1
|
Zhang M, Jin L, Zhang T, Jiang X, Li M, Guan Y, Fu Y. Two-dimensional organic-inorganic hybrid perovskite quantum-well nanowires enabled by directional noncovalent intermolecular interactions. Nat Commun 2025; 16:2997. [PMID: 40148364 PMCID: PMC11950231 DOI: 10.1038/s41467-025-58166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Layered 2D semiconductors, when grown into 1D nanowires, can exhibit excellent optical and electronic properties, promising for nanoscale optoelectronics and photonics. However, rational strategies to grow such nanowires are lacking. Here, we present a large family of quantum-well nanowires made from 2D organic-inorganic hybrid metal halide perovskites with tunable well thickness, organic spacer cations, halide anions, and metal cations, achieved by harnessing directional nonvalent intermolecular interactions present among certain spacer cations. The unusual 1D anisotropic growth within the 2D plane is induced by preferential self-assembly of selected spacer cations along the direction of stronger intermolecular interactions and further promoted by crystal growth engineering. Owing to the intrinsic 2D quantum-well-like crystal structures and 1D photon confinement at the subwavelength scale, these nanowires exhibit robust exciton-photon coupling, with Rabi splitting energies of up to 700 meV, as well as wavelength-tunable and more efficient lasing compared to exfoliated crystals.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianhao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Oddo AM, Chabeda D, Basu J, Arnold M, Song C, Rabani E, Yang P. Exploring the Structural Origins of Optically Efficient One-Dimensional Lead Halide Perovskite Nanostructures. J Am Chem Soc 2025; 147:10466-10474. [PMID: 40073387 DOI: 10.1021/jacs.4c18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Metal halide perovskites have excellent optoelectronic properties. This study aims to determine how the optoelectronic properties of a model perovskite, cesium lead bromide (CsPbBr3), change with length and thickness in one dimension (1D). By examining the photophysics of CsPbBr3 quantum dots (QDs), nanowires (NWs), and nanorods (NRs), we observe the influence of confinement, exciton diffusion, and trapping on their optical properties. Our findings reveal that exciton diffusion to trap states limits the photoluminescence quantum yield (PLQY) of 1D CsPbBr3 in the weakly confined regime (8-14 nm) and explains their long-lived exciton dynamics, while enhanced radiative rates contribute to achieving near-unity PLQY in the strongly confined regime (<7 nm). Consequently, blue-emitting, 2.4 nm-thick CsPbBr3 NRs were 3.6X more emissive than the conventional CsPbBr3 QDs. This study underscores how structural optimization can improve the optoelectronic performance of CsPbBr3 and provides insight into the complex interplay of radiative and nonradiative processes in 1D ionic semiconductors.
Collapse
Affiliation(s)
- Alexander M Oddo
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Chabeda
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jaydeep Basu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marcel Arnold
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Wang L, Wu W, Yang J, Nughays R, Zhou Y, Ugur E, Zhang X, Shao B, Wang JX, Yin J, De Wolf S, Bakr OM, Mohammed OF. Real-space imaging of photo-generated surface carrier transport in 2D perovskites. LIGHT, SCIENCE & APPLICATIONS 2025; 14:124. [PMID: 40102415 PMCID: PMC11920587 DOI: 10.1038/s41377-025-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/29/2024] [Accepted: 01/13/2025] [Indexed: 03/20/2025]
Abstract
In layered two-dimensional (2D) perovskites, the inorganic perovskite layers sandwiched between cation spacers create quantum well (QW) structures, showing large exciton binding energies that hinder the efficient dissociation of excitons into free carriers. This leads to poor carrier transport properties and low-performance light-conversion-based devices, and the direct understanding of the underlying physics, particularly concerning surface states, remains extremely difficult, if not impossible, due to the challenges in real-time accessibility. Here, we utilized four-dimensional scanning ultrafast electron microscopy (4D-SUEM), a highly sensitive technique for mapping surface carrier diffusion that diverges from those in the bulk and substantially affects material properties. We directly visualize photo-generated carrier transport over both spatial and temporal dimensions on the top surface of 2D perovskites with varying inorganic perovskite layer thicknesses (n = 1, 2, and 3). The results reveal the photo-induced surface carrier diffusion rates of ~30 cm2·s-1 for n = 1, ~180 cm2·s-1 for n = 2, and ~470 cm2·s-1 for n = 3, which are over 20 times larger than bulk. This is because charge carrier transmission channels have much wider distributions on the top surface compared to the bulk, as supported by the Density Functional Theory (DFT) calculations. Finally, our findings represent the demonstration to directly correlate the discrepancies between surface and bulk carrier diffusion behaviors, their relationship with exciton binding energy, and the number of layers in 2D perovskites, providing valuable insights into enhancing the performance of 2D perovskite-based optoelectronic devices through interface engineering.
Collapse
Affiliation(s)
- Lijie Wang
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Wentao Wu
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jie Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou, China
| | - Razan Nughays
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yifan Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Esma Ugur
- KAUST Solar Center (KSC), King Abdullah University of Science (KAUST), Thuwal, Saudi Arabia
| | - Xi Zhang
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bingyao Shao
- KAUST Solar Center (KSC), King Abdullah University of Science (KAUST), Thuwal, Saudi Arabia
| | - Jian-Xin Wang
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Stefaan De Wolf
- KAUST Solar Center (KSC), King Abdullah University of Science (KAUST), Thuwal, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Lee YH, Lee W, Lee GS, Park JY, Yuan B, Won Y, Mun J, Yang H, Baek S, Lee H, Oh JH, Pennycook TJ, Kim G, Mei J, Dou L. Large-Scale 2D Perovskite Nanocrystals Photodetector Array via Ultrasonic Spray Synthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417761. [PMID: 39967441 PMCID: PMC11938026 DOI: 10.1002/adma.202417761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/01/2025] [Indexed: 02/20/2025]
Abstract
2D perovskite (PVSK) single crystals have received significant attention due to their unique optical and optoelectronic properties. However, current synthesis methods face limitations, particularly in large-area fabrication, which remain critical barriers to practical applications. In this study, the synthesis of red/green/purple-blue-colored 2D PVSK nanocrystals over a large area (4-inch wafer) and the fabrication of high-performance photodetector arrays are presented via a facile yet efficient spray-coating approach with a liquid-bridge transport effect. The photodetector array achieves 100% working yield, high photo-responsivity (1.5 × 106 A W-1) and specific-detectivity (1.1 × 1016 Jones) with competitive photomapping characteristics. An intelligent vision system for automatic shape recognition is further demonstrated with a recognition rate exceeding 90%. This study provides significant advances in the scalable synthesis of nanoscale 2D PVSK crystals, their integration into large-area optoelectronic devices, and their potential use in artificial-intelligence systems.
Collapse
Affiliation(s)
- Yoon Ho Lee
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
- James Tarpo Jr. and Magaret Tarpo Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
- Department of Materials Science and EngineeringSungshin Women's UniversitySeoul01133Republic of Korea
| | - Won‐June Lee
- James Tarpo Jr. and Magaret Tarpo Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Gang San Lee
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jee Yung Park
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Biao Yuan
- EMATUniversity of AntwerpGroenenborgerlaan 171Antwerp2020Belgium
| | - Yousang Won
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | - Jungho Mun
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- POSCO‐POSTECH‐RIST Convergence Research Center for Flat Optics and MetaphotonicsPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Hanjun Yang
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
- James Tarpo Jr. and Magaret Tarpo Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Sung‐Doo Baek
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Haeun Lee
- Department of Materials Science and EngineeringSungshin Women's UniversitySeoul01133Republic of Korea
| | - Joon Hak Oh
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National UniversitySeoul08826Republic of Korea
| | | | - Gwangwoo Kim
- Department of Engineering ChemistryChungbuk National UniversityCheongju28644Republic of Korea
| | - Jianguo Mei
- James Tarpo Jr. and Magaret Tarpo Department of ChemistryPurdue UniversityWest LafayetteIN47907USA
| | - Letian Dou
- Davidson School of Chemical EngineeringPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
5
|
Mihalyi-Koch W, Dang L, Parrish KA, Huang Y, Pan D, Roy CR, Bartz JA, Fu Y, Wright JC, Goldsmith RH, Jin S. Screw-Dislocation-Driven Growth of 2D Perovskite Spiral Microplates. NANO LETTERS 2025; 25:3367-3374. [PMID: 39950249 DOI: 10.1021/acs.nanolett.5c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Two-dimensional (2D) organic-inorganic halide perovskites are solution-processable semiconductors that are promising for optoelectronic applications. Understanding crystallization mechanisms to achieve control over nanostructures is important for optimizing desired properties. Here we introduce a versatile strategy to synthesize spiral microplates of diverse 2D perovskites at the air-water interface through screw-dislocation-driven growth. Spirals of 11 2D perovskite compositions (LA)2(A)n-1PbnX3n+1 with different spacer (LA) cations, A-cations, halide (X) anions, and n-number can be grown. They typically consist of single- or few-layer perovskite step heights but exhibit stacking complexity when multiple dislocations interact. The spiral microplates exhibit the characteristic optical properties (photoluminescence and second-harmonic generation) of the underlying 2D perovskites. Fluorescence-detected circular dichroism imaging shows that the chirality of the spiral center does not translate to the observed chiroptical properties of the microplate, consistent with the length scale of the chiral distortion. This solution growth of perovskite spirals diversifies the perovskite microstructures for optoelectronics and other applications.
Collapse
Affiliation(s)
- Willa Mihalyi-Koch
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lianna Dang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yibo Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dongxu Pan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey A Bartz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yongping Fu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
6
|
Chowdhury S, Mukhopadhyay MK, Sanyal MK, Bhunia S, Satpati B, Giri RP, Bharatiya B, Shen C, Murphy BM. Investigation on the formation of two dimensional perovskite nanostructures at the water surface through self initiated reaction. Sci Rep 2025; 15:6216. [PMID: 39979302 PMCID: PMC11842831 DOI: 10.1038/s41598-024-78259-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 02/22/2025] Open
Abstract
The emerging class of hybrid organic-inorganic perovskites (HOIPs) has exhibited fascinating properties for a wide range of technological applications. With halide ions, HOIPs have provided novel optoelectronic devices including efficient solar cells and with pseudohalide anions-like formate (HCOO-), enigmatic electromagnetic properties have been obtained in HOIPs. Large-scale synthesis of such 2D HOIP films is of immense importance for the advancement of its application as solar materials. We have shown using in-situ X-ray measurements that the Langmuir monolayer of perovskite can be formed at the air-water interface by spreading stearic acid molecules on the water subphase having (C4H9NH3)2PbBr4 molecules. The 2D lead formate perovskite films are formed at the air-water interface through a self-initiated reaction and the in-situ X-ray scattering and ex-situ Raman spectroscopy measurements revealed this reaction process. The spreading of lipid molecules having positive and negative head-group charges as surfactants over the water surface shows that the formation of perovskite nanofilms at the air-water interface specifically requires the presence of HCOO- head-group of stearic acid. In this room temperature interfacial reaction, formate anions come from the stearic acid monolayer present on the water surface and completely replace bromines in the perovskite present in water subphase to form (BA)2Pb(HCOO)4 at the air-water interface. Our results show an easy route for large-scale synthesis of 2D pseudohalide perovskites.
Collapse
Affiliation(s)
- Subhadip Chowdhury
- SPMS Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Mrinmay K Mukhopadhyay
- SPMS Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India.
| | - Milan K Sanyal
- SPMS Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
| | - Satyaban Bhunia
- SPMS Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Biswarup Satpati
- SPMS Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
- Department of Physics, Indian Institute of Technology (ISM) Dhanbad, Jharkhand, 826004, India
| | - B Bharatiya
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Chen Shen
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Bridget M Murphy
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
- Ruprecht-Haensel Laboratory, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
7
|
Ming Z, Li S, Luo X, Liu S, Zhang D, Zhu X, Pan A, Wang X. Pure red emission with spectral stability in full iodine-based quasi-2D perovskite films by controlling phase distribution. NANOSCALE 2025; 17:3498-3506. [PMID: 39718139 DOI: 10.1039/d4nr04100c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Quasi-2D perovskites have emerged as a promising candidate material for displays owing to their high photoluminescence quantum yields and low-cost solution synthesis. However, achieving pure red quasi-2D perovskite films with luminescence centered at 630 nm and a narrow emission band presents a critical challenge for high-definition displays. Herein, by incorporating 18-crown-6 as additives that simultaneously passivate defects and regulate phase distribution, full iodine-based quasi-2D perovskite films with a single red emission peak and spectral stability are designed. Additionally, through the introduction of an appropriate amount of chlorobenzene and enhancement of annealing temperature, resulting in a narrower phase distribution, the full width at half maximum (FWHM) of the emission peak is significantly reduced. After optimization of the process, we fabricated quasi-2D perovskite films with pure red emission, which exhibited a PL peak at 627.9 nm and a narrow FWHM of 45.1 nm. Based on these pure red perovskite films, diverse complex patterns such as fluorescent anti-counterfeiting labels are implemented for data storage and information encryption. This study provides an effective approach toward developing quasi-2D perovskites with high color purity for high-definition purposes.
Collapse
Affiliation(s)
- Zhiqiang Ming
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Siyao Li
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xinyi Luo
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Siman Liu
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Danliang Zhang
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xiaoli Zhu
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Anlian Pan
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| | - Xiao Wang
- School of Physics and Electronics, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, and College of Materials Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
8
|
Qin T, Zhang X, Liu H, Wei Y, Huang H, Xiang B, Zhang M, Wang Z, Tang Z, Xiong Q. Coherent Exciton Spin Relaxation Dynamics and Exciton Polaron Character in Layered Two-Dimensional Lead-Halide Perovskites. ACS NANO 2025; 19:4186-4194. [PMID: 39849818 DOI: 10.1021/acsnano.4c08591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
The quantum-well-like two-dimensional lead-halide perovskites exhibit strongly confined excitons due to the quantum confinement and reduced dielectric screening effect, which feature intriguing excitonic effects. The ionic nature of the perovskite crystal and the "softness" of the lattice induce the complex lattice dynamics. There are still open questions about how the soft lattices decorate the nature of excitons in these hybrid materials. Herein, we reveal the polaronic character of excitons and coherent exciton spin relaxation dynamics in layered hybrid perovskites by using chirality-dependent impulsive vibrational spectroscopy. We identify an intrinsic exciton spin dynamics property, giving rise to a short spin relaxation lifetime in the sub-picosecond time scale. The exciton polaron formation is confirmed by the blue-shift of the phonon frequency under resonant conditions compared to that in below-resonance excitation cases. The phonon vibrational wavepackets show a cosine- and sine-like oscillation as a function of time via on- and below-resonance excitation scenarios due to the displacive and impulsive mechanisms, respectively. Our findings provide profound insights concerning the polaronic character of excitons in two-dimensional perovskites, underpinning the prospective developments in optical and optoelectronic applications.
Collapse
Affiliation(s)
- Tingxiao Qin
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Xiu Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Haiyun Liu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Yi Wei
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Haiyun Huang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Baixu Xiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P. R. China
| | - Mengdi Zhang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Qihua Xiong
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P. R. China
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P. R. China
- Frontier Science Center for Quantum Information, Beijing 100084, P. R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Zhao F, An M, Wang N, Yin X. Boron-Containing Organic Two Dimensional Materials: Synthesis and Application. Chemistry 2025; 31:e202403810. [PMID: 39578222 DOI: 10.1002/chem.202403810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Organic two-dimensional materials have garnered widespread attention due to their well-defined structures, structural diversity, and rich electronic effects, demonstrating significant application potential across various fields. Atomic-level manipulation of the structures of organic two-dimensional materials has been a primary strategy for enriching and optimizing their properties. The introduction of heteroatoms often significantly affects their electronic structure, thereby endowing these materials with novel and unique properties. Boron atoms, due to their electron-deficient nature, have been extensively studied in luminescent materials, semiconductor materials, and chemical sensing materials. Consequently, boron-containing organic two-dimensional materials are also believed to be promising as a new class of materials with excellent optoelectronic and chemical activities. This article collates and summarizes the preparation and property studies of three types of boron-containing organic two-dimensional materials in recent years.
Collapse
Affiliation(s)
- Fenggui Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
- School of Materials Science and Engineering, Guilin University of Electronic and Technology, Guilin, Guangxi Province, 541004, P. R. China
| | - Mengjie An
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
10
|
Li Y, Zhao Y, Ruocco A, Wang M, Li B, Akhavan S. Printed Lithography of Graphene-Perovskite Quantum Dot Hybrid Photodetectors on Paper Substrates. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6716-6727. [PMID: 39833095 PMCID: PMC11788987 DOI: 10.1021/acsami.4c18102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/11/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics. In this study, we present photodetectors (PDs) on a paper substrate composed of graphene and CsPbBr3 perovskite quantum dots (PQDs). Hybrid structures that combine PQDs with graphene offer a promising approach for PDs. These structures benefit from robust quantum confinement in PQDs alongside improved light interaction, tunable spectra, high absorption coefficients, and an enhanced photoconductive gain mechanism in graphene, all at ambient conditions. We use a microplotter for the lithographic printing of graphene, silver electrodes, and PQDs, to fabricate PDs on paper. These PDs have an external responsivity of ∼82,000 AW-1 at 520 nm for an operating voltage ⩽1 V. The external responsivity is 3 orders of magnitude higher than state-of-the-art paper-based PDs. Under bending at L0/L = 1.15 (L0 is the arc length and L is the chord length) and after 600 bending cycles, the external responsivity is maintained up to 80%. Thus, the combination of zero- and two-dimensional materials via microplotting on a paper substrate shows promise for wearable and flexible applications.
Collapse
Affiliation(s)
- Yujia Li
- Institute
for Materials Discovery, University College
London, London WC1E 7JE, U.K.
- Department
of Chemistry, University College London, London WC1E 7JE, U.K.
| | - Yining Zhao
- Institute
for Materials Discovery, University College
London, London WC1E 7JE, U.K.
- Department
of Chemistry, University College London, London WC1E 7JE, U.K.
| | - Alfonso Ruocco
- Optical
Networks Group, University College London, London WC1E 6BT, U.K.
| | - Mingqing Wang
- Institute
for Materials Discovery, University College
London, London WC1E 7JE, U.K.
| | - Bing Li
- Institute
for Materials Discovery, University College
London, London WC1E 7JE, U.K.
| | - Shahab Akhavan
- Institute
for Materials Discovery, University College
London, London WC1E 7JE, U.K.
| |
Collapse
|
11
|
Liu Y, Li F, Tang L, Liu X, Zeng X, Li W, Rong H, Zhang H, Luo J, Sun Z. Visible-Photo-Assisted Phase Switching of Antiferroelectric-to-Ferroelectric Orders in an I 3 --Intercalated 2D Perovskite. Angew Chem Int Ed Engl 2025; 64:e202413898. [PMID: 39223782 DOI: 10.1002/anie.202413898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Antiferroelectric (AFE) has emerged as a promising branch of electroactive materials, due to intriguing physical attributes stemming from the electric field-induced antipolar-to-polar phase transformation. However, the requirement of extremely high electric field strength to switch adjacent sublattice polarization poses great challenges for exploiting new molecular AFE system. Although photoirradiation is striking as a noncontact and nondestructive manipulation tool to optimize physical properties, optical control of antiferroelectricity still remains unexplored. Here, by adopting light-sensitive I3 - anion into 2D perovskite family, we design a new I3 --intercalated molecular AFE of (t-ACH)2EA2Pb3I10(I3)0.5 ⋅ ((H3O)(H2O))0.5 (1, t-ACH=trans-4-aminomethyl-1-cyclohexanecarboxylate, EA=ethylammonium). The I3 --intercalating gives an ultra-narrow band gap of 1.65 eV with strong absorption. In term of AFE structure, the anti-parallel alignment of electric dipoles results in a large spontaneous polarization of 4.3 μC/cm2. Strikingly, 1 merely shows AFE behaviour in the dark even under ultrahigh voltage, while the field-induced ferroelectric state can be facilely obtained upon visible illumination. Such unprecedented visible-photo-assisted phase switching ascribes to the incorporation of photoactive I3 - anions that reduces AFE-to-ferroelectric switching barrier. This pioneering work on the photo-assisting transformation of ferroic orders paves a way to develop future photoactive materials with potential applications.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Fu Li
- Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Liwei Tang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
| | - Xi Zeng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
| | - Wenjing Li
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hao Rong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
| | - Hongbin Zhang
- Institute of Materials Science, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287, Darmstadt, Germany
| | - Junhua Luo
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zhihua Sun
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, P. R. China
| |
Collapse
|
12
|
Lee WS, Cho Y, Paritmongkol W, Sakurada T, Ha SK, Kulik HJ, Tisdale WA. Mixed-Chalcogen 2D Silver Phenylchalcogenides (AgE 1-xE xPh; E = S, Se, Te). ACS NANO 2024; 18:35066-35074. [PMID: 39666312 DOI: 10.1021/acsnano.4c15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Alloying is a powerful strategy for tuning the electronic band structure and optical properties of semiconductors. Here, we investigate the thermodynamic stability and excitonic properties of mixed-chalcogen alloys of two-dimensional (2D) hybrid organic-inorganic silver phenylchalcogenides (AgEPh; E = S, Se, Te). Using a variety of structural and optical characterization techniques, we demonstrate that the AgSePh-AgTePh system forms homogeneous alloys (AgSe1-xTexPh, 0 ≤ x ≤ 1) across all compositions, whereas the AgSPh-AgSePh and AgSPh-AgTePh systems exhibit distinct miscibility gaps. Density functional theory calculations reveal that chalcogen mixing is energetically unfavorable in all cases but comparable in magnitude to the ideal entropy of mixing at room temperature. Because AgSePh and AgTePh have the same crystal structure (which is different from AgSPh), alloying is predicted to be thermodynamically preferred over phase separation in the case of AgSePh-AgTePh, whereas phase separation is predicted to be more favorable than alloying for both the AgSPh-AgSePh and AgSPh-AgTePh systems, in agreement with experimental observations. Homogeneous AgSe1-xTexPh alloys exhibit continuously tunable excitonic absorption resonances in the ultraviolet-visible range, while the emission spectrum reveals competition between exciton delocalization (characteristic of AgSePh) and localization behavior (characteristic of AgTePh). Overall, these observations provide insight into the thermodynamics of 2D silver phenylchalcogenides and the effect of lattice composition on electron-phonon interactions in 2D hybrid organic-inorganic semiconductors.
Collapse
Affiliation(s)
- Woo Seok Lee
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yeongsu Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Watcharaphol Paritmongkol
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tomoaki Sakurada
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Seung Kyun Ha
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - William A Tisdale
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Islam M, Ahmed MS, Yun S, Kim HY, Nam KW. Harnessing Radiation for Nanotechnology: A Comprehensive Review of Techniques, Innovations, and Application. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2051. [PMID: 39728587 DOI: 10.3390/nano14242051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Nanomaterial properties such as size, structure, and composition can be controlled by manipulating radiation, such as gamma rays, X-rays, and electron beams. This control allows scientists to create materials with desired properties that can be used in a wide range of applications, from electronics to medicine. This use of radiation for nanotechnology is revolutionizing the way we design and manufacture materials. Additionally, radiation-induced nanomaterials are more cost effective and energy efficient. This technology is also having a positive impact on the environment, as materials are being produced with fewer emissions, less energy, and less waste. This cutting-edge technology is opening up new possibilities and has become an attractive option for many industries, from medical advancements to energy storage. It is also helping to make the world a better place by reducing our carbon footprint and preserving natural resources. This review aims to meticulously point out the synthesis approach and highlights significant progress in generating radiation-induced nanomaterials with tunable and complex morphologies. This comprehensive review article is essential for researchers to design innovative materials for advancements in health care, electronics, energy storage, and environmental remediation.
Collapse
Affiliation(s)
- Mobinul Islam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Md Shahriar Ahmed
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Sua Yun
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Hae-Yong Kim
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Kyung-Wan Nam
- Department of Energy and Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
14
|
Lang A, Chen C, Ye C, McHugh LN, Chua XW, Stranks SD, Dutton SE, Bennett TD. Melt Alloying of Two-Dimensional Hybrid Perovskites: Composition-Dependence of Thermal and Optical Properties. J Am Chem Soc 2024; 146:33945-33955. [PMID: 39573941 PMCID: PMC11638950 DOI: 10.1021/jacs.4c12697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Melt alloying, the process of melting a physical powder blend to create a homogeneous alloy, is widely used in materials processing. By carefully selecting the materials and their proportions, the physical properties of the resulting alloy can be precisely controlled. In this study, we investigate the possibility of utilizing melt alloying principles for meltable two-dimensional hybrid organic-inorganic perovskites (2D-HOIPs). We blend and melt mixtures of two selected 2D-HOIPs: the glass-forming (S-NEA)2PbBr4 (S-NEA = (S)-(-)-1-(1-naphthyl)ethylammonium) and the liquid-forming (1-MHA)2PbI4 (1-MHA = 1-methylhexylammonium). Upon melting and cooling, 1-MHA-poor blends (X1-MHA ≤ 50% mol, where X1-MHA corresponds to the relative molar concentration of (1-MHA)2PbI4 in the blend) form a hybrid glass, while 1-MHA-rich blends (X1-MHA ≥ 70% mol) crystallize. The melting temperature of all blends, as well as the glass transition temperature of the glass-forming blends, change according to blend composition. In all cases, melting produces a homogeneous structure, either glassy or crystalline, which remains such after the glassy samples are recrystallized upon a second heat treatment. This method enables band gap tuning of the blends, given that it varies with composition and crystallinity. Overall, this work demonstrates the applicability of classical melt processing to binary-component functional hybrid systems, and paves the way to solvent-free perovskite-based device fabrication.
Collapse
Affiliation(s)
- Arad Lang
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Celia Chen
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Chumei Ye
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| | - Lauren N. McHugh
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Xian Wei Chua
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Samuel D. Stranks
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| | - Siân E. Dutton
- Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Thomas D. Bennett
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, U.K.
| |
Collapse
|
15
|
Deng X, Zhang Z, Zhang Z, Wu Y, Song H, Li H, Luo B. A Prediction of All-Inorganic Lead-Free Halide Perovskites for Photovoltaic Application: Rb 3Mo 2Br 9 and Rb 3Mo 2Cl 9. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407751. [PMID: 39392362 PMCID: PMC11615774 DOI: 10.1002/advs.202407751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Lead-based organic-inorganic hybrid perovskites show promise as photovoltaic materials due to their high energy conversion efficiencies. However, concerns regarding lead toxicity and the poor environmental and operational stability of the organic cationic group have limited their widespread application. To address these challenges, the design of all-inorganic lead-free halide perovskites offers potential solutions for photovoltaic applications. Here, two layered perovskite derivatives, Rb3Mo2Cl9 and Rb3Mo2Br9, are explored, and their electronic, structural, and photovoltaic properties are analyzed using advanced theoretical calculations. Rb3Mo2Br9 exhibits a suitable direct bandgap of 1.60 eV, making it a promising candidate for use as a light absorber in low-cost, high-efficiency solar cells. On the other hand, Rb3Mo2Cl9 demonstrates a wide direct bandgap exceeding 1.70 eV, positioning it as a viable option for use as a top cell in tandem photovoltaic systems alongside silicon. Both materials display ideal optical properties in the visible light region and hold promise as excellent inorganic lead-free perovskite alternatives.
Collapse
Affiliation(s)
- Xinxin Deng
- College of ScienceChina Agricultural UniversityBeijing100083China
- Hunan Red Solar Photoelectricity Science and Technology Co., LTD.National Engineering Research Center of Photovoltaic Equipment (NCPVE)Changsha410000China
- School of ScienceChina University of GeosciencesBeijing100083China
| | - Zhesi Zhang
- College of ScienceChina Agricultural UniversityBeijing100083China
| | - Zili Zhang
- School of ScienceChina University of GeosciencesBeijing100083China
| | - Yunyi Wu
- Research Center for Comprehensive Energy TechnologyCTG Science and Technology Research InstituteBeijing100038China
| | - Hongzhou Song
- Institute of Applied Physics and Computational MathematicsBeijing100094China
| | - Huanxin Li
- Department of Chemistry, Physical & Theoretical Chemistry LaboratoryUniversity of OxfordOxfordOX1 3QZUK
- Electrochemical Innovation Lab, Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Bingcheng Luo
- College of ScienceChina Agricultural UniversityBeijing100083China
| |
Collapse
|
16
|
Zhang Q, Li F, Zuo P. Two-Step Chemical Vapor Deposition for Fabrication of FAPbI 3 Single-Crystal Microsheets with High Exciton Binding Energy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24892-24900. [PMID: 39540319 DOI: 10.1021/acs.langmuir.4c02782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hybrid perovskites exhibit highly efficient optoelectronic properties and find widespread applications in areas such as solar cells, light-emitting diodes, photodetectors, and lasers. Here, we report the innovative synthesis of formamidinium lead iodide (FAPbI3) single-crystal microsheets via a two-step chemical vapor deposition (CVD) method. The microsheets exhibit hexagonal and trapezoidal shapes, with hexagonal FAPbI3 growing parallel to the substrate and trapezoidal FAPbI3 growing perpendicular to the substrate. The dominant role of single-exciton recombination in the photoluminescence (PL) of these microsheets is observed, especially pronounced at low temperatures, attributed to the relatively large exciton binding energies of the samples. Calculations reveal exciton binding energies as high as 110.8 meV for hexagonal and 133.3 meV for trapezoidal FAPbI3 single-crystal microsheets, attributed to reduced rotational freedom of the formamidinium (FA) ions. Further investigation into low-temperature phase transitions indicates lower transition temperatures (around 100 K) for these microsheets, suggesting reduced FA ion rotational freedom and consequently higher exciton binding energies.
Collapse
Affiliation(s)
- Qianpeng Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Fang Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Pei Zuo
- Hubei Key Laboratory of Optical Information and Pattern Recognition, School of Optical Information and Energy Engineering, Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety, Hubei Provincial Engineering Technology Research Center of Green Chemical Equipment, School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
17
|
Pan R, Liu Y, Xie J, Wang R, Liu X, Zheng J, Tang X, Wang Y, Wang Z, Zhou X, Dang Y. Halogen-Dependent Circular Dichroism and Magneto-Photoluminescence Effects in Chiral 2D Lead Halide Perovskites. Inorg Chem 2024; 63:21617-21626. [PMID: 39480989 DOI: 10.1021/acs.inorgchem.4c03998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Chiral lead halide perovskites (chiral LHPs) have emerged as one of the best candidates for opto-spintronics due to their large spin-orbit coupling (SOC) and unique chirality-induced spin selectivity (CISS) even in the absence of a magnetic field. Here, we report the impact of halide composition on circular dichroism (CD) and magneto-photoluminescence (PL) effects of chiral 2D LHPs (R/S-MBA)2PbBrxI4-x (MBA = C6H5CH2(CH3)NH3). By tuning the mixing ratio of Br/I halide anions, we find that (R/S-MBA)2PbBrxI4-x thin films exhibit tunable and wide wavelength range CD signals. Simultaneously, the main CD signals near the exciton absorption band gradually blue shift until they disappear. Moreover, the halogen-dependent negative magneto-PL effects of (R/S-MBA)2PbBrxI4-x thin films excited by left/right circularly polarized light can be detected at room temperature. We demonstrated that the halide composition can effectively modulate exciton splitting and chirality transfer in (R/S-MBA)2PbBrxI4-x owing to the chirality-induced SOC and crystalline structure transition, which lead to the adjustable CD signals. The interplay of Rashba-type band spin splitting and spin mixing among bright triplet exciton states is responsible for the halogen-dependent magneto-PL effect of chiral 2D LHPs. This study enables chiral 2D LHPs with CISS to be a new class of promising opto-spintronics materials for exploring high-performance spin-light-emitting diodes by halide engineering.
Collapse
Affiliation(s)
- Ruiheng Pan
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yutong Liu
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jifan Xie
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Rongyu Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xin Liu
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jiayu Zheng
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xiantong Tang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yongjie Wang
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Zhen Wang
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xianju Zhou
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Yangyang Dang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
18
|
Manganelli CL, Martín-García B, Spirito D. Strain in Hybrid Organic-Inorganic Metal Halide Perovskites Microstructures by Numerical Simulations. Chemphyschem 2024; 25:e202400394. [PMID: 38819993 DOI: 10.1002/cphc.202400394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Hybrid organic-inorganic metal halide perovskites (HOIPs) are promising materials for optoelectronics applications. Their optical and electrical properties can be controlled by strain engineering, that results from application of local elastic deformation or deposition on pre-patterned substrates acquiring a conformal 3D shape. Most interesting, their mechanical properties depend on their crystal structure, composition and dimensionality. We explore by numerical simulations the deformation of a selection of HOIPs comprising a broad range of elastic properties. We consider an axial symmetry with the formation of microdomes on flakes. Radial and vertical forces are considered, finding that the radial force is more effective to obtain large deformation. Large vertical displacement and strain is obtained for HOIPs with low stiffness. The layered nature of HOIPs, that are formed by inorganic layers of different thickness and organic spacers, is also investigated, revealing a non-monotonous trend with the proportion of inorganic to organic part.
Collapse
Affiliation(s)
- Costanza Lucia Manganelli
- IHP-Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236, Frankfurt, Germany
| | - Beatriz Martín-García
- CIC nanoGUNE BRTA, Tolosa Hiribidea, 76, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Davide Spirito
- IHP-Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236, Frankfurt, Germany
| |
Collapse
|
19
|
Jeon HC, Kim S, Kim YS. Self-Assembled Hybrid Halide Perovskite Quantum Wire Bundle/Dot for Multiband Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1443. [PMID: 39269105 PMCID: PMC11396847 DOI: 10.3390/nano14171443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In this study, self-assembled halide perovskite quantum wire bundles (QWBs)/quantum dots (QDs) are fabricated using a room temperature-based formation method. The one-dimensional (1D) perovskite-based QWB structures incorporate zero-dimensional QDs within a composite quantum structure. Transmission electron microscopy reveals that quantum wires with diameters ranging from tens of nanometers to approximately 200 nm maintain a single-crystal atomic arrangement in a bundle form. Conversely, QDs are uniformly distributed within the single-phase wire and appear as black dots < 10 nm. Photoluminescence analysis identifies the multiband characteristics of the emissions. The 420-440 nm band is attributed to 1D QWB, whereas the peak appearing in the 530-550 nm range corresponds to lead halide PbBr2 QDs. Thus, the proposed self-assembled 1D QWB/QD composite structure exhibits novel multiband physical properties in the 420-440 and 530-550 nm bands; it offers new opportunities for designing materials with potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Hee Chang Jeon
- Quantum Functional Semiconductor Research Center, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea
| | - Seonghwan Kim
- Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Young-Seong Kim
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Jung-gu, Seoul 04620, Republic of Korea
| |
Collapse
|
20
|
Zhang S, Jin L, Lu Y, Zhang L, Yang J, Zhao Q, Sun D, Thompson JJP, Yuan B, Ma K, Akriti, Park JY, Lee YH, Wei Z, Finkenauer BP, Blach DD, Kumar S, Peng H, Mannodi-Kanakkithodi A, Yu Y, Malic E, Lu G, Dou L, Huang L. Moiré superlattices in twisted two-dimensional halide perovskites. NATURE MATERIALS 2024; 23:1222-1229. [PMID: 38906993 DOI: 10.1038/s41563-024-01921-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.
Collapse
Affiliation(s)
- Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
- Key Laboratory of Precision and Intelligent Chemistry, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Yuan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, China
| | - Jiaqi Yang
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Qiuchen Zhao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | | | - Biao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Akriti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Ho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zitang Wei
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Blake P Finkenauer
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Daria D Blach
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Sarath Kumar
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ermin Malic
- Department of Physics, Philipps-Universität Marburg, Marburg, Germany
| | - Gang Lu
- Department of Physics and Astronomy, California State University Northridge, Northridge, CA, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
21
|
Dong J, Liu Y, Cui Y. Emerging chiral two-dimensional materials. Nat Chem 2024; 16:1398-1407. [PMID: 39169158 DOI: 10.1038/s41557-024-01595-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/04/2024] [Indexed: 08/23/2024]
Abstract
Research into 2D materials has been growing with impressive speed since the discovery of graphene. Such layered materials with ultrathin morphologies and extreme aspect ratios currently display a vast range of properties; however, until recently a conspicuously missing property of 2D materials was global chirality. The situation has changed over the past few years with the implementation of several distinct types of ultrathin chiral 2D crystals. Here we offer a forward-looking perspective on this field to comprehend the fundamentals of global chirality in two dimensions and develop new directions. We specifically discuss the experimental achievements of the emerging chiral 2D materials with a focus on their design strategy, synthesis, structural characterization, fundamental physical properties and possible applications. We will highlight how the molecular-scale local chirality could be significantly transmitted and amplified throughout ultrathin single-crystalline 2D structures, resulting in distinctive global chirality that brings more sophisticated functions.
Collapse
Affiliation(s)
- Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, P. R. China.
| |
Collapse
|
22
|
Naqvi SMKA, Zhu Y, Long H, Nazir Z, Vasiliev RB, Kulakovich O, Chang S. Computational approaches to enhance charge transfer and stability in TPBi-(PEA) 2PbI 4 perovskite interfaces through molecular orientation optimization. NANOSCALE ADVANCES 2024; 6:4149-4159. [PMID: 39114143 PMCID: PMC11302203 DOI: 10.1039/d4na00186a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024]
Abstract
The optimization of material interfaces is crucial for the performance and longevity of optoelectronic devices. This study focuses on 1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi), a key component in perovskite devices known for its efficient charge transfer capabilities. We investigate the TPBi-(PEA)2PbI4 heterostructure interfaces to enhance device durability by optimizing interfacial properties. Our findings reveal that those specific TPBi orientations - at 15 and 30 degrees - ensure strong electronic coupling between TPBi and (PEA)2PbI4, which improves stability at these interfaces. Furthermore, orientations at 15 and 60 degrees markedly enhance charge transfer kinetics, indicating reduced recombination rates and potentially increased efficiency in optoelectronic devices. These results not only underscore the importance of molecular orientation in perovskite devices but also open new avenues for developing more stable and efficient hybrid materials in optoelectronic applications.
Collapse
Affiliation(s)
- Syed Muhammad Kazim Abbas Naqvi
- School of Materials Science & Engineering, Beijing Institute of Technology Beijing 100081 China
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Yanan Zhu
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Hui Long
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Zahid Nazir
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| | - Roman B Vasiliev
- Department of Materials Science, Department of Chemistry, Lomonosov Moscow State University Moscow 119991 Russia
| | - Olga Kulakovich
- Institute of Physics of the National Academy of Sciences of Belarus Minsk 220072 Belarus
| | - Shuai Chang
- Platform for Applied Nanophotonics, Faculty of Materials Science, Shenzhen MSU-BIT University Shenzhen 518115 China
| |
Collapse
|
23
|
Wei Q, Zhang F, Li X, Wu F, Yue Z, Luo J, Liu X. Directed Assembly of Ordered Mixed-Spacer Quasi-2D Halide Perovskites through Homomeric Chains of Intermolecular Bonds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311969. [PMID: 38529775 DOI: 10.1002/smll.202311969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/09/2024] [Indexed: 03/27/2024]
Abstract
Two-dimensional (2D) halide perovskites (HPs) are of significant interest to researchers because of their natural structural frameworks and intriguing optoelectronic properties. However, the direct fabrication of ordered mixed-spacer quasi-2D HPs remains challenging. Herein, a synthetic strategy inspired by the principle of supramolecular synthons is employed for the self-assembly of a series of ordered mixed-spacer bilayered HPs. The key innovation involves the introduction of intermolecular hydrogen bonds using a bifunctional 3-aminopropionitrile cation. Three homogeneous n = 2 structures are obtained, with a subtly ordered perovskite connected by two distinct types of organic cation layers, resulting in a recurrent ABAB' stacking sequence. These three compounds exhibit attractive semiconducting properties. Moderate bandgaps in the range of 2.70 to 2.76 eV with an absorption wavelength range of 448-459 nm exhibit excellent photoelectric response. Moreover, the ordered structures facilitate excellent polarization-sensitive photodetection, with an impressive on/off ratio of 103. The response speed ranged from 298 to 381 µs, and the out-of-plane polarization-related dichroism ratio is determined to be 1.19. Such ordered mixed-spacer bilayered perovskites have not been reported. These results enrich the HPs system and play a significant role in the direct assembly of novel perovskites with ordered structures.
Collapse
Affiliation(s)
- Qingyin Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fen Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoqi Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fafa Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zengshan Yue
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xitao Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Parashar K, Zhang Z, Buturlim V, Jiang J, Roseborough A, Nyman M, Gofryk K, Pachter R, Saparov B. Structural and Physical Properties of Two Distinct 2D Lead Halides with Intercalated Cu(II). JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:9372-9384. [PMID: 39308752 PMCID: PMC11412573 DOI: 10.1039/d4tc01322k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Transition metal cation intercalation between the layers of two-dimensional (2D) metal halides is an underexplored research area. In this work we focus on the synthesis and physical property characterizations of two layered hybrid lead halides: a new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 and the previously reported [Cu(O2C-(CH2)3-NH3)2]PbBr4. These compounds exhibit 2D layered crystal structures with incorporated Cu2+ between the metal halide layers, which is achieved by combining Cu(II) and lead bromide with suitable amino acid precursors. The resultant [Cu(O2C-(CH2)3-NH3)2]PbBr4 adopts a 2D layered perovskite structure, whereas the new compound [Cu(O2C-CH2-NH2)2]Pb2Br4 crystallizes with a new structure type based on edge-sharing dodecahedral PbBr5O3 building blocks. [Cu(O2C-CH2-NH2)2]Pb2Br4 is a semiconductor with a bandgap of 3.25 eV. It shows anisotropic charge transport properties with a semiconductor resistivity of 1.44×1010 Ω·cm (measured along the a-axis) and 2.17×1010 Ω·cm (along the bc-plane), respectively. The fabricated prototype detector based on this material showed response to soft low-energy X-rays at 8 keV with a detector sensitivity of 1462.7 μCGy-1cm-2, indicating its potential application for ionizing radiation detection. These encouraging results are discussed together with the results from density functional theory calculations, optical, magnetic, and thermal property characterization experiments.
Collapse
Affiliation(s)
- Kanika Parashar
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Zheng Zhang
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Volodymyr Buturlim
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Jie Jiang
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | | | - May Nyman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Krzysztof Gofryk
- Glenn T. Seaborg Institute, Idaho National Laboratory, Idaho Falls, ID 83415, USA
| | - Ruth Pachter
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA
| | - Bayram Saparov
- Department of Chemistry & Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
25
|
Zhou Z, Zhu J, Li L, Wang C, Zhang C, Du X, Wang X, Zhao G, Wang R, Li J, Lu Z, Zong Y, Sun Y, Rümmeli MH, Zou G. Monomolecular Membrane-Assisted Growth of Antimony Halide Perovskite/MoS 2 Van der Waals Epitaxial Heterojunctions with Long-Lived Interlayer Exciton. ACS NANO 2024; 18:17282-17292. [PMID: 38904992 DOI: 10.1021/acsnano.4c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Epitaxial growth stands as a key method for integrating semiconductors into heterostructures, offering a potent avenue to explore the electronic and optoelectronic characteristics of cutting-edge materials, such as transition metal dichalcogenide (TMD) and perovskites. Nevertheless, the layer-by-layer growth atop TMD materials confronts a substantial energy barrier, impeding the adsorption and nucleation of perovskite atoms on the 2D surface. Here, we epitaxially grown an inorganic lead-free perovskite on TMD and formed van der Waals (vdW) heterojunctions. Our work employs a monomolecular membrane-assisted growth strategy that reduces the contact angle and simultaneously diminishing the energy barrier for Cs3Sb2Br9 surface nucleation. By controlling the nucleation temperature, we achieved a reduction in the thickness of the Cs3Sb2Br9 epitaxial layer from 30 to approximately 4 nm. In the realm of inorganic lead-free perovskite and TMD heterojunctions, we observed long-lived interlayer exciton of 9.9 ns, approximately 36 times longer than the intralayer exciton lifetime, which benefited from the excellent interlayer coupling brought by direct epitaxial growth. Our research introduces a monomolecular membrane-assisted growth strategy that expands the diversity of materials attainable through vdW epitaxial growth, potentially contributing to future applications in optoelectronics involving heterojunctions.
Collapse
Affiliation(s)
- Zhicheng Zhou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Juntong Zhu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Lutao Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Chen Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Changwen Zhang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xinyu Du
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Xiangyi Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Guoxiang Zhao
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
| | - Ruonan Wang
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Jiating Li
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Zheng Lu
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Yi Zong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou Jiangsu 215123, China
| | - Yinghui Sun
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| | - Mark H Rümmeli
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China
- Institute for Complex Materials, IFW Dresden, 20 Helmholtz Strasse Dresden 01069, Germany
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34 Zabrze 41-819, Poland
- Institute of Environmental Technology, VSB-Technical University of Ostrava,17. Listopadu 15 Ostrava 70833, Czech Republic
| | - Guifu Zou
- College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China
| |
Collapse
|
26
|
Li H, Zhao Y, Lu J, Feng J, Zhao J, Lin K, Feng W, Jiang L, Wei Z, Du Z, Wu Y. Phase Engineering Reinforced Energy Transfer for High-Performance Blue Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308616. [PMID: 38308333 DOI: 10.1002/smll.202308616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Layered metal-halide perovskites, a category of self-assembled quantum wells, are of paramount importance in emerging photonic sources, such as lasers and light-emitting diodes (LEDs). Despite high trap density in two-dimensional (2D) perovskites, efficient non-radiative energy funneling from wide- to narrow-bandgap components, sustained by the Förster resonance energy transfer (FRET) mechanism, contributes to efficient luminescence by light or electrical injection. Herein, it is demonstrated that bandgap extension of layered perovskites to the blue-emitting regime will cause sluggish and inefficient FRET, stemming from the tiny spectral overlap between different phases. Motivated by the importance of blue LEDs and inefficient energy transfer in materials with phase polydispersity, wide-bandgap quasi-2D perovskites with narrow phase distribution, improved crystallinity, and the pure crystal orientation perpendicular to the charge transport layer are developed. Based on this emitter, high-performance blue perovskite LEDs with improved electroluminescence (EL) external quantum efficiency (EQE) of 7.9% at 478 nm, a narrow full width at half-maximum (FWHM) of 22 nm and a more stable EL spectra are achieved. These results provide an important insight into spectrally stable and efficient blue emitters and EL devices based on perovskites.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiahui Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Kebin Lin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Wenjing Feng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Yuchen Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
27
|
Chun F, Jang KY, Zhou H, Kim S, Yoon E, Lee TW. Ultrasmall 2D Sn-Doped MAPbBr 3 Nanoplatelets Enable Bright Pure-Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400959. [PMID: 38940380 DOI: 10.1002/smll.202400959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
Synthesis of perovskites that exhibit pure-blue emission with high photoluminescence quantum yield (PLQY) in both nanocrystal solutions and nanocrystal-only films presents a significant challenge. In this work, a room-temperature method is developed to synthesize ultrasmall, monodispersed, Sn-doped methylammonium lead bromide (MAPb1- xSnxBr3) perovskite nanoplatelets (NPLs) in which the strong quantum confinement effect endows pure blue emission (460 nm) and a high quantum yield (87%). Post-treatment using n-hexylammonium bromide (HABr) repaired surface defects and thus substantially increased the stability and PLQY (80%) of the NPL films. Concurrently, high-precision patterned films (200-µm linewidth) are successfully fabricated by using cost-effective spray-coating technology. This research provides a novel perspective for the preparation of high PLQY, highly stable, and easily processable perovskite nanomaterials.
Collapse
Affiliation(s)
- Fengjun Chun
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyung Yeon Jang
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Huanyu Zhou
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BK21 PLUS SNU Materials Division for Educating Creative Global Leaders, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungjin Kim
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eojin Yoon
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- SN Display Co., Ltd., Seoul, 08826, Republic of Korea
| |
Collapse
|
28
|
Ye W, Yong Z, Go M, Kowal D, Maddalena F, Tjahjana L, Wang H, Arramel A, Dujardin C, Birowosuto MD, Wong LJ. The Nanoplasmonic Purcell Effect in Ultrafast and High-Light-Yield Perovskite Scintillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309410. [PMID: 38235521 DOI: 10.1002/adma.202309410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/14/2024] [Indexed: 01/19/2024]
Abstract
The development of X-ray scintillators with ultrahigh light yields and ultrafast response times is a long sought-after goal. In this work, a fundamental mechanism that pushes the frontiers of ultrafast X-ray scintillator performance is theoretically predicted and experimentally demonstrated: the use of nanoscale-confined surface plasmon polariton modes to tailor the scintillator response time via the Purcell effect. By incorporating nanoplasmonic materials in scintillator devices, this work predicts over tenfold enhancement in decay rate and 38% reduction in time resolution even with only a simple planar design. The nanoplasmonic Purcell effect is experimentally demonstrated using perovskite scintillators, enhancing the light yield by over 120% to 88 ± 11 ph/keV, and the decay rate by over 60% to 2.0 ± 0.2 ns for the average decay time, and 0.7 ± 0.1 ns for the ultrafast decay component, in good agreement with the predictions of our theoretical framework. Proof-of-concept X-ray imaging experiments are performed using nanoplasmonic scintillators, demonstrating 182% enhancement in the modulation transfer function at four line pairs per millimeter spatial frequency. This work highlights the enormous potential of nanoplasmonics in optimizing ultrafast scintillator devices for applications including time-of-flight X-ray imaging and photon-counting computed tomography.
Collapse
Affiliation(s)
- Wenzheng Ye
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Zhihua Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Michael Go
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Dominik Kowal
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Francesco Maddalena
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Liliana Tjahjana
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Hong Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| | - Arramel Arramel
- Nano Center Indonesia, Jalan Raya PUSPIPTEK, South Tangerang, Banten, 15314, Indonesia
| | - Christophe Dujardin
- Universite Claude Bernard Lyon 1, Institut Lumière Matière, UMR 5306 CNRS, Villeurbanne, F-69622, France
- Institut Universitaire de France, 1 Rue Descartes, Paris, Île-de-France, 75005, Paris, France
| | - Muhammad Danang Birowosuto
- Łukasiewicz Research Network-PORT Polish Center for Technology Development, Stabłowicka 147, 54-066, Wrocław, Poland
| | - Liang Jie Wong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- CINTRA (CNRS-International-NTU-THALES Research Alliance), IRL 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
| |
Collapse
|
29
|
Dong K, Yang X, Yao F, Cong H, Zhou H, Zhou S, Cui H, Wang S, Tao C, Sun C, Fu H, Ke W, Fang G. Spacer Conformation Induced Multiple Hydrogen Bonds in 2D Perovskite toward Highly Efficient Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313889. [PMID: 38536181 DOI: 10.1002/adma.202313889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) perovskites typically outperform Ruddlesden-Popper (RP) analogs in terms of photodetection (PD). However, the mechanism behind this enhanced performance remains elusive. Theoretical calculations for elucidating interlayer spacer conformation-induced multiple hydrogen bonds in 2D perovskite are presented, along with the synthesis of DPAPbBr4 (DPB) single crystals (SCs) and their PD properties under X-ray/ultraviolet (UV) excitation. The high-quality DPB SC enhances PD with exceptional photoresponse attributes, including a high on/off ratio (4.89 × 104), high responsivity (2.44 A W⁻1), along with large dynamic linear range (154 dB) and low detection limit (7.1 nW cm⁻2), which are currently the best results among 2D perovskite SC detectors, respectively. Importantly, high-resolution images are obtained under UV illumination with weak light levels. The SC X-ray detector exhibits a high sensitivity of 663 µC Gyair⁻1 cm-2 at 10 V and a detection limit of 1.44 µGyair s⁻1. This study explores 2D DJ perovskites for efficient and innovative optoelectronic applications.
Collapse
Affiliation(s)
- Kailian Dong
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518055, P. R. China
| | - Xiangfeng Yang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fang Yao
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518055, P. R. China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Hengjiang Cong
- College of Chemistry & Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Hai Zhou
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shun Zhou
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Hongsen Cui
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuxin Wang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Chen Tao
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Chengliang Sun
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Huahua Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Weijun Ke
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Guojia Fang
- Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518055, P. R. China
- School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
30
|
Malik S, Zhao Y, He Y, Zhao X, Li H, Yi W, Occhipinti LG, Wang M, Akhavan S. Spray-lithography of hybrid graphene-perovskite paper-based photodetectors for sustainable electronics. NANOTECHNOLOGY 2024; 35:325301. [PMID: 38640909 DOI: 10.1088/1361-6528/ad40b6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/18/2024] [Indexed: 04/21/2024]
Abstract
Paper is an ideal substrate for the development of flexible and environmentally sustainable ubiquitous electronic systems. When combined with nanomaterial-based devices, it can be harnessed for various Internet-of-Things applications, ranging from wearable electronics to smart packaging. However, paper remains a challenging substrate for electronics due to its rough and porous nature. In addition, the absence of established fabrication methods is impeding its utilization in wearable applications. Unlike other paper-based electronics with added layers, in this study, we present a scalable spray-lithography on a commercial paper substrate. We present a non-vacuum spray-lithography of chemical vapor deposition (CVD) single-layer graphene (SLG), carbon nanotubes (CNTs) and perovskite quantum dots (QDs) on a paper substrate. This approach combines the advantages of two large-area techniques: CVD and spray-coating. The first technique allows for the growth of SLG, while the second enables the spray coating of a mask to pattern CVD SLG, electrodes (CNTs), and photoactive (QDs) layers. We harness the advantages of perovskite QDs in photodetection, leveraging their strong absorption coefficients. Integrating them with the graphene enhances the photoconductive gain mechanism, leading to high external responsivity. The presented device shows high external responsivity of ∼520 A W-1at 405 nm at <1 V bias due to the photoconductive gain mechanism. The prepared paper-based photodetectors (PDs) achieve an external responsivity of 520 A W-1under 405 nm illumination at <1 V operating voltage. To the best of our knowledge, our devices have the highest external responsivity among paper-based PDs. By fabricating arrays of PDs on a paper substrate in the air, this work highlights the potential of this scalable approach for enabling ubiquitous electronics on paper.
Collapse
Affiliation(s)
- Sunaan Malik
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yining Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Yutong He
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Xinyu Zhao
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Hongyu Li
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Wentian Yi
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luigi G Occhipinti
- Cambridge Graphene Centre, University of Cambridge, Cambridge, United Kingdom
| | - Mingqing Wang
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Shahab Akhavan
- Institute for Materials Discovery, University College London, London, United Kingdom
| |
Collapse
|
31
|
Zhao K, Wang Y, Lin K, Ji T, Shi L, Zheng K, Cui Y, Li G. High-Quality Solution-Processed Quasi-2D Perovskite for Low-Threshold Lasers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22361-22368. [PMID: 38628106 DOI: 10.1021/acsami.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Spin-coated quasi-two-dimensional halide perovskite films, which exhibit superior optoelectronic properties and environmental stability, have recently been extensively studied for lasers. Crystallinity is of great importance for the laser performance. Although some parameters related to the spin-coating process have been studied, the in-depth understanding and effective control of the acceleration rate on two-dimensional perovskite crystallization during spin-coating are still unknown. Here we investigate the effect of solvent evaporation on the microstructure of the final perovskite films during the spin-coating process. The crystallization quality of the film can be significantly improved by controlling solvent evaporation. As a result, the prepared quasi-2D perovskite film exhibits a stimulated emission threshold (pump: 343 nm, 6 kHz, 290 fs) of 550 nm as low as 16.2 μJ/cm2. Transient absorption characterization shows that the radiative biexciton recombination time is reduced from 738.5 to 438.3 ps, benefiting from the improved crystallinity. The faster biexciton recombination significantly enhanced the photoluminescence efficiency, which is critical for population inversion. This work could contribute to the development of low-threshold lasers.
Collapse
Affiliation(s)
- Kefan Zhao
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yujing Wang
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kai Lin
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ting Ji
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Linlin Shi
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kaibo Zheng
- Chemical Physics Division and NanoLund, Lund University, Box 124, Lund 22100, Sweden
| | - Yanxia Cui
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030006, China
| | - Guohui Li
- College of Physics and Optoelectronics, Key Laboratory of Interface Science and Engineering in Advanced Materials, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030006, China
| |
Collapse
|
32
|
Guo J, Zhang J, Di Y, Gan Z. Research Progress on Rashba Effect in Two-Dimensional Organic-Inorganic Hybrid Lead Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:683. [PMID: 38668177 PMCID: PMC11054462 DOI: 10.3390/nano14080683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
The Rashba effect appears in the semiconductors with an inversion-asymmetric structure and strong spin-orbit coupling, which splits the spin-degenerated band into two sub-bands with opposite spin states. The Rashba effect can not only be used to regulate carrier relaxations, thereby improving the performance of photoelectric devices, but also used to expand the applications of semiconductors in spintronics. In this mini-review, recent research progress on the Rashba effect of two-dimensional (2D) organic-inorganic hybrid perovskites is summarized. The origin and magnitude of Rashba spin splitting, layer-dependent Rashba band splitting of 2D perovskites, the Rashba effect in 2D perovskite quantum dots, a 2D/3D perovskite composite, and 2D-perovskites-based van der Waals heterostructures are discussed. Moreover, applications of the 2D Rashba effect in circularly polarized light detection are reviewed. Finally, future research to modulate the Rashba strength in 2D perovskites is prospected, which is conceived to promote the optoelectronic and spintronic applications of 2D perovskites.
Collapse
Affiliation(s)
- Junhong Guo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Wenyuan Road 9, Nanjing 210023, China;
| | - Jinlei Zhang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China;
| | - Yunsong Di
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
| | - Zhixing Gan
- Center for Future Optoelectronic Functional Materials, School of Computer and Electronic Information, Nanjing Normal University, Nanjing 210023, China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
33
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
34
|
Fu Y, Liu Z, Yue S, Zhang K, Wang R, Zhang Z. Optical Second Harmonic Generation of Low-Dimensional Semiconductor Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:662. [PMID: 38668156 PMCID: PMC11054873 DOI: 10.3390/nano14080662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024]
Abstract
In recent years, the phenomenon of optical second harmonic generation (SHG) has attracted significant attention as a pivotal nonlinear optical effect in research. Notably, in low-dimensional materials (LDMs), SHG detection has become an instrumental tool for elucidating nonlinear optical properties due to their pronounced second-order susceptibility and distinct electronic structure. This review offers an exhaustive overview of the generation process and experimental configurations for SHG in such materials. It underscores the latest advancements in harnessing SHG as a sensitive probe for investigating the nonlinear optical attributes of these materials, with a particular focus on its pivotal role in unveiling electronic structures, bandgap characteristics, and crystal symmetry. By analyzing SHG signals, researchers can glean invaluable insights into the microscopic properties of these materials. Furthermore, this paper delves into the applications of optical SHG in imaging and time-resolved experiments. Finally, future directions and challenges toward the improvement in the NLO in LDMs are discussed to provide an outlook in this rapidly developing field, offering crucial perspectives for the design and optimization of pertinent devices.
Collapse
Affiliation(s)
- Yue Fu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Zhengyan Liu
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Song Yue
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Kunpeng Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
| | - Ran Wang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| | - Zichen Zhang
- Microelectronics Instruments and Equipment R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, 3 Beitucheng West Road, Beijing 100029, China; (Y.F.); (Z.L.); (S.Y.); (K.Z.)
- School of Integrated Circuits, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, China
| |
Collapse
|
35
|
Yuan M, Qiu Y, Gao H, Feng J, Jiang L, Wu Y. Molecular Electronics: From Nanostructure Assembly to Device Integration. J Am Chem Soc 2024; 146:7885-7904. [PMID: 38483827 DOI: 10.1021/jacs.3c14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Integrated electronics and optoelectronics based on organic semiconductors have attracted considerable interest in displays, photovoltaics, and biosensing owing to their designable electronic properties, solution processability, and flexibility. Miniaturization and integration of devices are growing trends in molecular electronics and optoelectronics for practical applications, which requires large-scale and versatile assembly strategies for patterning organic micro/nano-structures with simultaneously long-range order, pure orientation, and high resolution. Although various integration methods have been developed in past decades, molecular electronics still needs a versatile platform to avoid defects and disorders due to weak intermolecular interactions in organic materials. In this perspective, a roadmap of organic integration technologies in recent three decades is provided to review the history of molecular electronics. First, we highlight the importance of long-range-ordered molecular packing for achieving exotic electronic and photophysical properties. Second, we classify the strategies for large-scale integration of molecular electronics through the control of nucleation and crystallographic orientation, and evaluate them based on factors of resolution, crystallinity, orientation, scalability, and versatility. Third, we discuss the multifunctional devices and integrated circuits based on organic field-effect transistors (OFETs) and photodetectors. Finally, we explore future research directions and outlines the need for further development of molecular electronics, including assembly of doped organic semiconductors and heterostructures, biological interfaces in molecular electronics and integrated organic logics based on complementary FETs.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
| | - Yuchen Qiu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hanfei Gao
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yuchen Wu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
36
|
Jin L, Mora Perez C, Gao Y, Ma K, Park JY, Li S, Guo P, Dou L, Prezhdo O, Huang L. Superior Phonon-Limited Exciton Mobility in Lead-Free Two-Dimensional Perovskites. NANO LETTERS 2024; 24:3638-3646. [PMID: 38498912 DOI: 10.1021/acs.nanolett.3c04895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tin-based two-dimensional (2D) perovskites are emerging as lead-free alternatives in halide perovskite materials, yet their exciton dynamics and transport remain less understood due to defect scattering. Addressing this, we employed temperature-dependent transient photoluminescence (PL) microscopy to investigate intrinsic exciton transport in three structurally analogous Sn- and Pb-based 2D perovskites. Employing conjugated ligands, we synthesized high-quality crystals with enhanced phase stability at various temperatures. Our results revealed phonon-limited exciton transport in Sn perovskites, with diffusion constants increasing from 0.2 cm2 s-1 at room temperature to 0.6 cm2 s-1 at 40 K, and a narrowing PL line width. Notably, Sn-based perovskites exhibited greater exciton mobility than their Pb-based equivalents, which is attributed to lighter effective masses. Thermally activated optical phonon scattering was observed in Sn-based compounds but was absent in Pb-based materials. These findings, supported by molecular dynamics simulations, demonstrate that the phonon scattering mechanism in Sn-based halide perovskites can be distinct from their Pb counterparts.
Collapse
Affiliation(s)
- Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carlos Mora Perez
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Yao Gao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Letian Dou
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Oleg Prezhdo
- Departments of Chemistry and Physics and Astronomy, University of Southern California, Los Angeles, California 90007, United States
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
37
|
Zhou T, Kuang A. Superalkali halide perovskites with suitable direct band gaps for photovoltaic applications. NANOSCALE 2024; 16:5130-5136. [PMID: 38358028 DOI: 10.1039/d3nr06132a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The construction of superalkali halide perovskites has attracted attention for the development of new photovoltaic materials, but stable superalkalis have not been found until now. Herein, to construct new three-dimensional superalkali halide perovskites with a MI3 frame (M = Sn and Pb), a new Li(H2O)3+ superalkali cation is designed and selected based on low vertical ionization potential, suitable tolerance factor, small ionic radius and large dissociation energy. High-throughput first-principles calculations show that superalkalis with lower vertical ionization potentials exhibit stronger interactions with the MI3 frame. The normal and cubic Li(H2O)3MI3 perovskites and cubic Li(H2O)4PbI3 perovskites have direct band gaps, s-p and p-p electron transitions, effective carrier masses of less than 0.45me and exciton binding energies of less than 291 meV. Moreover, the cubic Li(H2O)3PbI3 perovskite with a direct band gap of 1.40 eV can in theory show a power conversion efficiency of 33.49%. These results strongly suggest that superalkali cations with large dissociation energy can be used to develop stable superalkali perovskites for photovoltaic applications.
Collapse
Affiliation(s)
- Tingwei Zhou
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Anlong Kuang
- Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
38
|
Luo X, Zhao X, Zhao X, Li Y. Electron-Phonon Coupling-Mediated Ultralong Carrier Lifetime in an All-Inorganic Two-Dimensional Cs 2PbI 2Cl 2 Perovskite: Explanation for the High Antisite Defect Tolerance. J Phys Chem Lett 2024; 15:1784-1794. [PMID: 38329066 DOI: 10.1021/acs.jpclett.3c03588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Two-dimensional (2D) halide perovskite are appealing candidates for applications in optoelectronics and photovoltaics, but their energy conversion efficiency is severely limited by nonradiative electron-hole recombination. In most investigations, point defects with deep defect levels and deep charge-state transition levels in the band gap are treated as the carrier recombination centers. For the all-inorganic 2D Css 2PbI2Cl2, the IPb antisite defect is the most likely to form and cause nonradiative electron-hole recombination. By using density functional theory and ab initio nonradiative molecular dynamics calculations, we found that the IPb defect can introduce the deep acceptor and donor levels into the band gap. Because electron-phonon coupling gives rise to weak nonadiabatic coupling and rapid loss of electronic coherence, those levels lead to a reduction of the carrier loss and the prolongation of the excited-state carrier lifetime, thereby enhancing the photoelectric and defect tolerance properties of the Cs2PbI2Cl2 material. These results could deepen the understanding of the chemistry of defects and carrier dynamics in perovskite materials.
Collapse
Affiliation(s)
- Xingyun Luo
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xiaoji Zhao
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| | - Xian Zhao
- Center for Optics Research and Engineering of Shandong University, Shandong University, Qingdao 266237, China
| | - Yanlu Li
- State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
39
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|
40
|
Li S, Liao K, Bi Y, Ding K, Sun E, Zhang C, Wang L, Hu F, Xiao M, Wang X. Optical readout of charge carriers stored in a 2D memory cell of monolayer WSe 2. NANOSCALE 2024; 16:3668-3675. [PMID: 38289585 DOI: 10.1039/d3nr04263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Owing to their superior charge retaining and transport characteristics, 2D transition metal dichalcogenides are investigated for practical applications in various memory-cell structures. Herein, we fabricated a quasi-one-terminal 2D memory cell by partially depositing a WSe2 monolayer on an Au electrode, which can be manipulated to achieve efficient charge injection upon the application or removal of external bias. Furthermore, the amount of charge carriers stored in the memory cell could be optically probed because of its close correlation with the fluorescence efficiency of WSe2, allowing us to achieve an electron retention time of ∼300 s at the cryogenic temperature of 4 K. Accordingly, the simplified device structure and the non-contact optical readout of the stored charge carriers present new research opportunities for 2D memory cells in terms of both fundamental mechanism studies and practical development for integrated nanophotonic devices.
Collapse
Affiliation(s)
- Si Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Kan Liao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Yanfeng Bi
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Ke Ding
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Encheng Sun
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), and Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.
| | - Fengrui Hu
- College of Engineering and Applied Sciences, and MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210093, China.
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
41
|
Li B, Xu J, Kocoj CA, Li S, Li Y, Chen D, Zhang S, Dou L, Guo P. Dual-Hyperspectral Optical Pump-Probe Microscopy with Single-Nanosecond Time Resolution. J Am Chem Soc 2024; 146:2187-2195. [PMID: 38216555 DOI: 10.1021/jacs.3c12284] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
In recent years, optical pump-probe microscopy (PPM) has become a vital technique for spatiotemporally imaging electronic excitations and charge-carrier transport in metals and semiconductors. However, existing methods are limited by mechanical delay lines with a probe time window up to several nanoseconds (ns) or monochromatic pump and probe sources with restricted spectral coverage and temporal resolution, hindering their amenability in studying relatively slow processes. To bridge these gaps, we introduce a dual-hyperspectral PPM setup with a time window spanning from nanoseconds to milliseconds and single-nanosecond resolution. Our method features a wide-field probe tunable from 370 to 1000 nm and a pump spanning from 330 nm to 16 μm. We apply this PPM technique to study various two-dimensional metal-halide perovskites (2D-MHPs) as representative semiconductors by imaging their transient responses near the exciton resonances under both above-band gap electronic pump excitation and below-band gap vibrational pump excitation. The resulting spatially and temporally resolved images reveal insights into heat dissipation, film uniformity, distribution of impurity phases, and film-substrate interfaces. In addition, the single-nanosecond temporal resolution enables the imaging of in-plane strain wave propagation in 2D-MHP single crystals. Our method, which offers extensive spectral tunability and significantly improved time resolution, opens new possibilities for the imaging of charge carriers, heat, and transient phase transformation processes, particularly in materials with spatially varying composition, strain, crystalline structure, and interfaces.
Collapse
Affiliation(s)
- Bowen Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Joy Xu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Conrad A Kocoj
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Yanyan Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Shuchen Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| |
Collapse
|
42
|
Park JY, Song R, Liang J, Jin L, Wang K, Li S, Shi E, Gao Y, Zeller M, Teat SJ, Guo P, Huang L, Zhao YS, Blum V, Dou L. Thickness control of organic semiconductor-incorporated perovskites. Nat Chem 2023; 15:1745-1753. [PMID: 37653228 DOI: 10.1038/s41557-023-01311-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Two-dimensional organic semiconductor-incorporated perovskites are a promising family of hybrid materials for optoelectronic applications, owing in part to their inherent quantum well architecture. Tuning their structures and properties for specific properties, however, has remained challenging. Here we report a general method to tune the dimensionality of phase-pure organic semiconductor-incorporated perovskite single crystals during their synthesis, by judicious choice of solvent. The length of the conjugated semiconducting organic cations and the dimensionality (n value) of the inorganic layers can be manipulated at the same time. The energy band offsets and exciton dynamics at the organic-inorganic interfaces can therefore be precisely controlled. Furthermore, we show that longer and more planar π-conjugated organic cations induce a more rigid inorganic crystal lattice, which leads to suppressed exciton-phonon interactions and better optoelectronic properties as compared to conventional two-dimensional perovskites. As a demonstration, optically driven lasing behaviour with substantially lower lasing thresholds was realized.
Collapse
Affiliation(s)
- Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Jie Liang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Linrui Jin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Shunran Li
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, China
| | - Yao Gao
- State Key Laboratory of Material Processing and Die & Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Matthias Zeller
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| | - Volker Blum
- Department of Chemistry, Duke University, Durham, NC, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
- Department of Chemistry, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
43
|
Kim I, Choi GE, Mei M, Kim MW, Kim M, Kwon YW, Jeong TI, Kim S, Hong SW, Kyhm K, Taylor RA. Gain enhancement of perovskite nanosheets by a patterned waveguide: excitation and temperature dependence of gain saturation. LIGHT, SCIENCE & APPLICATIONS 2023; 12:285. [PMID: 38001058 PMCID: PMC10673887 DOI: 10.1038/s41377-023-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023]
Abstract
Optical gain enhancement of two-dimensional CsPbBr3 nanosheets was studied when the amplified spontaneous emission is guided by a patterned structure of polyurethane-acrylate. Given the uncertainties and pitfalls in retrieving a gain coefficient from the variable stripe length method, a gain contour [Formula: see text] was obtained in the plane of spectrum energy (ℏω) and stripe length (x), whereby an average gain was obtained, and gain saturation was analysed. Excitation and temperature dependence of the gain contour show that the waveguide enhances both gain and thermal stability due to the increased optical confinement and heat dissipation, and the gain origins were attributed to the two-dimensional excitons and the localized states.
Collapse
Affiliation(s)
- Inhong Kim
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Ga Eul Choi
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Ming Mei
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Min Woo Kim
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Minju Kim
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Young Woo Kwon
- Department of Nano-Fusion Technology, Pusan National University, Busan, 46241, Republic of Korea
| | - Tae-In Jeong
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Seungchul Kim
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea
| | - Suck Won Hong
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea.
| | - Kwangseuk Kyhm
- Department of Opto & Cogno Mechatronics Engineering, RCDAMP, Pusan National University, Busan, 46241, Republic of Korea.
| | - Robert A Taylor
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, OX1 3PU, UK.
| |
Collapse
|
44
|
Zhang Y, Zhao Z, Liu Z, Tang A. The Scale Effects of Organometal Halide Perovskites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2935. [PMID: 37999290 PMCID: PMC10674384 DOI: 10.3390/nano13222935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Organometal halide perovskites have achieved great success in solution-processed photovoltaics. The explorations quickly expanded into other optoelectronic applications, including light-emitting diodes, lasers, and photodetectors. An in-depth analysis of the special scale effects is essential to understand the working mechanisms of devices and optimize the materials towards an enhanced performance. Generally speaking, organometal halide perovskites can be classified in two ways. By controlling the morphological dimensionality, 2D perovskite nanoplatelets, 1D perovskite nanowires, and 0D perovskite quantum dots have been studied. Using appropriate organic and inorganic components, low-dimensional organic-inorganic metal halide hybrids with 2D, quasi-2D, 1D, and 0D structures at the molecular level have been developed and studied. This provides opportunities to investigate the scale-dependent properties. Here, we present the progress on the characteristics of scale effects in organometal halide perovskites in these two classifications, with a focus on carrier diffusion, excitonic features, and defect properties.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Luminescence and Optical Information, School of Physical Science and Engineering, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
| | - Zhenze Zhao
- School of Chemistry, Food and Pharmacy, University of Reading, Reading RGE 6AH, UK;
| | - Zhe Liu
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, School of Physical Science and Engineering, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
| |
Collapse
|
45
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
46
|
Stavrou M, Mühlbach AM, Arapakis V, Groß E, Kratky T, Günther S, Rieger B, Couris S. Exceptional ultrafast nonlinear optical response of functionalized silicon nanosheets. NANOSCALE 2023; 15:16636-16649. [PMID: 37823282 DOI: 10.1039/d3nr03497f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The present work reports on the ultrafast saturable absorption (SA), optical limiting (OL), and the nonlinear refractive response of hydride-terminated silicon nanosheets (SiNS-H) differently functionalized with styrene and tert-butyl methacrylate (tBuMA), namely, SiNS-styrene and SiNS-tBuMA, using 50 fs, 400 nm and 70 fs, 800 nm laser pulses. SiNS-styrene and SiNS-tBuMA exhibit dramatically enhanced nonlinear optical (NLO) responses compared to SiNS-H, with their absorptive nonlinearity strongly dependent on the laser excitation wavelength. More specifically, the studied functionalized SiNSs reveal strong SA behavior under 400 nm laser excitation, with NLO absorption coefficients, saturable intensities, and modulation depths comparable to various two-dimensional (2D) materials, known to exhibit strong SA, such as graphene, black phosphorous (BP), some transition metal dichalcogenides (TMDs), and some MXenes. On the other hand, under 800 nm laser excitation, SiNS-styrene and SiNS-tBuMA show highly efficient OL performance with OL onset values of about 0.0045 and 0.0065 J cm-2, respectively, which are significantly lower than those of other 2D nanostructures. In addition, it is shown that both SiNS samples have great potential in already existing Si-based optoelectronic devices for optical-switching applications since they exhibit very strong NLO refraction comparable to that of bulk Si. The results of the present work demonstrate that the chemical functionalization of SiNSs provides a highly efficient strategy for the preparation of 2D Si-based nanostructures with enhanced NLO response in view of several optoelectronic and photonic applications, such as OL, SA, and all-optical switching.
Collapse
Affiliation(s)
- Michalis Stavrou
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| | - Amelie M Mühlbach
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Vasilios Arapakis
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| | - Elisabeth Groß
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Tim Kratky
- Physical Chemistry with Focus on Catalysis, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Sebastian Günther
- Physical Chemistry with Focus on Catalysis, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Bernhard Rieger
- Wacker-Chair of Macromolecular Chemistry, Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Stelios Couris
- Department of Physics, University of Patras, 265 04 Patras, Greece.
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), 26504 Rio-Patras, Greece.
| |
Collapse
|
47
|
Dahl JC, Niblett S, Cho Y, Wang X, Zhang Y, Chan EM, Alivisatos AP. Scientific Machine Learning of 2D Perovskite Nanosheet Formation. J Am Chem Soc 2023; 145:23076-23087. [PMID: 37847242 DOI: 10.1021/jacs.3c05984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
We apply a scientific machine learning (ML) framework to aid the prediction and understanding of nanomaterial formation processes via a joint spectral-kinetic model. We apply this framework to study the nucleation and growth of two-dimensional (2D) perovskite nanosheets. Colloidal nanomaterials have size-dependent optical properties and can be observed in situ, all of which make them a good model for understanding the complex processes of nucleation, growth, and phase transformation of 2D perovskites. Our results demonstrate that this model nanomaterial can form through two processes at the nanoscale: either via a layer-by-layer chemical exfoliation process from lead bromide nanocrystals or via direct nucleation from precursors. We utilize a phenomenological kinetic analysis to study the exfoliation process and scientific machine learning to study the direct nucleation and growth and discuss the circumstances under which it is more appropriate to use phenomenological or more complex machine learning models. Data for both analysis techniques are collected through in situ spectroscopy in a stopped flow chamber, incorporating over 500,000 spectra taken under more than 100 different conditions. More broadly, our research shows that the ability to utilize and integrate traditional kinetics and machine learning methods will greatly assist in the understanding of complex chemical systems.
Collapse
Affiliation(s)
- Jakob C Dahl
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Samuel Niblett
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Xingzhi Wang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ye Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - A Paul Alivisatos
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
48
|
Zhou T, Shao B. Atomically thin two-dimensional hybrid perovskites using hydrophobic superalkali cations with tunable electron transition type. Phys Chem Chem Phys 2023; 25:27409-27416. [PMID: 37794817 DOI: 10.1039/d3cp03721e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The direct band gaps of two-dimensional (2D) metal halide perovskites can be tuned via component engineering, but their electron transition type hardly changes. Herein, atomically thin (C5NH6)2MX4 (M = Ge, Sn, Pb; X = Cl, Br, I) hybrid perovskites with hydrophobic superalkali cations were systematically explored using high-throughput hybrid density functional calculations and ab initio molecular dynamics simulations. We found that the electron transition between the M and X atoms was converted into that between the C5NH6 parts and X atoms via X change in the 2D (C5NH6)2MX4 perovskites. Negative formation energy, stable thermodynamic and kinetic properties, sharp valence bands, and tunable direct band gaps were obtained for the 2D perovskites. A power conversion efficiency (PCE) of 32.54% was obtained in theory for the passivated cubic NH2CHNH2PbI3 (FAPbI3) perovskite containing the 2D (C5NH6)2PbI4 perovskite. The hybrid Pb-free (C5NH6)2SnI4 perovskite with a direct bandgap of 1.56 eV may be viewed as a potential passivation material for perovskite devices. Moreover, the C5NH6 cations and X atoms show different hydrogen bonding interactions, which can be extended to other atomically thin organic-inorganic hybrid perovskites.
Collapse
Affiliation(s)
- Tingwei Zhou
- Chongqing key Laboratory of Micro&Nano Structure Optoelectronics, School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | - Bin Shao
- China Academy of Space Technology (Xi'an), Xi'an, 710110, China
| |
Collapse
|
49
|
Gao Y, Zhang K, Lu Z, Wu X. Fluorination and Conjugation Engineering Synergistically Enhance the Optoelectronic Properties of Two-Dimensional Hybrid Organic-Inorganic Perovskites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46205-46212. [PMID: 37738061 DOI: 10.1021/acsami.3c08415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) are expected to be a viable alternative to three-dimensional (3D) analogs in solar cells (SCs) and optoelectronic devices due to their high stability, diverse composition, and physical properties. However, unsuitable band alignment and large bandgaps limit the power conversion efficiency (PCE) improvement of SCs based on 2D HOIPs. Here, we report a molecular design strategy that combines fluorination and conjugation engineering to tune the electronic structure and optimize the PCE of 2D HOIPs. Our results show that type IIa band alignment and tunable bandgaps can be achieved in 2D Dion-Jacobson (DJ) HOIPs by H/F substitution of organic cations with different degrees of conjugation. In general, the bandgap of 2D DJ-HOIPs decreases monotonously with the increase of the number of F atoms, which is due to the gradual decrease of the lowest unoccupied molecular orbitals (LUMO) of organic cations. In addition, the enhanced interlayer charge transfer and higher dielectric constant suggest that the fluorination-induced dielectric limitations are weakened. The estimated PCE of 2D DJ-HOIPs is exponentially increased and positively correlated with the degree of conjugation and fluorination of organic cations, with a PCE approaching 29% under their synergistic effect. Our results not only provide promising candidates for photovoltaic device applications but also provide an effective method for PCE optimization.
Collapse
Affiliation(s)
- Yan Gao
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Kai Zhang
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology, School of Physics and Electronic Information, and the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241002, China
| | - Xiaojun Wu
- CAS Key Laboratory for Materials for Energy Conversion, School of Chemistry and Materials Science, CAS Center for Excellence in Nanoscience and Synergetic Innovation of Quantum Information & Quantum Technology, University of Science and Technology of China, Hefei 230026, Anhui, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
50
|
Gao Y, Wan P, Jin T, Hu H, Liu L, Niu G. Direct Fast-Neutron Detection by 2D Perovskite Semiconductor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301530. [PMID: 37282767 DOI: 10.1002/smll.202301530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/27/2023] [Indexed: 06/08/2023]
Abstract
Fast-neutrons play a critical role in a range of applications, including medical imaging, therapy, and nondestructive inspection. However, direct detecting fast-neutrons by semiconductors has proven to be challenging due to their weak interaction with most matter and the requirement of high carrier mobility-lifetime (µτ) product for efficient charge collection. Herein, a novel approach is presented to direct fast-neutron detection using 2D Dion-Jacobson perovskite semiconductor BDAPbBr4 . This material features a high fast-neutron caption cross-section, good electrical stability, high resistivity, and, most importantly, a record-high µτ product of 3.3 × 10-4 cm2 V-1 , outperforming most reported fast-neutron detection semiconductors. As a result, BDAPbBr4 detector exhibited good response to fast-neutrons, not only achieving fast-neutron energy spectra in counting mode, but also obtaining linear and fast response in integration mode. This work provides a paradigm-shifting strategy for designing materials that efficiently detect fast-neutrons and paves the way toward exciting applications in fast-neutron imaging and therapy.
Collapse
Affiliation(s)
- Yuting Gao
- Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Pengying Wan
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tong Jin
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Hu
- Hubei Jiufengshan Laboratory, 9 Jiulonghu Street, Wuhan, Hubei, 430074, China
| | - Linyue Liu
- School of Microelectronics, Xi'an Jiaotong University, Xi'an, 710049, China
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|