anticonvulsant Activity among 4-Alkyl-5-aryl-1,2,4-triazole-3-thione Derivatives. Molecules 2023; 28:5287. [PMID: 37446948 DOI: 10.3390/molecules28135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The main aim of the current project was to investigate the effect of the linker size in 4-alkyl-5-aryl-1,2,4-triazole-3-thione derivatives, known as a group of antiepileptic drug candidates, on their affinity towards voltage-gated sodium channels (VGSCs). The rationale of the study was based both on the SAR observations and docking simulations of the interactions between the designed ligands and the binding site of human VGSC. HYDE docking scores, which describe hydrogen bonding, desolvation, and hydrophobic effects, obtained for 5-[(3-chlorophenyl)ethyl]-4-butyl/hexyl-1,2,4-triazole-3-thiones, justified their beneficial sodium channel blocking activity. The results of docking simulations were verified using a radioligand binding assay with [3H]batrachotoxin. Unexpectedly, although the investigated triazole-based compounds acted as VGSC ligands, their affinities were lower than those of the respective analogs containing shorter alkyl linkers. Since numerous sodium channel blockers are recognized as antiepileptic agents, the obtained 1,2,4-triazole derivatives were examined for antiepileptic potential using an experimental model of tonic-clonic seizures in mice. Median effective doses (ED50) of the compounds examined in MES test reached 96.6 ± 14.8 mg/kg, while their median toxic doses (TD50), obtained in the rotarod test, were even as high as 710.5 ± 47.4 mg/kg.
Collapse
Affiliation(s)
- Kinga Paruch
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Barbara Kaproń
- Department of Clinical Genetics, Faculty of Medicine, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Faculty of Medical Sciences, Medical University of Lublin, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-059 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
31
|
Zidar N, Tomašič T, Kikelj D, Durcik M, Tytgat J, Peigneur S, Rogers M, Haworth A, Kirby RW. New aryl and acylsulfonamides as state-dependent inhibitors of Na v1.3 voltage-gated sodium channel. Eur J Med Chem 2023; 258:115530. [PMID: 37329714 DOI: 10.1016/j.ejmech.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Voltage-gated sodium channels (Navs) play an essential role in neurotransmission, and their dysfunction is often a cause of various neurological disorders. The Nav1.3 isoform is found in the CNS and upregulated after injury in the periphery, but its role in human physiology has not yet been fully elucidated. Reports suggest that selective Nav1.3 inhibitors could be used as novel therapeutics to treat pain or neurodevelopmental disorders. Few selective inhibitors of this channel are known in the literature. In this work, we report the discovery of a new series of aryl and acylsulfonamides as state-dependent inhibitors of Nav1.3 channels. Using a ligand-based 3D similarity search and subsequent hit optimization, we identified and prepared a series of 47 novel compounds and tested them on Nav1.3, Nav1.5, and a selected subset also on Nav1.7 channels in a QPatch patch-clamp electrophysiology assay. Eight compounds had an IC50 value of less than 1 μM against the Nav1.3 channel inactivated state, with one compound displaying an IC50 value of 20 nM, whereas activity against the inactivated state of the Nav1.5 channel and Nav1.7 channel was approximately 20-fold weaker. None of the compounds showed use-dependent inhibition of the cardiac isoform Nav1.5 at a concentration of 30 μM. Further selectivity testing of the most promising hits was measured using the two-electrode voltage-clamp method against the closed state of the Nav1.1-Nav1.8 channels, and compound 15b displayed small, yet selective, effects against the Nav1.3 channel, with no activity against the other isoforms. Additional selectivity testing of promising hits against the inactivated state of the Nav1.3, Nav1.7, and Nav1.8 channels revealed several compounds with robust and selective activity against the inactivated state of the Nav1.3 channel among the three isoforms tested. Moreover, the compounds were not cytotoxic at a concentration of 50 μM, as demonstrated by the assay in human HepG2 cells (hepatocellular carcinoma cells). The novel state-dependent inhibitors of Nav1.3 discovered in this work provide a valuable tool to better evaluate this channel as a potential drug target.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jan Tytgat
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Peigneur
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Marc Rogers
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Alexander Haworth
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Robert W Kirby
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| |
Collapse
|
32
|
Wu Q, Huang J, Fan X, Wang K, Jin X, Huang G, Li J, Pan X, Yan N. Structural mapping of Na v1.7 antagonists. Nat Commun 2023; 14:3224. [PMID: 37270609 DOI: 10.1038/s41467-023-38942-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Voltage-gated sodium (Nav) channels are targeted by a number of widely used and investigational drugs for the treatment of epilepsy, arrhythmia, pain, and other disorders. Despite recent advances in structural elucidation of Nav channels, the binding mode of most Nav-targeting drugs remains unknown. Here we report high-resolution cryo-EM structures of human Nav1.7 treated with drugs and lead compounds with representative chemical backbones at resolutions of 2.6-3.2 Å. A binding site beneath the intracellular gate (site BIG) accommodates carbamazepine, bupivacaine, and lacosamide. Unexpectedly, a second molecule of lacosamide plugs into the selectivity filter from the central cavity. Fenestrations are popular sites for various state-dependent drugs. We show that vinpocetine, a synthetic derivative of a vinca alkaloid, and hardwickiic acid, a natural product with antinociceptive effect, bind to the III-IV fenestration, while vixotrigine, an analgesic candidate, penetrates the IV-I fenestration of the pore domain. Our results permit building a 3D structural map for known drug-binding sites on Nav channels summarized from the present and previous structures.
Collapse
Affiliation(s)
- Qiurong Wu
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Kan Wang
- Department of Anesthesiology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jiaao Li
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaojing Pan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Shenzhen Medical Academy of Research and Translation, Guangming District, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
33
|
Ouyang X, Su M, Xue D, Dong L, Niu H, Li W, Liu Y, Wang K, Shao L. Design, synthesis, and biological evaluation of acyl sulfonamide derivatives with spiro cycles as Na V1.7 inhibitors for antinociception. Bioorg Med Chem 2023; 86:117290. [PMID: 37137269 DOI: 10.1016/j.bmc.2023.117290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023]
Abstract
Chronic pain, as an unmet medical need, severely impacts the quality of life. The voltage-gated sodium channel NaV1.7 preferentially expressed in sensory neurons of dorsal root ganglia (DRG) serves a promising target for pain therapy. Here, we report the design, synthesis, and evaluation of a series of acyl sulfonamide derivatives targeting Nav1.7 for their antinociceptive activities. Among the derivatives tested, the compound 36c was identified as a selective and potent NaV1.7 inhibitor in vitro and exhibited antinociceptive effects in vivo. The identification of 36c not only provides a new insight into the discovery of selective NaV1.7 inhibitors, but also may hold premise for pain therapy.
Collapse
Affiliation(s)
- Xiangshuo Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Min Su
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Dengqi Xue
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China
| | - Liying Dong
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Heling Niu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China
| | - Wei Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China.
| | - Yani Liu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - KeWei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, #1 Ningde Road, Qingdao 266073, China.
| | - Liming Shao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai 201203, China; State Key Laboratory of Medical Neurobiology, Fudan University, No. 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
34
|
Wisedchaisri G, Gamal El-Din TM, Zheng N, Catterall WA. Structural basis for severe pain caused by mutations in the S4-S5 linkers of voltage-gated sodium channel Na V1.7. Proc Natl Acad Sci U S A 2023; 120:e2219624120. [PMID: 36996107 PMCID: PMC10083536 DOI: 10.1073/pnas.2219624120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/31/2023] Open
Abstract
Gain-of-function mutations in voltage-gated sodium channel NaV1.7 cause severe inherited pain syndromes, including inherited erythromelalgia (IEM). The structural basis of these disease mutations, however, remains elusive. Here, we focused on three mutations that all substitute threonine residues in the alpha-helical S4-S5 intracellular linker that connects the voltage sensor to the pore: NaV1.7/I234T, NaV1.7/I848T, and NaV1.7/S241T in order of their positions in the amino acid sequence within the S4-S5 linkers. Introduction of these IEM mutations into the ancestral bacterial sodium channel NaVAb recapitulated the pathogenic gain-of-function of these mutants by inducing a negative shift in the voltage dependence of activation and slowing the kinetics of inactivation. Remarkably, our structural analysis reveals a common mechanism of action among the three mutations, in which the mutant threonine residues create new hydrogen bonds between the S4-S5 linker and the pore-lining S5 or S6 segment in the pore module. Because the S4-S5 linkers couple voltage sensor movements to pore opening, these newly formed hydrogen bonds would stabilize the activated state substantially and thereby promote the 8 to 18 mV negative shift in the voltage dependence of activation that is characteristic of the NaV1.7 IEM mutants. Our results provide key structural insights into how IEM mutations in the S4-S5 linkers may cause hyperexcitability of NaV1.7 and lead to severe pain in this debilitating disease.
Collapse
Affiliation(s)
| | | | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA98195
- HHMI, University of Washington, Seattle, WA98195
| | | |
Collapse
|
35
|
Wang G, Xu L, Chen H, Liu Y, Pan P, Hou T. Recent advances in computational studies on voltage‐gated sodium channels: Drug design and mechanism studies. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Gaoang Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering School of Electrical and Information Engineering, Jiangsu University of Technology Changzhou Jiangsu China
| | - Haiyi Chen
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Yifei Liu
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University College of Pharmaceutical Sciences, Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
36
|
Zhao Z, Pan T, Chen S, Harvey PJ, Zhang J, Li X, Yang M, Huang L, Wang S, Craik DJ, Jiang T, Yu R. Design, synthesis, and mechanism of action of novel μ-conotoxin KIIIA analogues for inhibition of the voltage-gated sodium channel Na v1.7. J Biol Chem 2023; 299:103068. [PMID: 36842500 PMCID: PMC10074208 DOI: 10.1016/j.jbc.2023.103068] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/28/2023] Open
Abstract
μ-Conotoxin KIIIA, a selective blocker of sodium channels, has strong inhibitory activity against several Nav isoforms, including Nav1.7, and has potent analgesic effects, but it contains three pairs of disulfide bonds, making structural modification difficult and synthesis complex. To circumvent these difficulties, we designed and synthesized three KIIIA analogues with one disulfide bond deleted. The most active analogue, KIIIA-1, was further analyzed, and its binding pattern to hNav1.7 was determined by molecular dynamics simulations. Guided by the molecular dynamics computational model, we designed and tested 32 second-generation and 6 third-generation analogues of KIIIA-1 on hNav1.7 expressed in HEK293 cells. Several analogues showed significantly improved inhibitory activity on hNav1.7, and the most potent peptide, 37, was approximately 4-fold more potent than the KIIIA Isomer I and 8-fold more potent than the wildtype (WT) KIIIA in inhibiting hNav1.7 current. Intraperitoneally injected 37 exhibited potent in vivo analgesic activity in a formalin-induced inflammatory pain model, with activity reaching ∼350-fold of the positive control drug morphine. Overall, peptide 37 has a simplified disulfide-bond framework and exhibits potent in vivo analgesic effects and has promising potential for development as a pain therapy in the future.
Collapse
Affiliation(s)
- Zitong Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Teng Pan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shen Chen
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Jinghui Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengke Yang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Linhong Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shoushi Wang
- Qingdao Central Hospital, Central Hospital Affiliated to Qingdao University, Qingdao, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Structure of human Na V1.6 channel reveals Na + selectivity and pore blockade by 4,9-anhydro-tetrodotoxin. Nat Commun 2023; 14:1030. [PMID: 36823201 PMCID: PMC9950489 DOI: 10.1038/s41467-023-36766-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The sodium channel NaV1.6 is widely expressed in neurons of the central and peripheral nervous systems, which plays a critical role in regulating neuronal excitability. Dysfunction of NaV1.6 has been linked to epileptic encephalopathy, intellectual disability and movement disorders. Here we present cryo-EM structures of human NaV1.6/β1/β2 alone and complexed with a guanidinium neurotoxin 4,9-anhydro-tetrodotoxin (4,9-ah-TTX), revealing molecular mechanism of NaV1.6 inhibition by the blocker. The apo-form structure reveals two potential Na+ binding sites within the selectivity filter, suggesting a possible mechanism for Na+ selectivity and conductance. In the 4,9-ah-TTX bound structure, 4,9-ah-TTX binds to a pocket similar to the tetrodotoxin (TTX) binding site, which occupies the Na+ binding sites and completely blocks the channel. Molecular dynamics simulation results show that subtle conformational differences in the selectivity filter affect the affinity of TTX analogues. Taken together, our results provide important insights into NaV1.6 structure, ion conductance, and inhibition.
Collapse
|
38
|
Ghovanloo MR, Tyagi S, Zhao P, Kiziltug E, Estacion M, Dib-Hajj SD, Waxman SG. High-throughput combined voltage-clamp/current-clamp analysis of freshly isolated neurons. CELL REPORTS METHODS 2023; 3:100385. [PMID: 36814833 PMCID: PMC9939380 DOI: 10.1016/j.crmeth.2022.100385] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023]
Abstract
The patch-clamp technique is the gold-standard methodology for analysis of excitable cells. However, throughput of manual patch-clamp is slow, and high-throughput robotic patch-clamp, while helpful for applications like drug screening, has been primarily used to study channels and receptors expressed in heterologous systems. We introduce an approach for automated high-throughput patch-clamping that enhances analysis of excitable cells at the channel and cellular levels. This involves dissociating and isolating neurons from intact tissues and patch-clamping using a robotic instrument, followed by using an open-source Python script for analysis and filtration. As a proof of concept, we apply this approach to investigate the biophysical properties of voltage-gated sodium (Nav) channels in dorsal root ganglion (DRG) neurons, which are among the most diverse and complex neuronal cells. Our approach enables voltage- and current-clamp recordings in the same cell, allowing unbiased, fast, simultaneous, and head-to-head electrophysiological recordings from a wide range of freshly isolated neurons without requiring culturing on coverslips.
Collapse
Affiliation(s)
- Mohammad-Reza Ghovanloo
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sidharth Tyagi
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Peng Zhao
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Emre Kiziltug
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Mark Estacion
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D. Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Center for Neuroscience & Regeneration Research, Yale University, West Haven, CT, USA
- Neuro-Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
39
|
Structural basis for Na V1.7 inhibition by pore blockers. Nat Struct Mol Biol 2022; 29:1208-1216. [PMID: 36424527 DOI: 10.1038/s41594-022-00860-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
Voltage-gated sodium channel NaV1.7 plays essential roles in pain and odor perception. NaV1.7 variants cause pain disorders. Accordingly, NaV1.7 has elicited extensive attention in developing new analgesics. Here we present cryo-EM structures of human NaV1.7/β1/β2 complexed with inhibitors XEN907, TC-N1752 and NaV1.7-IN2, explaining specific binding sites and modulation mechanism for the pore blockers. These inhibitors bind in the central cavity blocking ion permeation, but engage different parts of the cavity wall. XEN907 directly causes α- to π-helix transition of DIV-S6 helix, which tightens the fast inactivation gate. TC-N1752 induces π-helix transition of DII-S6 helix mediated by a conserved asparagine on DIII-S6, which closes the activation gate. NaV1.7-IN2 serves as a pore blocker without causing conformational change. Electrophysiological results demonstrate that XEN907 and TC-N1752 stabilize NaV1.7 in inactivated state and delay the recovery from inactivation. Our results provide structural framework for NaV1.7 modulation by pore blockers, and important implications for developing subtype-selective analgesics.
Collapse
|
40
|
Wang G, Yu J, Du H, Shen C, Zhang X, Liu Y, Zhang Y, Cao D, Pan P, Hou T. VGSC-DB: an online database of voltage-gated sodium channels. J Cheminform 2022; 14:75. [PMID: 36320030 PMCID: PMC9628066 DOI: 10.1186/s13321-022-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
As an important member of ion channels family, the voltage-gated sodium channel (VGSC/Nav) is associated with a variety of diseases, including epilepsy, migraine, ataxia, etc., and has always been a hot target for drug design and discovery. Many subtype-selective modulators targeting VGSCs have been reported, and some of them have been approved for clinical applications. However, the drug design resources related to VGSCs are insufficient, especially the lack of accurate and extensive compound data toward VGSCs. To fulfill this demand, we develop the Voltage-gated Sodium Channels Database (VGSC-DB). VGSC-DB is the first open-source database for VGSCs, which provides open access to 6055 data records, including 3396 compounds from 173 references toward nine subtypes of Navs (Nav1.1 ~ Nav1.9). A total of 28 items of information is included in each data record, including the chemical structure, biological activity (IC50/EC50), target, binding site, organism, chemical and physical properties, etc. VGSC-DB collects the data from small-molecule compounds, toxins and various derivatives. Users can search the information of compounds by text or structure, and the advanced search function is also supported to realize batch query. VGSC-DB is freely accessible at http://cadd.zju.edu.cn/vgsc/ , and all the data can be downloaded in XLSX/SDF file formats.
Collapse
Affiliation(s)
- Gaoang Wang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Jiahui Yu
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Hongyan Du
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Chao Shen
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Xujun Zhang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yifei Liu
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Yangyang Zhang
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Dongsheng Cao
- grid.216417.70000 0001 0379 7164Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410004 Hunan China
| | - Peichen Pan
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| | - Tingjun Hou
- grid.13402.340000 0004 1759 700XInnovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Zhejiang University, Hangzhou, 310058 Zhejiang China
| |
Collapse
|
41
|
Shiau AL, Liao CS, Tu CW, Wu SN, Cho HY, Yu MC. Characterization in Effective Stimulation on the Magnitude, Gating, Frequency Dependence, and Hysteresis of INa Exerted by Picaridin (or Icaridin), a Known Insect Repellent. Int J Mol Sci 2022; 23:ijms23179696. [PMID: 36077093 PMCID: PMC9456182 DOI: 10.3390/ijms23179696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Picaridin (icaridin), a member of the piperidine chemical family, is a broad-spectrum arthropod repellent. Its actions have been largely thought to be due to its interaction with odorant receptor proteins. However, to our knowledge, to what extent the presence of picaridin can modify the magnitude, gating, and/or the strength of voltage-dependent hysteresis (Hys(V)) of plasmalemmal ionic currents, such as, voltage-gated Na+ current [INa], has not been entirely explored. In GH3 pituitary tumor cells, we demonstrated that with exposure to picaridin the transient (INa(T)) and late (INa(L)) components of voltage-gated Na+ current (INa) were differentially stimulated with effective EC50’s of 32.7 and 2.8 μM, respectively. Upon cell exposure to it, the steady-state current versus voltage relationship INa(T) was shifted to more hyperpolarized potentials. Moreover, its presence caused a rightward shift in the midpoint for the steady-state inactivate curve of the current. The cumulative inhibition of INa(T) induced during repetitive stimuli became retarded during its exposure. The recovery time course from the INa block elicited, following the conditioning pulse stimulation, was satisfactorily fitted by two exponential processes. Moreover, the fast and slow time constants of recovery from the INa block by the same conditioning protocol were noticeably increased in the presence of picaridin. However, the fraction in fast or slow component of recovery time course was, respectively, increased or decreased with an increase in picaridin concentrations. The Hys(V)’s strength of persistent INa (INa(P)), responding to triangular ramp voltage, was also enhanced during cell exposure to picaridin. The magnitude of resurgent INa (INa(R)) was raised in its presence. Picaritin-induced increases of INa(P) or INa(R) intrinsically in GH3 cells could be attenuated by further addition of ranolazine. The predictions of molecular docking also disclosed that there are possible interactions of the picaridin molecule with the hNaV1.7 channel. Taken literally, the stimulation of INa exerted by the exposure to picaridin is expected to exert impacts on the functional activities residing in electrically excitable cells.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chih-Szu Liao
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Chi-Wen Tu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Correspondence: ; Tel.: +886-6-2353535-5334; Fax: +886-6-2362780
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Meng-Cheng Yu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| |
Collapse
|
42
|
Wu SN, Wu CL, Cho HY, Chiang CW. Effective Perturbations by Small-Molecule Modulators on Voltage-Dependent Hysteresis of Transmembrane Ionic Currents. Int J Mol Sci 2022; 23:ijms23169453. [PMID: 36012718 PMCID: PMC9408818 DOI: 10.3390/ijms23169453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
The non-linear voltage-dependent hysteresis (Hys(V)) of voltage-gated ionic currents can be robustly activated by the isosceles-triangular ramp voltage (Vramp) through digital-to-analog conversion. Perturbations on this Hys(V) behavior play a role in regulating membrane excitability in different excitable cells. A variety of small molecules may influence the strength of Hys(V) in different types of ionic currents elicited by long-lasting triangular Vramp. Pirfenidone, an anti-fibrotic drug, decreased the magnitude of Ih's Hys(V) activated by triangular Vramp, while dexmedetomidine, an agonist of α2-adrenoceptors, effectively suppressed Ih as well as diminished the Hys(V) strength of Ih. Oxaliplatin, a platinum-based anti-neoplastic drug, was noted to enhance the Ih's Hys(V) strength, which is thought to be linked to the occurrence of neuropathic pain, while honokiol, a hydroxylated biphenyl compound, decreased Ih's Hys(V). Cell exposure to lutein, a xanthophyll carotenoid, resulted in a reduction of Ih's Hys(V) magnitude. Moreover, with cell exposure to UCL-2077, SM-102, isoplumbagin, or plumbagin, the Hys(V) strength of erg-mediated K+ current activated by triangular Vramp was effectively diminished, whereas the presence of either remdesivir or QO-58 respectively decreased or increased Hys(V) magnitude of M-type K+ current. Zingerone, a methoxyphenol, was found to attenuate Hys(V) (with low- and high-threshold loops) of L-type Ca2+ current induced by long-lasting triangular Vramp. The Hys(V) properties of persistent Na+ current (INa(P)) evoked by triangular Vramp were characterized by a figure-of-eight (i.e., ∞) configuration with two distinct loops (i.e., low- and high-threshold loops). The presence of either tefluthrin, a pyrethroid insecticide, or t-butyl hydroperoxide, an oxidant, enhanced the Hys(V) strength of INa(P). However, further addition of dapagliflozin can reverse their augmenting effects in the Hys(V) magnitude of the current. Furthermore, the addition of esaxerenone, mirogabalin, or dapagliflozin was effective in inhibiting the strength of INa(P). Taken together, the observed perturbations by these small-molecule modulators on Hys(V) strength in different types of ionic currents evoked during triangular Vramp are expected to influence the functional activities (e.g., electrical behaviors) of different excitable cells in vitro or in vivo.
Collapse
Affiliation(s)
- Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 70101, Taiwan
- Department of Post-Baccalaureate Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5334); Fax: +886-6-2362780
| | - Chao-Liang Wu
- Department of Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi City 60002, Taiwan
| | - Hsin-Yen Cho
- Department of Physiology, National Cheng Kung University Medical College, Tainan 70101, Taiwan
| | - Chi-Wu Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
43
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
44
|
Elleman AV, Du Bois J. Chemical and Biological Tools for the Study of Voltage-Gated Sodium Channels in Electrogenesis and Nociception. Chembiochem 2022; 23:e202100625. [PMID: 35315190 PMCID: PMC9359671 DOI: 10.1002/cbic.202100625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/22/2022] [Indexed: 12/17/2022]
Abstract
The malfunction and misregulation of voltage-gated sodium channels (NaV s) underlie in large part the electrical hyperexcitability characteristic of chronic inflammatory and neuropathic pain. NaV s are responsible for the initiation and propagation of electrical impulses (action potentials) in cells. Tissue and nerve injury alter the expression and localization of multiple NaV isoforms, including NaV 1.1, 1.3, and 1.6-1.9, resulting in aberrant action potential firing patterns. To better understand the role of NaV regulation, localization, and trafficking in electrogenesis and pain pathogenesis, a number of chemical and biological reagents for interrogating NaV function have been advanced. The development and application of such tools for understanding NaV physiology are the focus of this review.
Collapse
Affiliation(s)
- Anna V Elleman
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Moretti M, Limongi T, Testi C, Milanetti E, De Angelis MT, Parrotta EI, Scalise S, Santamaria G, Allione M, Lopatin S, Torre B, Zhang P, Marini M, Perozziello G, Candeloro P, Pirri CF, Ruocco G, Cuda G, Di Fabrizio E. Direct Visualization and Identification of Membrane Voltage-Gated Sodium Channels from Human iPSC-Derived Neurons by Multiple Imaging and Light Enhanced Spectroscopy. SMALL METHODS 2022; 6:e2200402. [PMID: 35595684 DOI: 10.1002/smtd.202200402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/22/2022] [Indexed: 06/15/2023]
Abstract
In this study, transmission electron microscopy atomic force microscopy, and surface enhanced Raman spectroscopy are combined through a direct imaging approach, to gather structural and chemical information of complex molecular systems such as ion channels in their original plasma membrane. Customized microfabricated sample holder allows to characterize Nav channels embedded in the original plasma membrane extracted from neuronal cells that are derived from healthy human induced pluripotent stem cells. The identification of the channels is accomplished by using two different approaches, one of them widely used in cryo-EM (the particle analysis method) and the other based on a novel Zernike Polynomial expansion of the images bitmap. This approach allows to carry out a whole series of investigations, one complementary to the other, on the same sample, preserving its state as close as possible to the original membrane configuration.
Collapse
Affiliation(s)
- Manola Moretti
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Claudia Testi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Maria Teresa De Angelis
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Elvira I Parrotta
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Stefania Scalise
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Gianluca Santamaria
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Marco Allione
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sergei Lopatin
- King Abdullah University of Science and Technology, Imaging and Characterization Core lab, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Bruno Torre
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peng Zhang
- King Abdullah University of Science and Technology, SMILEs lab, PSE Division, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Monica Marini
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Gerardo Perozziello
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Patrizio Candeloro
- BionNEM lab and Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Candido Fabrizio Pirri
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| | - Giancarlo Ruocco
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, Rome, 00185, Italy
| | - Giovanni Cuda
- Laboratory of Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Graecia, Campus S. Venuta, Viale Europa, Catanzaro, 88100, Italy
| | - Enzo Di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129, Torino, Italy
| |
Collapse
|
46
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
47
|
Fouda MA, Ghovanloo MR, Ruben PC. Late sodium current: incomplete inactivation triggers seizures, myotonias, arrhythmias, and pain syndromes. J Physiol 2022; 600:2835-2851. [PMID: 35436004 DOI: 10.1113/jp282768] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Acquired and inherited dysfunction in voltage-gated sodium channels underlies a wide range of diseases. "In addition to the defects in trafficking and expression, sodium channelopathies are also caused by dysfunction in one or several gating properties, for instance activation or inactivation. Disruption of the channel inactivation leads to the increased late sodium current, which is a common defect in seizure disorders, cardiac arrhythmias skeletal muscle myotonia and pain. An increase in late sodium current leads to repetitive action potential in neurons and skeletal muscles, and prolonged action potential duration in the heart. In this topical review, we compare the effects of late sodium current in brain, heart, skeletal muscle, and peripheral nerves. Abstract figure legend Shows cartoon illustration of general Nav channel transitions between (1) resting, (2) open, and (3) fast inactivated states. Disruption of the inactivation process exacerbates (4) late sodium currents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mohamed A Fouda
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada.,Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | | | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
48
|
Wisedchaisri G, Gamal El-Din TM. Druggability of Voltage-Gated Sodium Channels-Exploring Old and New Drug Receptor Sites. Front Pharmacol 2022; 13:858348. [PMID: 35370700 PMCID: PMC8968173 DOI: 10.3389/fphar.2022.858348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated ion channels are important drug targets because they play crucial physiological roles in both excitable and non-excitable cells. About 15% of clinical drugs used for treating human diseases target ion channels. However, most of these drugs do not provide sufficient specificity to a single subtype of the channels and their off-target side effects can be serious and sometimes fatal. Recent advancements in imaging techniques have enabled us for the first time to visualize unique and hidden parts of voltage-gated sodium channels in different structural conformations, and to develop drugs that further target a selected functional state in each channel subtype with the potential for high precision and low toxicity. In this review we describe the druggability of voltage-gated sodium channels in distinct functional states, which could potentially be used to selectively target the channels. We review classical drug receptors in the channels that have recently been structurally characterized by cryo-electron microscopy with natural neurotoxins and clinical drugs. We further examine recent drug discoveries for voltage-gated sodium channels and discuss opportunities to use distinct, state-dependent receptor sites in the voltage sensors as unique drug targets. Finally, we explore potential new receptor sites that are currently unknown for sodium channels but may be valuable for future drug discovery. The advancement presented here will help pave the way for drug development that selectively targets voltage-gated sodium channels.
Collapse
Affiliation(s)
- Goragot Wisedchaisri
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Tamer M Gamal El-Din
- Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
49
|
Kong X, Li Y, Perez-Miller S, Luo G, Liao Q, Wu X, Liang S, Tang C, Khanna R, Liu Z. The small molecule compound C65780 alleviates pain by stabilizing voltage-gated sodium channels in the inactivated and slowly-recovering state. Neuropharmacology 2022; 212:109057. [DOI: 10.1016/j.neuropharm.2022.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
|
50
|
Structural basis for modulation of human NaV1.3 by clinical drug and selective antagonist. Nat Commun 2022; 13:1286. [PMID: 35277491 PMCID: PMC8917200 DOI: 10.1038/s41467-022-28808-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium (NaV) channels play fundamental roles in initiating and propagating action potentials. NaV1.3 is involved in numerous physiological processes including neuronal development, hormone secretion and pain perception. Here we report structures of human NaV1.3/β1/β2 in complex with clinically-used drug bulleyaconitine A and selective antagonist ICA121431. Bulleyaconitine A is located around domain I-II fenestration, providing the detailed view of the site-2 neurotoxin binding site. It partially blocks ion path and expands the pore-lining helices, elucidating how the bulleyaconitine A reduces peak amplitude but improves channel open probability. In contrast, ICA121431 preferentially binds to activated domain IV voltage-sensor, consequently strengthens the Ile-Phe-Met motif binding to its receptor site, stabilizes the channel in inactivated state, revealing an allosterically inhibitory mechanism of NaV channels. Our results provide structural details of distinct small-molecular modulators binding sites, elucidate molecular mechanisms of their action on NaV channels and pave a way for subtype-selective therapeutic development. NaV1.3 is involved in neuronal development, hormone secretion and pain perception. Here, the authors elucidate the molecular mechanism for modulation of NaV1.3 by a site-2 neurotoxin bulleyaconitine A and a subtype selective antagonist ICA121431.
Collapse
|