1
|
O'Keeffe S, Garcia L, Chen Y, Law RC, Liu C, Park JO. Bringing carbon to life via one-carbon metabolism. Trends Biotechnol 2025; 43:572-585. [PMID: 39306491 DOI: 10.1016/j.tibtech.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 03/01/2025]
Abstract
One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states. Complications arise in biochemical C1-utilization approaches because of the need for cellular energy currency ATP. ATP supports cell maintenance and proliferation and drives thermodynamically challenging reactions by coupling them with ATP hydrolysis. Powering metabolism through substrate cofeeding and energy transduction from light and electricity improves ATP availability, relieves metabolic bottlenecks, and upcycles carbon. We present a bioenergetic, engineering, and technoeconomic outlook for bringing elements to life.
Collapse
Affiliation(s)
- Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lilly Garcia
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard C Law
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
He Y, Liu Q, He Y, Deng S, Guo J. Engineering live cell surfaces with polyphenol-functionalized nanoarchitectures. Chem Sci 2025; 16:3774-3787. [PMID: 39975767 PMCID: PMC11833234 DOI: 10.1039/d4sc07198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Cell surface functionalization has emerged as a powerful strategy for modulating cellular behavior and expanding cellular capabilities beyond their intrinsic biological limits. Natural phenolic molecules present as 'green' and versatile building blocks for constructing cell-based biomanufacturing and biotherapeutic platforms. Due to the abundant catechol or galloyl groups, phenolic molecules can dynamically and reversibly bind to versatile substrates via multiple molecular interactions. A range of self-assembled cytoadhesive polyphenol-functionalized nanoarchitectures (cytoPNAs) can be formed via metal coordination or macromolecular self-assembly that can rapidly attach to cell surfaces in a cell-agnostic manner. Additionally, the cytoPNAs attached on the cell surface can also provide active sites for the conjunction of bioactive payloads, further expanding the structural repertoire and properties of engineered cells. This Perspective introduces the wide potential of cytoPNA-mediated cell engineering in three key applications: (1) creating inorganic-organic biohybrids as cell factories for efficient production of high-value chemicals, (2) constructing engineered cells for cell-based therapies with enhanced targeting specificity and nano-bio interactions, and (3) encapsulating microbes as biotherapeutics for the treatment of gastrointestinal tract-related diseases. Collectively, the rapid, versatile, and modular nature of cytoPNAs presents a promising platform for next-generation cell engineering and beyond.
Collapse
Affiliation(s)
- Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Qinling Liu
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Tea Refining and Innovation Key Laboratory of Sichuan Province, College of Horticulture, Sichuan Agricultural University Chengdu Sichuan 611130 China
| | - Yuanmeng He
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Siqi Deng
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, National Engineering Laboratory for Clean Technology of Leather Manufacture, Ministry of Education Key Laboratory of Leather Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University Chengdu Sichuan 610065 China
- Bioproducts Institute, Department of Chemical and Biological Engineering, The University of British Columbia Vancouver BC V6T 1Z4 Canada
- State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|
3
|
Hu A, Li B, Yang S, Yang C, Ye J, Huang Y, Zhou S, Wang G. Unlocking interfacial electron transfer in biophotoelectrochemical processes: Role of extracellular polymeric substances in aquatic environments. WATER RESEARCH 2025; 278:123375. [PMID: 40022801 DOI: 10.1016/j.watres.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The biophotoelectrochemical process (BPECs) integrates the light-absorbing capabilities of nano-semiconductors with the catalytic efficiency of microorganisms, demonstrating significant potential for the development, utilization, transformation, and ecological restoration of water resources. In aquatic environments, extracellular polymeric substances (EPS) serve as a critical interfacial barrier between microorganisms and semiconductor materials, with the underlying electron transfer mechanisms playing a pivotal role in determining the efficiency of bio-photochemical reactions. Despite their importance, the rapidity and complexity of the electron transfer process within EPS pose significant challenges to a comprehensive understanding of BPECs. In this study, an in-situ characterization strategy was employed to rapidly and accurately analyze the components and pathways of photogenerated electron transfer involving EPS at interfaces. The findings indicate that EPS significantly accelerates the transfer of photogenerated electrons within BPECs. Specifically, proteins and redox-active substances within EPS act as efficient conduits for electron transfer, accounting for up to 84.2% of the increased speed in electron transfer rates at bio-abiotic interfaces. Conversely, polysaccharides within EPS impede the electron transfer process but serve as substrates that facilitate methane (CH4) production. The in-situ characterization approach used in this research provides valuable insights into the interfacial electron transfer mechanisms of EPS in BPECs, emphasizing their relevance in aquatic environments. This study establishes a theoretical framework for designing high-performance BPECs, with significant implications for the energy utilization of water resources and the transformation of water pollutants.
Collapse
Affiliation(s)
- Andong Hu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| | - Shang Yang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Chaohui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangqian Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| |
Collapse
|
4
|
Yang Y, Cui D, Wang H, Di X, Jia M, Yang J, Zhao M. The cytotoxicity of photoexcited CdS in an E. coli-CdS hybrid system and the roles of the sacrificial agent to reduce this toxic effect. ENVIRONMENTAL RESEARCH 2025; 267:120700. [PMID: 39733981 DOI: 10.1016/j.envres.2024.120700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
This study investigates the biosynthesis of CdS nanoparticles (NPs) by Escherichia coli CD-2 to develop an E. coli-CdS hybrid system. The hybrid system was exposed to light in the presence and absence of cysteine (Cys) as a sacrificial agent. The finding revealed that in the absence of Cys, photo-induced holes led to a sharp increase in oxidative stress, disrupting the oxidative/antioxidative balance within bacterial cells. Consequently, cellular components were oxidized under elevated oxidative stress, lending to functional loss. This oxidative damage resulted in reduced cell viability, and in severe cases, cell disruption. Fortunately, the inclusion of the sacrificial agent alleviated these toxic effects. Cys quenched the photo-induced holes, markedly lowering oxidative stress within the cells. This mitigation enabled the maintenance of essential cellular functions during treatment. The majority of bacterial cells preserved their vitality and utilized the extra photoelectrons for cell growth under these conditions.
Collapse
Affiliation(s)
- Yue Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - He Wang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Xinyu Di
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Mingyu Jia
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jinming Yang
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
5
|
Zhang TK, Yi ZQ, Huang YQ, Geng W, Yang XY. Natural biomolecules for cell-interface engineering. Chem Sci 2025; 16:3019-3044. [PMID: 39882561 PMCID: PMC11773181 DOI: 10.1039/d4sc08422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
Cell-interface engineering is a way to functionalize cells through direct or indirect self-assembly of functional materials around the cells, showing an enhancement to cell functions. Among the materials used in cell-interface engineering, natural biomolecules play pivotal roles in the study of biological interfaces, given that they have good advantages such as biocompatibility and rich functional groups. In this review, we summarize and overview the development of studies of natural biomolecules that have been used in cell-biointerface engineering and then review the five main types of biomolecules used in constructing biointerfaces, namely DNA polymers, amino acids, polyphenols, proteins and polysaccharides, to show their applications in green energy, biocatalysis, cell therapy and environmental protection and remediation. Lastly, the current prospects and challenges in this area are presented with potential solutions to solve these problems, which in turn benefits the design of next-generation cell engineering.
Collapse
Affiliation(s)
- Tong-Kai Zhang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Zi-Qian Yi
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Yao-Qi Huang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- School of Engineering and Applied Sciences, Harvard University MA-02138 USA
| | - Wei Geng
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
| | - Xiao-Yu Yang
- State Key Laboratory of Silicate Materials for Architectures & State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Chemistry, Chemical Engineering and Life Sciences & Laoshan Laboratory & School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory Foshan 528200 P. R. China
| |
Collapse
|
6
|
Qi B, Dai W, Lou B, Song B, Miao Z, Wei Y, Ma C, Wang J. Amplifying Persistent Luminescence in Heavily Doped Nanopearls for Bioimaging and Solar-to-Chemical Synthesis. ACS NANO 2025; 19:5818-5828. [PMID: 39893670 DOI: 10.1021/acsnano.4c18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lanthanides are widely codoped in persistent luminescence phosphors (PLPs) to elevate defect concentration and enhance luminescence efficiency. However, the deleterious cross-relaxation between activators and lanthanides inevitably quenches persistent luminescence, particularly in heavily doped phosphors. Herein, we report a core-shell engineering strategy to minimize the unwanted cross-relaxation but retain the charge trapping capacity of heavily doped persistent luminescence phosphors by confining the activators and lanthanides in the core and shell, respectively. As a proof of concept, we prepared a series of codoped ZnGa2O4:Cr, Ln (CD-Ln, Ln = Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) and core-shell structured ZnGa2O4:Cr@ZnGa2O4:Ln (CS-Ln) nanoparticles. First-principles investigations suggested that lanthanide doping elevated the electron trap concentration for enhancing persistent luminescence, but energy transfer (ET) from Cr3+ to Ln3+ ions quenched the persistent luminescence. The spatial separation of Cr3+ and Ln3+ ions in the core-shell structured CS-Ln nanoparticles suppressed the ET from Cr3+ to Ln3+. Due to the efficient suppression of deleterious ET, the optimal doping concentration of Ln in CS-Ln was elevated 50 times compared to CD-Ln. Moreover, the persistent luminescence intensity of CS-5%Ln was up to 60 times that of the original ZnGa2O4:Cr. The CS-5%Ln displayed significantly improved signal-to-noise ratios in bioimaging. Further, the CS-Ln was interfaced with the lycopene-producing bacteria Rhodopseudomonas palustris for solar-to-chemical synthesis, and the lycopene productivity was increased by 190%. This work provides a reliable solution to fulfill the potential of lanthanides in enhancing persistent luminescence and can further promote the applications of persistent luminescence phosphors in biomedicine and solar-to-chemical synthesis.
Collapse
Affiliation(s)
- Bing Qi
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Wenjing Dai
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Bibo Lou
- Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Bin Song
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Ziyun Miao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yurong Wei
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Chonggeng Ma
- Innovation Institute, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Jie Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|
7
|
Li XJ, Wang TQ, Qi L, Li FW, Xia YZ, Bin-Jin, Zhang CJ, Chen LX, Lin JQ. A one-step route for the conversion of Cd waste into CdS quantum dots by Acidithiobacillus sp. via unique biosynthesis pathways. RSC Chem Biol 2025; 6:281-294. [PMID: 39802632 PMCID: PMC11718510 DOI: 10.1039/d4cb00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of Acidithiobacillus sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria. First, an exhaustive study was conducted to reveal the specific pathways involved in the biosynthesis of CdS QDs. The widely known homologous enzyme, cysteine desulfhydrase, which catalyzes the synthesis of CdS QDs from a cysteine substrate, is also present in Acidithiobacillus sp. and is referred to as the OSH enzyme. The structure of the OSH enzyme was determined through X-ray crystallography. Moreover, we identified two new pathways. One involved the SQR enzyme in Acidithiobacillus sp., which catalyzed the formation of sulfur globules and subsequently catalyzed further reactions with GSH to release H2S; subsequently, a CdS QD biosynthesis pathway was successfully constructed. The other pathway involved extracellular polyphosphate, a bacterial metabolic product, which with the addition of GSH and Cd2+, resulted in the formation of water-soluble fluorescent CdS QDs in the supernatant. Based on the above-described mechanism, after the bioleaching of Cd2+ from cadmium waste by Acidithiobacillus sp., CdS QDs were directly obtained from the bacterial culture supernatants. This work provides important insights into cleaner production and cadmium bioremediation with potential industrial applications.
Collapse
Affiliation(s)
- Xiao-Ju Li
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Tian-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Lu Qi
- Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Feng-Wei Li
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Yong-Zhen Xia
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Bin-Jin
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 China
| | - Cheng-Jia Zhang
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Lin-Xu Chen
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| | - Jian-Qun Lin
- State Key Laboratory of Microbial Technology, Shandong University Qingdao 266237 China
| |
Collapse
|
8
|
Grüterich L, Woodhouse JN, Mueller P, Tiemann A, Ruscheweyh HJ, Sunagawa S, Grossart HP, Streit WR. Assessing environmental gradients in relation to dark CO 2 fixation in estuarine wetland microbiomes. Appl Environ Microbiol 2025; 91:e0217724. [PMID: 39745433 PMCID: PMC11784365 DOI: 10.1128/aem.02177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 02/01/2025] Open
Abstract
The rising atmospheric concentration of CO2 is a major concern to society due to its global warming potential. In soils, CO2-fixing microorganisms are preventing some of the CO2 from entering the atmosphere. Yet, the controls of dark CO2 fixation are rarely studied in situ. Here, we examined the gene and transcript abundance of key genes involved in microbial CO2 fixation along major environmental gradients within estuarine wetlands. A combined multi-omics approach incorporating metabarcoding, deep metagenomic, and metatranscriptomic analyses confirmed that wetland microbiota harbor four out of seven known CO2 fixation pathways, namely, the Calvin cycle, reverse tricarboxylic acid cycle, Wood-Ljungdahl pathway, and reverse glycine pathway. These pathways are transcribed at high frequencies along several environmental gradients, albeit at different levels depending on the environmental niche. Notably, the transcription of the key genes for the reverse tricarboxylic acid cycle was associated with high nitrate concentration, while the transcription of key genes for the Wood-Ljungdahl pathway was favored by reducing, O2-poor conditions. The transcript abundance of the Calvin cycle was favored by niches high in organic matter. Taxonomic assignment of transcripts implied that dark CO2 fixation was mainly linked to a few bacterial phyla, namely, Desulfobacterota, Methylomirabilota, Nitrospirota, Chloroflexota, and Pseudomonadota. IMPORTANCE The increasing concentration of atmospheric CO2 has been identified as the primary driver of climate change and poses a major threat to human society. This work explores the mostly overlooked potential of light-independent CO2 fixation by soil microbes (a.k.a. dark CO2 fixation) in climate change mitigation efforts. Applying a combination of molecular microbial tools, our research provides new insights into the ecological niches where CO2-fixing pathways are most active. By identifying how environmental factors, like oxygen, salinity and organic matter availability, influence these pathways in an estuarine wetland environment, potential strategies for enhancing natural carbon sinks can be developed. The importance of our research is in advancing the understanding of microbial CO2 fixation and its potential role in the global climate system.
Collapse
Affiliation(s)
- Luise Grüterich
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jason Nicholas Woodhouse
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Peter Mueller
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Amos Tiemann
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Wolfgang R. Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
9
|
Kang S, Du M, Liu N, Yang T, Yang Z, Wu Y, Sun Z, Lai Q. Chain assembly of Rhodococcus bacteria with O-doped g-C 3N 4 for photocatalysis mediated high-performance partial nitrification: From nitrite resource evolution to device application. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137421. [PMID: 39892137 DOI: 10.1016/j.jhazmat.2025.137421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Nitrogen conversion via partial nitrification-anammox (PN/A), utilizing nitrite as a key intermediate, is an ideal low-carbon approach for wastewater nitrogen removal. However, the partial nitrification process, which is rate-limited and relies on less common bacteria with slow reaction kinetics, poses challenges for high-throughput PN/A implementation. Herein, we developed a microbial/photocatalysis coupling system using Rhodococcus bacterial and O-doped g-C3N4 (OCN) photocatalysts. This approach leverages photogenerated electrons and free radicals from photocatalysts to directly activate microorganisms, enhancing the redox gradient. This intensification selectively inhibits the enzymatic conversion of nitrite to nitrate and its reduction to nitrogen in Rhodococcus bacteria. Consequently, it promotes a highly selective partial nitrification process, generating ample nitrite to facilitate anammox reactions. Transmission electron microscopy and electrochemical characterization showed bacteria forming chain-like assemblies on OCN particles, with the composite exhibiting a favorable redox profile, low impedance, and high stability. Ammonia conversion to nitrite reached 96 % in 3 days, with an enriched NO2- concentration of 36.3 mg/L, 10 times higher than the raw bacterial control. Hence, this strategy of constructing bacterial-photocatalysis system achieved high selectivity and efficiency in partial nitrification. Transcriptome and qPCR analyses showed upregulation of genes linked to the short-cut denitrification metabolic pathway. Photocatalyst band structure and redox potential analysis suggest a new bio-photoelectrochemical partial nitrification pathway. Finally, the feasibility and applicability in future industrial and ecological water treatment were validated through demo H-type reactors and aquarium experiments. These findings offer innovative perspectives for controlled modulation of ammonia nitrogen conversion focus on nitrite intermediate, advancing an energy-efficient, low-carbon nitrogen cycle.
Collapse
Affiliation(s)
- Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mingzhu Du
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Nian Liu
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Tingyun Yang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zitong Yang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yikang Wu
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhen Sun
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200093, PR China.
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200093, PR China.
| |
Collapse
|
10
|
Xin Y, Huang C, Zeng J, Zhang W, Zhou Y, Xu Y, Huang Y. Biochemical mechanism underlying the synthesis of PbS nanoparticle and its in-situ photo effect on Shinella zoogloeoides PQ7. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136652. [PMID: 39591788 DOI: 10.1016/j.jhazmat.2024.136652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/13/2024] [Accepted: 11/23/2024] [Indexed: 11/28/2024]
Abstract
Metal sulfide nanoparticles (NPs) with semiconductor potentials are valuable bioremediation end-products that attract great research interests. However, biochemical mechanisms underlying their biosynthesis and photo-effects remain elusive. In this study, we found that biofilm lifestyle remarkably improved lead resistance and PbS-NP biosynthesis in Shinella zoogloeoides PQ7. Surprisingly, biosynthesis of PbS-NP required more than cysteine and H2S production. Transcriptomic and metabolomic analysis indicated that PQ7 responded to lead stress by changing metabolic activities in ABC transporters, oxidative phosphorylation, EPS production, quorum sensing, protein de novo synthesis, flagella assembly and antioxidative reactions, etc. The elevated EPS production and quorum sensing gene expression echoed the favorable roles of biofilm formation in lead resistance. Biosynthesis of PbS-NP required proper oxygen supply, and was impeded by adding kanamycin or using yeast extract as the sole nutrient supply. Investigations on NAD/NADH, ATP, ROS and GSH productions indicated that biosynthesis of PbS-NP was corelated with cellular respiration, energy metabolism, and redox status. Finally, we proved that PbS-NP had the dose-dependent in-situ photo effect on PQ7's growth and ROS production. This is the first report that pinpoints the role of cellular respiration in PbS-NP biosynthesis, which is essential for further mechanism study and the development of bioremediation techniques.
Collapse
Affiliation(s)
- Yiding Xin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Resources Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chentao Huang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jingkai Zeng
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Wei Zhang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yinuo Zhou
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yining Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yili Huang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
11
|
Tong T, Chen X, Tang K, Ma W, Gao C, Song W, Wu J, Wang X, Liu GQ, Liu L. A new-to-nature photosynthesis system enhances utilization of one-carbon substrates in Escherichia coli. Nat Commun 2025; 16:145. [PMID: 39747054 PMCID: PMC11695776 DOI: 10.1038/s41467-024-55498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Photosynthesis harvests solar energy to convert CO2 into chemicals, offering a potential solution to reduce atmospheric CO2. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E. coli, by integrating light and dark reaction to synthesize bioproducts from one-carbon substrates. A light reaction is reconstructed using the photosystem of photosynthetic bacteria, increasing ATP and NADH contents by 337.9% and 383.7%, respectively. A dark reaction is constructed by designing CO2 fixation pathway to synthesize pyruvate. By assembling the light and dark reaction, a photosynthesis system is established and further programmed by installing an energy adapter, enabling the production of acetone, malate, and α-ketoglutarate, with a negative carbon footprint of -0.84 ~ -0.23 kgCO2e/kg product. Furthermore, light-driven one-carbon trophic growth of E. coli is achieved with a doubling time of 19.86 h. This photosynthesis system provides a green and sustainable approach to enhance one-carbon substrates utilization in the future.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Kexin Tang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanrong Ma
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaoling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
12
|
Fei P, Zhang W, Shang Y, Hu P, Gu Y, Luo Y, Wu H. Carbon-negative bio-production of short-chain carboxylic acids (SCCAs) from syngas via the sequential two-stage bioprocess by Moorella thermoacetica and metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2025; 416:131714. [PMID: 39490540 DOI: 10.1016/j.biortech.2024.131714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Syngas can be efficiently converted to acetate by Moorella thermoacetica under anaerobic conditions, which is environmentally friendly. Coupled with acetate production from syngas, using acetate to synthesize value-added compounds such as short-chain carboxylic acids (SCCAs) becomes a negative-carbon process. Escherichia coli is engineered to utilize acetate as the sole carbon source to produce SCCAs. By knocking out some acetyltransferase genes, introducing exogenous pathway and additional cofactor engineering, the strains can synthesize 3.79 g/L of 3-hydroxypropionic acid (3-HP), 1.83 g/L of (R)-3-hydroxybutyric acid (R-3HB), and 2.31 g/L of butyrate. We used M. thermoacetica to produce acetate from syngas. Subsequently, all engineered E. coli strains were able to produce SCCAs from syngas-derived acetate. The titers of 3-HP, R-3HB, and butyrate are 3.75, 1.68, and 2.04 g/L, with carbon sequestration rates of 51.1, 26.3, and 38.1 %. This coupled bioprocess has great potential for producing a range of other value-added chemicals from syngas.
Collapse
Affiliation(s)
- Peng Fei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenrui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Peng Hu
- Shanghai GTLB Biotech Co., Ltd, 1688 North Guoguan Road, Shanghai 200438, China
| | - Yang Gu
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
13
|
Park W, Cha S, Hahn JS. Advancements in Biological Conversion of C1 Feedstocks: Sustainable Bioproduction and Environmental Solutions. ACS Synth Biol 2024; 13:3788-3798. [PMID: 39610332 DOI: 10.1021/acssynbio.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The use of one-carbon (C1) feedstocks, including carbon dioxide (CO2), carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), presents a significant opportunity for sustainable bioproduction and environmental conservation. This Perspective explores the development of biological methods for converting C1 feedstocks into valuable products, emphasizing major progress from engineering native C1 assimilation pathways to the creation of synthetic autotrophs and methylotrophs that utilize these carbon sources. Additionally, we discuss hybrid approaches that merge biological and electrochemical systems, particularly for the conversion of CO2. This Perspective underscores the importance of C1 bioconversion in promoting sustainable biotechnological strategies for a low-carbon future.
Collapse
Affiliation(s)
- Wooyoung Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Guo Z, Cao J, Xu R, Zhang H, He L, Gao H, Zhu L, Jia M, Yang Z, Xiong W. Novel Photoelectron-Assisted Microbial Reduction of Arsenate Driven by Photosensitive Dissolved Organic Matter in Mine Stream Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22170-22182. [PMID: 39526867 DOI: 10.1021/acs.est.4c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The microbial reduction of arsenate (As(V)) significantly contributes to arsenic migration in mine stream sediment, primarily driven by heterotrophic microorganisms using dissolved organic matter (DOM) as a carbon source. This study reveals a novel reduction pathway in sediments that photosensitive DOM generates photoelectrons to stimulate diverse nonphototrophic microorganisms to reduce As(V). This microbial photoelectrophic As(V) reduction (PEAsR) was investigated using microcosm incubation, which showed the transfer of photoelectrons from DOM to indigenous sediment microorganisms, thereby leading to a 50% higher microbial reduction rate of As(V). The abundance of two marker genes for As(V) reduction, arrA and arsC, increased substantially, confirming the microbial nature of PEAsR rather than a photoelectrochemical process. Photoelectron ion is unlikely to stimulate photolithoautotrophic growth. Instead, diverse nonphototrophic genera, e.g., Cupriavidus, Sphingopyxis, Mycobacterium, and Bradyrhizobium, spanning 13 orders became enriched by 10-50 folds. Metagenomic binning revealed their genetic potential to mediate the photoelectron-assisted reduction of As(V). These microorganisms contain essential genes involved in respiratory As(V) reduction, detoxification As(V) reduction, dimethyl sulfoxide reductase family, c-type cytochromes, and multiple heavy-metal resistance but lack a complete photosynthesis system. The novel microbial PEAsR pathway offers new insights into the interaction between photoelectron utilization and nonphototrophic As(V)-reducing microorganisms, which may have profound implications for arsenic pollution transportation in mine stream sediment.
Collapse
Affiliation(s)
- Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Jie Cao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Lele He
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Hanbing Gao
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Linao Zhu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, P. R. China
| | - Meiying Jia
- Yuelushan Laboratory, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410012, P. R. China
| |
Collapse
|
15
|
Shi Y, Zhang K, Chen J, Zhang B, Guan X, Wang X, Zhang T, Song H, Zou L, Duan X, Gao H, Lin Z. Long-Term Autotrophic Growth and Solar-to-Chemical Conversion in Shewanella Oneidensis MR-1 through Light-Driven Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202412072. [PMID: 39198969 DOI: 10.1002/anie.202412072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.
Collapse
Affiliation(s)
- Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jianxin Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Bingtian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Han Song
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Long Zou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| |
Collapse
|
16
|
Wang Y, Ren G, Wang Q, Xie W, Yang Z, Zhou Y. Enhanced denitrification by sunlight-hematite: A neglected nitrogen flow pattern in red soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176980. [PMID: 39427905 DOI: 10.1016/j.scitotenv.2024.176980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/12/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Mineral-microbe interactions in the Earth's Critical Zone significantly influence elemental biogeochemical cycling and energy flow processes. This study addresses the key scientific question of how semiconducting minerals drive microbial nitrogen cycling. In the red soil environment, the presence of semiconducting minerals enhances the denitrification process mediated by facultative microorganisms (Pseudomonas aeruginosa PAO1) with denitrifying activity. Compared to darkness, light significantly enhanced the synergistic denitrification kinetic process of red soil and Pseudomonas aeruginosa PAO1 (1.87 times). Cyclic voltammetry shows that the P. aeruginosa PAO1-red soil synergistic system exhibits distinct redox peaks under light. The constant potential current curve and electrochemical impedance spectroscopy measurements reveal a high photocurrent density (1.0 μA/cm2) and minimal polarization resistance (102 Ω) under this condition. These findings confirm that the sunlight-red soil-P. aeruginosa PAO1 synergistic process has excellent electron generation and migration capacity, active redox reactions, and good electron compatibility. Additionally, the photoelectrons of semiconductive minerals in red soil profoundly impact the metabolic processes of microbial denitrification functional genes. Using real-time polymerase chain reaction (qPCR) gene array technology, the abundance of nitrogen metabolism functional genes in P. aeruginosa PAO1 increased by 200 % during the light-red soil synergistic process. Notably, denitrification-related genes (ureC, nirS1, gdhA, and nosZ2) were significantly upregulated. This study confirms that semiconducting minerals are involved in the nitrogen cycle pathway of microbial denitrification and supplements the theory of mineral-microbial synergistic element biogeochemical cycling in the natural environment.
Collapse
Affiliation(s)
- Ye Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Guiping Ren
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| | - Qijun Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Wenqing Xie
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaolin Yang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yunzhu Zhou
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
17
|
Zhong C, Ren Y, Guo YY, Lu A, Liu J. Photoelectron-Promoted Sulfate Reduction for Heavy Metal Removal without Organic Carbon Addition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21680-21691. [PMID: 39601180 DOI: 10.1021/acs.est.4c08073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Sulfate-reducing microorganisms (SRMs) show promise for heavy metal removal from contaminated environments, but their scalability is limited by reliance on organic carbon, sludge formation, and CO2 emissions. This study investigates using photoelectrons from biogenic (Bio-ZnS) and abiogenic (Abio-ZnS) sphalerite nanoparticles to enhance the activity of Desulfovibrio desulfuricans G20 (G20) for sulfate reduction and lead removal without organic substrates. Both Abio-ZnS and Bio-ZnS NPs promote sulfate reduction and energy production in G20 cells under illumination without the addition of organic substrates, with Bio-ZnS achieving 1.6 times greater sulfate reduction and 3.1 times higher ATP production compared to Abio-ZnS. This superior performance of Bio-ZnS NPs is due to their wider band gap, higher photoconversion efficiency, lower charge-transfer resistance, and closer proximity to cells, which enable more efficient photoelectron uptake, enhanced intracellular electron transfer, and reduced energy consumption for motion and filamentation. The uptake of photoelectrons also promotes G20s resistance to high Pb2+ concentrations through enhanced PbS precipitation, biofilm formation, enzymatic detoxification, and Pb2+ efflux, thus improving long-term and cyclic lead removal by G20 under substrate-depleted conditions. This approach harnesses solar energy, reduces reliance on organic substrates, and lowers costs and CO2 emissions, offering a sustainable solution for utilizing SRMs in bioremediation.
Collapse
Affiliation(s)
- Chao Zhong
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Mineral Environmental Function, Peking University, Beijing 100871, China
| | - Yuanyuan Ren
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ying-Ying Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Anhuai Lu
- Beijing Key Laboratory of Mineral Environmental Function, Peking University, Beijing 100871, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Ming J, Ni SQ, Guo Z, Wang ZB, Xie L. Photocatalytic material-microorganism hybrid systems in water decontamination. Trends Biotechnol 2024:S0167-7799(24)00325-1. [PMID: 39645524 DOI: 10.1016/j.tibtech.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/05/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Biological processes are widely used technologies for water decontamination, but they are often limited by insufficient bioavailable carbon sources or biorecalcitrant contaminants. The recently developed photocatalytic material-microorganism hybrid (PMH) system combines the light-harvesting capacities of photocatalytic materials with specific enzymatic activities of whole cells, efficiently achieving solar-to-chemical conversion. By integrating the benefits of both photocatalysis and biological processes, the PMH system shows great potential for water decontamination. While recent reviews have focused primarily on its application in green energy development, this review emphasizes the latest advancements in PMH systems for water decontamination, covering various applications, key considerations, and synergistic mechanisms. This review aims to provide a fundamental understanding of the PMH system and explore its broader potential in environmental remediation.
Collapse
Affiliation(s)
- Jie Ming
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China.
| | - Ziyu Guo
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| | - Zhi-Bin Wang
- School of Life Sciences, Shandong University, Qingdao, Shandong, 266237, China
| | - Liangke Xie
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
19
|
Frei H. Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis. PHOTOSYNTHESIS RESEARCH 2024; 162:473-495. [PMID: 38108928 DOI: 10.1007/s11120-023-01061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Huang S, Ye J, Gao J, Chen M, Zhou S. Harnessing microbes to pioneer environmental biophotoelectrochemistry. Trends Biotechnol 2024; 42:1677-1690. [PMID: 39095256 DOI: 10.1016/j.tibtech.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater. Advances in system design and synthetic biology have expanded the potential of BPEC for environmental clean-up and sustainable energy generation. We also highlight the challenges of environmental BPEC systems, ranging from performance improvement to future applications.
Collapse
Affiliation(s)
- Shaofu Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
21
|
Wang Y, Dai H, Jin M, Wang J, Song Z, Liu Y, Chai W, Cheng L, Zhao N, Cui D, Zhao M. Light-driven biodegradation of chloramphenicol by photosensitized Shewanella oneidensis MR-1. BIORESOURCE TECHNOLOGY 2024; 413:131508. [PMID: 39307474 DOI: 10.1016/j.biortech.2024.131508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Efficient and sustainable degradation of chloramphenicol has piqued the interest of the scientific community. This study constructed a photosensitized biohybrid system using Shewanella oneidensis MR-1 and cadmium sulfide (CdS). This system could efficiently degrade chloramphenicol with robust stability. Inhibitor experiments and transcriptome analysis revealed that reduced nicotinamide adenine dinucleotide dehydrogenase, iron-sulfur cluster, menaquinone, cytochrome b561, cytochrome c, cytochrome P450, and formate dehydrogenase/hydrogenase are involved in direct electron transfer from S. oneidensis MR-1 to photogenerated holes of CdS. The S. oneidensis MR-1/CdS biohybrid alleviated chloramphenicol-induced physiological impairments, which can be attributed to the decreased levels of extracellular polymeric substances, malondialdehyde, and extracellular membrane permeability and the increased levels of superoxide dismutase and catalase activities. The GCN5-related N-acetyltransferase, alkene reductase, and carboxymuconolactone decarboxylase promoted the inactivation and further degradation of chloramphenicol. In summary, this study demonstrated the potential applications of the S. oneidensis MR-1/CdS biohybrid in the remediation of chloramphenicol contamination.
Collapse
Affiliation(s)
- Yongqi Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Haibing Dai
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Longgang Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Meitong Jin
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ziheng Song
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yingjie Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenqi Chai
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lu Cheng
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Na Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, Harbin 150040, China.
| |
Collapse
|
22
|
Miao X, An T, Wang L, Xiong S, Zhang H, Yi J, Zhao B, Zhao K. The Photothermal Synergistic Mechanism of Rock Varnish Photoconductance Under Laser Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5841. [PMID: 39685276 DOI: 10.3390/ma17235841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Rock varnishes, complex structures formed by long-term deposition on rocks, exhibit unique light absorption characteristics and are widely distributed across arid environments on Earth's surface. The varnishes possess the ability to absorb and convert photons from solar radiation into electrons, which represents a newly discovered fundamental energy form in nature, with further elucidation required regarding the underlying mechanism of how semiconductor minerals respond to light radiation. The regulations governing the photoconductive responses of samples from the Alashan region in Gobi, China, and the mechanisms exhibited by rock rock varnishes under various bias voltages and irradiation wavelengths (532 nm, 808 nm, and 1064 nm) were studied. The photoconductivity response is positively correlated with the applied external bias, and the response caused by shorter wavelengths is larger. The synergistic effect was quantitatively assessed by monitoring and fitting the correlation between photoconductivity, temperature, and time during laser irradiation. As an effective method to study the fundamental physical properties of semiconductor minerals, the photoconductivity testing will help to establish a fundamental framework for investigating the intrinsic physical characteristics of natural rock varnishes.
Collapse
Affiliation(s)
- Xinyang Miao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Tiantian An
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Lijun Wang
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Shujie Xiong
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Huanxi Zhang
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Jiahao Yi
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Bingbing Zhao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| | - Kun Zhao
- Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, Petroleum and Chemical Industry Federation, China University of Petroleum, Beijing 102249, China
| |
Collapse
|
23
|
Cong Y, Wang X, Bai H, Yao C, Liu J, Wei Y, Kang Y, Wang S, Li L. Intracellular Gold Nanocluster/Organic Semiconductor Heterostructure for Enhancing Photosynthesis. Angew Chem Int Ed Engl 2024; 63:e202406527. [PMID: 39137101 DOI: 10.1002/anie.202406527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Photosynthetic microorganisms, which rely on light-driven electron transfer, store solar energy in self-energy carriers and convert it into bioenergy. Although these microorganisms can operate light-induced charge separation with nearly 100 % quantum efficiency, their practical applications are inherently limited by the photosynthetic energy conversion efficiency. Artificial semiconductors can induce an electronic response to photoexcitation, providing additional excited electrons for natural photosynthesis to improve solar conversion efficiency. However, challenges remain in importing exogenous electrons across cell membranes. In this work, we have developed an engineered gold nanocluster/organic semiconductor heterostructure (AuNCs@OFTF) to couple the intracellular electron transport chain of living cyanobacteria. AuNCs@OFTF exhibits a prolonged excited state lifetime and effective charge separation. The internalized AuNCs@OFTF permits its photogenerated electrons to participate in the downstream of photosystem II and construct an oriented electronic highway, which enables a five-fold increase in photocurrent in living cyanobacteria. Moreover, the binding events of AuNCs@OFTF established an abiotic-biotic electronic interface at the thylakoid membrane to enhance electron flux and finally furnished nicotinamide adenine dinucleotide phosphate. Thus, AuNCs@OFTF can be exploited to spatiotemporally manipulate and enhance the solar conversion of living cyanobacteria in cells, providing an extended nanotechnology for re-engineering photosynthetic pathways.
Collapse
Affiliation(s)
- Yujie Cong
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology (EBEAM) Chongqing, Yangtze Normal University, Chongqing, 408100, P.R. China
| | - Jiaren Liu
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yi Wei
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lidong Li
- Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
24
|
Liu Z, Zhang W, Zhao H, Sun M, Zhao C, Ren J, Qu X. Light-Controlled Bioorthogonal Chemistry Altered Natural Killer Cell Activity for Boosted Adoptive Immunotherapy. Angew Chem Int Ed Engl 2024; 63:e202411905. [PMID: 39112373 DOI: 10.1002/anie.202411905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024]
Abstract
Natural killer (NK) cell-based immunotherapy has received much attention in recent years. However, its practical application is still suffering from the decreased function and inadequate infiltration of NK cells in the immunosuppressive microenvironment of solid tumors. Herein, we construct light-responsive porphyrin Fe array-armed NK cells (denoted as NK@p-Fe) for cell behavior modulation via bioorthogonal catalysis. By installing cholesterol-modified porphyrin Fe molecules on the NK cell surface, a catalytic array with light-harvesting capabilities is formed. This functionality transforms NK cells into cellular factories capable of catalyzing the production of active agents in a light-controlled manner. NK@p-Fe can generate the active antineoplastic drug doxorubicin through bioorthogonal reactions to enhance the cytotoxic function of NK cells. Beyond drug synthesis, NK@p-Fe can also bioorthogonally catalyze the production of the FDA-approved immune agonist imiquimod (IMQ). The activated immune agonist plays a dual role, inducing dendritic cell maturation for NK cell activation and reshaping the tumor immunosuppressive microenvironment for NK cell infiltration. This work represents a paradigm for the modulation of adoptive cell behaviors to boost cancer immunotherapy by bioorthogonal catalysis.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Huisi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Wen N, Jiang Q, Liu D. Polymer semiconductor films and bacteria hybrid artificial bio-leaves. SCIENCE ADVANCES 2024; 10:eadp8567. [PMID: 39485849 PMCID: PMC11529708 DOI: 10.1126/sciadv.adp8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Bio-artificial photosynthetic systems can reduce CO2 into multicarbon compounds by simulating natural photosynthesis. Here, inspired by organic photovoltaic structures, we demonstrate a bio-artificial photosynthetic system based on the hybridization of polymer semiconductor films and bacteria. The study suggests that the polymer-based semiconductor film can efficiently drive the non-photosynthetic bacteria to convert CO2 to acetate. By systematically characterizing the charge transport behavior of the bio-artificial photosynthetic system, the bulk-heterojunction structure and charge transport layers are proven to enhance the system performance markedly. The scalable floating artificial bio-leaf system can produce acetate to gram scale in a week. Notably, the semiconductor film is easy to recycle and maintains stable performance, showing good sustainable production capability of the system. A quasi-solid-state artificial bio-leaf is successfully prepared using agar to simulate the morphology and function of natural leaves. Last, the acetate production converted from CO2 was used to grow yeast for food production, thus achieving a complete simulation of natural photosynthesis.
Collapse
Affiliation(s)
- Na Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qianqing Jiang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Dianyi Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310000, Zhejiang, China
| |
Collapse
|
26
|
Hou N, Tong Y, Zhou M, Li X, Sun X, Li D. New Strategies for constructing and analyzing semiconductor photosynthetic biohybrid systems based on ensemble Machine learning Models: Visualizing complex mechanisms and yield prediction. BIORESOURCE TECHNOLOGY 2024; 412:131404. [PMID: 39222858 DOI: 10.1016/j.biortech.2024.131404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Photosynthetic biohybrid systems (PBSs) composed of semiconductor-microbial hybrids provide a novel approach for converting light into chemical energy. However, comprehending the intricate interactions between materials and microbes that lead to PBSs with high apparent quantum yields (AQY) is challenging. Machine learning holds promise in predicting these interactions. To address this issue, this study employs ensemble learning (ESL) based on Random Forest, Gradient Boosting Decision Tree, and eXtreme Gradient Boosting to predict AQY of PBSs utilizing a dataset comprising 15 influential factors. The ESL model demonstrates exceptional accuracy and interpretability (R2 value of 0.927), offering insights into the impact of these factors on AQY while facilitating the selection of efficient semiconductors. Furthermore, this research propose that efficient charge carrier separation and transfer at the bio-abiotic interface are crucial for achieving high AQY levels. This research provides guidance for selecting semiconductors suitable for productive PBSs while elucidating mechanisms underlying their enhanced efficiency.
Collapse
Affiliation(s)
- Ning Hou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yi Tong
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Mingwei Zhou
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xianyue Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Xiping Sun
- Grainger College of Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61820, USA
| | - Dapeng Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
27
|
Li F, Yu H, Zhang B, Hu C, Lan F, Wang Y, You Z, Liu Q, Tang R, Zhang J, Li C, Shi L, Li W, Nealson KH, Liu Z, Song H. Engineered Cell Elongation Promotes Extracellular Electron Transfer of Shewanella Oneidensis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403067. [PMID: 39234800 PMCID: PMC11538702 DOI: 10.1002/advs.202403067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/12/2024] [Indexed: 09/06/2024]
Abstract
To investigate how cell elongation impacts extracellular electron transfer (EET) of electroactive microorganisms (EAMs), the division of model EAM Shewanella oneidensis (S. oneidensis) MR-1 is engineered by reducing the formation of cell divisome. Specially, by blocking the translation of division proteins via anti-sense RNAs or expressing division inhibitors, the cellular length and output power density are all increased. Electrophysiological and transcriptomic results synergistically reveal that the programmed cell elongation reinforces EET by enhancing NADH oxidation, inner-membrane quinone pool, and abundance of c-type cytochromes. Moreover, cell elongation enhances hydrophobicity due to decreased cell-surface polysaccharide, thus facilitates the initial surface adhesion stage during biofilm formation. The output current and power density all increase in positive correction with cellular length. However, inhibition of cell division reduces cell growth, which is then restored by quorum sensing-based dynamic regulation of cell growth and elongation phases. The QS-regulated elongated strain thus enables a cell length of 143.6 ± 40.3 µm (72.6-fold of that of S. oneidensis MR-1), which results in an output power density of 248.0 ± 10.6 mW m-2 (3.41-fold of that of S. oneidensis MR-1) and exhibits superior potential for pollutant treatment. Engineering cellular length paves an innovate avenue for enhancing the EET of EAMs.
Collapse
Affiliation(s)
- Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Baocai Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Zixuan You
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Rui Tang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Chao Li
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Liang Shi
- Department of Biological Sciences and TechnologySchool of Environmental StudiesChina University of Geoscience in WuhanWuhanHubei430074China
| | - Wen‐Wei Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant ConversionDepartment of Environmental Science and EngineeringUniversity of Science & Technology of ChinaHefei230026China
| | - Kenneth H. Nealson
- Departments of Earth Science & Biological SciencesUniversity of Southern California4953 Harriman Ave.South PasadenaCA91030USA
| | - ZhanYing Liu
- Center for Energy Conservation and Emission Reduction in Fermentation Industry in Inner MongoliaEngineering Research Center of Inner Mongolia for Green Manufacturing in Bio‐fermentation Industryand School of Chemical EngineeringInner Mongolia University of TechnologyInner MongoliaHohhot010051China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education)Key Laboratory of Systems Bioengineeringand School of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
28
|
Bai R, He Y, Li J, Zhou X, Zhao F. Assembly strategies for microbe-material hybrid systems in solar energy conversion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109091. [PMID: 39244886 DOI: 10.1016/j.plaphy.2024.109091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 07/27/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
Microbe-material hybrid systems which facilitate the solar-driven synthesis of high-value chemicals, harness the unique capabilities of microbes, maintaining the high-selectivity catalytic abilities, while concurrently incorporating exogenous materials to confer novel functionalities. The effective assembly of both components is essential for the overall functionality of microbe-material hybrid systems. Herein, we conducted a critical review of microbe-material hybrid systems for solar energy conversion focusing on the perspective of interface assembly strategies between microbes and materials, which are categorized into five types: cell uptake, intracellular synthesis, extracellular mineralization, electrostatic adsorption, and cell encapsulation. Moreover, this review elucidates the mechanisms by which microbe-material hybrid systems convert elementary substrates, such as carbon dioxide, nitrogen, and water, into high-value chemicals or materials for energy generation.
Collapse
Affiliation(s)
- Rui Bai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi He
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junpeng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
29
|
Jayasinghe L, Wei J, Kim J, Lineberry E, Yang P. Particle on a Rod: Surface-Tethered Catalyst on CdS Nanorods for Enzymatically Active Nicotinamide Cofactor Generation. NANO LETTERS 2024; 24:13269-13276. [PMID: 39401012 DOI: 10.1021/acs.nanolett.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The photochemical generation of nicotinamide cofactor 1,4-NADH, facilitated by inorganic photosensitizers, emerges as a promising model system for investigating charge transfer phenomena at the interface of semiconductors and bacteria, with implications for enhancing photosynthetic biohybrid systems (PBSs). However, extant semiconductor nanocrystal model systems suffer from achieving optimal conversion efficiency under visible light. This study investigates quasi-one-dimensional CdS nanorods as superior light absorbers, surface modified with catalyst Cp*Rh(4,4'-COOH-bpy)Cl2 to produce enzymatically active NADH. This model subsystem facilitates easy product isolation and achieves a turnover frequency (TOF) of 175 h-1, one of the highest efficiencies reported for inorganic photosensitizer-based nicotinamide cofactor generation. Charge transfer kinetics, fundamental for catalytic solar energy conversion, range from 106 to 108 s-1 for this system highlighting the superior electron transfer capabilities of NRs. This model ensures efficient cofactor production and offers critical insights into advancing systems that mimic natural photosynthesis for sustainable solar-to-chemical synthesis.
Collapse
Affiliation(s)
- Lihini Jayasinghe
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jiaxi Wei
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nano Science Institute, Berkeley, California 94720, United States
| |
Collapse
|
30
|
Yu Y, Guo S, Lv S, Tian R, Cheng S, Chen Y. Eradicating the Photogenerated Holes in a Photocatalyst-Microbe Hybrid System: A Review. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56545-56554. [PMID: 39404055 DOI: 10.1021/acsami.4c12355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Finding advanced technologies to store solar energy in chemical bonds efficiently is of great significance for the sustainable development of our society. The recently reported photocatalyst-microbe hybrid (PMH) system couples photocatalysts intimately with microbes and endows heterotrophic microbes with light-harvesting capacity. Generally, when PMH systems are exposed to light, photocatalytic reactions occur on the surface of photocatalysts and the photogenerated electrons enter microbial cells to promote the generation of energy carriers (such as nicotinamide adenine dinucleotide phosphate hydrogen and adenosine triphosphate) and the following chemical synthesis. PMH system applications have expanded from synthesizing value-added products (chemicals, fuels, and polymers) to treating pollutants. However, the successful operation of the PMH system relies on the timely eradication of the photogenerated holes as they recombine with the photogenerated electrons and cause the photocorrosion of the photocatalyst. This review summarizes the strategies for scavenging the photogenerated holes in PMH systems and provides insight into the current gaps and outlooks for future opportunities in this field.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu Provincial Key Laboratory of Multi-energy Integration and Flexible Power Generation Technology, School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Shuxian Guo
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Shaopeng Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Ruirui Tian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Shuang Cheng
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yaozhong Chen
- Department of Operative Dentistry and Endodontics, Zhongda Hospital, Medical College, Southeast University, Nanjing 210009, China
| |
Collapse
|
31
|
Yang K, Yang Y, Wang J, Huang X, Cui D, Zhao M. The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli. BIOLOGY 2024; 13:847. [PMID: 39452155 PMCID: PMC11505546 DOI: 10.3390/biology13100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
This study investigated the impact of CdS nanoparticles (NPs) on Escherichia coli growth and metabolism under varying conditions. Under illumination, CdS NPs significantly enhanced bacterial growth, glucose assimilation, and biomass accumulation. Key metabolic and stress response genes showed increased expression, indicating improved ATP synthesis and oxidative stress resistance. Additionally, CdS NPs enhanced the electrochemical properties of E. coli, promoting efficient electron transfer. No significant changes were observed in the dark. These findings suggest that light-activated CdS NPs promote E. coli growth and metabolic efficiency by upregulating crucial genes involved in growth and oxidative stress management.
Collapse
Affiliation(s)
- Kuo Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Jie Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Xiaomeng Huang
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (K.Y.); (Y.Y.); (J.W.); (X.H.)
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, Harbin 150040, China
| |
Collapse
|
32
|
Tao Z, Li B, Lin S, Li S, Li L, Huang X. Study on confined interface electron enhanced ethanol to hydrogen conversion by Rhodopseudomonas palustris. Chem Commun (Camb) 2024; 60:12205-12208. [PMID: 39356186 DOI: 10.1039/d4cc03553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Conjugated polymer coatings enhance bacteria with eco-friendly energy use. A new hybrid system boosts hydrogen production by Rhodopseudomonas palustris@polypyrrole (R. palustris@PPy) through interface electron transfer and hydrogel encapsulation. To maximize the output, we studied hydrogen metabolism using various techniques and found that conductive polymer modification facilitated electron transfer, affecting intracellular pathways. This technology offers enhanced green hydrogen production for sustainable energy.
Collapse
Affiliation(s)
- Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Baoyuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Song Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
33
|
Zia A, Khalid S, Rasool N, Mohsin N, Imran M, Toma SI, Misarca C, Andreescu O. Pd-, Cu-, and Ni-Catalyzed Reactions: A Comprehensive Review of the Efficient Approaches towards the Synthesis of Antibacterial Molecules. Pharmaceuticals (Basel) 2024; 17:1370. [PMID: 39459010 PMCID: PMC11509998 DOI: 10.3390/ph17101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
A strong synthetic tool for many naturally occurring chemicals, polymers, and pharmaceutical substances is transition metal-catalyzed synthesis. A serious concern to human health is the emergence of bacterial resistance to a broad spectrum of antibacterial medications. The synthesis of chemical molecules that are potential antibacterial candidates is underway. The main contributions to medicine are found to be effective in transition metal catalysis and heterocyclic chemistry. This review underlines the use of heterocycles and certain effective transition metals (Pd, Cu, and Ni) as catalysts in chemical methods for the synthesis of antibacterial compounds. Pharmaceutical chemists might opt for clinical exploration of these techniques due to their potential.
Collapse
Affiliation(s)
- Almeera Zia
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Shehla Khalid
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Nayab Mohsin
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan; (A.Z.); (S.K.); (N.M.)
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Sebastian Ionut Toma
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Catalin Misarca
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania; (C.M.); (O.A.)
| |
Collapse
|
34
|
Shen J, Qiao L. Proteomic and metabolic analysis of Moorella thermoacetica-g-C 3N 4 nanocomposite system for artificial photosynthesis. Talanta 2024; 278:126479. [PMID: 38941811 DOI: 10.1016/j.talanta.2024.126479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Artificial photosynthesis by microbe-semiconductor biohybrid systems has been demonstrated as a valuable strategy in providing sustainable energy and in carbon fixation. However, most of the developed biohybrid systems for light harvesting employ heavy metal materials, especially cadmium sulfide (CdS), which normally cause environmental pollution and restrict the widespread of the systems. Herein, we constructed an environmentally friendly biohybirid system based on a typical acetogenic bacteria, Moorella thermoacetica, coupling with a carbon-based semiconductor, graphitic carbon nitride (g-C3N4), to realize light-driven carbon fixation. The proposed biohybrid system displayed outstanding acetate productivity with a quantum yield of 2.66 ± 0.43 %. Non-targeted proteomic analysis indicated that the physiological activity of the bacteria was improved, coupling with the non-toxic material. We further proposed the mechanisms of energy generation, electron transfer and CO2 fixation of the irradiated biohybrid system by proteomic and metabolomic characterization. With the photoelectron generated in g-C3N4 under illumination, CO2 is finally converted to acetate via the Wood-Ljungdahl pathway (WLP). Other associated pathways were also proved to be activated, providing extra energy or substrates for acetate production. The study reveals that the future focus of the development of biohybrid systems for light harvesting can be on the metal-free biocompatible material, which can activate the expression of the key enzymes involved in the electron transfer and carbon metabolism under light irradiation.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Minhang Hospital, Fudan University, Shanghai, 200000, China
| | - Liang Qiao
- Department of Chemistry, and Minhang Hospital, Fudan University, Shanghai, 200000, China.
| |
Collapse
|
35
|
Xu N, Zhang X, Guo PC, Xie DH, Sheng GP. Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications. SCIENCE ADVANCES 2024; 10:eadp2179. [PMID: 39292775 PMCID: PMC11409965 DOI: 10.1126/sciadv.adp2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms' resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.
Collapse
Affiliation(s)
- Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Xing SF, Tian HF, Yan Z, Wang Z, Song C, Wang SG. In-situ construction of biomineralized cadmium sulfide-Rhodopseudomonas palustris hybrid system: Mechanism of synergistic light utilization. CHEMOSPHERE 2024; 364:143109. [PMID: 39151579 DOI: 10.1016/j.chemosphere.2024.143109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/11/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Sulfide biomineralization is a microorganism-induced process for transforming the environmentally hazardous cadmium into useful resource utilization. This study successfully constructed cadmium sulfide nanoparticles-Rhodopseudomonas palustris (Bio-CdS NPs-R. palustris) hybrids. For the self-assembling hybrids, Bio-CdS NPs were treated as new artificial-antennas to enhance photosynthesis, especially under low light (LL). Bacterial physiological results of hybrids were significantly increased, particularly for cells under LL, with higher enhancement photon harvesting ability. The enhancement included the pigment contents, and the ratio of the peripheral light-harvesting complex Ⅱ (LH2) to light-harvesting Ⅰ (1.33 ± 0.01 under LL), leading to the improvements of light-harvesting, transfer, and antenna conversion efficiencies. Finally, the stimulated electron chain of hybrids improved bacterial metabolism with increased nicotinamide adenine dinucleotide (NADH, 174.5% under LL) and adenosine triphosphate (ATP, 41.1% under LL). Furthermore, the modified photosynthetic units were induced by the up-regulated expression of fixK, which was activated by reduced oxygen tension of the medium for hybrids. fixK up-regulated genes encoding pigments (crt, and bch) and complexes (puf, pucAB, and pucC), leading to improved light-harvesting and transfer, and transform ability. This study provides a comprehensive understanding of the solar energy utilization mechanism of in-situ semiconductor-phototrophic microbe hybrids, contributing to further theoretical insight into their practical application.
Collapse
Affiliation(s)
- Su-Fang Xing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Hui-Fang Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhe Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X5, Canada
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shu-Guang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; Weihai Research Institute of Industrial Technology, Shandong University, Weihai, 264209, China.
| |
Collapse
|
37
|
Xue B, Tian L, Liu Y, Peng L, Iqbal W, Li L, Mao Y. Enhanced nitrate reduction in hypotrophic waters with integrated photocatalysis and biodegradation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100390. [PMID: 38328509 PMCID: PMC10847995 DOI: 10.1016/j.ese.2024.100390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 02/09/2024]
Abstract
Addressing nitrate contamination in water bodies is a critical environmental challenge, and Intimately Coupling Photocatalysis and Biodegradation (ICPB) presents a promising solution. However, there is still debate about the effectiveness of ICPB in reducing nitrate under hypotrophic conditions. Further research is needed to understand its microbial metabolic mechanism and the functional changes in bacterial structure. Here we explored microbial metabolic mechanisms and changes in bacterial structure in ICPB reactors integrating a meticulously screened TiO2/g-C3N4 photocatalyst with biofilm. We achieved a 26.3% increase in nitrate reduction using 12.2% less organic carbon compared to traditional biodegradation methods. Metagenomic analysis of the microbial communities in ICPB reactors revealed evolving metabolic pathways conducive to nitrate reduction. This research not only elucidates the photocatalytic mechanism behind nitrate reduction in hypotrophic conditions but also provides genomic insights that pave the way for alternative approaches in water remediation technologies.
Collapse
Affiliation(s)
- Bingjie Xue
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Li Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Yaqi Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Lingxiu Peng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| | - Waheed Iqbal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Liangzhong Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518071, PR China
| |
Collapse
|
38
|
Zhao J, Wang C, Liu J, Zhang N, Zhao Y, Zhao J, Wang X, Wei W. A biocompatible surface display approach in Shewanella promotes current output efficiency. Biosens Bioelectron 2024; 259:116422. [PMID: 38797034 DOI: 10.1016/j.bios.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 μM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingjing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nuo Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuqin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| |
Collapse
|
39
|
Bae J, Park C, Jung H, Jin S, Cho BK. Harnessing acetogenic bacteria for one-carbon valorization toward sustainable chemical production. RSC Chem Biol 2024; 5:812-832. [PMID: 39211478 PMCID: PMC11353040 DOI: 10.1039/d4cb00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/06/2024] [Indexed: 09/04/2024] Open
Abstract
The pressing climate change issues have intensified the need for a rapid transition towards a bio-based circular carbon economy. Harnessing acetogenic bacteria as biocatalysts to convert C1 compounds such as CO2, CO, formate, or methanol into value-added multicarbon chemicals is a promising solution for both carbon capture and utilization, enabling sustainable and green chemical production. Recent advances in the metabolic engineering of acetogens have expanded the range of commodity chemicals and biofuels produced from C1 compounds. However, producing energy-demanding high-value chemicals on an industrial scale from C1 substrates remains challenging because of the inherent energetic limitations of acetogenic bacteria. Therefore, overcoming this hurdle is necessary to scale up the acetogenic C1 conversion process and realize a circular carbon economy. This review overviews the acetogenic bacteria and their potential as sustainable and green chemical production platforms. Recent efforts to address these challenges have focused on enhancing the ATP and redox availability of acetogens to improve their energetics and conversion performances. Furthermore, promising technologies that leverage low-cost, sustainable energy sources such as electricity and light are discussed to improve the sustainability of the overall process. Finally, we review emerging technologies that accelerate the development of high-performance acetogenic bacteria suitable for industrial-scale production and address the economic sustainability of acetogenic C1 conversion. Overall, harnessing acetogenic bacteria for C1 valorization offers a promising route toward sustainable and green chemical production, aligning with the circular economy concept.
Collapse
Affiliation(s)
- Jiyun Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Chanho Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Hyunwoo Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sangrak Jin
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| |
Collapse
|
40
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
41
|
Lei H, Lv L, Zhou X, Liu S, Zhu M, Wang H, Qin H, Fang Q, Peng X. Weakly Confined Semiconductor Nanocrystals Excel in Photochemical and Optoelectronic Properties: Evidence from Single-Dot Studies. J Am Chem Soc 2024; 146:21948-21959. [PMID: 39075033 DOI: 10.1021/jacs.4c06993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Single-molecule spectroscopy offers state-resolved measurements on charge-transfer reactions of single semiconductor nanocrystals, leading to the discovery of up to six single-charge transfer reactions with seven transient states for single CdSe/CdS core/shell nanocrystals with water (or oxygen) as the hole (or electron) acceptors. Kinetic rates of three photoinduced single-hole transfer reactions decrease significantly upon increasing the number of excess electrons in a nanocrystal, mainly due to efficient Auger nonradiative recombination of the charged single excitons. Conversely, the kinetic rates of three single-electron transfer reactions of an unexcited nanocrystal increase proportionally to the number of excess electrons in it. Results here reveal that charge-transfer reactions of nanocrystals, at the center of nearly all their functions, could only be deciphered at a state-resolved level on a single nanocrystal. Size-dependent studies validate the weakly confined semiconductor nanocrystals, instead of strongly confined ones (quantum dots), as optimal candidates for photochemical and optoelectronic applications.
Collapse
Affiliation(s)
- Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liulin Lv
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xionglin Zhou
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Meiyi Zhu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Huifeng Wang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qun Fang
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
42
|
Ding Q, Liu L. Reprogramming cellular metabolism to increase the efficiency of microbial cell factories. Crit Rev Biotechnol 2024; 44:892-909. [PMID: 37380349 DOI: 10.1080/07388551.2023.2208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 06/30/2023]
Abstract
Recent studies are increasingly focusing on advanced biotechnological tools, self-adjusting smart microorganisms, and artificial intelligent networks, to engineer microorganisms with various functions. Microbial cell factories are a vital platform for improving the bioproduction of medicines, biofuels, and biomaterials from renewable carbon sources. However, these processes are significantly affected by cellular metabolism, and boosting the efficiency of microbial cell factories remains a challenge. In this review, we present a strategy for reprogramming cellular metabolism to enhance the efficiency of microbial cell factories for chemical biosynthesis, which improves our understanding of microbial physiology and metabolic control. Current methods are mainly focused on synthetic pathways, metabolic resources, and cell performance. This review highlights the potential biotechnological strategy to reprogram cellular metabolism and provide novel guidance for designing more intelligent industrial microbes with broader applications in this growing field.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Hu G, Huang J, Fussenegger M. Toward Photosynthetic Mammalian Cells through Artificial Endosymbiosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310310. [PMID: 38506612 DOI: 10.1002/smll.202310310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Photosynthesis in plants occurs within specialized organelles known as chloroplasts, which are postulated to have originated through endosymbiosis with cyanobacteria. In nature, instances are also observed wherein specific invertebrates engage in symbiotic relationships with photosynthetic bacteria, allowing them to subsist as photoautotrophic organisms over extended durations. Consequently, the concept of engineering artificial endosymbiosis between mammalian cells and cyanobacteria represents a promising avenue for enabling photosynthesis in mammals. The study embarked with the identification of Synechocystis PCC 6803 as a suitable candidate for establishing a long-term endosymbiotic relationship with macrophages. The cyanobacteria internalized by macrophages exhibited the capacity to rescue ATP deficiencies within their host cells under conditions of illumination. Following this discovery, a membrane-coating strategy is developed for the intracellular delivery of cyanobacteria into non-macrophage mammalian cells. This pioneering technique led to the identification of human embryonic kidney cells HEK293 as optimal hosts for achieving sustained endosymbiosis with Synechocystis PCC 6803. The study offers valuable insights that may serve as a reference for the eventual achievement of artificial photosynthesis in mammals.
Collapse
Affiliation(s)
- Guipeng Hu
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| |
Collapse
|
44
|
Chen H, Xu Y, Li X, Ma Q, Xie D, Mei Y, Wang G, Zhu Y. Hierarchical NiCo 2Se 4 Arrays Composed of Atomically Thin Nanosheets: Simultaneous Improvements in Thermodynamics and Kinetics for Electrocatalytic Water Splitting in Neutral Media. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402889. [PMID: 38894560 PMCID: PMC11336961 DOI: 10.1002/advs.202402889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/12/2024] [Indexed: 06/21/2024]
Abstract
The inefficiency of electrocatalysts for water splitting in neutral media stems from a comprehensive impact of poor intrinsic activity, a limited number of active sites, and inadequate mass transport. Herein, hierarchical ultrathin NiCo2Se4 nanosheets are synthesized by the selenization of NiCo2O4 porous nanoneedles. Theoretical and experimental investigations reveal that the intrinsic hydrogen evolution reaction (HER) activity primarily originate from the NiCo2Se4, whereas the high oxygen evolution reaction (OER) performance is related to the NiCoOOH due to the structural reconstruction. The abundant Se and O vacancies introduced by atomically thin nanostructure modulate the electronic structure of NiCo2Se4 and NiCoOOH, thereby improving the intrinsic HER and OER activities, respectively. COMSOL simulation demonstrate the edges of extended nanosheets from the main body significantly promote the charge aggregation, boosting the reduction and oxidation current during HER/OER process. This charge aggregation effect notably exceeds the tip effect for the nanoneedle, highlighting the unique advantage of the hierarchical nanosheet structure. Benefiting from abundant vacancies and unique nanostructure, the hierarchical ultrathin nanosheet simultaneously improve the thermodynamics and kinetics of the electrocatalyst. The optimized samples display an overpotential of 92 mV for HER and 214 mV for OER at 100 mA cm-2, significantly surpassing the performance of currently reported HER/OER catalysts in neutral media.
Collapse
Affiliation(s)
- Hongyu Chen
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| | - Yongsheng Xu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical EngineeringShihezi UniversityShihezi832000China
| | - Xiaojie Li
- PetroChina Shenzhen New Energy Research InstituteShenzhen518052China
| | - Qing Ma
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| | - Delong Xie
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| | - Yi Mei
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| | - Guojing Wang
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| | - Yuanzhi Zhu
- Faculty of Chemical EngineeringYunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus MaterialsKunming University of Science and TechnologyKunmingYunnan650500China
| |
Collapse
|
45
|
Oh J, Kumari N, Kim D, Kumar A, Lee IS. Ultrathin silica-tiling on living cells for chemobiotic catalysis. Nat Commun 2024; 15:5773. [PMID: 38982057 PMCID: PMC11233561 DOI: 10.1038/s41467-024-50255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Harnessing the power of cell biocatalysis for sustainable chemical synthesis requires rational integration of living cells with the modern synthetic catalysts. Here, we develop silica-tiling strategy that constructs a hierarchical, inorganic, protocellular confined nanospace around the individual living cell to accommodate molecularly accessible abiotic catalytic sites. This empowers the living microorganisms for new-to-nature chemical synthesis without compromising the cellular regenerative process. Yeast cell, a widely used biocatalyst, is upgraded via highly controlled self-assembly of 2D-bilayer silica-based catalytic modules on cell surfaces, opening the avenues for diverse chemobiotic reactions. For example, combining [AuPt]-catalyzed NADH regeneration, light-induced [Pd]-catalyzed C-C cross-coupling or lipase-catalyzed esterification reactions-with the natural ketoreductase activity inside yeast cell. The conformal silica bilayer provides protection while allowing proximity to catalytic sites and preserving natural cell viability and proliferation. These living nanobiohybrids offer to bridge cell's natural biocatalytic capabilities with customizable heterogeneous metal catalysis, enabling programmable reaction sequences for sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jeongsang Oh
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dayeong Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, Korea.
| |
Collapse
|
46
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
47
|
Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, Hou Y, Wang B. A Self-Assembled MOF-Escherichia Coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308597. [PMID: 38664984 PMCID: PMC11220693 DOI: 10.1002/advs.202308597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/25/2024] [Indexed: 07/04/2024]
Abstract
The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.
Collapse
Affiliation(s)
- Jialu Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tianfeng Hou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Kemeng Xiao
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Department of Chemistry and Center for Cell and Developmental BiologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yanping Hou
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
48
|
Li F, Zhu P, Zheng B, Lu Z, Fang C, Fu Y, Li X. A Customized Biohybrid Presenting Cascade Responses to Tumor Microenvironment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404901. [PMID: 38723206 DOI: 10.1002/adma.202404901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 05/16/2024]
Abstract
Intrinsic characteristics of microorganisms, including non-specific metabolism sites, toxic byproducts, and uncontrolled proliferation constrain their exploitation in medical applications such as tumor therapy. Here, the authors report an engineered biohybrid that can efficiently target cancerous sites through a pre-determined metabolic pathway to enable precise tumor ablation. In this system, DH5α Escherichia coli is engineered by the introduction of hypoxia-inducible promoters and lactate oxidase genes, and further surface-armored with iron-doped ZIF-8 nanoparticles. This bioengineered E. coli can produce and secrete lactate oxidase to reduce lactate concentration in response to hypoxic tumor microenvironment, as well as triggering immune activation. The peroxidase-like functionality of the nanoparticles extends the end product of the lactate metabolism, enabling the conversion of hydrogen peroxide (H2O2) into highly cytotoxic hydroxyl radicals. This, coupled with the transformation of tirapazamine loaded on nanoparticles to toxic benzotriazinyl, culminates in severe tumor cell ferroptosis. Intravenous injection of this biohybrid significantly inhibits tumor growth and metastasis.
Collapse
Affiliation(s)
- Feiyu Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Peipei Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Bingzhu Zheng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zijie Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Chao Fang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Yike Fu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Xiang Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Zhejiang University, Hangzhou, 311215, China
| |
Collapse
|
49
|
Zhai Y, Tong S, Chen L, Zhang Y, Amin FR, Khalid H, Liu F, Duan Y, Chen W, Chen G, Li D. The enhancement of energy supply in syngas-fermenting microorganisms. ENVIRONMENTAL RESEARCH 2024; 252:118813. [PMID: 38574985 DOI: 10.1016/j.envres.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yuan Zhang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Habiba Khalid
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
50
|
Shi Q, Yin T, Zeng C, Pan H, Chen Z, Wang L, Wang B, Zheng M, Cai L. Cryomicroneedle delivery of nanogold-engineered Rhodospirillum rubrum for photochemical transformation and tumor optical biotherapy. Bioact Mater 2024; 37:505-516. [PMID: 38698917 PMCID: PMC11063949 DOI: 10.1016/j.bioactmat.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Tumor metabolite regulation is intricately linked to cancer progression. Because lactate is a characteristic metabolite of the tumor microenvironment (TME), it supports tumor progression and drives immunosuppression. In this study, we presented a strategy for antitumor therapy by developing a nanogold-engineered Rhodospirillum rubrum (R.r-Au) that consumed lactate and produced hydrogen for optical biotherapy. We leveraged a cryogenic micromolding approach to construct a transdermal therapeutic cryomicroneedles (CryoMNs) patch integrated with R.r-Au to efficiently deliver living bacterial drugs. Our long-term storage studies revealed that the viability of R.r-Au in CryoMNs remained above 90%. We found that the CryoMNs patch was mechanically strong and could be inserted into mouse skin. In addition, it rapidly dissolved after administering bacterial drugs and did not produce by-products. Under laser irradiation, R.r-Au effectively enhanced electron transfer through Au NPs actuation into the photosynthetic system of R. rubrum and enlarged lactate consumption and hydrogen production, thus leading to an improved tumor immune activation. Our study demonstrated the potential of CryoMNs-R.r-Au patch as a minimally invasive in situ delivery approach for living bacterial drugs. This research opens up new avenues for nanoengineering bacteria to transform tumor metabolites into effective substances for tumor optical biotherapy.
Collapse
Affiliation(s)
- Qingxia Shi
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, China
| | - Ting Yin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ze Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Wang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Mingbin Zheng
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan, 523808, China
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- Sino-Euro Center of Biomedicine and Health, Shenzhen, 518024, China
| |
Collapse
|