1
|
He Y, Li Y, Ma X, Zhou X, Huang Y, Sun J. Aryliodonium Salt-Induced Regioselective Access to meta-Substituted Anilines by Arylation of Azoles. J Org Chem 2024; 89:16282-16291. [PMID: 38385662 DOI: 10.1021/acs.joc.3c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
A highly efficient aryliodonium salt-induced regioselective access to meta-substituted anilines by arylation of azoles has been developed under catalyst-free conditions. This efficient transformation provides a facile and scalable approach to a wide range of biologically active N-arylazoles with moderate to high yields. According to the control experiments, two plausible pathways, including a Michael pathway and a free radical coupling pathway, for the reaction were proposed.
Collapse
Affiliation(s)
- Yaqi He
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yanan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiangmei Ma
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Xuan Zhou
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Yekai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan 232001, China
| | - Jianan Sun
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
2
|
Lamb MC, Steiniger KA, Trigoura LK, Wu J, Kundu G, Huang H, Lambert TH. Electrophotocatalysis for Organic Synthesis. Chem Rev 2024; 124:12264-12304. [PMID: 39441982 DOI: 10.1021/acs.chemrev.4c00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Electrocatalysis and photocatalysis have been the focus of extensive research efforts in organic synthesis in recent decades, and these powerful strategies have provided a wealth of new methods to construct complex molecules. Despite these intense efforts, only recently has there been a significant focus on the combined use of these two modalities. Nevertheless, the past five years have witnessed rapidly growing interest in the area of electrophotocatalysis. This hybrid strategy capitalizes on the enormous benefits of using photons as reagents while also employing an electric potential as a convenient and tunable source or sink of electrons. Research on this topic has led to a number of methods for C-H functionalization, reductive cross-coupling, and olefin addition among others. This field has also seen the use of a broad range of catalyst types, including both metal and organocatalysts. Of particular note has been work with open-shell photocatalysts, which tend to have comparatively large redox potentials. Electrochemistry provides a convenient means to generate such species, making electrophotocatalysis particularly amenable to this intriguing class of redox catalyst. This review surveys methods in the area of electrophotocatalysis as applied to organic synthesis, organized broadly into oxidative, reductive, and redox neutral transformations.
Collapse
Affiliation(s)
- Matthew C Lamb
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Keri A Steiniger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Leslie K Trigoura
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jason Wu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Gourab Kundu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - He Huang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Wang ZL, Cheng JK, Wang F. Iron-catalyzed C-7 Selective NH 2 Amination of Indoles. Angew Chem Int Ed Engl 2024; 63:e202412103. [PMID: 38979667 DOI: 10.1002/anie.202412103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
7-Aminoindoles are important synthetic intermediates to a broad range of bioactive molecules. Transition metal-catalyzed directed C-H amination is among the most straightforward route for their synthesis, whereas methods that could directly incorporate an NH2 group in a highly selective manner remains elusive. Moreover, there is still high demand for the development of earth-abundant metal catalysis for such attractive reactivity. We present here the first C-7 selective NH2 amination of indoles through a directed homolytic aromatic substitution (HAS) with iron-aminyl radical. The reaction exhibits broad substrate scope, tolerates variety of functional groups, and is readily scalable with catalyst loading down to 0.1 mol % and turnover number (TON) up to 4500.
Collapse
Affiliation(s)
- Zhan-Lin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Jin-Kai Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Fei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
4
|
Yan G, Hu X, Miao Z, Liu Y, Zeng X, Lin L, Ikkala O, Peng B. Alphabet Handwriting Recognition: From Wood-Framed Hydrogel Arrays Design to Machine Learning Decoding. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404437. [PMID: 39494625 DOI: 10.1002/advs.202404437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Indexed: 11/05/2024]
Abstract
Handwriting recognition is a highly integrated system, demanding hardware to collect handwriting signals and software to deal with input data. Nonetheless, the design of such a system from scratch with sustainable materials and an easily accessible computing network presents significant challenges. In pursuit of this goal, a flexible, and electrically conductive wood-derived hydrogel array is developed as a handwriting input panel, enabling recognizing alphabet handwriting assisted by machine learning technique. For this, lignin extraction-refill, polypyrrole coating, and polyacrylic acid filling, endowing flexibility, and electrical conduction to wood are sequentially implemented. Subsequently, these woods are manufactured into a 5 × 5 array, creating a matrix of signals upon handwriting. Efficient handwritten recognition is then achieved through appropriate manual feature extraction and algorithms with low complexity within a computing network, as demonstrated in this work, the strategic choice of expertise-based feature engineering and simplified algorithms effectively boost the overall model performance on handwriting recognition. With potential adaptability, further applications in customized wearable devices and hands-on healthcare appliances are envisioned.
Collapse
Affiliation(s)
- Guihua Yan
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Xichen Hu
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| | - Ziyue Miao
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| | - Yongde Liu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, China
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, Aalto, FI-00076, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai, 200433, China
| |
Collapse
|
5
|
Fang X, Xie H, Huang H, Wang Y, Chen T, Yan Z, Yao H. The synthesis of aryl amines enabled by rearrangement and demethylaromatization of cyclohexadienimines. Org Biomol Chem 2024. [PMID: 39431912 DOI: 10.1039/d4ob01338g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The rearrangement and demethylaromatization of cyclohexadienimines (namely cyclohexadienone imines) were investigated in detail under metal-free conditions. Treating 4-aryl-4-methylcyclohexadienimines with acyl chloride at 100 °C in dichloromethane led to the smooth formation of m-arylaniline derivatives in good to excellent yields, in which [1,2]-migration of the aryl group at C-4 occurred exclusively. The demethylaromatization of 4-aryl-4-methylcyclohexadienimines mediated by iodotriphenylphosphonium iodide (in situ prepared via the reaction of triphenylphosphine with iodine) in toluene at 100 °C proceeded well, generating p-arylanilines in moderate to good yields. An efficient and alternative method for the synthesis of polysubstituted aryl amines, especially m-arylaniline derivatives which are otherwise difficult to synthesize through traditional methods, was developed.
Collapse
Affiliation(s)
- Xueyu Fang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Hongyan Xie
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Hongkun Huang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Yu Wang
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Tian Chen
- Zhejiang Charioteer Pharmaceutical Co., Ltd, Xianju, Zhejiang 317321, China
| | - Zhaohua Yan
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| | - Hua Yao
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
6
|
Liu D, Tu T, Zhang T, Nie G, Liao T, Ren SC, Zhang X, Chi YR. Photocatalytic Direct Para-Selective C-H Amination of Benzyl Alcohols: Selectivity Independent of Side Substituents. Angew Chem Int Ed Engl 2024; 63:e202407293. [PMID: 39072873 DOI: 10.1002/anie.202407293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Aminoarenes are important molecules for broad applications in nearly all modern industries that involve chemicals. Direct and site-selective C-H bond amination of arenes provides the most efficient and convenient method to prepare aminoarenes. A main challenge is to selectively install the amino group (or other functional groups) to the distal para-carbon of arenes (especially multi-substituted arenes) during the C-H bond functionalization events. Herein, we address this problem by designing a new strategy via a sequential radical dearomatization/radical amination/rearomatization process for para-selective amination of benzyl alcohols. The para-selectivity of our reaction is completely independent of the electronic and steric properties of the other substituents of the arene substrates. Aminoarenes with many substituents (up to full substitution) and diverse substitution patterns, including those difficult to synthesize previously, could be readily prepared using our protocols. Further exploration of the current strategy shall lead to other challenging C-H functionalization of arenes.
Collapse
Affiliation(s)
- Donghan Liu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Ting Tu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tinglei Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Guihua Nie
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Tianhui Liao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Shi-Chao Ren
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Xinglong Zhang
- Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), Singapore, 138632, Singapore
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Pal K, Das D, Ghosh KG, Sureshkumar D. Visible-Light Driven Synthesis of Vinyl Amines without Photocatalyst. J Org Chem 2024; 89:15317-15324. [PMID: 39326405 DOI: 10.1021/acs.joc.4c01624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
We developed a visible-light-induced vinyl amination of activated alkenes using TMSN3 and CsF through EDA complex formation under an oxygen atmosphere. Without light, the EDA complex forms between activated alkene, CsF, and oxygen. Upon exposure to light, oxygen in the complex gets excited, initiating the HAT process. This method efficiently synthesizes vinyl-amine derivatives via a radical pathway, demonstrating good functional group tolerance and high yields in a short time. Further, the late-stage functionalization enables the synthesis of biologically active heterocycles.
Collapse
Affiliation(s)
- Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Krishna Gopal Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, West Bengal, India
| |
Collapse
|
8
|
Huang H, Jiang Y, Yuan W, Lin YM. Modular Assembly of Acridines by Integrating Photo-Excitation of o-Alkyl Nitroarenes with Copper-Promoted Cascade Annulation. Angew Chem Int Ed Engl 2024; 63:e202409653. [PMID: 39039028 DOI: 10.1002/anie.202409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Acridine frameworks stand as pivotal architectural elements in pharmaceuticals and photocatalytic applications, owing to their chemical adaptability, biological activity, and unique excited-state dynamics. Conventional synthetic routes often entail specialized starting materials, anaerobic or moisture-free conditions, and elaborate multi-stage manipulations for incorporating diverse functionalities. Herein, we present a convergent approach integrating photo-excitation of readily available ortho-alkyl nitroarenes with copper-promoted cascade annulation. This innovative system enables an aerobic, one-pot reaction of o-alkyl nitroarenes with arylboronic acids, thereby streamlining the modular construction of a wide array of acridine derivatives with various functional groups. This encompasses symmetrical, unsymmetrical and polysubstituted varieties, some of which are otherwise exceptionally difficult to synthesize. Furthermore, it significantly improves the production of structurally varied acridinium salts, featuring enhanced photophysical properties, high excited state potentials (E*red=2.08-3.15 V), and exhibiting superior performance in intricate photoredox transformations.
Collapse
Affiliation(s)
- Haichao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Jiang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen, 361023, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
9
|
Garwood JJA, Chen AD, Nagib DA. Radical Polarity. J Am Chem Soc 2024. [PMID: 39363280 DOI: 10.1021/jacs.4c06774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The polarity of a radical intermediate profoundly impacts its reactivity and selectivity. To quantify this influence and predict its effects, the electrophilicity/nucleophilicity of >500 radicals has been calculated. This database of open-shell species entails frequently encountered synthetic intermediates, including radicals centered at sp3, sp2, and sp hybridized carbon atoms or various heteroatoms (O, N, S, P, B, Si, X). Importantly, these computationally determined polarities have been experimentally validated for electronically diverse sets of >50 C-centered radicals, as well as N- and O- centered radicals. High correlations are measured between calculated polarity and quantified reactivity, as well as within parallel sets of competition experiments (across different radical types and reaction classes). These multipronged analyses show a strong relationship between the computed electrophilicity, ω, of a radical and its relative reactivity (krel vs Δω slopes up to 40; showing mere Δω of 0.1 eV affords up to 4-fold rate enhancement). We expect this experimentally validated database will enable reactivity and selectivity prediction (by harnessing polarity-matched rate enhancement) and assist with troubleshooting in synthetic reaction development.
Collapse
Affiliation(s)
- Jacob J A Garwood
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew D Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
10
|
Crisanti F, Montag M, Milstein D, Bonin J, von Wolff N. Unlocking metal-ligand cooperative catalytic photochemical benzene carbonylation: a mechanistic approach. Chem Sci 2024:d4sc05683c. [PMID: 39416291 PMCID: PMC11474400 DOI: 10.1039/d4sc05683c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A key challenge in green synthesis is the catalytic transformation of renewable substrates at high atom and energy efficiency, with minimal energy input (ΔG ≈ 0). Non-thermal pathways, i.e., electrochemical and photochemical, can be used to leverage renewable energy resources to drive chemical processes at well-defined energy input and efficiency. Within this context, photochemical benzene carbonylation to produce benzaldehyde is a particularly interesting, albeit challenging, process that combines unfavorable thermodynamics (ΔG° = 1.7 kcal mol-1) and the breaking of strong C-H bonds (113.5 kcal mol-1) with full atom efficiency and the use of renewable starting materials. Herein, we present a mechanistic study of photochemical benzene carbonylation catalyzed by a rhodium-based pincer complex that is capable of metal-ligand cooperation. The catalytic cycle, comprising both thermal and non-thermal steps, was probed by NMR spectroscopy, UV-visible spectroscopy and spectrophotochemistry, and density functional theory calculations. This investigation provided us with a detailed understanding of the reaction mechanism, allowing us to unlock the catalytic reactivity of the Rh-pincer complex, which represents the first example of a metal-ligand cooperative system for benzene carbonylation, exhibiting excellent selectivity.
Collapse
Affiliation(s)
- Francesco Crisanti
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Julien Bonin
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire F-75005 Paris France
| | - Niklas von Wolff
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire F-75005 Paris France
| |
Collapse
|
11
|
Capucciati A, Baraglia L, Cassera E, Merli D, Capaldo L, Ravelli D. Selective Oxidation of Alcohols to Carbonyls Under Decatungstate-Mediated Photoelectrochemical Conditions. Chemistry 2024:e202402986. [PMID: 39301673 DOI: 10.1002/chem.202402986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The oxidation of alcohols to the corresponding carbonyl derivatives has been realized under photoelectrochemical conditions in the presence of tetrabutylammonium decatungstate (TBADT) as the homogeneous photocatalyst. The protocol can be applied to both primary and secondary, benzylic and aliphatic alcohols. The desired products are obtained selectively, skipping the need for purposely added chemical oxidants. An in-depth study of photoelectrochemical conditions revealed that the protocol works best under amperostatic conditions in an undivided electrochemical cell irradiated with a 390 nm LED lamp. The comparison with analogous electrochemical and chemical oxidant-promoted photocatalytic transformations demonstrates the superior efficiency and selectivity of the hereby reported photoelectrochemical conditions.
Collapse
Affiliation(s)
- Andrea Capucciati
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Baraglia
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Elena Cassera
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Daniele Merli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| | - Luca Capaldo
- SynCat Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma., Parco Area delle Scienze 11/A, 43124, Parma, Italy
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
12
|
Fukuzumi S, Lee YM, Nam W. Functional molecular models of photosynthesis. iScience 2024; 27:110694. [PMID: 39286498 PMCID: PMC11404225 DOI: 10.1016/j.isci.2024.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
This perspective focuses on functional models of photosynthesis to achieve molecular photocatalytic systems that mimic photosystems I and II (PSI and PSII). A long-lived and high-energy electron-transfer state of 9-mesityl-10-methylacridinium ion (Acr+-Mes) has been attained as a simple and useful model of the photosynthetic reaction center. Acr+-Mes has been used as an effective photoredox catalyst for photocatalytic hydrogen evolution and regioselective reduction of NAD(P)+ from plastoquinone analogs as a molecular functional model of PSI. A functional molecular model system to mimic the function of PSII has also been developed to oxidize water by plastoquinone analogs to produce O2 and plastoquinol analogs. The PSI molecular models have finally been integrated with the PSII molecular models to achieve production of a solar fuel (hydrogen) and NAD(P)H and its analogs from water by use of solar energy as a molecular artificial photosynthesis.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Research Institute for Basic Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
13
|
Yu YZ, Su HY, Zhuo CX. Anilines Formation via Molybdenum-Catalyzed Intermolecular Reaction of Ynones with Allylic Amines. Angew Chem Int Ed Engl 2024:e202412299. [PMID: 39255246 DOI: 10.1002/anie.202412299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
The multi-substituted anilines are widely found in organic synthesis, medicinal chemistry and material science. The quest for robust and efficient methods to construct a diverse array of these compounds using readily accessible starting materials under simple reaction conditions is of utmost importance. Here, we report an unprecedented and efficient approach for the synthesis of 2,4-di and 2,4,6-trisubstituted anilines. With a simple molybdenum(VI) catalyst, a wide range of 2,4-di and 2,4,6-trisubstituted anilines were efficiently prepared in generally good to excellent yields from readily accessible ynones and allylic amines. The synthetic potential of this methodology was further underscored by its applications in several synthetic transformations, gram-scale reactions, and derivatization of bioactive molecules. Preliminary mechanistic studies suggested that this aniline formation might involve a cascade of aza-Michael addition, [1,6]-proton shift, cyclization, dehydration, 6π-electrocyclization, and aromatization. This novel strategy provided a robust, simple, and modular approach for the syntheses of various valuable di- or trisubstituted anilines, some of which were otherwise challenging to access.
Collapse
Affiliation(s)
- Yi-Zhe Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Hong-Yi Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, P. R. China
| |
Collapse
|
14
|
Mondal S, Ghosh S, Hajra A. Visible-light-induced redox-neutral difunctionalization of alkenes and alkynes. Chem Commun (Camb) 2024; 60:9659-9691. [PMID: 39129429 DOI: 10.1039/d4cc03552f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The twelve principles of green chemistry illuminate the pathway in the direction of sustainable and eco-friendly synthesis, marking a fundamental shift in synthetic organic chemistry paradigms. In this realm, harnessing the power of visible light for the difunctionalization of various skeletons without employing any external oxidant or reductant, specifically termed as redox-neutral difunctionalization, has attracted tremendous interest from synthetic organic chemists due to its low cost, easy availability and environmentally friendly nature in contrast to traditional metal-catalyzed difunctionalizations. This review presents an overview of recent updates on visible-light-induced redox-neutral difunctionalization reactions with literature coverage up to May 2024.
Collapse
Affiliation(s)
- Susmita Mondal
- Central Ayurvedic Research Institute, 4-CN Block, Bidhannagar, Kolkata, 700091, West Bengal, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
15
|
Huang T, Du P, Cheng X, Lin YM. Manganese Complexes with Consecutive Mn(IV) → Mn(III) Excitation for Versatile Photoredox Catalysis. J Am Chem Soc 2024; 146:24515-24525. [PMID: 39079011 DOI: 10.1021/jacs.4c07084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Manganese complexes stand out as promising candidates for photocatalyst design, attributed to their eco- and biocompatibility, versatile valence states, and capability for facilitating multiple electronic excitations. However, several intrinsic constraints, such as inadequate visible light response and short excited-state lifetimes, hinder effective photoinduced electron transfer and impede photoredox activation of substrates. To overcome this obstacle, we have developed a class of manganese complexes featuring boron-incorporated N-heterocyclic carbene ligands. These complexes enable prolonged excited-state durations encapsulating both Mn(IV) and Mn(III) oxidation stages, with lifetimes reaching microseconds for Mn(IV) and nanoseconds for Mn(III), concurrently exhibiting robust redox capabilities. They efficiently catalyze direct, site-selective cross-couplings between diverse arenes and aryl bromides, at a low catalyst loading of 0.5 mol %. Their proficiency spans an extensive array of substrates including both highly electron-rich and electron-deficient molecules, which underscore the superior performance of these manganese complexes in tackling intricate transformations. Furthermore, the versatility of these complexes is further highlighted by their successful applications in various photochemical transformations, encompassing reductive cross-couplings for the formation of C-P, C-B, C-S and C-Se bonds, alongside oxidative couplings for creating C-N bonds. This study sheds light on the distinctive photoredox properties and the remarkable catalytic flexibility of manganese complexes, highlighting their immense potential to drive progress in photochemical synthesis and green chemistry applications.
Collapse
Affiliation(s)
- Tao Huang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Pangang Du
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiuliang Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu-Mei Lin
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Li M, Staton C, Ma X, Zhao W, Pan L, Giglio B, Berton HS, Wu Z, Nicewicz DA, Li Z. One-Step Synthesis of [ 18F]Aromatic Electrophile Prosthetic Groups via Organic Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:1609-1618. [PMID: 39220691 PMCID: PMC11363353 DOI: 10.1021/acscentsci.4c00407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
To avoid the harsh conditions that are oftentimes adopted in direct radiofluorination reactions, conjugation of bioactive ligands with 18F-labeled prosthetic groups has become an important strategy to construct novel PET agents under mild conditions when the ligands are structurally sensitive. Prosthetic groups with [18F]fluoroarene motifs are especially appealing because of their stability in physiological environments. However, their preparation can be intricate, often requiring multistep radiosynthesis with functional group conversions to prevent the decomposition of unprotected reactive prosthetic groups during the harsh radiofluorination. Here, we report a general and simple method to generate a variety of highly reactive 18F-labeled electrophiles via one-step organophotoredox-mediated radiofluorination. The method benefits from high step-economy, reaction efficiency, functional group tolerance, and easily accessible precursors. The obtained prosthetic groups have been successfully applied in PET agent construction and subsequent imaging studies, thereby demonstrating the feasibility of this synthetic method in promoting imaging and biomedical research.
Collapse
Affiliation(s)
- Manshu Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Carla Staton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Xinrui Ma
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Weiling Zhao
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Liqin Pan
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ben Giglio
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Haiden S. Berton
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Zhanhong Wu
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - David A. Nicewicz
- Department
of Chemistry University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599 United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
17
|
Wei Y, Li Y, Li X, Yang T, Chen X, Li Y, Zhou Y, Wang J, Zhang J, Li H, Ling H, Wang S, Liu Y, Xie L. Double C-H Amination of Naphthylamine Derivatives by the Cross-Dehydrogenation Coupling Reaction. J Org Chem 2024; 89:11195-11202. [PMID: 39067013 DOI: 10.1021/acs.joc.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A high-efficiency tandem process has been developed for the formation of two C-N bonds through a cross-dehydrogenative coupling (CDC) amination of spiro[acridine-9,9'-fluorene]s (SAFs) with amines. This method offers a strategically innovative and atom-economical approach to obtaining diamine-substituted SAFs. Notably, the approach eliminates the need for metal catalysts and other additives, relying solely on O2 as the oxidant. A self-activation mechanism has been proposed to elucidate the effective double amination in the CDC process.
Collapse
Affiliation(s)
- Ying Wei
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yue Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaoyan Li
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Tonglin Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiacheng Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jingrui Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shasha Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuyu Liu
- Electrical Engineering College, Nanjing Vocational University of Industry Technology, Nanjing 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
18
|
Kanti Bera S, Porcheddu A. Pioneering Metal-Free Late-Stage C-H Functionalization Using Acridinium Salt Photocatalysis. Chemistry 2024:e202402809. [PMID: 39136621 DOI: 10.1002/chem.202402809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 10/23/2024]
Abstract
Using organic dyes as photocatalysts is an innovative approach to photocatalytic organic transformations. These dyes offer advantages such as widespread availability, adaptable absorption properties, and diverse chemical structures. Recent progress has led to the development of organic photocatalysts that can utilize visible light to modify chemically inert C-H bonds. These catalysts are sustainable, selective, and versatile, enabling mild reactions, late-stage functionalization, and various transformations in line with green chemistry principles. As catalysts in photoredox chemistry, they contribute to the development of efficient and environmentally friendly synthetic pathways. Acridinium-based organic photocatalysts have proved valuable in late-stage C-H functionalization, enabling transformative reactions under mild conditions. This review emphasizes their innovative features, such as organic frameworks, efficient light absorption properties, and their applications in modifying complex molecules. It provides an overview of recent advancements in the use of acridinium-based organic photocatalysts for late-stage C-H bond functionalization without the need for transition metals, showcasing their potential to expedite the development of new molecules and igniting excitement about the prospects of this research in the field.
Collapse
Affiliation(s)
- Shyamal Kanti Bera
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| | - Andrea Porcheddu
- Università degli Studi di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042, Cagliari, Italy
| |
Collapse
|
19
|
Yue Y, Guo X, Zhang J, Zhang Z, Zhang Y, Tang Q, Bai R, Yi H, Liu J. Electrochemical Oxidation Enables Radical Dearomative Spiroannulation to 2H-Spiro[benzofuran-3,9'-fluoren]-2-one. Chemistry 2024; 30:e202401303. [PMID: 38794842 DOI: 10.1002/chem.202401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Developing pragmatic strategies for accessing functional benzofuran-2-ones from 3-([1,1'-biphenyl]-2-yl)benzofuran remains an enduring challenge. Herein, we have achieved a highly discriminating electrochemical oxidative dearomative spiroannulation of 3-([1,1'-biphenyl]-2-yl)benzofuran, culminating in the synthesis of 2H-spiro[benzofuran-3,9'-fluoren]-2-one derivatives. By harnessing the electrophilic intermediates of benzofuryl radical cations supported by DFT calculations, we attain exceptional regioselectivity while eliminating the need for stoichiometric oxidants. Mechanistic investigations reveal a sequence of events involving the benzofuran radical cation, encompassing the capture of H2O, nucleophilic arene attack, and subsequent deprotonation, ultimately yielding the final benzofuran-2-ones.
Collapse
Affiliation(s)
- Yuanyuan Yue
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Xiaohui Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Jianhang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Zhiqiang Zhang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Yilin Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Qinghu Tang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, P. R. China
| | - Hong Yi
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jianming Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P.R. China
| |
Collapse
|
20
|
Buravets V, Gorin O, Burtsev V, Zabelina A, Zabelin D, Kosina J, Maixner J, Svorcik V, Kolganov AA, Pidko EA, Lyutakov O. Plasmon-Mediated Organic Photoelectrochemistry Applied to Amination Reactions. Chempluschem 2024; 89:e202400020. [PMID: 38747893 DOI: 10.1002/cplu.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/08/2024] [Indexed: 08/15/2024]
Abstract
Organic electrochemistry is currently experiencing an era of renaissance, which is closely related to the possibility of carrying out organic transformations under mild conditions, with high selectivity, high yields, and without the use of toxic solvents. Combination of organic electrochemistry with alternative approaches, such as photo-chemistry was found to have great potential due to induced synergy effects. In this work, we propose for the first time utilization of plasmon triggering of enhanced and regio-controlled organic chemical transformation performed in photoelectrochemical regime. The advantages of the proposed route is demonstrated in the model amination reaction with formation of C-N bond between pyrazole and substituted benzene derivatives. Amination was performed in photo-electrochemical mode on the surface of plasmon active Au@Pt electrode with attention focused on the impact of plasmon triggering on the reaction efficiency and regio-selectivity. The ability to enhance the reaction rate significantly and to tune products regio-selectivity is demonstrated. We also performed density functional theory calculations to inquire about the reaction mechanism and potentially explain the plasmon contribution to electrochemical reaction rate and regioselectivity.
Collapse
Affiliation(s)
- Vladislav Buravets
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Oleg Gorin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vasilii Burtsev
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Anna Zabelina
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Denis Zabelin
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jiri Kosina
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Jaroslav Maixner
- Central Laboratories, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Alexander A Kolganov
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, Netherlands
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| |
Collapse
|
21
|
Liao K, Fang Y, Sheng L, Chen J, Huang Y. Water mediated redox-neutral cleavage of arylalkenes via photoredox catalysis. Nat Commun 2024; 15:6227. [PMID: 39043702 PMCID: PMC11266562 DOI: 10.1038/s41467-024-50624-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Cleavage of carbon-carbon bonds remains a challenging task in organic synthesis. Traditional methods for splitting Csp2=Csp2 bonds into two halves typically involve non-redox (metathesis) or oxidative (ozonolysis) mechanisms, limiting their synthetic potential. Disproportionative deconstruction of alkenes, which yields one reduced and one oxidized fragment, remains an unexplored area. In this study, we introduce a redox-neutral approach for deleting a Csp2 carbon unit from substituted arylalkenes, resulting in the formation of an arene (reduction) and a carbonyl product (oxidation). This transformation is believed to proceed through a mechanistic sequence involving visible-light-promoted anti-Markovnikov hydration, followed by photoredox cleavage of Csp3-Csp3 bond in the alcohol intermediate. A crucial consideration in this design is addressing the compatibility between the highly reactive oxy radical species in the latter step and the required hydrogen-atom-transfer (HAT) reagent for both steps. We found that ethyl thioglycolate serves as the optimal hydrogen-atom shuttle, offering remarkable chemoselectivity among multiple potential HAT events in this transformation. By using D2O, we successfully prepared dideuteromethylated (-CD2H) arenes with good heavy atom enrichment. This work presents a redox-neutral alternative for alkene deconstruction, with considerable potential in late-stage modification of complex molecules.
Collapse
Affiliation(s)
- Ke Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
| | - Yuqi Fang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Lei Sheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, 518118, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
22
|
Huang M, Deng L, Lao T, Zhang Z, Su Z, Yu Y, Cao H. Dehydrogenation Coupling and [3 + 2] Cycloaddition of Indolizines with Allenes in the Presence of Piezoelectric Materials under Ball Milling Conditions. J Org Chem 2024; 89:9733-9743. [PMID: 38959385 DOI: 10.1021/acs.joc.3c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
A wide range of indolizines with allenes proceeded smoothly under mechanochemical-induced conditions via [3 + 2] annulation process, affording various substituted pyrrolo[2,1,5-cd]indolizines with good yield. The reaction efficiency was greatly improved by using a piezoelectric material as the charge transfer catalyst. The photophysical properties of the resulting pyrrolo[2,1,5-cd]indolizine was characterized.
Collapse
Affiliation(s)
- Mingzhou Huang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- Guangdong Engineering Research Centre of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Centre of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Centre, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
23
|
Prakash R, Sen PP, Pathania V, Raha Roy S. Photocatalytic Proficiency of Cinnoline Moiety for Cross-Coupling Reactions: A Two in One Photocatalyst. Org Lett 2024; 26:5923-5927. [PMID: 38959051 DOI: 10.1021/acs.orglett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, we have developed a new class of organic photocatalysts that can mimic transition metals for several oxidative and reductive organic cross-coupling transformations. Due to its wide potential window in both the oxidation and reduction ranges, cinnoline exhibits dual catalytic activity under visible light illumination, acting as both a photoreductant and photooxidant.
Collapse
Affiliation(s)
- Rashmi Prakash
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective nitrogen insertion into aryl alkanes. Nat Commun 2024; 15:6016. [PMID: 39019881 PMCID: PMC11255249 DOI: 10.1038/s41467-024-50383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qi Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chun Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
25
|
Wu X, Fan X, Xie S, Scodeller I, Wen X, Vangestel D, Cheng J, Sels B. Zinc-indium-sulfide favors efficient C - H bond activation by concerted proton-coupled electron transfer. Nat Commun 2024; 15:4967. [PMID: 38862582 PMCID: PMC11167015 DOI: 10.1038/s41467-024-49265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
C - H bond activation is a ubiquitous reaction that remains a major challenge in chemistry. Although semiconductor-based photocatalysis is promising, the C - H bond activation mechanism remains elusive. Herein, we report value-added coupling products from a wide variety of biomass and fossil-derived reagents, formed via C - H bond activation over zinc-indium-sulfides (Zn-In-S). Contrary to the commonly accepted stepwise electron-proton transfer pathway (PE-ET) for semiconductors, our experimental and theoretical studies evidence a concerted proton-coupled electron transfer (CPET) pathway. A pioneering microkinetic study, considering the relevant elementary steps of the surface chemistry, reveals a faster C - H activation with Zn-In-S because of circumventing formation of a charged radical, as it happens in PE-ET where it retards the catalysis due to strong site adsorption. For CPET over Zn-In-S, H abstraction, forming a neutral radical, is rate-limiting, but having lower energy barriers than that of PE-ET. The rate expressions derived from the microkinetics provide guidelines to rationally design semiconductor catalysis, e.g., for C - H activation, that is based on the CPET mechanism.
Collapse
Affiliation(s)
- Xuejiao Wu
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium.
| | - Xueting Fan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shunji Xie
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ivan Scodeller
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Xiaojian Wen
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dario Vangestel
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium
| | - Jun Cheng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Bert Sels
- Center for Sustainable Catalysis and Engineering, Faculty of Bioscience Engineering, KU Leuven, Heverlee, 3001, Belgium.
| |
Collapse
|
26
|
Jin W, Yang CY, Pau R, Wang Q, Tekelenburg EK, Wu HY, Wu Z, Jeong SY, Pitzalis F, Liu T, He Q, Li Q, Huang JD, Kroon R, Heeney M, Woo HY, Mura A, Motta A, Facchetti A, Fahlman M, Loi MA, Fabiano S. Photocatalytic doping of organic semiconductors. Nature 2024; 630:96-101. [PMID: 38750361 PMCID: PMC11153156 DOI: 10.1038/s41586-024-07400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.
Collapse
Affiliation(s)
- Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
| | - Riccardo Pau
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Eelco K Tekelenburg
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Alessandro Motta
- Dipartimento di Scienze Chimiche, Università di Roma "La Sapienza" and INSTM, UdR Roma, Rome, Italy
| | - Antonio Facchetti
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Maria Antonietta Loi
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
| |
Collapse
|
27
|
Lasky MR, Liu EC, Remy MS, Sanford MS. Visible-Light Photocatalytic C-H Amination of Arenes Utilizing Acridine-Lewis Acid Complexes. J Am Chem Soc 2024; 146:14799-14806. [PMID: 38759094 DOI: 10.1021/jacs.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
This report describes the development of a visible-light photocatalytic system for C(sp2)-H amination that leverages in situ-generated photocatalysts. We demonstrate that the combination of acridine derivatives and Lewis acids forms potent photooxidants that promote the C-H amination of electronically diverse arenes upon irradiation with visible-light (440 nm). A first-generation photocatalyst composed of Sc(OTf)3 and acridine effects the C-H amination of substrates with oxidation potentials ≤ +2.5 V vs SCE with pyrazole, triazole, and pyridine nucleophiles. Furthermore, the simplicity and modularity of this system enable variation of both Lewis acid and acridine to tune reactivity. This enabled the rapid identification of two second-generation photocatalysts (derived from (i) Al(OTf)3 and acridine or (ii) Sc(OTf)3 and a pyridinium-substituted acridine) that catalyze a particularly challenging transformation: C(sp2)-H amination with benzene as the limiting reagent.
Collapse
Affiliation(s)
- Matthew R Lasky
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - En-Chih Liu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Matthew S Remy
- Corporate R&D, Dow, 1776 Building, Midland, Michigan 48667, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Liang G, Wang S, Zhou C, Ye C, Chen B, Tung CH, Wu LZ. Photocatalytic Generation of Carbocation from Thiols and Application to Cross-Nucleophile Coupling. Org Lett 2024; 26:4286-4291. [PMID: 38722880 DOI: 10.1021/acs.orglett.4c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Represented herein is a simple thiol identified as an effective precursor to photochemically form a carbocation. Thanks to the thiyl radical rapid transformation to disulfide, which serves not only to stabilize the generated thiyl radical but also to allow the second electron transfer to form a carbocation. The resulting carbocations, including primary benzylic, secondary, and tertiary carbocations, can smoothly couple with nitrogen, oxygen, and carbon nucleophilic coupling partners as well as complex drug molecules, accompanied by elemental sulfur formation in air.
Collapse
Affiliation(s)
- Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Ye
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, New Cornerstone Science Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Zhang Z, Yue S, Jin B, Yang R, Wang S, Zhang T, Sun L, Lei A, Cai H. Para-selective nitrobenzene amination lead by C(sp 2)-H/N-H oxidative cross-coupling through aminyl radical. Nat Commun 2024; 15:4186. [PMID: 38760336 PMCID: PMC11101647 DOI: 10.1038/s41467-024-48540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
Arylamines, serving as crucial building blocks in natural products and finding applications in multifunctional materials, are synthesized on a large scale via an electrophilic nitration/reduction sequence. However, the current methods for aromatic C-H amination have not yet attained the same level of versatility as electrophilic nitration. Here we show an extensively investigated transition metal-free and regioselective strategy for the amination of nitrobenzenes, enabling the synthesis of 4-nitro-N-arylamines through C(sp2)-H/N-H cross-coupling between electron-deficient nitroarenes and amines. Mechanistic studies have elucidated that the crucial aspects of these reactions encompass the generation of nitrogen radicals and recombination of nitrobenzene complex radicals. The C(sp2)-N bond formation is demonstrated to be highly effective for primary and secondary arylamines as well as aliphatic amines under mild conditions, exhibiting exceptional tolerance towards diverse functional groups in both nitroarenes and amines (>100 examples with yields up to 96%). Notably, this C(sp2)-H/N-H cross-coupling exhibits exclusive para-selectivity.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| | - Shusheng Yue
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Bo Jin
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ruchun Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Tianqi Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Aiwen Lei
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, People's Republic of China.
| | - Hu Cai
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, People's Republic of China.
| |
Collapse
|
30
|
East NR, Naumann R, Förster C, Ramanan C, Diezemann G, Heinze K. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. Nat Chem 2024; 16:827-834. [PMID: 38332331 DOI: 10.1038/s41557-024-01446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.
Collapse
Affiliation(s)
- Nathan R East
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Charusheela Ramanan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Gregor Diezemann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
31
|
Niu C, Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective Ring-Opening Amination of Isochromans and Tetrahydroisoquinolines. Angew Chem Int Ed Engl 2024; 63:e202401318. [PMID: 38459760 DOI: 10.1002/anie.202401318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.
Collapse
Affiliation(s)
- Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zheng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Qi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
32
|
Liu S, Liu X, Zhang TS, Bao X, Sheng X, Qi Z, Jiang D. Electro-oxidative intermolecular C SP2-H amination of heteroarenes via proton-coupled electron transfer. Org Biomol Chem 2024; 22:2549-2553. [PMID: 38446035 DOI: 10.1039/d4ob00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A new electrochemical proton-coupled electron transfer method for the intermolecular CSP2-H amination of heteroarenes without oxidants, metal catalysts and external electrolytes has been developed. Various new N-containing heteroarenes were prepared in medium to high yields, and the indole-containing product could be converted into practical 2-oxindole by simple basic hydrolysis. Mechanistic investigation indicated that ester sulfonyl-substituted N-radicals could be formed by the combination of 2,6-lutidine and electrochemical oxidation, which is the key to achieve the desired chemoselectivity.
Collapse
Affiliation(s)
- Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xin Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xiaoyu Bao
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Xiaoyu Sheng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, P. R. China.
| | - Zhenjie Qi
- Department of Engineering, Jining University, Qufu, Shandong, 273155, P. R. China.
| | - Dongfang Jiang
- College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, Hunan, 412008, P. R. China.
| |
Collapse
|
33
|
Robb I, Murphy JA. Direct, Selective α-Aryloxyalkyl Radical Cyanation and Allylation of Aryl Alkyl Ethers. Org Lett 2024; 26:2218-2222. [PMID: 38452273 DOI: 10.1021/acs.orglett.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
We report the site-selective α-aryloxyalkyl C-H cyanation and allylation of aryl alkyl ethers using an acridinium photocatalyst with phosphate base under LED irradiation (456 nm). Oxidation of the aryl alkyl ether to its corresponding radical cation by the excited stated photocatalyst allowed facile deprotonation of the ArOC(sp3)-H bond to afford an α-aryloxyalkyl radical, which was trapped with sulfone substrates, resulting in expulsion of a sulfonyl radical and formation of allylated or cyanated products.
Collapse
Affiliation(s)
- Iain Robb
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| | - John A Murphy
- Department of Pure and Applied Chemistry, 295 Cathedral Street, Glasgow, G1 1XL, Scotland
| |
Collapse
|
34
|
Jin C, Ning C, Sui Y, Zhang B, Li X, Pan L, Liu Q, Li Y. Photoredox-Catalyzed Alkene Amination: C(sp 2)-H/N-H Radical-Radical Cross Dehydrogenative Coupling. Org Lett 2024; 26:2326-2331. [PMID: 38451219 DOI: 10.1021/acs.orglett.4c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Direct alkene C-H/N-H cross dehydrogenative coupling is an infrequent, highly challenging transformation. Herein, a photoredox radical-radical cross-coupling reaction between ketene dithioacetal as a persistent alkene radical cation and azole nitrogen center radical (NCR) was developed. This direct alkene amination proceeded through a synergistic photoredox and cobalt catalysis, with only H2 evolution. The reaction showed excellent tolerance and highly regio- and stereospecific manner, expanding the scope of C(sp2)-N construction methods and radical cross-coupling modes.
Collapse
Affiliation(s)
- Chen Jin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Cailin Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yating Sui
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Bingxin Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xinxin Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
35
|
De Jesus IS, Vélez JAC, Pissinati EF, Correia JTM, Rivera DG, Paixao MW. Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins. CHEM REC 2024; 24:e202300322. [PMID: 38279622 DOI: 10.1002/tcr.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Indexed: 01/28/2024]
Abstract
The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.
Collapse
Affiliation(s)
- Iva S De Jesus
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jeimy A C Vélez
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Emanuele F Pissinati
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Jose Tiago M Correia
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| | - Daniel G Rivera
- Laboratory of Synthetic and Biomolecular Chemistry, Faculty of Chemistry, University of Havana Zapata & G, Havana, 10400, Cuba
| | - Márcio W Paixao
- Laboratory for Sustainable Organic Synthesis and Catalysis, Department of Chemistry, Federal University of São Carlos - UFSCar, São Carlos, São Paulo, 13565-905, Brazil
| |
Collapse
|
36
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
37
|
Carson MC, Liu CR, Kozlowski MC. Synthesis of Phenol-Pyridinium Salts Enabled by Tandem Electron Donor-Acceptor Complexation and Iridium Photocatalysis. J Org Chem 2024; 89:3419-3429. [PMID: 38365194 PMCID: PMC11197922 DOI: 10.1021/acs.joc.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Herein, we describe a dual photocatalytic system to synthesize phenol-pyridinium salts using visible light. Utilizing both electron donor-acceptor (EDA) complex and iridium(III) photocatalytic cycles, the C-N cross-coupling of unprotected phenols and pyridines proceeds in the presence of oxygen to furnish pyridinium salts. Photocatalytic generation of phenoxyl radical cations also enabled a nucleophilic aromatic substitution (SNAr) of a fluorophenol with an electron-poor pyridine. Spectroscopic experiments were conducted to probe the mechanism and reaction selectivity. The unique reactivity of these phenol-pyridinium salts were displayed in several derivatization reactions, providing rapid access to a diverse chemical space.
Collapse
Affiliation(s)
- Matthew C. Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Cindy R. Liu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
38
|
Rana SS, Choudhury J. Unveiling N-Fused Nitreniums as Potent Catalytic Photooxidants. J Am Chem Soc 2024; 146:3603-3608. [PMID: 38293737 DOI: 10.1021/jacs.3c12606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The first example of a hitherto-unknown facet of catalytic photooxidant capability of nitrenium cations is reported herein. The fundamental limitation of inability of the traditional and reported nitreniums to achieve the excited-state redox potential beyond +2.0 V (vs Ag/AgCl), the primary requirement for a powerful photooxidant, is addressed in this work by developing a structurally unique class of N-fused nitrenium cations, with the required structural engineering involving extensive π-conjugation through ring fusion at the nitrenium site, which enabled significant lowering of the LUMO energy and easy reduction at the excited state (excited-state redox potential up to +2.5 V vs Ag/AgCl), facilitated by effective delocalization/stabilization of the generated radical. This finding opens a new way to discover novel and useful (photo)catalytic properties of nitrenium cations beyond just Lewis acidity.
Collapse
Affiliation(s)
- Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462 066, India
| |
Collapse
|
39
|
Alvarez EM, Stewart G, Ullah M, Lalisse R, Gutierrez O, Malapit CA. Site-Selective Electrochemical Arene C-H Amination. J Am Chem Soc 2024; 146:3591-3597. [PMID: 38295054 PMCID: PMC11071122 DOI: 10.1021/jacs.3c11506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Here we present the discovery and development of a highly selective aromatic C-H amination reaction. This electrochemical strategy involves a cathodic reduction process that generates highly electrophilic dicationic N-centered radicals that can efficiently engage in aromatic C-H functionalization and channel the regioselectivity of the aromatic substitution. The nitrogen-radical cation-pi interaction with arenes used throughout nature leads to a charge transfer mechanism, with subsequent aromatic C-N bond formation. This electrochemical process generates aryl DABCOnium salts in excellent yields and regioselectivities (single regioisomer in most cases). The scope of the reaction on arene is broad where various functionalities such as aryl halides (bromides, chlorides, fluorides), carbonyls (ketones, esters, imides), sulfonamides, and heteroarenes (pyridines, bipyridines, and terpyridines) are well tolerated. Moreover, we disclose the synthetic utility of the aryl DABCOnium salt adducts leading to the direct access of diverse aryl piperazines and the chemoselective cleavage of the exocyclic aryl C(sp2)-N bond over electrophilic C(sp3)-N+ bonds via photoredox catalysis to afford synthetically useful aryl radicals that can engage in aryl C-C and C-P bond formation.
Collapse
Affiliation(s)
- Eva Maria Alvarez
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Griffin Stewart
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Mohammed Ullah
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
| | - Remy Lalisse
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christian A Malapit
- Department of Chemistry, Northwestern University, Technological Institute, Evanston, Illinois 60208, United States
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
40
|
Sau SC, Schmitz M, Burdenski C, Baumert M, Antoni PW, Kerzig C, Hansmann MM. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. J Am Chem Soc 2024; 146:3416-3426. [PMID: 38266168 DOI: 10.1021/jacs.3c12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
A new design concept for organic, strongly oxidizing photocatalysts is described based upon dicationic acridinium/carbene hybrids. A highly modular synthesis of such hybrids is presented, and the dications are utilized as novel, tailor-made photoredox catalysts in the direct oxidative C-N coupling. Under optimized conditions, benzene and even electron-deficient arenes can be oxidized and coupled with a range of N-heterocycles in high to excellent yields with a single low-energy photon per catalytic turnover, while commonly used acridinium photocatalysts are not able to perform the challenging oxidation step. In contrast to traditional photocatalysts, the hybrid photocatalysts reported here feature a reversible two-electron redox system with regular or inverted redox potentials for the two-electron transfer. The different oxidation states could be isolated and structurally characterized supported by NMR, EPR, and X-ray analysis. Mechanistic experiments employing time-resolved emission and transient absorption spectroscopy unambiguously reveal the outstanding excited-state potential of our best-performing catalyst (+2.5 V vs SCE), and they provide evidence for mechanistic key steps and intermediates.
Collapse
Affiliation(s)
- Samaresh C Sau
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Matthias Schmitz
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Chris Burdenski
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Marcel Baumert
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, Mainz 55128, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, Dortmund 44227, Germany
| |
Collapse
|
41
|
Lv Q, Hu Z, Zhang Y, Zhang Z, Lei H. Advancing Meta-Selective C-H Amination through Non-Covalent Interactions. J Am Chem Soc 2024; 146:1735-1741. [PMID: 38095630 DOI: 10.1021/jacs.3c09904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Regioselective C-H amination of simple arenes is highly desirable, but accessing meta-sites of ubiquitous arenes has proven challenging due to the lack of both electronic and spatial preference. This study demonstrates the successful use of various privileged nitrogen-containing functionalities found in pharmaceutical compounds to direct meta-C-H amination of arenes, overcoming the long-standing requirement for a redundant directing group. The remarkable advancements in functional group accommodation for precise regiochemical control were achieved through the discovery of an unprecedented organo-initiator and the strategic utilization of non-covalent interactions. This protocol has been successfully applied in the concise synthesis and late-stage derivatization of drug molecules, which would have been otherwise challenging to achieve.
Collapse
Affiliation(s)
- Qianqian Lv
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zongxing Hu
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Yousong Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| | - Honghui Lei
- College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
- Wuhan Institute of Photochemistry and Technology, Wuhan, Hubei 430083, P. R. China
| |
Collapse
|
42
|
Akulov AA, Varaksin MV, Nelyubina AA, Tsmokaluk AN, Mazhukin DG, Tikhonov AY, Charushin VN, Chupakhin ON. Iodine-Catalyzed Radical C-H Amination of Nonaromatic Imidazole Oxides: Access to Cyclic α-Aminonitrones. J Org Chem 2024; 89:463-473. [PMID: 38092669 DOI: 10.1021/acs.joc.3c02230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.
Collapse
Affiliation(s)
- Alexey A Akulov
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Mikhail V Varaksin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Anna A Nelyubina
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Anton N Tsmokaluk
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
| | - Dmitrii G Mazhukin
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Alexsei Y Tikhonov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 Akademika Lavrentieva Avenue, Novosibirsk 630090, Russian Federation
| | - Valery N Charushin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| | - Oleg N Chupakhin
- Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation
- I.Ya. Postovsky Institute of Organic Synthesis, 22 S. Kovaleskoy Street, Ekaterinburg 620991, Russian Federation
| |
Collapse
|
43
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
44
|
Kato T, Hagiwara K, Inoue M. Generation and Coupling of Radical Species from α-Alkoxy Bridgehead Carboxylic Acid, Selenide, Telluride, Acyl Selenide, and Acyl Telluride. Chem Pharm Bull (Tokyo) 2024; 72:767-771. [PMID: 39198181 DOI: 10.1248/cpb.c24-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
α-Alkoxy bridgehead radicals enable intermolecular construction of sterically congested C-C bonds due to their sterically accessible nature. We implemented these radical species into total syntheses of various densely oxygenated natural products and demonstrated their exceptional versatility. Herein, we employed different precursors to generate the same α-alkoxy bridgehead radical and compared the efficacy of the precursors for coupling reactions. Specifically, the bridgehead radical of the trioxaadamantane structure was formed from α-alkoxy carboxylic acid, selenide/telluride, and acyl selenide/acyl telluride, and reacted with 4-((tert-butyldimethylsilyl)oxy)cyclopent-2-en-1-one and 5-oxo-1-cyclopentene-1-carbonitrile. The efficiency of the bridgehead radical formation and subsequent coupling reaction significantly depended on the structures of the precursors and acceptors as well as the reaction conditions. Our findings provide new insights for selecting the appropriate substrates of key coupling reactions in the total synthesis of complex natural products.
Collapse
Affiliation(s)
- Takehiro Kato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Koichi Hagiwara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
45
|
Wang B, Singh J, Deng Y. Photoredox-Catalyzed Divergent Radical Cascade Annulations of 1,6-Enynes via Pyridine N-Oxide-Promoted Vinyl Radical Generation. Org Lett 2023; 25:9219-9224. [PMID: 38112553 PMCID: PMC10842598 DOI: 10.1021/acs.orglett.3c03930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The divergent organophotoredox-catalyzed radical cascade annulation reactions of 1,6-enynes were developed. A series of cyclopropane-fused hetero- and carbo-bicyclic, tricyclic, and spiro-tetracyclic compounds were facilely synthesized from a broad scope of 1,6-enynes and 2,6-lutidine N-oxide under mild and metal-free conditions with blue light-emitting diode light irradiation. The cascade annulation reaction occurs with the intermediacy of a β-oxyvinyl radical, which is produced from photocatalytically generated pyridine N-oxy radical addition to the carbon-carbon triple bond.
Collapse
Affiliation(s)
- Ban Wang
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Jujhar Singh
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
46
|
Norris S, Ba X, Rhodes J, Huang D, Khambatta G, Buenviaje J, Nayak S, Meiring J, Reiss S, Xu S, Shi L, Whitefield B, Alexander M, Horn EJ, Correa M, Tehrani L, Hansen JD, Papa P, Mortensen DS. Design and Synthesis of Novel Cereblon Binders for Use in Targeted Protein Degradation. J Med Chem 2023; 66:16388-16409. [PMID: 37991844 DOI: 10.1021/acs.jmedchem.3c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Modulating the chemical composition of cereblon (CRBN) binders is a critical step in the optimization process of protein degraders that seek to hijack the function of this E3 ligase. Small structural changes can have profound impacts on the overall profile of these compounds, including depth of on-target degradation, neosubstrate degradation selectivity, as well as other drug-like properties. Herein, we report the design and synthesis of a series of novel CRBN binding moieties. These CRBN binders were evaluated for CRBN binding and degradation of common neosubstrates Aiolos and GSPT1. A selection of these binders was employed for an exploratory matrix of heterobifunctional molecules, targeting CRBN-mediated degradation of the androgen receptor.
Collapse
Affiliation(s)
- Stephen Norris
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Xiaochu Ba
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jayce Rhodes
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dehua Huang
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Gody Khambatta
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jennifer Buenviaje
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Surendra Nayak
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Joseph Meiring
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Samantha Reiss
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Shuichan Xu
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lihong Shi
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Brandon Whitefield
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Matt Alexander
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Evan J Horn
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Matthew Correa
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lida Tehrani
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Joshua D Hansen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Patrick Papa
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Deborah S Mortensen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
47
|
Li J, Liu T, Singh N, Huang Z, Ding Y, Huang J, Sudarsanam P, Li H. Photocatalytic C-N bond construction toward high-value nitrogenous chemicals. Chem Commun (Camb) 2023; 59:14341-14352. [PMID: 37987689 DOI: 10.1039/d3cc04771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of carbon-nitrogen bonds is vital for producing versatile nitrogenous compounds for the chemical and pharmaceutical industries. Among developed synthetic approaches to nitrogenous chemicals, photocatalysis is particularly prominent and has become one of the emerging fields due to its unique advantages of eco-sustainable characteristics, efficient process integration, no need for high-pressure H2, and tunable synthesis methods for developing advanced photocatalytic materials. Here, the review focuses on potential photocatalytic protocols developed for the construction of robust carbon-nitrogen bonds in discrepant activation environments to produce high-value nitrogenous chemicals. The photocatalytic C-N bond construction strategies and involved reaction mechanisms are elucidated.
Collapse
Affiliation(s)
- Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Tengyu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Zhuochun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Yan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Jinshu Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Putla Sudarsanam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
48
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
49
|
Mohar M, Ghosh S, Hajra A. Visible Light Induced Three-Component 1,2-Dicarbofunctionalization of Alkenes and Alkynes. CHEM REC 2023; 23:e202300121. [PMID: 37309268 DOI: 10.1002/tcr.202300121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/31/2023] [Indexed: 06/14/2023]
Abstract
Harnessing visible-light in organic synthesis is one of the most effective methods that aligns with green and sustainable chemistry principles and hence skyrocketed in the last two decades. Similarly, three-component 1,2-dicarbofunctionalization of alkenes and alkynes has recently been a great choice to construct complex molecular systems in an easy and rapid manner. Therefore, light-induced reactions can be an excellent alternative to carry out 1,2-dicarbofunctionalization reactions, and very recently, organic chemists across the globe have fascinated us with their interesting articles. In this present review, we have summarized the recent advancements in the area of visible light induced three-component 1,2-dicarbofunctionalization of alkenes and alkynes till March 2023. We have categorized the discussion based on the catalysts used to carry out the transformations for better understanding and different important aspects of these transformations have also been covered.
Collapse
Affiliation(s)
- Mrittika Mohar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
50
|
Liu DY, Han J, Liu K, Cheng Y, Tan H, Yang X, Li W, Xie J. Dinuclear Gold-Catalyzed para-Selective C-H Arylation of Undirected Arenes by Noncovalent Interactions. Angew Chem Int Ed Engl 2023; 62:e202313122. [PMID: 37707123 DOI: 10.1002/anie.202313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
The regioselectivity of C-H functionalization is commonly achieved by directing groups, electronic factors, or steric hindrance, which facilitate the identification of reaction sites. However, such strategies are less effective for reactants such as simple monofluoroarenes due to their relatively low reactivity and the modest steric demands of the fluorine atom. Herein, we present an undirected gold-catalyzed para-C-H arylation of a wide array of monofluoroarenes using air-stable aryl silanes and germanes at room temperature. A high para-regioselectivity (up to 98 : 2) can be realized by utilizing a dinuclear dppm(AuOTs)2 (dppm=bis(diphenylphosphino)methane) as the catalyst and hexafluorobenzene as the solvent. This provides a general and practical protocol for the concise construction of structurally diverse para-arylated monofluoroarenes through C-H activation manner. It features excellent functional group tolerance and a broad substrate scope (>80 examples). Besides, this strategy is also robust for other simple monosubstituted arenes and heteroarenes. Our mechanistic studies and theoretical calculations suggest that para-C-H selectivity arises from highly electrophilic and structurally flexible dinuclear Ar-Au(III)-Au(I) species, coupled with noncovalent interaction induced by hexafluorobenzene.
Collapse
Affiliation(s)
- Duan-Yang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yaohang Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|